-
Notifications
You must be signed in to change notification settings - Fork 38
/
metric.py
524 lines (454 loc) · 20.7 KB
/
metric.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
from carb import Benchmark
from oie_readers.extraction import Extraction
from matcher import Matcher
from collections import defaultdict
from enum import Enum
from tqdm import tqdm
import os
import ipdb
import pickle
from overrides import overrides
import numpy as np
import warnings
import regex as re
import difflib
class Record(object):
"""
the precision equals how many of the conjuncts output
by the algorithm are correct, and the recall is the
percentage of conjuncts found by the algorithm.
[Shimbo et al, 2007]
"""
def __init__(self):
self.tp_t = 0
self.tp_f = 0
self.tp = 0
self.fp = 0
self.fn = 0
self.tn = 0
@property
def accuracy(self):
total = self.tp + self.fp + self.fn + self.tn
return (self.tp_t + self.tn) / total if total > 0 else np.nan
@property
def precision(self):
denom = self.tp + self.fp
return self.tp_t / denom if denom > 0 else np.nan
@property
def recall(self):
denom = self.tp + self.fn
return self.tp_t / denom if denom > 0 else np.nan
@property
def f1_score(self):
precision = self.precision
if precision is not np.nan:
recall = self.recall
if recall is not np.nan:
denom = precision + recall
if denom > 0:
return (2 * precision * recall) / denom
return np.nan
def __str__(self):
return "P: {:.8f}, R: {:.8f}, F: {:.8f}" \
.format(self.precision, self.recall, self.f1_score)
def __repr__(self):
return "Record(TP=({},t:{},f:{}), FP={}, FN={}, TN={})" \
.format(self.tp, self.tp_t, self.tp_f, self.fp, self.fn, self.tn)
class Coordination(object):
__slots__ = ('cc', 'conjuncts', 'seps', 'label')
def __init__(self, cc, conjuncts, seps=None, label=None):
assert isinstance(conjuncts, (list, tuple)) and len(conjuncts) >= 2
assert all(isinstance(conj, tuple) for conj in conjuncts)
conjuncts = sorted(conjuncts, key=lambda span: span[0])
# NOTE(chantera): The form 'A and B, C' is considered to be coordination. # NOQA
# assert cc > conjuncts[-2][1] and cc < conjuncts[-1][0]
assert cc > conjuncts[0][1] and cc < conjuncts[-1][0]
if seps is not None:
# if len(seps) == len(conjuncts) - 2:
# for i, sep in enumerate(seps):
# assert conjuncts[i][1] < sep and conjuncts[i + 1][0] > sep
# else:
if len(seps) != len(conjuncts) - 2:
warnings.warn(
"Coordination does not contain enough separators. "
"It may be a wrong coordination: "
"cc={}, conjuncts={}, separators={}"
.format(cc, conjuncts, seps))
else:
seps = []
self.cc = cc
self.conjuncts = tuple(conjuncts)
self.seps = tuple(seps)
self.label = label
def get_pair(self, index, check=False):
pair = None
for i in range(1, len(self.conjuncts)):
if self.conjuncts[i][0] > index:
pair = (self.conjuncts[i - 1], self.conjuncts[i])
assert pair[0][1] < index and pair[1][0] > index
break
if check and pair is None:
raise LookupError(
"Could not find any pair for index={}".format(index))
return pair
def __repr__(self):
return "Coordination(cc={}, conjuncts={}, seps={}, label={})".format(
self.cc, self.conjuncts, self.seps, self.label)
def __eq__(self, other):
if not isinstance(other, Coordination):
return False
return self.cc == other.cc \
and len(self.conjuncts) == len(other.conjuncts) \
and all(conj1 == conj2 for conj1, conj2
in zip(self.conjuncts, other.conjuncts))
def post_process(coords, is_quote):
new_coords = {}
offsets = np.delete(is_quote.cumsum(), np.argwhere(is_quote))
for cc, coord in coords.items():
cc = cc + offsets[cc]
if coord is not None:
conjuncts = [(b + offsets[b], e + offsets[e])
for (b, e) in coord.conjuncts]
seps = [s + offsets[s] for s in coord.seps]
coord = Coordination(cc, conjuncts, seps, coord.label)
new_coords[cc] = coord
return new_coords
class Counter(object):
class Criteria(Enum):
WHOLE = 0
OUTER = 1
INNER = 2
EXACT = 3
OVERALL = "OVERALL"
def __init__(self, criteria):
assert isinstance(criteria, Counter.Criteria)
self._criteria = criteria
self._records = defaultdict(Record)
def reset(self):
