-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsimulate_pattern_separation_baseline.py
140 lines (122 loc) · 5.01 KB
/
simulate_pattern_separation_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
"""
Created on Mon Mar 05 13:41:23 2018
@author: DanielM
"""
from neuron import h, gui # gui necessary for some parameters to h namespace
import numpy as np
from pydentate import net_tunedrev, neuron_tools
from pydentate.inputs import inhom_poiss
import os
import argparse
import scipy.stats as stats
import platform
# Handle command line inputs
pr = argparse.ArgumentParser(description='Local pattern separation paradigm')
pr.add_argument('-runs',
nargs=3,
type=int,
help='start stop range for the range of runs',
default=[0, 1, 1],
dest='runs')
pr.add_argument('-savedir',
type=str,
help='complete directory where data is saved',
default=os.getcwd(),
dest='savedir')
pr.add_argument('-scale',
type=int,
help='standard deviation of gaussian distribution',
default=1000,
dest='input_scale')
pr.add_argument('-input_seed',
type=int,
help='input_seed',
default=[10000],
dest='input_seed')
pr.add_argument('-network_seed',
type=int,
help='standard deviation of gaussian distribution',
default=[10000],
dest='nw_seed')
pr.add_argument('-input_frequency',
type=int,
help='standard deviation of gaussian distribution',
default=[10],
dest='input_frequency')
args = pr.parse_args()
runs = range(args.runs[0], args.runs[1], args.runs[2])
savedir = args.savedir
input_scale = args.input_scale
nw_seed = args.nw_seed
input_seed = args.input_seed
input_frequency = args.input_frequency
# Where to search for nrnmech.dll file. Must be adjusted for your machine.
"""
dirname = os.path.dirname(__file__)
if platform.system() == 'Windows':
dll_dir = os.path.join(dirname, 'win64', 'nrnmech.dll')
else:
dll_dir = os.path.join(dirname, 'x86_64', 'libnrnmech.so')
print("DLL loaded from: " + dll_dir)
# h.nrn_load_dll(dll_dir)
"""
neuron_tools.load_compiled_mechanisms(path=r'C:\Users\Daniel\repos\pydentate\mechs\nrnmech.dll')
# Start the runs of the model
for run in runs:
# Seed the numpy random number generator for replication
np.random.seed(input_seed[0]+run)
# Randomly choose target cells for the PP lines
gauss_gc = stats.norm(loc=1000, scale=input_scale)
gauss_bc = stats.norm(loc=12, scale=(input_scale/2000.0)*24)
pdf_gc = gauss_gc.pdf(np.arange(2000))
pdf_gc = pdf_gc/pdf_gc.sum()
pdf_bc = gauss_bc.pdf(np.arange(24))
pdf_bc = pdf_bc/pdf_bc.sum()
GC_indices = np.arange(2000)
start_idc = np.random.randint(0, 1999, size=400)
PP_to_GCs = []
for x in start_idc:
curr_idc = np.concatenate((GC_indices[x:2000], GC_indices[0:x]))
PP_to_GCs.append(np.random.choice(curr_idc, size=100, replace=False,
p=pdf_gc))
PP_to_GCs = np.array(PP_to_GCs)
PP_to_GCs = PP_to_GCs[0:24]
BC_indices = np.arange(24)
start_idc = np.array(((start_idc/2000.0)*24), dtype=int)
PP_to_BCs = []
for x in start_idc:
curr_idc = np.concatenate((BC_indices[x:24], BC_indices[0:x]))
PP_to_BCs.append(np.random.choice(curr_idc, size=1, replace=False,
p=pdf_bc))
PP_to_BCs = np.array(PP_to_BCs)
PP_to_BCs = PP_to_BCs[0:24]
# Generate temporal patterns for the 100 PP inputs
temporal_patterns = inhom_poiss(modulation_rate=input_frequency)
temporal_patterns[0:24]
nw = net_tunedrev.TunedNetwork(nw_seed[0], temporal_patterns,
PP_to_GCs,
PP_to_BCs)
# Attach voltage recordings to all cells
nw.populations[0].voltage_recording(range(2000))
nw.populations[1].voltage_recording(range(60))
nw.populations[2].voltage_recording(range(24))
nw.populations[3].voltage_recording(range(24))
# Run the model
"""Initialization for -2000 to -100"""
print("Running model")
neuron_tools.run_neuron_simulator()
tuned_save_file_name = (str(nw) + "-data-paradigm-local-pattern" +
"-separation_nw-seed_input-seed_input-frequency_scale_run_" +
str(nw_seed[0]) + '_' +
str(input_seed[0]) + '_' +
str(input_frequency[0]) + '_' +
str(input_scale).zfill(3) + '_' +
str(run).zfill(3) + '_')
nw.shelve_network(savedir, tuned_save_file_name)
fig = nw.plot_aps(time=600)
tuned_fig_file_name = (str(nw) + "_spike-plot_paradigm_local-pattern" +
"-separation_run_scale_seed_input-seed_nw-seed_" +
str(run).zfill(3) + '_' +
str(input_scale).zfill(3) + '_' + str(10000) +
str(input_seed) + str(nw_seed))
nw.save_ap_fig(fig, savedir, tuned_fig_file_name)