forked from Mik3M4n/BaCoN
-
Notifications
You must be signed in to change notification settings - Fork 0
/
data_generator.py
executable file
·736 lines (581 loc) · 30.4 KB
/
data_generator.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Jun 17 13:07:43 2020
@author: Michi
"""
import os
import numpy as np
import tensorflow.compat.v2 as tf
tf.enable_v2_behavior()
from utils import cut_sample, get_all_indexes, get_fname_list, find_nearest
def generate_noise(k, P,
add_shot=True,
add_sys=True,
V=np.array([10.43, 6.27, 3.34, 0.283]),
nbar=np.array([0.000358, 0.000828, 0.00103, 0.00128]),
delta_k = 0.055, sigma_sys=15, quadrature=True):
sigma_hat_noise = (2*np.pi/((k[:, None])*np.sqrt(V*(1e3)**3*delta_k)))
sigma_noise = np.abs(P*sigma_hat_noise)
if add_shot:
sigma_noise_shot=(sigma_hat_noise/np.array(nbar))
sigma_noise = sigma_noise+sigma_noise_shot
if add_sys:
if quadrature:
sigma_noise =np.sqrt(sigma_noise**2+sigma_sys**2 )
else:
sigma_noise =sigma_noise+sigma_sys
return sigma_noise
class DataGenerator(tf.compat.v2.keras.utils.Sequence):
def __init__(self, list_IDs, labels, labels_dict, batch_size=32,
data_root = 'data/', dim=(500, 4), n_channels=1,
shuffle=True, normalization='stdcosmo',
save_indexes=False, models_dir = 'models/MM/', idx_file_name = '_',
norm_data_name='/planck.txt',
sample_pace = 4, pad=False,
Verbose=False,
k_max=2.5, i_max = None,
add_noise=True, n_noisy_samples = 10,
add_shot=True, add_sys=True, sigma_sys=5,
fine_tune = False,
c_0=None, c_1=None, group_lab_dict=None,
z_bins=[0, 1, 2, 3], swap_axes=False,
dataset_balanced=False, test_mode=False, one_vs_all=False,
):
print('Data Generator Initialization')
self.one_vs_all=one_vs_all
self.dataset_balanced=dataset_balanced
self.sigma_sys=sigma_sys
self.add_shot=add_shot
self.add_sys=add_sys
self.group_lab_dict=group_lab_dict
self.fine_tune=fine_tune
self.c_0=c_0
self.c_1=c_1
self.swap_axes = swap_axes
self.k_max=k_max
self.i_max=i_max
self.sample_pace=sample_pace
if sample_pace ==1:
self.dim = dim
else:
self.dim = (int(dim[0]/sample_pace), dim[1])
self.n_channels = n_channels
self.z_bins=np.asarray(z_bins, dtype=int)
print('Using z bins %s' %z_bins)
if not self.swap_axes:
if self.z_bins.shape[0]!=self.dim[1]:
raise ValueError('Number of z bins does not match dimension 1 of the data.')
else:
if self.z_bins.shape[0]!=self.n_channels:
raise ValueError('Number of z bins does not match n_channels.')
