forked from mailrocketsystems/AIComputerVision
-
Notifications
You must be signed in to change notification settings - Fork 0
/
face_detections.py
60 lines (43 loc) · 1.79 KB
/
face_detections.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
import cv2
import datetime
import imutils
import numpy as np
protopath = "deploy.prototxt"
modelpath = "res10_300x300_ssd_iter_140000.caffemodel"
detector = cv2.dnn.readNetFromCaffe(prototxt=protopath, caffeModel=modelpath)
# Only enable it if you are using OpenVino environment
# detector.setPreferableBackend(cv2.dnn.DNN_BACKEND_INFERENCE_ENGINE)
# detector.setPreferableTarget(cv2.dnn.DNN_TARGET_CPU)
def main():
cap = cv2.VideoCapture('test_video.mp4')
fps_start_time = datetime.datetime.now()
fps = 0
total_frames = 0
while True:
ret, frame = cap.read()
frame = imutils.resize(frame, width=600)
total_frames = total_frames + 1
(H, W) = frame.shape[:2]
face_blob = cv2.dnn.blobFromImage(cv2.resize(frame, (300, 300)), 1.0, (300, 300), (104.0, 177.0, 123.0), False, False)
detector.setInput(face_blob)
face_detections = detector.forward()
for i in np.arange(0, face_detections.shape[2]):
confidence = face_detections[0, 0, i, 2]
if confidence > 0.5:
face_box = face_detections[0, 0, i, 3:7] * np.array([W, H, W, H])
(startX, startY, endX, endY) = face_box.astype("int")
cv2.rectangle(frame, (startX, startY), (endX, endY), (0, 0, 255), 2)
fps_end_time = datetime.datetime.now()
time_diff = fps_end_time - fps_start_time
if time_diff.seconds == 0:
fps = 0.0
else:
fps = (total_frames / time_diff.seconds)
fps_text = "FPS: {:.2f}".format(fps)
cv2.putText(frame, fps_text, (5, 30), cv2.FONT_HERSHEY_COMPLEX_SMALL, 1, (0, 0, 255), 1)
cv2.imshow("Application", frame)
key = cv2.waitKey(1)
if key == ord('q'):
break
cv2.destroyAllWindows()
main()