From 5fa6a350f638aa4217392e47ce9c97f445063ca1 Mon Sep 17 00:00:00 2001 From: Naupaka Zimmerman Date: Fri, 19 Jan 2024 10:48:48 -0800 Subject: [PATCH] Fix additional URLs and a typo --- episodes/06-data-visualization.Rmd | 17 ++++------------- 1 file changed, 4 insertions(+), 13 deletions(-) diff --git a/episodes/06-data-visualization.Rmd b/episodes/06-data-visualization.Rmd index 811f6b3f..7176ea3c 100644 --- a/episodes/06-data-visualization.Rmd +++ b/episodes/06-data-visualization.Rmd @@ -73,14 +73,12 @@ library(readr) library(dplyr) ``` - - As we can see from above output **`ggplot2`** has been already loaded along with other packages as part of the **`tidyverse`** framework. ## Loading the dataset ```{r load-the-dataset, echo=TRUE, eval=TRUE} -variants = read_csv("https://raw.githubusercontent.com/naupaka/vcfr-for-data-carpentry-draft/main/output/combined_tidy_vcf.csv") +variants <- read.csv("https://raw.githubusercontent.com/datacarpentry/genomics-r-intro/main/episodes/data/combined_tidy_vcf.csv") ``` Explore the *structure* (types of columns and number of rows) of the dataset using [dplyr](https://dplyr.tidyverse.org/index.html)'s [`glimpse()`](https://dplyr.tidyverse.org/reference/glimpse.html) (for more info, see the [Data Wrangling and Analyses with Tidyverse](https://datacarpentry.org/genomics-r-intro/05-dplyr/) episode) @@ -95,13 +93,6 @@ Alternatively, we can display the first a few rows (vertically) of the table usi head(variants) ``` -```{r, echo=FALSE, eval=TRUE, purl=FALSE} -## silently read in CSV file from FigShare - -# variants <- read.csv("https://ndownloader.figshare.com/files/14632895") -# variants = read.csv("https://raw.githubusercontent.com/naupaka/vcfr-for-data-carpentry-draft/main/output/combined_tidy_vcf.csv") -``` - **`ggplot2`** functions like data in the **long** format, i.e., a column for every dimension (variable), and a row for every observation. Well-structured data will save you time when making figures with **`ggplot2`** **`ggplot2`** graphics are built step-by-step by adding new elements. Adding layers in this fashion allows for extensive flexibility and customization of plots, and more equally important the readability of the code. @@ -147,7 +138,7 @@ coverage_plot <- ggplot(data = variants, aes(x = POS, y = DP)) # Draw the plot coverage_plot + - geom_point() + geom_point() ``` **Notes** @@ -179,7 +170,7 @@ Then, we start modifying this plot to extract more information from it. For inst ```{r adding-transparency, purl=FALSE} ggplot(data = variants, aes(x = POS, y = DP)) + - geom_point(alpha = 0.5) + geom_point(alpha = 0.5) ``` We can also add colors for all the points: @@ -426,7 +417,7 @@ for inspiration. Here are some ideas: :::::::::::::::::::::::::::::::::::::::: keypoints - ggplot2 is a powerful tool for high-quality plots -- ggplot2 provides a flexiable and readable grammar to build plots +- ggplot2 provides a flexible and readable grammar to build plots ::::::::::::::::::::::::::::::::::::::::::::::::::