self.data_root=data_root
self.norm_data_path = self.data_root+norm_data_name
# Select points up to k_max or i_max
self.all_ks = np.loadtxt(self.norm_data_path)[:, 0]
if self.sample_pace !=1:
self.all_ks = np.loadtxt(self.norm_data_path)[0::sample_pace, 0]
#print('Data Gen using k max %s' %str(self.k_max))
if self.k_max is not None:
print('Specified k_max is %s' %self.k_max)
self.i_max, k_max_res = find_nearest(self.all_ks, self.k_max) # self.all_ks[self.all_ks==self.k_max]
print('Corresponding i_max is %s' %self.i_max)
print('Closest k to k_max is %s' %k_max_res)
#print('Selecting ks up to k_max=%s, or index %s for input k_max=%s' %(self.ind_max, k_max_res, self.k_max))
elif self.i_max is not None:
self.k_max = self.all_ks[self.i_max]
print('Specified i_max is %s' %self.i_max)
print('Corresponding k_max is %s' %self.k_max)
elif self.i_max is not None and self.k_max is not None:
print('Specified i_max is %s' %self.i_max)
print('Specified k_max is %s' %self.k_max)
i_m, k_m = find_nearest(self.all_ks, self.k_max)
assert(i_m==self.i_max)
else:
self.i_max = -1
print('No cut in k. Using all ks . k_max=%s' %self.all_ks[self.i_max])
self.all_ks = self.all_ks[:self.i_max]
self.dim = (self.all_ks.shape[0], self.dim[1])
print('New data dim: %s' %str(self.dim) )
print('Final i_max used is %s' %self.i_max)
self.batch_size = batch_size
self.labels = labels
#print(self.labels)
self.labels_dict = labels_dict
self.inv_labels_dict={value:key for key,value in zip(self.labels_dict.keys(), self.labels_dict.values())}
#print(self.inv_labels_dict)
self.list_IDs = list_IDs
if len(self.list_IDs)==1:
self.list_IDs_dict = {label:list_IDs+i for i,label in enumerate(labels)}
print('Ids dict to use in data gen: %s' %str(self.list_IDs_dict))
else:
self.list_IDs_dict = {label:list_IDs for label in labels}
self.base_case_dataset = not((self.fine_tune and self.dataset_balanced) or (not self.fine_tune and self.one_vs_all and self.dataset_balanced))
print('one_vs_all: %s' %str(self.one_vs_all))
print('dataset_balanced: %s' %str(self.dataset_balanced))
print('base_case_dataset: %s' %str(self.base_case_dataset))
self.n_classes_out = len(self.labels)
if not self.base_case_dataset:
self.n_classes = 2*(len(self.c_1))
elif (self.fine_tune and not self.dataset_balanced) or (not self.fine_tune and self.one_vs_all and not self.dataset_balanced):
self.n_classes = len(self.c_1)+len(self.c_0)
else:
# regular 5 labels case
self.n_classes =len(self.labels)
print('N. classes: %s' %self.n_classes)
print('N. n_classes in output: %s' %self.n_classes_out) #number of labels to predict
self.shuffle = shuffle
self.on_epoch_end()
#print('Batch size: %s' %self.batch_size)
#print('N. samples used for each different label: %s' %self.n_indexes)
self.save_indexes = save_indexes
if self.save_indexes:
self.save_indexes_dict={}
self.normalization=normalization
if self.normalization=='stdcosmo':
self.norm_data = np.loadtxt(self.norm_data_path)[:, 1:]
if self.sample_pace !=1:
self.norm_data = self.norm_data[0::self.sample_pace, :]
self.norm_data = self.norm_data[:self.i_max]
self.idx_file_name = idx_file_name
self.models_dir = models_dir
self.pad=pad
self.add_noise=add_noise
if not self.add_noise:
self.n_noisy_samples = 1
else:
self.n_noisy_samples = n_noisy_samples
######
# Consistency checks
######
if not self.base_case_dataset:
if self.batch_size%(self.n_classes*self.n_noisy_samples):
print('batch_size,n_classes, len(c_1), n_noisy_samples= %s, %s, %s, %s '%(self.batch_size, self.n_classes, len(self.c_1), self.n_noisy_samples))
raise ValueError('batch size must be multiple of n_classes x len(c_1) x n_noisy_samples')
elif not(self.fine_tune and self.dataset_balanced) or not(not self.fine_tune and self.one_vs_all and self.dataset_balanced):
