-
Notifications
You must be signed in to change notification settings - Fork 22
/
pytorch_train.py
235 lines (188 loc) · 8.87 KB
/
pytorch_train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
# Copyright (c) 2017, PyTorch contributors
# Modifications copyright (C) Microsoft Corporation
# Licensed under the BSD license
# Adapted from https://pytorch.org/tutorials/beginner/transfer_learning_tutorial.html
from __future__ import print_function, division
import torch
import torch.nn as nn
import torch.optim as optim
from torch.optim import lr_scheduler
from torchvision import datasets, models, transforms
import torch.utils.data.distributed
import numpy as np
import time
import os
import copy
import argparse
import pickle
from tensorboardX import SummaryWriter
from azureml.core.run import Run
# get the Azure ML run object
run = Run.get_context()
def load_data(data_dir):
"""Load the train/val data."""
# Data augmentation and normalization for training
# Just normalization for validation
data_transforms = {
'train': transforms.Compose([
transforms.RandomResizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
'val': transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
]),
}
image_datasets = {x: datasets.ImageFolder(os.path.join(data_dir, x),
data_transforms[x])
for x in ['train', 'val']}
dataloaders = {x: torch.utils.data.DataLoader(image_datasets[x], batch_size=128,
num_workers=4)
for x in ['train', 'val']}
dataset_sizes = {x: len(image_datasets[x]) for x in ['train', 'val']}
class_names = image_datasets['train'].classes
return dataloaders, dataset_sizes, class_names
def train_model(model, criterion, optimizer, scheduler, num_epochs, data_dir, writer):
"""Train the model."""
# load training/validation data
dataloaders, dataset_sizes, class_names = load_data(data_dir)
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
since = time.time()
best_model_wts = copy.deepcopy(model.state_dict())
best_acc = 0.0
for epoch in range(num_epochs):
print('Epoch {}/{}'.format(epoch, num_epochs - 1))
print('-' * 10)
# Each epoch has a training and validation phase
for phase in ['train', 'val']:
if phase == 'train':
scheduler.step()
model.train() # Set model to training mode
else:
model.eval() # Set model to evaluate mode
running_loss = 0.0
running_corrects = 0
# Iterate over data.
for batch_idx, (inputs, labels) in enumerate(dataloaders[phase]):
inputs = inputs.to(device)
labels = labels.to(device)
# zero the parameter gradients
optimizer.zero_grad()
# forward
# track history if only in train
with torch.set_grad_enabled(phase == 'train'):
outputs = model(inputs)
_, preds = torch.max(outputs, 1)
loss = criterion(outputs, labels)
# backward + optimize only if in training phase
if phase == 'train':
loss.backward()
optimizer.step()
# statistics
running_loss += loss.item() * inputs.size(0)
corrects = torch.sum(preds == labels.data)
running_corrects += corrects
niter = epoch * len(dataloaders[phase]) + batch_idx
writer.add_scalar(f'{phase}/Loss', loss.item(), niter)
writer.add_scalar(f'{phase}/Accuracy', (corrects / inputs.size(0)).item(), niter)
epoch_loss = running_loss / dataset_sizes[phase]
epoch_acc = running_corrects.double() / dataset_sizes[phase]
print('{} Loss: {:.4f} Acc: {:.4f}'.format(
phase, epoch_loss, epoch_acc))
writer.add_scalar(f'{phase}/Epoch_accuracy', epoch_acc, (epoch+1) * len(dataloaders[phase]))
# deep copy the model
if phase == 'val' and epoch_acc > best_acc:
best_acc = epoch_acc
best_model_wts = copy.deepcopy(model.state_dict())
# log the best val accuracy to AML run
if phase == 'val':
run.log('best_val_acc', np.float(best_acc))
print()
time_elapsed = time.time() - since
print('Training complete in {:.0f}m {:.0f}s'.format(
time_elapsed // 60, time_elapsed % 60))
print('Best val Acc: {:4f}'.format(best_acc))
# load best model weights
model.load_state_dict(best_model_wts)
return (model, class_names)
def fine_tune_model(num_epochs, data_dir, learning_rate, momentum, writer):
"""Load a pretrained model and reset the final fully connected layer."""