self._records.clear()
def append(self, pred_coords, true_coords):
for cc in sorted(true_coords.keys()):
pred_coord = pred_coords.get(cc, None)
true_coord = true_coords[cc]
if pred_coord is not None and true_coord is not None:
pred_conjuncts = pred_coord.conjuncts
true_conjuncts = true_coord.conjuncts
coord_label = true_coord.label
if self._criteria == Counter.Criteria.WHOLE:
correct = pred_conjuncts[0][0] == true_conjuncts[0][0] \
and pred_conjuncts[-1][1] == true_conjuncts[-1][1]
elif self._criteria == Counter.Criteria.OUTER:
correct = pred_conjuncts[0] == true_conjuncts[0] \
and pred_conjuncts[-1] == true_conjuncts[-1]
elif self._criteria == Counter.Criteria.INNER:
pred_pair = pred_coord.get_pair(cc, check=True)
true_pair = true_coord.get_pair(cc, check=True)
correct = pred_pair == true_pair
elif self._criteria == Counter.Criteria.EXACT:
correct = pred_conjuncts == true_conjuncts
self._records[Counter.OVERALL].tp += 1
self._records[coord_label].tp += 1
if correct:
self._records[Counter.OVERALL].tp_t += 1
self._records[coord_label].tp_t += 1
else:
self._records[Counter.OVERALL].tp_f += 1
self._records[coord_label].tp_f += 1
if pred_coord is not None and true_coord is None:
self._records[Counter.OVERALL].fp += 1
if pred_coord is None and true_coord is not None:
coord_label = true_coord.label
self._records[Counter.OVERALL].fn += 1
self._records[coord_label].fn += 1
if pred_coord is None and true_coord is None:
self._records[Counter.OVERALL].tn += 1
@property
def overall(self):
return self._records[Counter.OVERALL]
def clean_conjuncts(coordination, words):
cc_index = coordination.cc
conjuncts = coordination.conjuncts
seps = coordination.seps
return coordination
def get_coords(all_depth_labels, tokens=None, correct=False):
all_cps = dict()
found = False
for depth in range(len(all_depth_labels)):
cp, start_index = None, -1
coordphrase, conjunction, coordinator, separator = False, False, False, False
labels = all_depth_labels[depth]
for i, label in enumerate(labels):
if label != 1: # conjunction can end
if conjunction and cp != None:
conjunction = False
cp['conjuncts'].append((start_index, i-1))
if label == 0 or label == 2: # coordination phrase can end
if cp != None and len(cp['conjuncts']) >= 2 and cp['cc'] > cp['conjuncts'][0][1] and cp['cc'] < cp['conjuncts'][-1][0]:
found = True
coordination = Coordination(
cp['cc'], cp['conjuncts'], label=depth)
# if correct:
# coordination = clean_conjuncts(coordination, words)
all_cps[cp['cc']] = coordination
cp = None
if label == 0:
continue
if label == 1: # can start a conjunction
if not conjunction:
conjunction = True
start_index = i
if label == 2: # starts a coordination phrase
cp = {'cc': -1, 'conjuncts': [], 'seps': []}
conjunction = True
start_index = i
if label == 3 and cp != None:
cp['cc'] = i
if label == 4 and cp != None:
cp['seps'].append(i)
if label == 5: # nothing to be done
continue
if label == 3 and cp == None:
# coordinating words which do not have associated conjuncts
all_cps[i] = None
return all_cps
def contains_extraction(extr, list_extr):
str = ' '.join(extr.args) + ' ' + extr.pred
for extraction in list_extr:
if str == ' '.join(extraction.args) + ' ' + extraction.pred:
return True
return False
def dedup_extractions(extractions_list, conj_words):
# Remove extractions which are exactly equal
# Remove extractions which are almost equal (threshold=0.9) - ignoring extractions which are actually split (as they may be very similar)
all_ext_words = []
for extr in extractions_list:
ext_words = (' '.join(extr.args) + ' ' + extr.pred).split()
all_ext_words.append(ext_words)
delete_indices = []
conj_words_set = set(conj_words)
for i in range(len(all_ext_words)):
for j in range(i+1, len(all_ext_words)):
ext_i_str = ' '.join(all_ext_words[i])
ext_j_str = ' '.join(all_ext_words[j])
if ext_i_str == ext_j_str:
delete_indices.append(i)
continue
ext_i_set = set(all_ext_words[i])
ext_j_set = set(all_ext_words[j])
len_i = len(ext_i_set)
len_j = len(ext_j_set)
found_conjunction = False