if self.batch_size%(self.n_classes*self.n_noisy_samples):
raise ValueError('batch size must be multiple of n_classes x n_noisy_samples')
else:
raise ValueError('check dataset_balanced and one_vs_all compatibility')
if not self.base_case_dataset:
if self.batch_size%(self.n_classes*self.n_noisy_samples)!=0:
print('Batch size = %s' %self.batch_size)
#print('( n_labels x n_noisy_samples) = %s' %(self.n_classes*self.n_noisy_samples))
raise ValueError('Batch size must be multiple of n_classes x len(c_1) x (n_noisy_samples) ')
self.n_indexes = len(self.c_1)*self.batch_size//(self.n_classes*self.n_noisy_samples) #len(self.c_1)*
print('batch_size, n_classes, len(self.c_1), n_noisy_samples= %s, %s, %s, %s' %(self.batch_size, self.n_classes, len(self.c_1), self.n_noisy_samples))
print('n_indexes=len(self.c_1)*batch_size//(n_classes*n_noisy_samples)=%s' %self.n_indexes)
else:
if self.batch_size%(self.n_classes*self.n_noisy_samples)!=0:
print('Batch size = %s' %self.batch_size)
print('( n_classes x n_noisy_samples) = %s' %(self.n_classes*self.n_noisy_samples))
raise ValueError('Batch size must be multiple of (number of classes) x (n_noisy_samples) ')
self.n_indexes = self.batch_size//(self.n_classes*self.n_noisy_samples) # now many index files to read per each batch
self.n_batches = len(list_IDs)//(self.n_indexes)
print('list_IDs length: %s' %len(list_IDs))
print('n_indexes (n of file IDs read for each batch): %s' %self.n_indexes)
print('batch size: %s' %self.batch_size)
print('n_batches : %s' %self.n_batches)
if self.n_batches==0:
raise ValueError('Not enough examples to support this batch size ')
print('For each batch we read %s file IDs' %self.n_indexes)
if not self.fine_tune or not self.dataset_balanced:
print('For each file ID we have %s labels' %(self.n_classes ))
else:
print('We read %s IDs for label %s and 1 ID for each of the labels %s' %(str(len(self.c_1)), c_0[0],str( c_1)) )
if self.add_noise:
print('For each ID, label we have %s realizations of noise' %self.n_noisy_samples)
if self.base_case_dataset:
n_ex = self.n_indexes*self.n_classes*self.n_noisy_samples
n_check = self.n_classes*self.n_noisy_samples
else:
n_ex = self.n_indexes*self.n_classes*self.n_noisy_samples/len(self.c_1)
n_check = self.n_classes*self.n_noisy_samples#*len(self.c_1) # n_indexes must be a multiple of this x batch_size
print('In total, for each batch we have %s training examples' %(n_ex))
print('Input batch size: %s' %self.batch_size)
print('N of batches to cover all file IDs: %s' %self.n_batches)
if n_ex!=self.batch_size:
raise ValueError('Effective batch size does not match input batch size')
if self.n_indexes%(self.batch_size/(n_check))!=0:
print('Batch size = %s' %self.batch_size)
print('( n_labels x n_noisy_samples) = %s' %(n_check*self.n_noisy_samples))
print('n_indexes = %s' %self.n_indexes)
raise ValueError('Batch size should satisfy m x Batch size /( n_labels x n_noisy_samples) = n_indexes with m a positive integer ')
if self.n_indexes!=len(list_IDs)/self.n_batches:
print('length of IDs = %s' %str(len(list_IDs)))
print('n_batches = %s' %self.n_batches)
print('n_indexes = %s' %self.n_indexes)
print('len(list_IDs)/self.n_batches = %s' %(len(list_IDs)/self.n_batches))
raise ValueError('n_batches does not match length of IDs')
self.Verbose=Verbose
def __len__(self):
'Denotes the number of batches per epoch'
return self.n_batches#int(np.floor(len(self.list_IDs)*self.n_classes*self.n_noisy_samples / self.batch_size))
def __shape__(self):
'I dont know what exactly I should put here - where is n_channels ??? '
return((len(self.list_IDs), self.dim[0]/self.sample_pace, self.dim[1] ))
def __getitem__(self, index):
