From fec6d0501b048cc6c4d3242ba126307dc423c546 Mon Sep 17 00:00:00 2001 From: JIMMY ZHAO Date: Sun, 27 Oct 2024 18:13:11 -0400 Subject: [PATCH] add releases --- .gitignore | 1 + docs/_sidebar.md | 2 +- docs/{references.md => reference.md} | 0 releases/preview.html | 4959 ++++++++++++++++++++++++++ releases/preview.md | 4871 +++++++++++++++++++++++++ releases/preview.pdf | Bin 0 -> 2515005 bytes releases/release.ipynb | 68 + 7 files changed, 9900 insertions(+), 1 deletion(-) rename docs/{references.md => reference.md} (100%) create mode 100644 releases/preview.html create mode 100644 releases/preview.md create mode 100644 releases/preview.pdf create mode 100644 releases/release.ipynb diff --git a/.gitignore b/.gitignore index 1a3bd5c6..4e1f311e 100644 --- a/.gitignore +++ b/.gitignore @@ -1,3 +1,4 @@ *.bkp +*.venv .DS_Store diff --git a/docs/_sidebar.md b/docs/_sidebar.md index 3220274b..2cb851bc 100644 --- a/docs/_sidebar.md +++ b/docs/_sidebar.md @@ -7,4 +7,4 @@ - 第6章 [一致性](chapter6.md) - 第7章 [收敛率](chapter7.md) - 第8章 [遗憾界](chapter8.md) -- [参考文献](references.md) +- [参考文献](reference.md) diff --git a/docs/references.md b/docs/reference.md similarity index 100% rename from docs/references.md rename to docs/reference.md diff --git a/releases/preview.html b/releases/preview.html new file mode 100644 index 00000000..10baf551 --- /dev/null +++ b/releases/preview.html @@ -0,0 +1,4959 @@ + + + + + 序言 + + + + + + + + + + + + + +

序言

+

编辑:詹好,赵志民,王茂霖

+
+

关于《机器学习理论导引》

+

近年来,机器学习领域发展迅猛,相关的课程与教材层出不穷。国内的经典教材如周志华的 《机器学习》 和李航的 《统计学习方法》,为许多学子提供了机器学习的入门指引。而在国外,Mitchell 的 Machine Learning、Duda 等人的 Pattern Classification、Alpaydin 的 Introduction to Machine Learning 等书籍则提供了更为系统的学习路径。对于希望深入学习的读者,Bishop 的 Pattern Recognition and Machine Learning、Murphy 的 Machine Learning - A Probabilistic Perspective、Hastie 等人的 The Elements of Statistical Learning 等著作也能提供详尽的理论指导。这些书籍无论在国内外,都成为了学习机器学习的重要资源。

+

然而,从机器学习理论的角度来看,现有的学习材料仍存在不足之处。相比于聚焦机器学习算法的著作,专注于机器学习理论的书籍未得到足够的重视。尽管上述一些经典著作中涉及到理论探讨,但篇幅有限,往往仅以独立章节或片段呈现,难以满足深入研究的需求。

+

以往的机器学习理论经典教材大多为英文撰写。上世纪末围绕统计学习理论展开的讨论,催生了诸如 Vapnik 的 The Nature of Statistical Learning TheoryStatistical Learning Theory,以及 Devroye 等人的 A Probabilistic Theory of Pattern Recognition 等经典文献。近年来,Shalev-Shwartz 和 Ben-David 的 Understanding Machine Learning,以及 Mohri 等人的 Foundations of Machine Learning 进一步推进了这一领域的发展。虽然部分经典著作已有高质量的中文译本,但由中文作者撰写的机器学习理论入门书籍仍显不足。

+

如今,周志华、王魏、高尉、张利军等老师合著的 《机器学习理论导引》(以下简称《导引》)填补了这一空白。该书以通俗易懂的语言,为有志于学习和研究机器学习理论的读者提供了良好的入门指引。全书涵盖了 可学性、假设空间复杂度、泛化界、稳定性、一致性、收敛率、遗憾界 七个重要的概念和理论工具。

+

尽管学习机器学习理论可能不像学习算法那样能够立即应用,但只要持之以恒,深入探究,必将能够领悟到机器学习中的重要思想,并体会其中的深邃奥妙。

+

-- 詹好

+

关于《机器学习理论导引》讲解笔记

+

《导引》的讲解笔记在团队内部被亲切地称为《钥匙书》。“钥匙”寓意着帮助读者开启知识之门,解答学习中的疑惑。

+

《导引》作为一本理论性较强的著作,涵盖了大量数学定理和证明。尽管作者团队已尽力降低学习难度,但由于机器学习理论本身的复杂性,读者仍需具备较高的数学基础。这可能导致部分读者在学习过程中感到困惑,影响学习效果。此外,由于篇幅限制,书中对某些概念和理论的实例说明不足,也增加了理解的难度。

+

基于以上原因,我们决定编辑这本《钥匙书》作为参考笔记,对《导引》进行深入的注解和补充。其目的是帮助读者更快理解并掌握书中内容,同时记录我们在学习过程中的思考和心得。

+

《钥匙书》主要包含以下四个部分:

+
    +
  1. 概念解释:介绍书中涉及但未详细阐释的相关概念。
  2. +
  3. 证明补充:详细解释部分证明的思路,并补充书中省略的证明过程。
  4. +
  5. 案例分享:增加相关实例,帮助读者加深对抽象概念的理解。
  6. +
+

鉴于《导引》第一章的内容简明易懂,《钥匙书》从第二章开始详细展开。

+

对我个人而言,《机器学习理论导引》与Understanding Machine LearningFoundations of Machine Learning一样,都是既“无用”又“有用”的书籍。“无用”在于目前的经典机器学习理论尚难全面解释深度学习,尤其是现代生成式大模型的惊人表现。然而,我坚信未来的理论突破将基于现有研究成果,开创新的篇章。因此,分析结论可能并非最重要,真正宝贵的是其中蕴含的思想和分析思路。数学作为一种强有力的工具,能够帮助我们更深入地理解和探索。我期望未来的深度学习能够拥有更多坚实的理论支撑,从而更好地指导实践。正如费曼所言:“What I cannot create, I do not understand.”——“凡我不能创造,我就不能理解。”希望大家能从这些理论中获得启发,创造出更有意义的成果。

+

另一方面,这本书也让我认识到自身的不足。不同于传统的机器学习算法教材,本书要求读者具备良好的数学功底,通过数学工具从更抽象的角度分析机器学习算法的性质,而非算法本身。学习之路或许漫长,但正如《牧羊少年的奇幻漂流》中所言:“每个人的寻梦过程都是以‘新手的运气’为开端,又总是以‘对远征者的考验’收尾。”希望大家能坚持经历考验,最终实现自己的梦想。

+

自《钥匙书》v1.0 版本发布以来,受到了众多学习者的关注。我们也收到了许多关于教材内容的疑问。为进一步深入理解相关知识,并记录团队对机器学习理论相关书籍的学习过程,我们将持续对《钥匙书》进行不定期更新,期待大家的关注。

+

-- 王茂霖

+

关于机器学习理论与实践

+

随着机器学习的蓬勃发展,**SOTA(State-of-the-art,最先进技术)**几乎成了评判算法优劣的唯一标准。这种对表面表现的单一追求,常常忽视了支撑其背后的基础理论。正如硅谷投资人吴军曾指出的,最顶尖的科学家通过理论设定学科的边界,赋予未来研究者方向和框架。1936年,图灵在其著名的论文中为可计算性理论奠定了基础,定义了哪些问题可以通过算法解决。同样,机器学习领域的研究者只有具备深厚的理论根基,才能在实践中面对瓶颈时不至于迷失,而是继续探索,甚至开拓新的领域。

+

**没有免费午餐定理(No Free Lunch Theorem)**便是一个鲜明的例子。该定理告诉我们,不存在一种能够应对所有问题的通用算法。尽管许多算法在特定领域或时间点看似“无敌”,如神经网络的兴起,但每个算法的优势往往局限于特定的任务和环境。因此,过度依赖某一种算法的短期成功,可能导致长期陷入困境。通过理论学习,研究者能够意识到这种局限,并避免在实践中过分追逐SOTA,而忽视更为长远的技术路线。