for conj_words in conj_words_set:
if conj_words in ext_i_str or conj_words in ext_j_str:
found_conjunction = True
if found_conjunction:
continue
if difflib.SequenceMatcher(None, ext_i_str, ext_j_str).ratio() > 0.9:
if len_i > len_j:
delete_indices.append(j)
else:
delete_indices.append(i)
delete_indices = list(set(delete_indices))
for index in sorted(delete_indices, reverse=True):
del extractions_list[index]
return extractions_list
class Conjunction():
def __init__(self, dump_dir=None):
super(Conjunction, self).__init__()
self._counter_whole = Counter(Counter.Criteria.WHOLE)
self._counter_outer = Counter(Counter.Criteria.OUTER)
self._counter_inner = Counter(Counter.Criteria.INNER)
self._counter_exact = Counter(Counter.Criteria.EXACT)
self.n_complete = 0
self.n_sentence = 0
self._dump_dir = dump_dir
if self._dump_dir != None:
if os.path.exists(dump_dir+'/tokens.pkl'):
os.remove(dump_dir+'/tokens.pkl')
if os.path.exists(dump_dir+'/pred_it_coords.pkl'):
os.remove(dump_dir+'/pred_it_coords.pkl')
if os.path.exists(dump_dir+'/gt_it_coords.pkl'):
os.remove(dump_dir+'/gt_it_coords.pkl')
def __call__(self, predictions, ground_truth, meta_data=None, coords=False):
# coords == True when we give it the complete coords
# happens when we want to evaluate on the original system outputs
for i in range(len(predictions)):
if not coords:
pred_coords = get_coords(
predictions[i], meta_data[i], correct=True)
true_coords = get_coords(ground_truth[i], meta_data[i])
else:
pred_coords = predictions[i]
true_coords = ground_truth[i]
self._counter_whole.append(pred_coords, true_coords)
self._counter_outer.append(pred_coords, true_coords)
self._counter_inner.append(pred_coords, true_coords)
self._counter_exact.append(pred_coords, true_coords)
if self._dump_dir:
pickle.dump(tokens, open(self._dump_dir+'/tokens.pkl', 'ab'))
pickle.dump(pred_coords, open(
self._dump_dir+'/pred_it_coords.pkl', 'ab'))
pickle.dump(true_coords, open(
self._dump_dir+'/gt_it_coords.pkl', 'ab'))
return
def reset(self):
self._counter_whole.reset()
self._counter_outer.reset()
self._counter_inner.reset()
self._counter_exact.reset()
self.n_complete = 0
self.n_sentence = 0
def get_metric(self, reset: bool = False, mode=None):
counters = [("whole", self._counter_whole),
("outer", self._counter_outer),
("inner", self._counter_inner),
("exact", self._counter_exact)]
all_metrics = dict()
all_metrics['P_exact'] = counters[3][1].overall.precision
all_metrics['R_exact'] = counters[3][1].overall.recall
all_metrics['F1_whole'] = counters[0][1].overall.f1_score
all_metrics['F1_outer'] = counters[1][1].overall.f1_score
all_metrics['F1_inner'] = counters[1][1].overall.f1_score
all_metrics['F1_exact'] = counters[3][1].overall.f1_score
if reset:
self.reset()
return all_metrics
def get_overall_score(self, metric='exact'):
if metric == 'whole':
counter = self._counter_whole
elif metric == 'outer':
counter = self._counter_outer
elif metric == 'inner':
counter = self._counter_inner
elif metric == 'exact':
counter = self._counter_exact
else:
raise ValueError('invalid metric: {}'.format(metric))
return counter.overall.f1_score
class Carb():
def __init__(self, hparams, mapping=None):
super(Carb, self).__init__()
self._dev_benchmark = Benchmark('carb/data/gold/dev.tsv')
self._test_benchmark = Benchmark('carb/data/gold/test.tsv')
self.matchingFunc = Matcher.binary_linient_tuple_match
self._all_predictions, self._all_pos_words, self._all_verb_words = {}, {}, {}
self.score = {'carb_auc': 0.0, 'carb_f1': 0.0, 'carb_sum': 0.0}
self.hparams = hparams
self.num_extractions = self.hparams.num_extractions
self.mapping = None
self.conj_word_mapping = None
def __call__(self, predictions, sentences, scores, pos_words=None, verb_words=None):
num_sentences, extractions, max_sentence_len = predictions.shape
assert num_sentences == len(sentences)
for i, sentence_str in enumerate(sentences):
words = sentence_str.split() + ['[unused1]', '[unused2]', '[unused3]']
orig_sentence = sentence_str.split('[unused1]')[0].strip()