'Generate one batch of data'
self.batch_idx = index
# Generate indexes of the batch
indexes = self.indexes[index*self.n_indexes:(index+1)*self.n_indexes]
indexes_dict = {self.labels[i]:self.indexes_dict[self.labels[i]][index*self.n_indexes:(index+1)*self.n_indexes] for i, label in enumerate(self.labels)}
#print('Indexes: %s' %indexes)
# Find list of IDs
list_IDs_temp = [self.list_IDs[k] for k in indexes]
#print('getitem len(list_IDs_temp): %s' %len(list_IDs_temp))
list_IDs_temp_dict = { self.labels[i]:[self.list_IDs_dict[self.labels[i]][k] for k in indexes_dict[self.labels[i]]] for i,label in enumerate(self.labels)}
#print('List_IDs: %s' %list_IDs_temp)
# Generate data
#X, y = self.__data_generation(list_IDs_temp)
X, y = self.__data_generation(list_IDs_temp, list_IDs_temp_dict)
return X, y
def on_epoch_end(self):
'Updates indexes after each epoch'
self.indexes = np.arange(len(self.list_IDs))
self.indexes_dict = {self.labels[i]:np.arange(len(self.list_IDs_dict[self.labels[i]] )) for i,label in enumerate(self.labels)}
#print('--- Epoch ended')
if self.shuffle == True:
np.random.shuffle(self.indexes)
for label in self.labels:
np.random.shuffle(self.indexes_dict[label])
def __data_generation(self, list_IDs_temp, list_IDs_temp_dict):
'Generates data containing batch_size samples' # X : (n_samples, *dim, n_channels)
# Initialization
X = np.empty((self.batch_size, *self.dim, self.n_channels))
y = np.empty((self.batch_size), dtype=int)
i_ind = 0
if self.Verbose:
print('Dim of X: %s' %str(X.shape))
# Generate data
if not self.fine_tune and not self.one_vs_all:
fname_list=[]
for l in self.labels:
for ID in list_IDs_temp_dict[l]:
t_st = self.data_root + '/'+l+ '/'+ str(ID) + '.txt'
fname_list.append(t_st)
fname_list = np.array(fname_list)
else:
fname_list = get_fname_list(self.c_0, self.c_1, list_IDs_temp, self.data_root, list_IDs_temp_dict, dataset_balanced=self.dataset_balanced,)
if self.fine_tune and self.Verbose :
print(fname_list)
#print('len(fname_list), batch_size, n_noisy_samples: %s, %s, %s' %(len(fname_list), self.batch_size, self.n_noisy_samples))
assert len(fname_list)==self.batch_size//(self.n_noisy_samples)
#print('N. of files used: %s' %fname_list.shape[0])
#print('n_noisy_samples: %s' %self.n_noisy_samples)
for f_ind in range(len(fname_list)):
# Pick corresponding file from each folder
fname = fname_list[f_ind]
if self.Verbose:
print('Loading file %s' %fname)
#try:
loaded_all = np.loadtxt(fname)
P_original, k = loaded_all[:, 1:], loaded_all[:, 0]
if self.sample_pace!=1:
P_original = P_original[0::self.sample_pace, :]
k = k[0::self.sample_pace]
P_original, k = P_original[:self.i_max], k[:self.i_max]
if self.Verbose:
print('Dimension of original data: %s' %str(P_original.shape))
#except OSError:
# print('RUN WITH DIFFERENT SEED.')
# if len(self.list_IDs)==1:
# new_ind = int((t_st.split('/')[-1]).split('.')[0])+len(self.labels)
#l =
# fname1 = self.data_root + '/'+l+ '/'+ str(new_ind) + '.txt'
# print('File %s not found, trying with %s' %(fname, fname1))
# Add noise
for i_noise in range(self.n_noisy_samples):
if self.add_noise:
if self.Verbose:
print('Noise realization %s' %i_noise)
noise = np.random.normal(loc=0, scale=generate_noise(k,P_original, add_sys=self.add_sys,add_shot=self.add_shot,sigma_sys=self.sigma_sys ))
P_noisy = P_original+noise
expanded = np.expand_dims(P_noisy, axis=2)
else:
if self.Verbose:
print('No noise')
expanded = np.expand_dims(P_original, axis=2)
# Store sample
if self.Verbose:
print('Storing at position %s in the batch' %i_ind)
print('Dimension of data: %s' %str(expanded.shape))
# swap axis if using one dim array in multiple channels
if self.swap_axes:
if self.Verbose:
print('Reshaping')