+

当然,理论和实践之间的差距依然存在。许多理论假设在现实应用中并不完全成立,尤其是在面对大数据和复杂模型时,理论的指导可能显得力不从心。但这并不意味着理论无用,恰恰相反,这正是学科发展的驱动力。正如机器学习的发展史所示,当实践进展遇到瓶颈时,往往是理论创新引领了新的突破。例如,在早期,受限于数据和算力,机器学习中的理论研究主导了整个领域的发展;而到了互联网时代,随着数据量的指数级增长和计算资源的提升,实践逐渐超越了理论。如今,面对数据、能源和算力等问题的挑战,理论又重新成为了优化模型效率和算法性能的焦点。

+

一个鲜明的例子是,近期在 ICLR 2024 大会上,斯隆奖得主马腾宇及其团队通过数学方法证明了Transformer 模型具备模拟任意多项式规模数字电路的能力。这一成果表明,随着**思维链(Chain of Thought, CoT)的不断延展,Transformer能够有效地处理更为复杂的问题。 这项研究不仅展示了理论在推动前沿技术进步中的重要性,还让我们认识到,尽管外界对数据质量不足、模型的算力需求以及能源消耗提出了诸多质疑,但这些问题并非不可逾越。通过深入学习机器学习理论,我们可以更好地理解这些挑战,意识到它们实际上是迈向通用人工智能(AGI)**过程中必须面对和解决的关键节点。

+

不仅如此,理论学习还有助于我们建立对算法泛化能力的深刻理解。通过对机器学习理论的深入研究,我们能够推导出在不同假设条件下,算法的性能极限。比如,我们可以评估某一算法的收敛速度,预测其在不同数据量和模型复杂度下的表现。这些理论工具不仅提高了研究的严谨性,还为实际应用提供了有力的指导。例如,正是通过理论推导,我们能够理解大规模语言模型的训练为何需要如此庞大的数据集,同时又能预见在某些任务上微调模型的效果。

+

最后,掌握机器学习理论不仅能够为初学者奠定坚实的基础,增强他们的信心,还能帮助他们在面对外界质疑时保持理性和清醒的判断。无论是在研究中追求算法的提升,还是在实践中应对现实的挑战,理论的力量都不可或缺。在本书的编撰中,我们特别对部分证明进行了必要的诠释和展开,主要集中在原书中存在流畅性不足的内容,或那些虽提供了参考文献但证明篇幅不超过5页的论述。对于超出5页的文献,我们建议读者直接参阅原文,以便进行更深入的探究;此类情况在本书中出现频率较低,约不超过五处。

+

-- 赵志民

+

项目成员贡献与特别鸣谢

+

詹好负责了项目的初期规划与统筹,并参与了第一版的编辑和审核;赵志民主导了项目二期的更新与维护,并负责全书最终编辑和校验;李一飞参与了第1-5章内容的编辑;王茂霖参与了第2-6章内容的编辑。

+

另外,特别鸣谢了谢文睿杨昱文,他们共同提供了本书的在线阅读功能;张雨对第2章的早期内容进行了修订,各成员的协作确保了本书高质量的编写和顺利完成。

+

主要符号表

+

xx 标量
+xx 向量
+AA 矩阵
+II 单位阵
+X\mathcal{X} 样本空间或状态空间
+H\mathcal{H} 假设空间
+D\mathcal{D} 概率分布
+DD 数据样本(数据集)
+R\mathbb{R} 实数集
+R+\mathbb{R}^+ 正实数集
+L\mathfrak{L} 学习算法
+(,,)(·,·,·) 行向量
+(;,;,)(;,;,) 列向量
+()T(·)^T 向量或矩阵转置
+{\cdots} 集合
+[m][m] 集合 {1,,m}\{1,\dots,m\}
+|{\cdots}| 集合 {\cdots} 中元素的个数
+p\|·\|_p 范数, pp 缺省时为 L2L_2 范数
+P()P(), P()P(·|·) 概率质量函数, 条件概率质量函数
+p()p(·), p()p(·|·) 概率密度函数, 条件概率密度函数
+E. D[f()]E_{.~\mathcal{D}}[f(·)] 函数 f()f(·)· 在分布 DD 下的数学期望, 意义明确时将省略 DD 和(或)·
+sup()\sup(·) 上确界
+inf()\inf(·) 下确界
+I()\mathbb{I}(·) 指示函数, 在 · 为真和假时分别取值为 1,01, 0
+sign()\text{sign}(·) 符号函数, 在 <0,=0,>0·<0,=0,>0 时分别取值为 1,0,1-1, 0, 1

+

第1章:预备定理

+

编辑:赵志民, 李一飞

+
+

本章将对书中出现或用到的重要定理进行回顾,并简要解释其证明和应用场景。对于可能不熟悉相关基础知识的读者,建议参考附录中的基础知识部分。通过这些定理的阐述,希望帮助读者更好地理解数学推导的核心原理,并为后续章节的学习打下坚实基础。大数定律(Law of Large Numbers)和集中不等式(Concentration Inequality)密切相关,二者共同揭示了随机变量偏离其期望值的行为。大数定律说明,当样本量足够大时,样本均值会以概率收敛于总体的期望值,反映了长期平均结果的稳定性。而集中不等式(定理 1.8 至 1.18)则更进一步,为随机变量在有限样本量下偏离其期望值的可能性提供了精确的上界。这些不等式描述了随机变量偏离期望值的程度有多大,通过对概率的约束,确保这种偏离发生的概率较小,从而为各种随机现象提供了更细致的控制。集中不等式在大数定律的基础上提供了有力的工具,用于分析有限样本中的波动。

+

1.1 Jensen 不等式

+

对于任意凸函数 ff,则有:

+

f(E[X])E[f(X)]\begin{equation} +f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] +\end{equation} +

+

成立。

+

证明

+

p(x)p(x)XX 的概率密度函数。由 Taylor 展开式及 ff 的凸性,可知 ξ\exists \xi 使得:

+

f(x)=f(E[X])+f(E[X])(xE[X])+f(ξ)2(xE[X])2f(E[X])+f(E[X])(xE[X])\begin{equation} +\begin{align*} +f(x) &= f(\mathbb{E}[X]) + f^{\prime}(\mathbb{E}[X])(x-\mathbb{E}[X]) + \frac{f^{\prime \prime}(\xi)}{2}(x-\mathbb{E}[X])^{2} \\ +& \geq f(\mathbb{E}[X]) + f^{\prime}(\mathbb{E}[X])(x-\mathbb{E}[X]) +\end{align*} +\end{equation} +

+

对上式取期望,得到:

+

E[f(X)]=p(x)f(x)dxf(E[X])p(x)dx+f(E[X])p(x)(xE[X])dx=f(E[X])\begin{equation} +\begin{align*} +\mathbb{E}[f(X)] &= \int p(x) f(x) \,dx \\ +&\geq f(\mathbb{E}[X]) \int p(x) \,dx + f^{\prime}(\mathbb{E}[X]) \int p(x)(x-\mathbb{E}[X]) \,dx \\ +&= f(\mathbb{E}[X]) +\end{align*} +\end{equation} +

+

因此,原不等式得证。

+

如果 ff 是凹函数,则 Jensen 不等式变为:

+

f(E[X])E[f(X)]\begin{equation} +f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)] +\end{equation} +

+

这一结论可以通过将上述证明中的 ff 替换为 f-f 得到。\square

+

1.2 Hölder 不等式

+

对于任意 p,qR+p, q \in \mathbb{R}^{+},且满足 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1,则有:

+

E[XY](E[Xp])1p(E[Yq])1q\begin{equation} +\mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}} +\end{equation} +

+

成立。

+

证明

+

f(x)f(x)g(y)g(y) 分别为 XXYY 的概率密度函数,定义:

+

M=x(Xxpf(x)dx)1p,N=y(Yyqg(y)dy)1q\begin{equation} +M = \frac{|x|}{(\int_X |x|^p f(x) \,dx)^{\frac{1}{p}}}, \quad N = \frac{|y|}{(\int_Y |y|^q g(y) \,dy)^{\frac{1}{q}}} +\end{equation} +

+

代入 Young 不等式:

+

MN1pMp+1qNq\begin{equation} +MN \leq \frac{1}{p}M^p + \frac{1}{q}N^q +\end{equation} +

+

对该不等式两边同时取期望:

