-
Notifications
You must be signed in to change notification settings - Fork 7
/
fit-jax2.py
executable file
·137 lines (109 loc) · 3.1 KB
/
fit-jax2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python3
# fit-jax2.py
# MH using JAX
import os
import pandas as pd
import numpy as np
import scipy as sp
import scipy.stats
from scipy.optimize import minimize
import jax
from jax import grad, jit
import jax.numpy as jnp
import jax.scipy as jsp
df = pd.read_parquet(os.path.join("..", "pima.parquet"))
print(df)
n, p = df.shape
print(n, p)
y = pd.get_dummies(df["type"])["Yes"].to_numpy(dtype='float32')
X = df.drop(columns="type").to_numpy()
X = np.hstack((np.ones((n,1)), X))
print(X)
print(y)
# Now do computations in JAX
X = X.astype(jnp.float32)
y = y.astype(jnp.float32)
@jit
def ll(beta):
return jnp.sum(-jnp.log(1 + jnp.exp(-(2*y - 1)*jnp.dot(X, beta))))
np.random.seed(41) # for reproducibility
init = np.random.randn(p)*0.1
print(init)
init = init.astype(jnp.float32)
print(ll(init))
print("MAP:")
@jit
def lprior(beta):
return (jsp.stats.norm.logpdf(beta[0], loc=0, scale=10) +
jnp.sum(jsp.stats.norm.logpdf(beta[jnp.array(range(1,p))], loc=0, scale=1)))
@jit
def lpost(beta):
return ll(beta) + lprior(beta)
print(lpost(init))
# Use JAX auto-diff to compute gradient and Hessian
glp = jit(grad(lpost))
print(glp(init))
from jax import jacfwd, jacrev
def hessian(f):
return jacfwd(jacrev(f))
hess = hessian(lpost)
beta = init
# Newton method (log reg is convex)
for i in range(500):
g = glp(beta)
step = -jsp.linalg.solve(hess(beta), g)
for j in range(15):
if (lpost(beta+step) > lpost(beta)):
break
else:
step = step/2
beta += step
if (jnp.linalg.norm(g) < 0.01):
break
print(beta)
print(ll(beta))
print(jnp.linalg.norm(glp(beta)))
print("Next, MH. Be patient...")
def mhKernel(lpost, rprop, dprop = jit(lambda new, old: 1.)):
@jit
def kernel(key, x, ll):
key0, key1 = jax.random.split(key)
prop = rprop(key0, x)
lp = lpost(prop)
a = lp - ll + dprop(x, prop) - dprop(prop, x)
accept = (jnp.log(jax.random.uniform(key1)) < a)
return jnp.where(accept, prop, x), jnp.where(accept, lp, ll)
return kernel
def mcmc(init, kernel, thin = 10, iters = 10000):
key = jax.random.PRNGKey(42)
keys = jax.random.split(key, iters)
@jit
def step(s, k):
[x, ll] = s
x, ll = kernel(k, x, ll)
s = [x, ll]
return s, s
@jit
def iter(s, k):
keys = jax.random.split(k, thin)
_, states = jax.lax.scan(step, s, keys)
final = [states[0][thin-1], states[1][thin-1]]
return final, final
ll = -np.inf
x = init
_, states = jax.lax.scan(iter, [x, ll], keys)
return states[0]
pre = jnp.array([10.,1.,1.,1.,1.,1.,5.,1.]).astype(jnp.float32)
@jit
def rprop(key, beta):
return beta + 0.02*pre*jax.random.normal(key, [p])
out = mcmc(init, mhKernel(lpost, rprop), thin=1000)
print(out)
odf = pd.DataFrame(np.asarray(out), columns=["b0","b1","b2","b3","b4","b5","b6","b7"])
odf.to_parquet("fit-jax2.parquet")
print("Posterior summaries:")
summ = scipy.stats.describe(out)
print(summ)
print("\nMean: " + str(summ.mean))
print("Variance: " + str(summ.variance))
# eof