-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathsum_membrane_h5.py
121 lines (94 loc) · 3.2 KB
/
sum_membrane_h5.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
"""
Created on Mon Mar 05 13:41:23 2018
@author: DanielM
"""
from neuron import h, gui # gui necessary for some parameters to h namespace
import numpy as np
from pydentate import net_basket_cell_ring, neuron_tools
from pydentate.inputs import inhom_poiss, homogeneous_poisson_process, sigmoid
import os
import argparse
import scipy.stats as stats
import platform
import matplotlib.pyplot as plt
from scipy.signal import windows, convolve
from scipy.ndimage import convolve
from scipy.spatial import distance_matrix
from numpy.fft import fft, fftshift, fftfreq
import sys
import tables
import networkx
from pydentate import spike_to_x
from pydentate import oscillations_analysis
import pdb
dirname = os.path.dirname(__file__)
data_dir = os.path.join(dirname, 'output', 'fast_gamma_input_high_sync_gc_membrane_with_dendrite_heterogeneous_input')
all_files = [os.path.join(data_dir, x) for x in os.listdir(data_dir) if os.path.isfile(os.path.join(data_dir, x))]
# if os.path.isfile(x)
for curr_file in all_files:
print(curr_file)
curr_data = tables.open_file(curr_file, mode='a')
try:
curr_data.root.frequency._f_remove('force')
except:
pass
try:
curr_data.root.frequency_soma._f_remove('force')
except:
pass
try:
curr_data.root.frequency_dendrites._f_remove('force')
except:
pass
try:
curr_data.root.Pxx_den._f_remove('force')
except:
pass
try:
curr_data.root.Pxx_den_soma._f_remove('force')
except:
pass
try:
curr_data.root.Pxx_den_dendrites._f_remove('force')
except:
pass
try:
curr_data.root.analysis._f_remove('force')
except:
pass
# pdb.set_trace()
curr_data.close()
"""
example_file = "pvring_seed_pp-weight_rec-weight_input-rate_n-pvbcs_n-input-syns_n-inputs_gap-resistance_gap-junctions_145_0.001_0.0076_2_120_100_192_600.0_True.h5"
example_path = os.path.join(results_dir, example_file)
file = tables.open_file(example_path)
times = file.root.times.read()
units = file.root.units.read()
duration = file.root.parameters.duration.read()
dt = file.root.parameters.dt.read()
n_timepoints = int((duration * 1000) / dt)
spike_counts = np.unique(times, return_counts=True)
spike_occurences_indices = np.array(spike_counts[0] / dt, dtype=int)
spike_counts_full = np.zeros(n_timepoints+1)
spike_counts_full[spike_occurences_indices] = spike_counts[1]
gaussian_sigma = 1 / dt
gaussian_width = gaussian_sigma * 10
gaussian_kernel = windows.gaussian(gaussian_width, gaussian_sigma)
gaussian_kernel = gaussian_kernel / gaussian_kernel.sum()
spike_counts_full_convolved = convolve(spike_counts_full, gaussian_kernel)
# hist, bins = np.histogram(output_spiketimes, bins=1000)
sampling_rate = 1 / (dt / 1000)
# sampling_rate = 5000
sp = fftshift(fft(spike_counts_full_convolved))
freq = fftshift(fftfreq(len(spike_counts_full_convolved), 1/sampling_rate))
amp = np.abs(sp)
fig, ax = plt.subplots(2, 1)
ax[1].plot(freq[len(freq)//2:], amp[len(amp)//2:])
ax[1].set_title('FFT')
ax[1].set_xlabel('Frequency (Hz)')
ax[1].set_ylabel('Amplitude')
ax[1].set_xlim(0,300)
ax[1].set_ylim(0, 10000)
fig.tight_layout()
ax[0].scatter(curr_times, curr_units, marker='|')
"""