+

E[XY](E[Xp])1p(E[Yq])1q=XYxyf(x)g(y)dxdy(Xxpf(x)dx)1p(Yyqg(y)dy)1qXxpf(x)dxpXxpf(x)dx+Yyqg(y)dyqYyqg(y)dy=1p+1q=1\begin{equation} +\begin{align*} +\frac{\mathbb{E}[|XY|]}{(\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}}} &= \frac{\int_{XY} |xy| f(x)g(y) \,dx\,dy}{(\int_X |x|^p f(x) \,dx)^{\frac{1}{p}} (\int_Y |y|^q g(y) \,dy)^{\frac{1}{q}}} \\ +&\leq \frac{\int_X |x|^p f(x) \,dx}{p \int_X |x|^p f(x) \,dx} + \frac{\int_Y |y|^q g(y) \,dy}{q \int_Y |y|^q g(y) \,dy} \\ +&= \frac{1}{p} + \frac{1}{q} \\ +&= 1 +\end{align*} +\end{equation} +

+

因此,Hölder 不等式得证。\square

+

1.3 Cauchy-Schwarz 不等式

+

p=q=2p = q = 2 时,Hölder 不等式退化为 Cauchy-Schwarz 不等式:

+

E[XY]E[X2]E[Y2]\begin{equation} +\mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}[X^{2}] \cdot \mathbb{E}[Y^{2}]} +\end{equation} +

+

1.4 Lyapunov 不等式

+

对于任意 0<rs0 \lt r \leq s,有:

+

E[Xr]rE[Xs]s\begin{equation} +\sqrt[r]{\mathbb{E}[|X|^{r}]} \leq \sqrt[s]{\mathbb{E}[|X|^{s}]} +\end{equation} +

+

证明

+

由 Hölder 不等式: +对任意 p1p \geq 1,有:

+

E[Xr]=E[X1r](E[Xrp])1p(E[1q])1q=(E[Xrp])1p\begin{equation} +\begin{align*} +\mathbb{E}[|X|^{r}] &= \mathbb{E}[|X \cdot 1|^{r}] \\ +&\leq (\mathbb{E}[|X|^{rp}])^{\frac{1}{p}} \cdot (\mathbb{E}[1^q])^{\frac{1}{q}} \\ +&= (\mathbb{E}[|X|^{rp}])^{\frac{1}{p}} +\end{align*} +\end{equation} +

+

s=rprs = rp \geq r,则:

+

E[Xr](E[Xs])rs\begin{equation} +\mathbb{E}[|X|^{r}] \leq (\mathbb{E}[|X|^{s}])^{\frac{r}{s}} +\end{equation} +

+

因此,原不等式得证。\square

+

1.5 Minkowski 不等式

+

对于任意 p1p \geq 1,有:

+

E[X+Yp]pE[Xp]p+E[Yp]p\begin{equation} +\sqrt[p]{\mathbb{E}[|X+Y|^p]} \leq \sqrt[p]{\mathbb{E}[|X|^p]} + \sqrt[p]{\mathbb{E}[|Y|^p]} +\end{equation} +

+

证明

+

由三角不等式和 Hölder 不等式,可得:

+

E[X+Yp]E[(X+Y)X+Yp1]=E[XX+Yp1]+E[YX+Yp1](E[Xp])1p(E[X+Y(p1)q])1q+(E[Yp])1p(E[X+Y(p1)q])1q=[(E[Xp])1p+(E[Yp])1p]E[X+Yp](E[X+Yp])1p\begin{equation} +\begin{align*} +\mathbb{E}[|X+Y|^p] &\leq \mathbb{E}[(|X|+|Y|)|X+Y|^{p-1}] \\ +&= \mathbb{E}[|X\|X+Y|^{p-1}] + \mathbb{E}[|Y\|X+Y|^{p-1}] \\ +&\leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|X+Y|^{(p-1)q}])^{\frac{1}{q}} + (\mathbb{E}[|Y|^p])^{\frac{1}{p}} (\mathbb{E}[|X+Y|^{(p-1)q}])^{\frac{1}{q}} \\ +&= [(\mathbb{E}[|X|^p])^{\frac{1}{p}} + (\mathbb{E}[|Y|^p])^{\frac{1}{p}}] \cdot \frac{\mathbb{E}[|X+Y|^p]}{(\mathbb{E}[|X+Y|^p])^{\frac{1}{p}}} +\end{align*} +\end{equation} +

+

化简后即得证。\square

+

1.6 Bhatia-Davis 不等式

+

X[a,b]X \in [a,b],有:

+

V[X](bE[X])(E[X]a)(ba)24\begin{equation} +\mathbb{V}[X] \leq (b - \mathbb{E}[X])(\mathbb{E}[X] - a) \leq \frac{(b-a)^2}{4} +\end{equation} +

+

证明

+

因为 aXba \leq X \leq b,所以有:

+

0E[(bX)(Xa)]=E[X2]ab+(a+b)E[X]\begin{equation} +\begin{align*} +0 &\leq \mathbb{E}[(b-X)(X-a)] \\ +&= -\mathbb{E}[X^2] - ab + (a+b)\mathbb{E}[X] +\end{align*} +\end{equation} +

+

因此,

+

V[X]=E[X2]E[X]2ab+(a+b)E[X]E[X2]=(bE[X])(E[X]a)\begin{equation} +\begin{align*} +\mathbb{V}[X] &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ +&\leq -ab + (a+b)\mathbb{E}[X] - \mathbb{E}[X^2] \\ +&= (b - \mathbb{E}[X])(\mathbb{E}[X] - a) +\end{align*} +\end{equation} +

+

考虑 AM-GM 不等式:

+

xy(x+y2)2\begin{equation} +xy \leq (\frac{x+y}{2})^2 +\end{equation} +

+

x=bE[X]x = b - \mathbb{E}[X]y=E[X]ay = \mathbb{E}[X] - a 带入并化简即得证。\square

+

1.7 Union Bound(Boole's)不等式

+

对于任意事件 XXYY,有:

+

P(XY)P(X)+P(Y)\begin{equation} +P(X \cup Y) \leq P(X) + P(Y) +\end{equation} +

+

证明

+

根据概率的加法公式:

+

P(XY)=P(X)+P(Y)P(XY)P(X)+P(Y)\begin{equation} +P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) \leq P(X) + P(Y) +\end{equation} +

+

由于 P(XY)0P(X \cap Y) \geq 0,因此不等式得证。\square

+

1.8 Markov 不等式

+

X0X \geq 0,则对于任意 ε>0\varepsilon \gt 0,有:

+

P(Xε)E[X]ε\begin{equation} +P(X \geq \varepsilon) \leq \frac{\mathbb{E}[X]}{\varepsilon} +\end{equation} +

+

证明

+

由定义可得:

+

E[X]=0xp(x)dxεxp(x)dxεεp(x)dx=εP(Xε)\begin{equation} +\mathbb{E}[X] = \int_{0}^{\infty} x p(x) \,dx \geq \int_{\varepsilon}^{\infty} x p(x) \,dx \geq \varepsilon \int_{\varepsilon}^{\infty} p(x) \,dx = \varepsilon P(X \geq \varepsilon) +\end{equation} +

+

因此,原不等式得证。\square

+

1.9 Chebyshev 不等式

+

对于任意 ε>0\varepsilon \gt 0,有:

+

P(XE[X]ε)V[X]ε2\begin{equation} +P(|X-\mathbb{E}[X]| \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\varepsilon^{2}} +\end{equation} +

+

证明

+

利用 Markov 不等式,得到:

+

P(XE[X]ε)=P((XE[X])2ε2)E[(XE[X])2]ε2=V[X]ε2\begin{equation} +P(|X-\mathbb{E}[X]| \geq \varepsilon) = P((X-\mathbb{E}[X])^2 \geq \varepsilon^{2}) \leq \frac{\mathbb{E}[(X-\mathbb{E}[X])^2]}{\varepsilon^{2}} = \frac{\mathbb{V}[X]}{\varepsilon^{2}} +\end{equation} +

+

因此,Chebyshev 不等式得证。\square

+

1.10 Cantelli 不等式

+

对于任意 ε>0\varepsilon \gt 0,有:

+

P(XE[X]ε)V[X]V[X]+ε2\begin{equation} +P(X-\mathbb{E}[X] \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}} +\end{equation} +

+

证明

+

Y=XE[X]Y = X - \mathbb{E}[X],则对于任意 λ0\lambda \geq 0,有:

+

P(XE[X]ε)=P(Yε)=P(Y+λε+λ)=P((Y+λ)2(ε+λ)2)E[(Y+λ)2](ε+λ)2=V[X]+λ2(ε+λ)2\begin{equation} +\begin{align*} +P(X-\mathbb{E}[X] \geq \varepsilon) &= P(Y \geq \varepsilon) \\ +&= P(Y+\lambda \geq \varepsilon+\lambda) \\ +&= P((Y+\lambda)^{2} \geq (\varepsilon+\lambda)^{2}) \\ +&\leq \frac{\mathbb{E}[(Y+\lambda)^{2}]}{(\varepsilon+\lambda)^{2}} = \frac{\mathbb{V}[X]+\lambda^{2}}{(\varepsilon+\lambda)^{2}} +\end{align*} +\end{equation} +