expanded = np.swapaxes(expanded, 2, 1)
if self.Verbose:
print('New dimension of data: %s' %str(expanded.shape))
expanded = expanded[:,:,self.z_bins]
if self.Verbose:
print('Final dimension of data: %s' %str(expanded.shape))
# now shape of expanded is (1, n_data_points, 1, n_channels=3)
X[i_ind,] = expanded
# Store class
label = fname.split('/')[-2]
if not self.base_case_dataset:
label = self.group_lab_dict[label]
encoding = self.labels_dict[label]
elif (self.fine_tune and not self.dataset_balanced) or (not self.fine_tune and self.one_vs_all and not self.dataset_balanced):
label = self.group_lab_dict[label]
encoding = self.labels_dict[label]
else:
# regular 5 labels case
encoding = self.labels_dict[label]
if self.Verbose:
print('Label for this example: %s' %label)
print('Encoding: %s' % encoding)
y[i_ind] = encoding
i_ind += 1
if self.normalization=='batch':
mu_batch = np.mean(X, axis=0)
std_batch = np.std(X, axis=0)
X = (X-mu_batch)/std_batch
elif self.normalization=='stdcosmo':
if self.swap_axes:
X = X/self.norm_data[None, :, None, self.z_bins]-1
else:
X = X/self.norm_data[None, :,:,None]-1
# shuffle to avoid having always three examples with different label in a row
if self.shuffle:
p = np.random.permutation(X.shape[0])
X = X[p, :, :, :]
y = y[p]
if self.save_indexes:
fname_list_shuffled = fname_list[p]
if self.save_indexes:
if not os.path.exists(self.models_dir+'/idx_files/'):
print('Creating directory %s' %self.models_dir+'/idx_files/')
os.makedirs(self.models_dir+'/idx_files/')
idx_file = self.models_dir+'/idx_files/idx_file_batch'+ str(self.batch_idx)+'.txt'
print('Saving indexes in %s' %idx_file)
idx_list = [f.split('.')[0].split('/')[-2]+'/'+f.split('.')[0].split('/')[-1] for f in fname_list_shuffled]
self.save_indexes_dict[self.batch_idx] = idx_list
with open(idx_file, 'w+') as file:
print('Opened %s' %idx_file)
for i, idx in enumerate(idx_list): #i in range(len(idx_list)):
file.write(idx+'\n')
if self.swap_axes:#
X = X[:,:,0,:]
return X, tf.keras.utils.to_categorical(y, num_classes=self.n_classes_out)
def read_partition(FLAGS):
out_path = FLAGS.models_dir+FLAGS.fname
base_path = out_path+'/tf_ckpts/'
fname_idxs_train=base_path+'idxs_train.txt'
fname_idxs_val=base_path+'idxs_val.txt'
print('Reading train indexes from %s ...' %fname_idxs_train)
train_idxs=np.array(np.loadtxt(fname_idxs_train).tolist()).astype(int)
print('Train indexes length: %s' %str(len(train_idxs)))
print('Reading val indexes from %s ...' %fname_idxs_val)
val_idxs=np.array(np.loadtxt(fname_idxs_val).tolist()).astype(int)
print('Val indexes length: %s' %str(len(val_idxs)))
partition = {'train': train_idxs , 'validation': val_idxs }
return partition
def create_generators(FLAGS):
if FLAGS.my_path is not None:
os.chdir(FLAGS.my_path)
# -------------------- CREATE DATA GENERATORS --------------------
all_index, n_samples, val_size, n_labels, labels, labels_dict, all_labels = get_all_indexes(FLAGS)
print('create_generators n_labels: %s' %n_labels)
if (FLAGS.fine_tune or FLAGS.one_vs_all) and FLAGS.dataset_balanced:
# balanced dataset , 1/2 lcdm , 1/2 rest in FT or one vs all mode
case=1
n_labels_eff = n_labels*len(FLAGS.c_1)
len_c1=len(FLAGS.c_1)
elif not (FLAGS.fine_tune or FLAGS.one_vs_all):
# regular case
case=2
n_labels_eff=n_labels
len_c1=1
elif (FLAGS.fine_tune or FLAGS.one_vs_all) and not FLAGS.dataset_balanced:
# Unbalanced dataset , 1/5 lcdm , 1/5 rest in FT or one vs all mode
case=3
n_labels_eff = len(all_labels)
if FLAGS.one_vs_all and len(FLAGS.c_1)<len(all_labels)-1:
n_labels_eff = len(FLAGS.c_1)+len(FLAGS.c_0)
len_c1=1
print('create_generators n_labels_eff: %s' %n_labels_eff)
print('create_generators len_c1: %s' %len_c1)