if self.mapping:
if self.mapping[orig_sentence] not in self._all_predictions:
self._all_predictions[self.mapping[orig_sentence]] = []
else:
if orig_sentence not in self._all_predictions:
self._all_predictions[orig_sentence] = []
if pos_words != None:
self._all_pos_words[orig_sentence] = pos_words[i]
if verb_words != None:
self._all_verb_words[orig_sentence] = verb_words[i]
for j in range(extractions):
extraction = predictions[i][j][:len(words)]
if sum(extraction) == 0: # extractions completed
break
pro_extraction = self._process_extraction(
extraction, words, scores[i][j].item())
if pro_extraction.args[0] != '' and pro_extraction.pred != '':
if self.mapping:
if not contains_extraction(pro_extraction, self._all_predictions[self.mapping[orig_sentence]]):
self._all_predictions[self.mapping[orig_sentence]].append(
pro_extraction)
else:
if not contains_extraction(pro_extraction, self._all_predictions[orig_sentence]):
self._all_predictions[orig_sentence].append(pro_extraction)
# if self.mapping or self.conj_word_mapping:
# for sentence in self._all_predictions:
# dextractions = dedup_extractions(
# self._all_predictions[sentence], self.conj_word_mapping[sentence])
# self._all_predictions[sentence] = dextractions
return
def get_metric(self, reset, mode):
if self.num_extractions:
for sentence in self._all_predictions:
self._all_predictions[sentence] = sorted(self._all_predictions[sentence],
key=lambda x: x.confidence, reverse=True)[:self.num_extractions]
out_filename = "/dev/null"
if mode == 'dev':
auc, optimal_f1_point, last_f1_point = self._dev_benchmark.compare(predicted=self._all_predictions,
matchingFunc=self.matchingFunc,
output_fn=out_filename, error_file=None,
binary=False)
elif mode == 'test':
auc, optimal_f1_point, last_f1_point = self._test_benchmark.compare(predicted=self._all_predictions,
matchingFunc=self.matchingFunc,
output_fn=out_filename, error_file=None,
binary=False)
else:
assert False
self.score = {
'carb_auc': auc, 'carb_f1': optimal_f1_point[2], 'carb_lastf1': last_f1_point[2]}
score = self.score
if mode == 'dev' and reset:
self.reset()
return score
def reset(self):
self._all_predictions = {}
self.score = {'carb_auc': 0.0, 'carb_f1': 0.0, 'carb_sum': 0.0}
def _process_extraction(self, extraction, sentence, score):
# rel, arg1, arg2, loc, time = [], [], [], [], []
rel, arg1, arg2, loc_time, args = [], [], [], [], []
tag_mode = 'none'
rel_case = 0
for i, token in enumerate(sentence):
if '[unused' in token:
if extraction[i].item() == 2:
rel_case = int(re.search('\[unused(.*)\]', token).group(1))
continue
if extraction[i] == 1:
arg1.append(token)
if extraction[i] == 2:
rel.append(token)
if extraction[i] == 3:
arg2.append(token)
if extraction[i] == 4:
loc_time.append(token)
rel = ' '.join(rel).strip()
if rel_case == 1:
rel = 'is '+rel
elif rel_case == 2:
rel = 'is '+rel+' of'
elif rel_case == 3:
rel = 'is '+rel+' from'
arg1 = ' '.join(arg1).strip()
arg2 = ' '.join(arg2).strip()
args = ' '.join(args).strip()
loc_time = ' '.join(loc_time).strip()
if not self.hparams.no_lt:
arg2 = (arg2+' '+loc_time+' '+args).strip()
sentence_str = ' '.join(sentence).strip()
extraction = Extraction(
pred=rel, head_pred_index=None, sent=sentence_str, confidence=score, index=0)
extraction.addArg(arg1)
extraction.addArg(arg2)
return extraction
def _process_allenlp_format(self, lines):
assert self._all_predictions == {}
for line in lines:
extr = line.split('\t')
sentence = extr[0]
confidence = float(extr[2])
arg1 = re.findall("<arg1>.*</arg1>", extr[1])[0].strip('<arg1>').strip('</arg1>').strip()
rel = re.findall("<rel>.*</rel>", extr[1])[0].strip('<rel>').strip('</rel>').strip()
arg2 = re.findall("<arg2>.*</arg2>", extr[1])[0].strip('<arg2>').strip('</arg2>').strip()
extraction = Extraction(pred=rel, head_pred_index=None, sent=sentence, confidence=confidence, index=0)
extraction.addArg(arg1)
extraction.addArg(arg2)
if sentence not in self._all_predictions:
self._all_predictions[sentence] = []
self._all_predictions[sentence] = extraction