+

通过对 λ\lambda 求导,得右端在 λ=V[X]ε\lambda = \frac{\mathbb{V}[X]}{\varepsilon} 时取得最小值 V[X]V[X]+ε2\frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}},因此:

+

P(XE[X]ε)V[X]V[X]+ε2\begin{equation} +P(X-\mathbb{E}[X] \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}} +\end{equation} +

+

原不等式得证。\square

+

值得注意的是,Cantelli 不等式是 Chebyshev 不等式的加强版,也称为单边 Chebyshev 不等式。通过类似的构造方法,可以推导出比 Cantelli 不等式更严格的上界。

+

1.11 Chernoff 界(Chernoff-Cramér 界)

+

对于任意 λ>0,ε>0\lambda \gt 0, \varepsilon \gt 0,有:

+

P(Xε)minλ>0E[eλX]eλε\begin{equation} +P(X \geq \varepsilon) \leq \min_{\lambda \gt 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}} +\end{equation} +

+

对于任意 λ<0,ε>0\lambda \lt 0, \varepsilon \gt 0,有:

+

P(Xε)minλ<0E[eλX]eλε\begin{equation} +P(X \leq \varepsilon) \leq \min_{\lambda \lt 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}} +\end{equation} +

+

证明

+

应用 Markov 不等式,有:

+

P(Xε)=P(eλXeλε)E[eλX]eλε,λ>0,ε>0\begin{equation} +P(X \geq \varepsilon) = P(e^{\lambda X} \geq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}}, \quad \lambda \gt 0, \varepsilon \gt 0 +\end{equation} +

+

同理,

+

P(Xε)=P(eλXeλε)E[eλX]eλε,λ<0,ε>0\begin{equation} +P(X \leq \varepsilon) = P(e^{\lambda X} \leq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}}, \quad \lambda \lt 0, \varepsilon \gt 0 +\end{equation} +

+

因此,Chernoff 界得证。\square

+

基于上述 Chernoff 界的技术,我们可以进一步定义次高斯性:

+

定义 1 (随机变量的次高斯性):若一个期望为零的随机变量 XX 的矩母函数满足 λR+\forall \lambda \in \mathbb{R}^+

+

E[eλX]exp(σ2λ22)\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \exp(\frac{\sigma^2\lambda^2}{2}) +\end{equation} +

+

则称 XX 服从参数为 σ\sigma 的次高斯分布。

+

实际上,Hoeffding 引理中的随机变量 XX 服从 (ba)2\frac{(b-a)}{2} 的次高斯分布。Hoeffding 引理也是次高斯分布的直接体现。次高斯性还有一系列等价定义,这里不作详细讨论。

+

次高斯分布有一个直接的性质:假设两个独立的随机变量 X1,X2X_1, X_2 都是次高斯分布的,分别服从参数 σ1,σ2\sigma_1, \sigma_2,那么 X1+X2X_1 + X_2 就是服从参数为 σ12+σ22\sqrt{\sigma_1^2 + \sigma_2^2} 的次高斯分布。这个结果的证明可以直接利用定义来完成。

+

显然,并非所有常见的随机变量都是次高斯的,例如指数分布。为此可以扩大定义:

+

定义 2 (随机变量的次指数性):若非负的随机变量 XX 的矩母函数满足 λ(0,a)\forall \lambda \in (0,a)

+

E[eλX]aaλ\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \frac{a}{a - \lambda} +\end{equation} +

+

则称 XX 服从参数为 (V[X],1/a)(\mathbb{V}[X], 1/a) 的次指数分布。

+

同样地,次指数性也有一系列等价定义。一种不直观但更常用的定义如下:存在 (σ2,b)(\sigma^2, b),使得 s<1/b\forall |s| \lt 1/b

+

E[es(XE[X])]exp(s2σ22)\begin{equation} +\mathbb{E}[e^{s(X−\mathbb{E}[X])}] \leq \exp ( \frac{s^2\sigma^2}{2} ) +\end{equation} +

+

常见的次指数分布包括:指数分布,Gamma 分布,以及任何有界随机变量

+

类似地,次指数分布对于加法也是封闭的:如果 X1,X2X_1, X_2 分别是服从 (σ12,b1)(\sigma_1^2, b_1)(σ22,b2)(\sigma_2^2, b_2) 的次指数分布,那么 X1+X2X_1 + X_2 是服从 (σ12+σ22,max(b1,b2))(\sigma_1^2 + \sigma_2^2, \max(b_1, b_2)) 的次指数分布。在高维统计问题中,次高斯分布和次指数分布的尾端控制能得到一些重要的结论。

+

1.12 Chernoff 不等式(乘积形式)

+

对于 mm 个独立同分布的随机变量 xi[0,1],i[m]x_i \in [0, 1], i \in [m],设 X=i=1mXiX = \sum_{i=1}^m X_iμ>0\mu \gt 0r1r \leq 1。若对所有 imi \leq m 都有 E[xi]μ\mathbb{E}[x_i] \leq \mu,则:

+

P(X(1+r)μm)er2μm3,r0P(X(1r)μm)er2μm2,r0\begin{equation} +\begin{align*} +P(X \geq (1+r)\mu m) \leq e^{-\frac{r^2 \mu m}{3}}, \quad r \geq 0 \\ +P(X \leq (1-r)\mu m) \leq e^{-\frac{r^2 \mu m}{2}}, \quad r \geq 0 +\end{align*} +\end{equation} +

+

证明

+

应用 Markov 不等式,有:

+

P(X(1+r)μm)=P((1+r)X(1+r)(1+r)μm)E[(1+r)X](1+r)(1+r)μm\begin{equation} +P(X \geq (1+r)\mu m) = P((1+r)^X \geq (1+r)^{(1+r)\mu m}) \leq \frac{\mathbb{E}[(1+r)^X]}{(1+r)^{(1+r)\mu m}} +\end{equation} +

+

由于 xix_i 之间是独立的,可得:

+

E[(1+r)X]=i=1mE[(1+r)xi]i=1mE[1+rxi]i=1m(1+rμ)erμm\begin{equation} +\mathbb{E}[(1+r)^X] = \prod_{i=1}^m \mathbb{E}[(1+r)^{x_i}] \leq \prod_{i=1}^m \mathbb{E}[1+rx_i] \leq \prod_{i=1}^m (1+r\mu) \leq e^{r\mu m} +\end{equation} +

+

其中,第二步使用了 x[0,1]\forall x \in [0,1] 都有 (1+r)x1+rx(1+r)^x \leq 1+rx,第三步使用了 E[xi]μ\mathbb{E}[x_i] \leq \mu,第四步使用了 x[0,1]\forall x \in [0,1] 都有 1+xex1+x \leq e^x

+

又由于 r[0,1]\forall r \in [0,1],有 er(1+r)1+rer23\frac{e^r}{(1+r)^{1+r}} \leq e^{-\frac{r^2}{3}},综上所述:

+

P(X(1+r)μm)(er(1+r)(1+r))μmer2μm3\begin{equation} +P(X \geq (1+r)\mu m) \leq (\frac{e^r}{(1+r)^{(1+r)}})^{\mu m} \leq e^{-\frac{r^2 \mu m}{3}} +\end{equation} +

+

当我们将 rr 替换为 r-r 时,根据之前的推导,并利用 r[0,1]\forall r \in [0,1]er(1r)1rer22\frac{e^r}{(1-r)^{1-r}} \leq e^{-\frac{r^2}{2}},可得第二个不等式的证明。\square

+

1.13 最优 Chernoff 界

+

如果 XX 是一个随机变量,并且 E[eλ(XEX)]eϕ(λ)\mathbb{E}[e^{\lambda(X-\mathbb{E}X)}] \leq e^{\phi(\lambda)} 对于所有 λ0\lambda \geq 0 成立,则有以下结论:

+

P(XEXε)eϕ(ε),ε0\begin{equation} +P(X - \mathbb{E}X \geq \varepsilon) \leq e^{-\phi^*(\varepsilon)}, \quad \varepsilon \geq 0 +\end{equation} +

+

+

P(XEX(ϕ)1(ln(1/δ)))1δ,δ[0,1]\begin{equation} +P(X - \mathbb{E}X \leq (\phi^*)^{-1}(\ln(1/\delta))) \geq 1 - \delta, \quad \delta \in [0,1] +\end{equation} +

