-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathfit-hmc.R
executable file
·115 lines (95 loc) · 2.44 KB
/
fit-hmc.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
#!/usr/bin/env Rscript
## fit-hmc.R
## Bayesian estimation using gradient information (HMC)
if (!require("pacman")) install.packages("pacman")
pacman::p_load("arrow", "smfsb")
df = read_parquet(file.path("..", "pima.parquet"))
print(head(df))
p = dim(df)[2]
y = df[, p]
y = as.integer(y)-1
X = as.matrix(df[, -p])
X = cbind(Int=1, X)
print(y[1:6])
print(head(X))
ll = function(beta)
sum(-log(1 + exp(-(2*y - 1)*(X %*% beta))))
init = rnorm(p, 0.1)
names(init) = colnames(X)
pscale = c(10, rep(1,7))
lprior = function(beta)
sum(dnorm(beta, 0, pscale, log=TRUE))
lpost = function(beta) ll(beta) + lprior(beta)
glp = function(beta) {
glpr = -beta/(pscale*pscale)
gll = as.vector(t(X) %*% (y - 1/(1 + exp(-X %*% beta))))
glpr + gll
}
print(init)
print(ll(init))
print(glp(init))
print("MAP:")
fit = optim(init, lpost, glp, method="BFGS", control=list(fnscale=-1, maxit=1000))
#print(fit)
print(fit$par)
print(ll(fit$par))
print(glp(fit$par))
print("Next, HMC:")
mhKernel = function(logPost, rprop)
function(x) {
prop = rprop(x)
a = logPost(prop) - logPost(x)
if (log(runif(1)) < a)
prop
else
x
}
mcmc = function(init, kernel, iters = 10000, thin = 10, verb = TRUE) {
p = length(init)
mat = matrix(0, nrow = iters, ncol = p)
colnames(mat) = names(init[1:p])
x = init
if (verb)
message(paste(iters, "iterations"))
for (i in 1:iters) {
if (verb)
message(paste(i, ""), appendLF = FALSE)
for (j in 1:thin)
x = kernel(x)
mat[i, ] = x
}
if (verb)
message("Done.")
mat
}
hmcKernel = function(lpi, glpi, eps = 1e-4, l=10, dmm = 1) {
sdmm = sqrt(dmm)
leapf = function(q, p) {
p = p + 0.5*eps*glpi(q)
for (i in 1:l) {
q = q + eps*p/dmm
if (i < l)
p = p + eps*glpi(q)
else
p = p + 0.5*eps*glpi(q)
}
list(q=q, p=-p)
}
alpi = function(x)
lpi(x$q) - 0.5*sum((x$p^2)/dmm)
rprop = function(x)
leapf(x$q, x$p)
mhk = mhKernel(alpi, rprop)
function(q) {
d = length(q)
x = list(q=q, p=rnorm(d, 0, sdmm))
mhk(x)$q
}
}
out = mcmc(fit$par,
hmcKernel(lpost, glp, eps=1e-3, l=50, dmm=1/c(100,1,1,1,1,1,25,1)),
thin=20)
mcmcSummary(out)
image(cor(out)[ncol(out):1,])
pairs(out[sample(1:10000,1000),],pch=19,cex=0.2)
## eof