_, _, class_names = load_data(data_dir)
num_classes = len(class_names)
# log the hyperparameter metrics to the AML run
run.log('lr', np.float(learning_rate))
run.log('momentum', np.float(momentum))
run.log('num_classes', num_classes)
model_ft = models.resnet18(pretrained=True)
num_ftrs = model_ft.fc.in_features
model_ft.fc = nn.Linear(num_ftrs, num_classes) # 40 classes to predict
if torch.cuda.is_available():
device = torch.device('cuda:0')
else:
device = torch.device('cpu')
model_ft = model_ft.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that all parameters are being optimized
optimizer_ft = optim.SGD(model_ft.parameters(), lr=learning_rate, momentum=momentum)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_ft, step_size=7, gamma=0.1)
model = train_model(model_ft, criterion, optimizer_ft, exp_lr_scheduler, num_epochs, data_dir, writer)
return model
def fixed_feature_model(num_epochs, data_dir, learning_rate, momentum, writer):
_, _, class_names = load_data(data_dir)
num_classes = len(class_names)
run.log('lr', np.float(learning_rate))
run.log('momentum', np.float(momentum))
run.log('num_classes', num_classes)
model_conv = models.resnet18(pretrained=True)
for param in model_conv.parameters():
param.requires_grad = False
# Parameters of newly constructed modules have requires_grad=True by default
num_ftrs = model_conv.fc.in_features
model_conv.fc = nn.Linear(num_ftrs, num_classes)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
model_conv = model_conv.to(device)
criterion = nn.CrossEntropyLoss()
# Observe that only parameters of final layer are being optimized as
# opoosed to before.
optimizer_conv = optim.SGD(model_conv.fc.parameters(), lr =learning_rate,momentum=momentum)
# Decay LR by a factor of 0.1 every 7 epochs
exp_lr_scheduler = lr_scheduler.StepLR(optimizer_conv, step_size=7, gamma=0.1)
model = train_model(model_conv, criterion, optimizer_conv,
exp_lr_scheduler, num_epochs, data_dir, writer)
return model
def main():
# get command-line arguments
parser = argparse.ArgumentParser()
parser.add_argument('--data_dir', type=str, default='breeds-10', help='directory of training data')
parser.add_argument('--num_epochs', type=int, default=25, help='number of epochs to train')
parser.add_argument('--output_dir', type=str, default='outputs', help='output directory')
parser.add_argument('--log_dir', type=str, default='logs', help='log directory')
parser.add_argument('--learning_rate', type=float, default=0.001, help='learning rate')
parser.add_argument('--momentum', type=float, default=0.9, help='momentum')
parser.add_argument('--mode', type=str, default='fixed_feature',
choices=['fixed_feature', 'fine_tune'],
help='fixed feature model or fine tune based on existing weights')
args = parser.parse_args()
print("data directory is: " + args.data_dir)
# Tensorboard
writer = SummaryWriter(f'{args.log_dir}/{run.id}')
run.log('mode', args.mode)
if args.mode == 'fixed_feature':
model, class_names = fixed_feature_model(args.num_epochs, args.data_dir, args.learning_rate, args.momentum, writer)
else:
model, class_names = fine_tune_model(args.num_epochs, args.data_dir, args.learning_rate, args.momentum, writer)
os.makedirs(args.output_dir, exist_ok=True)
torch.save(model, os.path.join(args.output_dir, 'model.pt'))
classes_file = open(os.path.join(args.output_dir, 'class_names.pkl'), 'wb')
pickle.dump(class_names, classes_file)
classes_file.close()
if __name__ == "__main__":
main()