+

其中,ϕ\phi^*ϕ\phi 的凸共轭函数,即 ϕ(x)=supλ0(λxϕ(λ))\phi^*(x) = \sup_{\lambda \geq 0}(\lambda x - \phi(\lambda))

+

证明

+

根据 Chernoff 不等式,有:

+

P(XEXε)infλ0eλεE[eλ(XEX)]infλ0eϕ(λ)λε=esupλ0(λεϕ(λ))=eϕ(ε)\begin{equation} +\begin{align*} +P(X - \mathbb{E}X \geq \varepsilon) &\leq \inf_{\lambda \geq 0} e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(X-\mathbb{E}X)}] \\ +&\leq \inf_{\lambda \geq 0} e^{\phi(\lambda) - \lambda \varepsilon} \\ +&= e^{-\sup_{\lambda \geq 0}(\lambda \varepsilon - \phi(\lambda))} \\ +&= e^{-\phi^*(\varepsilon)} +\end{align*} +\end{equation} +

+

因此,最优 Chernoff 界得证。\square

+

1.14 Hoeffding 不等式

+

设有 mm 个独立随机变量 Xi[ai,bi]X_{i} \in [a_{i}, b_{i}],令 Xˉ\bar{X}XiX_{i} 的均值。Hoeffding 不等式表示:

+

P(XˉE[Xˉ]ε)exp(2m2ε2i=1m(biai)2)\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}) +\end{equation} +

+

证明

+

首先,我们引入一个引理 (Hoeffding 定理):

+

对于 E[X]=0\mathbb{E}[X] = 0X[a,b]X \in [a, b] 的随机变量,对于任意 λR\lambda \in \mathbb{R},有:

+

E[eλX]exp(λ2(ba)28)\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \exp( \frac{\lambda^2(b-a)^2}{8} ) +\end{equation} +

+

由于 exe^x 是凸函数,对于任意 x[a,b]x \in [a, b],可以写为:

+

eλxbxbaeλa+xabaeλb\begin{equation} +e^{\lambda x} \leq \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b} +\end{equation} +

+

对上式取期望,得到:

+

E[eλX]bE[X]baeλa+E[X]abaeλb=beλaaeλbba\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \frac{b-\mathbb{E}[X]}{b-a}e^{\lambda a} + \frac{\mathbb{E}[X]-a}{b-a}e^{\lambda b} = \frac{be^{\lambda a} - ae^{\lambda b}}{b - a} +\end{equation} +

+

θ=aba\theta = -\frac{a}{b-a}h=λ(ba)h = \lambda(b-a),则:

+

beλaaeλbba=[1θ+θeh]eθh=eln(1θ+θeh)eθh=eln(1θ+θeh)θh\begin{equation} +\frac{be^{\lambda a} - ae^{\lambda b}}{b - a} = [1-\theta + \theta e^{h}]e^{-\theta h} = e^{\ln(1-\theta + \theta e^{h})}e^{-\theta h} = e^{\ln(1-\theta + \theta e^{h}) -\theta h} +\end{equation} +

+

定义函数 φ(θ,h)=ln(1θ+θeh)θh\varphi(\theta, h) = \ln(1-\theta + \theta e^{h}) -\theta h。注意到 θ\theta 实际上与 hh 无关。对 hh 求偏导数:

+

φh=θeh1θ+θehθ\begin{equation} +\frac{\partial \varphi}{\partial h} = \frac{\theta e^h}{1 - \theta + \theta e^h} - \theta +\end{equation} +

+

显然有 φhh=0+=0\frac{\partial \varphi}{\partial h}\big|_{h=0^+} = 0。同理,利用链式法则可得:

+

2φh2=θeh(1θ+θeh)θ2e2h(1θ+θeh)2=θeh1θ+θeh(1θeh1θ+θeh)14\begin{equation} +\frac{\partial^2 \varphi}{\partial h^2} = \frac{\theta e^h(1 - \theta + \theta e^h) - \theta^2e^{2h}}{(1 - \theta + \theta e^h)^2} = \frac{\theta e^h}{1 - \theta + \theta e^h}(1- \frac{\theta e^h}{1 - \theta + \theta e^h}) \leq \frac{1}{4} +\end{equation} +

+

根据泰勒展开式,可以得到:

+

φ(θ,h)h28=λ2(ba)28\begin{equation} +\varphi(\theta, h) \leq \frac{h^2}{8} = \frac{\lambda^2(b-a)^2}{8} +\end{equation} +

+

由 Markov 不等式可知,对于任意 λ>0\lambda \gt 0

+

P(XˉE[Xˉ]ε)=P(eλ(XˉE[Xˉ])eλε)E[eλ(XˉE[Xˉ])]eλε\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) = P(e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])} \geq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])}]}{e^{\lambda \varepsilon}} +\end{equation} +

+

利用随机变量的独立性及 Hoeffding 引理,有:

+

E[eλ(XˉE[Xˉ])]eλε=eλεi=1mE[eλ(XiE[Xi])/m]eλεi=1mexp(λ2(biai)28m2)\begin{equation} +\frac{\mathbb{E}[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}]})]}{e^{\lambda \varepsilon}} = e^{-\lambda \varepsilon} \prod_{i=1}^{m} \mathbb{E}[e^{\lambda(X_{i} - \mathbb{E}[X_{i}]) / m}] \leq e^{-\lambda \varepsilon} \prod_{i=1}^{m} \exp (\frac{\lambda^{2}(b_{i} - a_{i})^{2}}{8 m^{2}}) +\end{equation} +

+

考虑二次函数 g(λ)=λε+λ28m2i=1m(biai)2g(\lambda) = -\lambda \varepsilon + \frac{\lambda^{2}}{8 m^{2}} \sum_{i=1}^{m}(b_{i} - a_{i})^{2},其最小值为 2m2ε2i=1m(biai)2-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}

+

因此可以得到:

+

P(XˉE[Xˉ]ε)exp(2m2ε2i=1m(biai)2)\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}) +\end{equation} +

+

\square

+

注意,这里并未要求随机变量同分布,因此Hoeffding 不等式常用来解释集成学习的基本原理。

+

1.15 McDiarmid 不等式

+

对于 mm 个独立随机变量 XiXX_{i} \in \mathcal{X},若函数 ff 是差有界的,则对于任意 ε>0\varepsilon \gt 0,有:

+

P(f(X1,,Xm)E[f(X1,,Xm)]ε)exp(ε22i=1mci2)\begin{equation} +P(f(X_{1}, \cdots, X_{m})-\mathbb{E}[f(X_{1}, \cdots, X_{m})] \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +

+

证明

+

构造一个鞅差序列:

+

Dj=E[f(X)X1,,Xj]E[f(X)X1,,Xj1]\begin{equation} +D_j = \mathbb{E}[f(X) \mid X_1, \cdots, X_j] - \mathbb{E}[f(X) \mid X_1, \cdots, X_{j-1}] +\end{equation} +

+

容易验证:

+

f(X)E[f(X)]=i=1mDi\begin{equation} +f(X) - \mathbb{E}[f(X)] = \sum_{i=1}^m D_i +\end{equation} +

+

由于 ff 是差有界的,因此满足 Azuma-Hoeffding 引理。代入后可得:

+

P(f(X1,,Xm)E[f(X1,,Xm)]ε)exp(ε22i=1mci2)\begin{equation} +P(f(X_1, \cdots, X_m) - \mathbb{E}[f(X_1, \cdots, X_m)] \geq \varepsilon) \leq \exp( -\frac{\varepsilon^2}{2\sum_{i=1}^m c_i^2} ) +\end{equation} +

+

原不等式得证。\square

+

1.16 Bennett 不等式

+

对于 mm 个独立随机变量 XiX_{i},令 Xˉ\bar{X}XiX_{i} 的均值,若存在 b>0b \gt 0,使得 XiE[Xi]<b|X_i-\mathbb{E}[X_i]| \lt b,则有:

+

P(XˉE[Xˉ]ε)exp(mε22(i=1mV[Xi]/m+bε/3))\begin{equation} +P(\bar{X}-\mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{m \varepsilon^{2}}{2(\sum_{i=1}^{m} \mathbb{V}[X_{i}] / m + b \varepsilon / 3)}) +\end{equation} +