# SPLIT TRAIN/VALIDATION /(TEST)
val_index = np.random.choice(all_index, size=int(np.floor(val_size*n_samples)), replace=False)
train_index_temp = np.setdiff1d(all_index, val_index) #np.delete(all_index, val_index-1)
test_size_eff = FLAGS.test_size/(train_index_temp.shape[0]/n_samples)
test_index = np.random.choice(train_index_temp, size=int(np.floor(test_size_eff*train_index_temp.shape[0])), replace=False)
train_index = np.setdiff1d(train_index_temp, test_index)
print('Check for no duplicates in test: (0=ok):')
print(np.array([np.isin(el, train_index) for el in test_index]).sum())
print('Check for no duplicates in val: (0=ok):')
print(np.array([np.isin(el, train_index) for el in val_index]).sum())
print('N of files in training set: %s' %train_index.shape[0])
print('N of files in validation set: %s' %val_index.shape[0])
print('N of files in test set: %s' %test_index.shape[0])
print('Check - total: %s' %(val_index.shape[0]+test_index.shape[0]+train_index.shape[0]))
if FLAGS.add_noise:
n_noisy_samples = FLAGS.n_noisy_samples
else:
n_noisy_samples = 1
print('--create_generators, train indexes')
if FLAGS.test_mode:
if case==3:
batch_size=train_index.shape[0]*n_labels_eff*n_noisy_samples
elif case==2:
batch_size=train_index.shape[0]*n_labels*n_noisy_samples
elif case==1:
batch_size=n_labels_eff*n_noisy_samples
else:
batch_size=FLAGS.batch_size
print('batch_size: %s' %batch_size)
if not FLAGS.test_mode:
train_index_1 = cut_sample(train_index, batch_size, n_labels=n_labels_eff, n_noise=n_noisy_samples, Verbose=False, len_c1=len_c1)
print('Train index length: %s' %train_index_1.shape[0])
else:
train_index_1 = train_index
print('Train index: %s' %train_index_1)
print('--create_generators, validation indexes')
if not FLAGS.test_mode:
val_index_1 = cut_sample(val_index, batch_size, n_labels=n_labels_eff, n_noise=n_noisy_samples, Verbose=False,len_c1=len_c1)
print('Val index length: %s' %val_index_1.shape[0])
else:
val_index_1 = val_index
print('Validation index: %s' %val_index_1)
print('len(train_index_1), batch_size, n_labels_eff, n_noisy_samples = %s, %s, %s, %s' %(train_index_1.shape[0], batch_size, n_labels_eff,n_noisy_samples ))
assert train_index_1.shape[0]%(batch_size//(n_labels_eff*n_noisy_samples))==0
assert val_index_1.shape[0]%(batch_size//(n_labels_eff*n_noisy_samples))==0
partition={'train': train_index_1, 'validation': val_index_1}
if FLAGS.restore:
partition = read_partition(FLAGS)
batch_size=FLAGS.batch_size
###################
# USE THE BLOCH BELOW TO BE COMPATIBLE WITH OLDER VERSIONS OF DARTA GENERATORS. EVENTUALLY REMOVE
###################
try:
sigma_sys=FLAGS.sigma_sys
except AttributeError:
print(' #### FLAGS.sigma_sys not found! #### \n Probably loading an older model. Using sigma_sys=0')
sigma_sys=0.
try:
z_bins=FLAGS.z_bins
except AttributeError:
print(' #### FLAGS.z_bins not found! #### \n Probably loading an older model. Using 4 z bins')
z_bins=[0, 1, 2, 3]
try:
swap_axes=FLAGS.swap_axes
except AttributeError:
if FLAGS.im_channels>1:
swap_axes=True
else:
swap_axes=False
print(' #### FLAGS.swap_axes not found! #### \n Probably loading an older model. Set swap_axes=%s' %str(swap_axes))
###################
params = {'dim': (FLAGS.im_depth, FLAGS.im_width),
'batch_size':batch_size, # should satisfy m x Batch size /( n_labels x n_noisy_samples) = n_indexes with m a positive integer
'n_channels': FLAGS.im_channels,
'shuffle': True,
'normalization': FLAGS.normalization,
'sample_pace': FLAGS.sample_pace,
'add_noise':FLAGS.add_noise,
'n_noisy_samples':n_noisy_samples,
'fine_tune':FLAGS.fine_tune,
'add_shot':FLAGS.add_shot, 'add_sys':FLAGS.add_sys,
'k_max':FLAGS.k_max, 'i_max':FLAGS.i_max, 'sigma_sys':sigma_sys,
'swap_axes':swap_axes,
'z_bins':z_bins,