+

证明

+

首先,Bennett 不等式是 Hoeffding 不等式的一个加强版,对于独立随机变量的条件可以放宽为弱独立条件,结论仍然成立。

+

这些 Bernstein 类的集中不等式更多地反映了在非渐近观点下的大数定律表现,即它们刻画了样本均值如何集中在总体均值附近。

+

如果将样本均值看作是样本(数据点的函数),即令 f(X1,,Xm)=i=1mXi/mf(X_{1}, \cdots, X_{m}) = \sum_{i=1}^{m} X_{i} / m,那么 Bernstein 类不等式刻画了如下的概率:

+

P(f(X1,,Xm)E[f(X1,,Xm)]ε)\begin{equation} +P(f(X_{1}, \cdots, X_{m}) - \mathbb{E}[f(X_{1}, \cdots, X_{m})] \geq \varepsilon) +\end{equation} +

+

为了在某些泛函上也具有类似 Bernstein 类的集中不等式形式,显然 ff 需要满足某些特定性质。差有界性是一种常见的约束条件。

+

定义 3: 差有界性

+

函数 f:XmRf: \mathcal{X}^{m} \rightarrow \mathbb{R} 满足对于每个 ii,存在常数 ci<c_{i} \lt \infty,使得:

+

f(x1,,xi,,xm)f(x1,,xi,,xm)ci\begin{equation} +|f(x_{1}, \cdots, x_{i}, \cdots, x_{m})-f(x_{1}, \cdots, x_{i}^{\prime}, \cdots, x_{m})| \leq c_{i} +\end{equation} +

+

则称 ff 是差有界的。

+

为了证明这些结果,需要引入一些新的数学工具。

+

定义 4: 离散鞅

+

若离散随机变量序列(随机过程)ZmZ_m 满足:

+
    +
  1. E[Zi]<\mathbb{E}[|Z_{i}|] \lt \infty
  2. +
  3. E[Zm+1Z1,,Zm]=E[Zm+1Fm]=Zm\mathbb{E}[Z_{m+1} \mid Z_{1}, \cdots, Z_{m}] = \mathbb{E}[Z_{m+1} \mid \mathcal{F}_{m}] = Z_{m}
  4. +
+

则称序列 ZiZ_i 为离散鞅。

+

引理 2: Azuma-Hoeffding 定理

+

对于鞅 ZiZ_{i},若 E[Zi]=μ,Z1=μ\mathbb{E}[Z_{i}] = \mu, Z_{1} = \mu_{\circ},则构造鞅差序列 Xi=ZiZi1X_{i} = Z_{i} - Z_{i-1},且 Xici|X_{i}| \leq c_{i},则对于任意 ε>0\varepsilon \gt 0,有:

+

P(Zmμε)=P(i=1mXiε)exp(ε22i=1mci2)\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) = P(\sum_{i=1}^{m} X_{i} \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +

+

证明

+

首先,若 E[XY]=0\mathbb{E}[X \mid Y] = 0,则有 λ>0\forall \lambda \gt 0

+

E[eλXY]E[eλX]\begin{equation} +\mathbb{E}[e^{\lambda X} \mid Y] \leq \mathbb{E}[e^{\lambda X}] +\end{equation} +

+

因此,由恒等式 E[E[XY]]=E[X]\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X] 及 Chernoff 一般性技巧,对于任意 λ>0\lambda \gt 0

+

P(Zmμε)eλεE[eλ(Zmμ)]=eλεE[E[eλ(Zmμ)Fm1]]=eλεE[eλ(Zm1μ)E[eλ(ZmZm1)Fm1]]\begin{equation} +\begin{align*} +P(Z_{m}-\mu \geq \varepsilon) &\geq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m}-\mu)}] \\ +& = e^{-\lambda \varepsilon} \mathbb{E}[\mathbb{E}[e^{\lambda(Z_{m}-\mu)} \mid \mathcal{F}_{m-1}]] \\ +& = e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}\mathbb{E}[e^{\lambda (Z_{m}-Z_{m-1})} \mid \mathcal{F}_{m-1}]] +\end{align*} +\end{equation} +

+

由于 {Xi}\{X_{i}\} 是鞅差序列,因此 E[XmFm1]=0,E[Xi]=0\mathbb{E}[X_{m} \mid \mathcal{F}_{m-1}] = 0, \mathbb{E}[X_{i}] = 0。再结合不等式 E[eλXY]E[eλX]\mathbb{E}[e^{\lambda X} \mid Y] \leq \mathbb{E}[e^{\lambda X}] 及 Hoeffding 引理,有:

+

P(Zmμε)eλεE[eλ(Zm1μ)]E[eλXn]eλεE[eλ(Zm1μ)]exp(λ2cm22)\begin{equation} +\begin{align*} +P(Z_{m}-\mu \geq \varepsilon) & \leq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}] \mathbb{E}[e^{\lambda X_{n}}] \\ +& \leq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}] \exp (\frac{\lambda^{2} c_{m}^{2}}{2}) +\end{align*} +\end{equation} +

+

迭代上不等式可得:

+

P(Zmμε)eλεi=1mexp(λ2ci22)\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) \leq e^{-\lambda \varepsilon} \prod_{i=1}^{m} \exp (\frac{\lambda^{2} c_{i}^{2}}{2}) +\end{equation} +

+

λ=εi=1mci2\lambda = \frac{\varepsilon}{\sum_{i=1}^{m} c_{i}^{2}} 时,上式右端取得极小值:

+

P(Zmμε)exp(ε22i=1mci2)\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +

+

原不等式得证。\square

+

1.17 Bernstein 不等式

+

考虑 mm 个独立同分布的随机变量 Xi,i[m]X_i, i \in [m]。令 Xˉ=i=1mXim\bar{X} = \frac{\sum_{i=1}^{m} X_i}{m}。若存在常数 b>0b > 0,使得对所有 k2k \geq 2,第 kk 阶矩满足 E[Xik]k!bk22V[X1]\mathbb{E}[|X_i|^k] \leq \frac{k! b^{k-2}}{2} \mathbb{V}[X_1],则该不等式成立:

+

P(XˉE[Xˉ]+ϵ)exp(mϵ22V[X1]+2bϵ)\begin{equation} +\mathbb{P}(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon) \leq \exp\left(\frac{-m\epsilon^2}{2 \mathbb{V}[X_1] + 2b\epsilon}\right) +\end{equation} +

+

证明

+

首先,我们需要将矩条件(moment condition)转换为亚指数条件(sub-exponential condition),以便进一步推导,即:

+ +
+ +

设:

+

Y=XE[X]\begin{equation} +Y = X - \mathbb{E}[X] +\end{equation} +

+

我们的目标是对 YY 的矩母函数(MGF)进行上界:

+

E[eλY]\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] +\end{equation} +

+
+ +

将 MGF 展开为幂级数(Taylor展开):

+

E[eλY]=E[k=0(λY)kk!]=k=0λkk!E[Yk]\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] = \mathbb{E}\left[\sum_{k=0}^\infty \frac{(\lambda Y)^k}{k!}\right] = \sum_{k=0}^\infty \frac{\lambda^k}{k!} \mathbb{E}[Y^k] +\end{equation} +

+

由于 E[Y]=0\mathbb{E}[Y] = 0,故 k=1k = 1 项消失:

+

E[eλY]=1+k=2λkk!E[Yk]\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] = 1 + \sum_{k=2}^\infty \frac{\lambda^k}{k!} \mathbb{E}[Y^k] +\end{equation} +

+
+ +

根据矩条件:

+

E[Yk]k!bk22V[X]\begin{equation} +\mathbb{E}\left[|Y|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] +\end{equation} +

+

因此:

+

E[Yk]E[Yk]k!bk22V[X]\begin{equation} +|\mathbb{E}[Y^k]| \leq \mathbb{E}\left[|Y|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] +\end{equation} +

+
+ +

将上界代入 MGF 展开式:

+

E[eλY]1+k=2λkk!k!bk22V[X]=1+V[X]2k=2(bλ)k2λ2\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \sum_{k=2}^\infty \frac{\lambda^k}{k!} \cdot \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] = 1 + \frac{\mathbb{V}[X]}{2} \sum_{k=2}^\infty (b\lambda)^{k-2} \lambda^2 +\end{equation} +

+

通过令 j=k2j = k - 2 进行简化:

+

E[eλY]1+V[X]λ22j=0(bλ)j\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \frac{\mathbb{V}[X] \lambda^2}{2} \sum_{j=0}^\infty (b\lambda)^j +\end{equation} +

+
+ +

bλ<1b\lambda < 1 时,几何级数收敛:

+

j=0(bλ)j=11bλ\begin{equation} +\sum_{j=0}^\infty (b\lambda)^j = \frac{1}{1 - b\lambda} +\end{equation} +

+

因此:

+

E[eλY]1+V[X]λ22(1bλ)\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)} +\end{equation} +

+
+ +

使用不等式 1+xex1 + x \leq e^{x} 对所有实数 xx 成立:

+

E[eλY]exp(V[X]λ22(1bλ))\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +

+

这与亚指数条件相符:

+

E[eλY]exp(V[X]λ22(1bλ)),λ[0,1b)\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +

+
+

接下来我们完成在给定矩条件下的Bernstein 不等式的证明,即:

+

陈述:

+

给定 mm 个独立同分布的随机变量 Xi,i[m]X_i, i \in [m],令 Xˉ=1mi=1mXi\bar{X} = \frac{1}{m}\sum_{i=1}^{m} X_i。若存在常数 b>0b > 0,使得对所有 k2k \geq 2

+

E[XiE[Xi]k]k!bk22V[X1],\begin{equation} +\mathbb{E}\left[|X_i - \mathbb{E}[X_i]|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X_1], +\end{equation} +

+

则对于任意 ϵ>0\epsilon > 0

+

P(XˉE[Xˉ]+ϵ)exp(mϵ22V[X1]+2bϵ)\begin{equation} +\mathbb{P}\left(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon\right) \leq \exp\left(\frac{-m\epsilon^2}{2 \mathbb{V}[X_1] + 2b\epsilon}\right) +\end{equation} +

+
+ +

首先,回顾对于参数 b>0b > 0单侧 Bernstein 条件

+

E[eλ(Y)]exp(V[Y]λ2/21bλ),λ[0,1b)\begin{equation} +\mathbb{E}\left[e^{\lambda(Y)}\right] \leq \exp\left(\frac{\mathbb{V}[Y] \lambda^2 / 2}{1 - b\lambda}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +

+

其中 Y=XE[X]Y = X - \mathbb{E}[X]

+

根据矩条件,我们已经证明 YY 满足亚指数条件

+

E[eλY]exp(V[Y]λ22(1bλ)),λ[0,1b)\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +

+

因此,YY 满足单侧 Bernstein 条件,且 V[Y]=V[X]\mathbb{V}[Y] = \mathbb{V}[X]

+ +

考虑 mm 个独立同分布随机变量 Yi=XiE[Xi]Y_i = X_i - \mathbb{E}[X_i] 的和:

+

Sm=i=1mYi=m(XˉE[Xˉ])\begin{equation} +S_m = \sum_{i=1}^{m} Y_i = m(\bar{X} - \mathbb{E}[\bar{X}]) +\end{equation} +

+

我们的目标是对概率 P(Smmϵ)\mathbb{P}(S_m \geq m\epsilon) 进行上界,这等价于 P(XˉE[Xˉ]+ϵ)\mathbb{P}(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon)

+

使用Chernoff 界

+

P(Smmϵ)infλ>0exp(λmϵ)E[eλSm]\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \inf_{\lambda > 0} \exp(-\lambda m \epsilon) \mathbb{E}\left[e^{\lambda S_m}\right] +\end{equation} +

+ +

由于 YiY_i 是独立的:

+

E[eλSm]=i=1mE[eλYi][exp(V[Yi]λ22(1bλ))]m=exp(mV[Y]λ22(1bλ))\begin{equation} +\mathbb{E}\left[e^{\lambda S_m}\right] = \prod_{i=1}^{m} \mathbb{E}\left[e^{\lambda Y_i}\right] \leq \left[\exp\left(\frac{\mathbb{V}[Y_i] \lambda^2}{2(1 - b\lambda)}\right)\right]^m = \exp\left(\frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +

+

因此:

+

P(Smmϵ)infλ>0exp(λmϵ+mV[Y]λ22(1bλ))\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \inf_{\lambda > 0} \exp\left(-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +

+ +

为了找到最紧的界,我们需要对 λ\lambda 进行优化。最优的 λ\lambda 是使指数最小的值:

+

λmϵ+mV[Y]λ22(1bλ)\begin{equation} +-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)} +\end{equation} +

+

λ\lambda 求导并令其为零:

+

ϵ+V[Y]λ1bλ+V[Y]λ2b2(1bλ)2=0\begin{equation} +-\epsilon + \frac{\mathbb{V}[Y] \lambda}{1 - b\lambda} + \frac{\mathbb{V}[Y] \lambda^2 b}{2(1 - b\lambda)^2} = 0 +\end{equation} +

+

然而,直接求解该方程较为复杂。我们可以选择:

+

λ=ϵV[Y]+bϵ\begin{equation} +\lambda = \frac{\epsilon}{\mathbb{V}[Y] + b\epsilon} +\end{equation} +

+

此时 λ\lambda 满足 [0,1b)\left[0, \frac{1}{b}\right) 的范围,因为:

+

λb=bϵV[Y]+bϵ<1\begin{equation} +\lambda b = \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon} < 1 +\end{equation} +

+ +

λ=ϵV[Y]+bϵ\lambda = \frac{\epsilon}{\mathbb{V}[Y] + b\epsilon} 代入指数中:

+

λmϵ+mV[Y]λ22(1bλ)=mϵ2V[Y]+bϵ+mV[Y](ϵV[Y]+bϵ)22(1bϵV[Y]+bϵ)\begin{equation} +-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)} = -\frac{m \epsilon^2}{\mathbb{V}[Y] + b\epsilon} + \frac{m \mathbb{V}[Y] \left(\frac{\epsilon}{\mathbb{V}[Y] + b\epsilon}\right)^2}{2\left(1 - \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon}\right)} +\end{equation} +

+

在第二项中简化分母:

+

1bλ=1bϵV[Y]+bϵ=V[Y]V[Y]+bϵ\begin{equation} +1 - b\lambda = 1 - \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon} = \frac{\mathbb{V}[Y]}{\mathbb{V}[Y] + b\epsilon} +\end{equation} +

+

现在,代入回去:

+

mϵ2V[Y]+bϵ+mϵ22(V[Y]+bϵ)=mϵ22(V[Y]+bϵ)\begin{equation} +-\frac{m \epsilon^2}{\mathbb{V}[Y] + b\epsilon} + \frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)} = -\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)} +\end{equation} +

+

因此:

+

P(Smmϵ)exp(mϵ22(V[Y]+bϵ))\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)}\right) +\end{equation} +

+ +

回忆:

+

Sm=m(XˉE[Xˉ])\begin{equation} +S_m = m(\bar{X} - \mathbb{E}[\bar{X}]) +\end{equation} +

+

因此:

+

P(XˉE[Xˉ]ϵ)=P(Smmϵ)exp(mϵ22(V[Y]+bϵ))\begin{equation} +\mathbb{P}\left(\bar{X} - \mathbb{E}[\bar{X}] \geq \epsilon\right) = \mathbb{P}(S_m \geq m\epsilon) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)}\right) +\end{equation} +

+

由于 V[Y]=V[X]\mathbb{V}[Y] = \mathbb{V}[X],我们得到:

+

P(XˉE[Xˉ]+ϵ)exp(mϵ22(V[X]+bϵ))\begin{equation} +\mathbb{P}\left(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon\right) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[X] + b\epsilon)}\right) +\end{equation} +

+

\square

+

1.18 Azuma–Hoeffding(Azuma)不等式

+

对于均值为 Z0=μZ_0 = \mu 的鞅差序列 {Zm,m1}\{Z_m, m \geq 1\},若 ZiZi1ci|Z_i - Z_{i-1}| \leq c_i,其中ci>0c_i \gt 0为已知常数,则对于任意 ε>0\varepsilon \gt 0,有:

+

P(Zmμε)exp(ε22i=1mci2)P(Zmμε)exp(ε22i=1mci2)\begin{equation} +\begin{align*} +P(Z_{m} - \mu \geq \varepsilon) &\leq \exp(-\frac{\varepsilon^{2}}{2\sum_{i=1}^{m} c_{i}^{2}}) \\ +P(Z_{m} - \mu \leq -\varepsilon) &\leq \exp(-\frac{\varepsilon^{2}}{2\sum_{i=1}^{m} c_{i}^{2}}) +\end{align*} +\end{equation} +

+

证明

+
    +
  1. +

    构造指数鞅

    +

    考虑参数 s>0s \gt 0,构造如下的指数鞅:

    +

    Mm=exp(s(Zmμ)s22i=1mci2)\begin{equation} +M_m = \exp(s(Z_m - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) +\end{equation} +