'test_mode':FLAGS.test_mode
}
if FLAGS.fine_tune or FLAGS.one_vs_all:
params['c_0'] = FLAGS.c_0
params['c_1'] = FLAGS.c_1
params['group_lab_dict'] = FLAGS.group_lab_dict
params['dataset_balanced']=FLAGS.dataset_balanced
params['one_vs_all']=FLAGS.one_vs_all
if not params['add_noise']:
params['n_noisy_samples']=1
print('\n--DataGenerator Train')
training_generator = DataGenerator(partition['train'], labels, labels_dict, data_root = FLAGS.DIR, save_indexes=False, **params)
print('\n--DataGenerator Validation')
validation_generator = DataGenerator(partition['validation'], labels, labels_dict, data_root = FLAGS.DIR, save_indexes=False, **params)
return training_generator, validation_generator #, params
def create_test_generator(FLAGS):
if FLAGS.my_path is not None:
print('Changing directory to %s' %FLAGS.my_path)
os.chdir(FLAGS.my_path)
all_index, n_samples, val_size, n_labels, labels, labels_dict, all_labels = get_all_indexes(FLAGS, Test=True)
if (FLAGS.fine_tune or FLAGS.one_vs_all) and FLAGS.dataset_balanced:
# balanced dataset , 1/2 lcdm , 1/2 rest in FT or one vs all mode
case=1
n_labels_eff = n_labels*len(FLAGS.c_1)
len_c1=len(FLAGS.c_1)
elif not (FLAGS.fine_tune or FLAGS.one_vs_all):
# regular case
case=2
n_labels_eff=n_labels
len_c1=1
elif (FLAGS.fine_tune or FLAGS.one_vs_all) and not FLAGS.dataset_balanced:
# Unbalanced dataset , 1/5 lcdm , 1/5 rest in FT or one vs all mode
case=3
n_labels_eff = len(all_labels)
len_c1=1
print('create_generators n_labels_eff: %s' %n_labels_eff)
print('create_generators len_c1: %s' %len_c1)
#if FLAGS.fine_tune:
# n_labels_eff = n_labels*len(FLAGS.c_1)
#else:
# n_labels_eff = n_labels
#if FLAGS.fine_tune and FLAGS.dataset_balanced:
# n_labels_eff = n_labels*len(FLAGS.c_1)
# len_c1=len(FLAGS.c_1)
#elif not FLAGS.fine_tune:
# n_labels_eff=n_labels
# len_c1=1
#elif FLAGS.fine_tune and not FLAGS.dataset_balanced:
# n_labels_eff = len(all_labels)
# len_c1=1
if FLAGS.add_noise:
n_noisy_samples = FLAGS.n_noisy_samples
else:
n_noisy_samples = 1
print('--Train')
if FLAGS.test_mode:
if not FLAGS.fine_tune:
batch_size=all_index.shape[0]*n_labels_eff*n_noisy_samples
else:
batch_size=n_labels_eff*n_noisy_samples
else:
batch_size=FLAGS.batch_size
print('batch_size: %s' %batch_size)
test_index_1 = cut_sample(all_index, batch_size, n_labels=n_labels_eff, n_noise=n_noisy_samples, Verbose=True, len_c1=len_c1)
n_test = test_index_1.shape[0]
assert test_index_1.shape[0]%(batch_size//(n_labels_eff*n_noisy_samples))==0
print('N. of test files used: %s' %n_test)
partition_test = {'test': test_index_1}
params_test = {'dim': (FLAGS.im_depth, FLAGS.im_width),
'batch_size':batch_size, # should satisfy m x Batch size /( n_labels x n_noisy_samples) = n_indexes with m a positive integer
'n_channels': FLAGS.im_channels,
'shuffle': True,
'normalization': FLAGS.normalization,
'sample_pace': FLAGS.sample_pace,
'add_noise':FLAGS.add_noise,
'n_noisy_samples':n_noisy_samples,
'fine_tune':FLAGS.fine_tune,
'add_shot':FLAGS.add_shot, 'add_sys':FLAGS.add_sys,
'k_max':FLAGS.k_max, 'i_max':FLAGS.i_max, 'sigma_sys':FLAGS.sigma_sys,
'swap_axes':FLAGS.swap_axes,
'z_bins':FLAGS.z_bins,
}
if FLAGS.fine_tune or FLAGS.one_vs_all:
params_test['c_0'] = FLAGS.c_0
params_test['c_1'] = FLAGS.c_1
params_test['group_lab_dict'] = FLAGS.group_lab_dict
params_test['dataset_balanced']=FLAGS.dataset_balanced
params_test['one_vs_all']=FLAGS.one_vs_all
if not params_test['add_noise']:
params_test['n_noisy_samples']=1
test_generator = DataGenerator(partition_test['test'],
labels, labels_dict,
data_root=FLAGS.TEST_DIR ,
save_indexes = FLAGS.save_indexes,
models_dir=FLAGS.models_dir+FLAGS.fname,
idx_file_name = FLAGS.fname,
**params_test)
return test_generator