    +

    我们需要证明 {Mm}m0\{M_m\}_{m \geq 0} 是一个超鞅。

    +
  2. +
  3. +

    验证鞅性质

    +

    对于任意 m1m \geq 1,有

    +

    E[MmFm1]=E[exp(s(ZmZm1))Fm1]exp(s(Zm1μ)s22i=1mci2)\begin{equation} +\mathbb{E}[M_m \mid \mathcal{F}_{m-1}] = \mathbb{E}[\exp(s(Z_m - Z_{m-1})) \mid \mathcal{F}_{m-1}] \cdot \exp(s(Z_{m-1} - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) +\end{equation} +

    +

    由于 ZmZm1cm|Z_m - Z_{m-1}| \leq c_m,并且 E[ZmZm1Fm1]=0\mathbb{E}[Z_m - Z_{m-1} \mid \mathcal{F}_{m-1}] = 0(鞅性质),可以应用 Hoeffding 引理得到:

    +

    E[exp(s(ZmZm1))Fm1]exp(sE[ZmZm1Fm1]+s2(cm(cm))28)=exp(s2cm22)\begin{equation} +\mathbb{E}[\exp(s(Z_m - Z_{m-1})) \mid \mathcal{F}_{m-1}] \leq \exp(s\mathbb{E}[Z_m - Z_{m-1} \mid \mathcal{F}_{m-1}] + \frac{s^2(c_m-(-c_m))^2}{8}) = \exp(\frac{s^2 c_m^2}{2}) +\end{equation} +

    +

    因此,

    +

    E[MmFm1]exp(s2cm22)exp(s(Zm1μ)s22i=1mci2)=Mm1\begin{equation} +\mathbb{E}[M_m \mid \mathcal{F}_{m-1}] \leq \exp(\frac{s^2 c_m^2}{2}) \cdot \exp(s(Z_{m-1} - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) = M_{m-1} +\end{equation} +

    +

    这表明 {Mm}\{M_m\} 是一个超鞅。

    +
  4. +
  5. +

    应用鞅不等式

    +

    由于 {Mm}\{M_m\} 是一个超鞅,且 M0=exp(0)=1M_0 = \exp(0) = 1,根据超鞅的性质,有

    +

    E[Mm]M0=1\begin{equation} +\mathbb{E}[M_m] \le M_0 = 1 +\end{equation} +

    +

    对于事件 {Zmμε}\{Z_m - \mu \geq \varepsilon\},有

    +

    Mm=exp(s(Zmμ)s22i=1mci2)exp(sεs22i=1mci2)\begin{equation} +M_m = \exp(s(Z_m - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) \geq \exp(s \varepsilon - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) +\end{equation} +

    +

    我们令 a=exp(sεs22i=1mci2)a = \exp\left(s \varepsilon - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right),由于 {Zmμε}\{Z_m - \mu \geq \varepsilon\} 蕴含了 {Mma}\{M_m \geq a\},所以:

    +

    P(Zmμε)P(Mma)\begin{equation} +P\left(Z_m - \mu \geq \varepsilon\right) \leq P\left(M_m \geq a\right) +\end{equation} +

    +

    结合已知的 E[Mm]1\mathbb{E}[M_m] \leq 1,应用 Markov 不等式可得:

    +

    P(Mma)1a=exp(sε+s22i=1mci2)\begin{equation} +P\left(M_m \geq a\right) \leq \frac{1}{a} = \exp\left(-s \varepsilon + \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right) +\end{equation} +

    +

    因此,我们得到:

    +

    P(Zmμε)exp(sε+s22i=1mci2)\begin{equation} +P\left(Z_m - \mu \geq \varepsilon\right) \leq \exp\left(-s \varepsilon + \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right) +\end{equation} +

    +
  6. +
  7. +

    优化参数 ss

    +

    为了得到最优的上界,选择 ss 使得表达式 sε+s22ci2-s \varepsilon + \frac{s^2}{2}\sum c_i^2 最小化。对 ss 求导并取零:

    +

    ε+si=1mci2=0s=εi=1mci2\begin{equation} +-\varepsilon + s \sum_{i=1}^{m} c_i^2 = 0 \quad \Rightarrow \quad s = \frac{\varepsilon}{\sum_{i=1}^{m} c_i^2} +\end{equation} +

    +

    代入得:

    +

    P(Zmμε)exp(ε22i=1mci2)\begin{equation} +P(Z_m - \mu \geq \varepsilon) \leq \exp(-\frac{\varepsilon^2}{2\sum_{i=1}^{m} c_i^2}) +\end{equation} +

    +

    这即是 Azuma 不等式的上侧不等式。

    +
  8. +
  9. +

    下侧不等式的证明

    +

    对于下侧不等式,可以类似地考虑 Zm-Z_m 作为鞅,应用相同的方法得到:

    +

    P(Zmμε)exp(ε22i=1mci2)\begin{equation} +P(Z_m - \mu \leq -\varepsilon) \leq \exp(-\frac{\varepsilon^2}{2\sum_{i=1}^{m} c_i^2}) +\end{equation} +

    +

    因此,Azuma 不等式得证。\square

    +
  10. +
+

1.19 Slud 不等式

+

XB(m,p)X \sim B(m,p),则有:

+

P(Xm12)12[11exp(mε21ε2)]\begin{equation} +P(\frac{X}{m} \geq \frac{1}{2}) \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{m\varepsilon^{2}}{1-\varepsilon^{2}})}] +\end{equation} +

+

其中 p=1ε2p = \frac{1-\varepsilon}{2}

+

证明

+

二项随机变量 XX 表示在 mm 次独立伯努利试验中成功的次数,成功概率为 pp。对于大的 mm,二项分布 B(m,p)B(m,p) 可以近似为均值 μ=mp\mu=mp 和方差 σ2=mp(1p)\sigma^2=mp(1-p) 的正态分布:

+

μ=m(1ε)2σ2=m(1ε2)4\begin{equation} +\begin{align*} +\mu &= \frac{m(1-\varepsilon)}{2} \\ +\sigma^2 &= \frac{m(1-\varepsilon^2)}{4} +\end{align*} +\end{equation} +

+

Z=XμσZ=\frac{X-\mu}{\sigma},代入 μ\muσ\sigma,有:

+

P[Xm12]=P[Zm2μσ]=P[Zεm1ε2]\begin{equation} +P[\frac{X}{m} \geq \frac{1}{2}] = P[Z \geq \frac{\frac{m}{2}-\mu}{\sigma}] = P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] +\end{equation} +

+

根据正态分布不等式(定理 21),有:

+

P[Zx]12[11exp(2x2π)]12[11exp(x2)]\begin{equation} +P[Z \geq x] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{2x^2}{\pi})}] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-x^2)}] +\end{equation} +

+

代入可得:

+

P[Zεm1ε2]12[11exp(mε21ε2)]\begin{equation} +P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{m\varepsilon^2}{1-\varepsilon^2})}] +\end{equation} +

+

\square

+

1.20 上界不等式之加性公式

+

sup(f)\sup(f)sup(g)\sup(g) 分别为函数 ffgg 的上界,则有:

+

sup(f+g)sup(f)+sup(g)\begin{equation} +\sup(f+g) \leq \sup(f) + \sup(g) +\end{equation} +

+

证明

+

假设 f,gf,g 分别有相同的定义域 Df,DgD_f,D_g。根据上确界的定义,对于每一个 xDfDgx \in D_f \cap D_g,我们有

+

g(x)supyDgg(y),\begin{equation} +g(x) \leq \sup_{y \in D_g} g(y), +\end{equation} +

+

从而

+

f(x)+g(x)f(x)+supyDgg(y).\begin{equation} +f(x) + g(x) \leq f(x) + \sup_{y \in D_g} g(y). +\end{equation} +

+

因为这对于每一个 xDfDgx \in D_f \cap D_g 都成立,我们可以在不等式的两边取上确界,得到:

+

supxDfDg(f(x)+g(x))supxDfDgf(x)+supyDgg(y)supzDff(z)+supyDgg(y).\begin{equation} +\sup_{x \in D_f \cap D_g}(f(x) + g(x)) \leq \sup_{x \in D_f \cap D_g} f(x) + \sup_{y \in D_g} g(y) \leq \sup_{z \in D_f} f(z) + \sup_{y \in D_g} g(y). +\end{equation} +

+

这里我们使用了 supxDfDgf(x)supzDff(z)\sup_{x \in D_f \cap D_g} f(x) \leq \sup_{z \in D_f} f(z),因为 DfDgDfD_f \cap D_g \subset D_f\square

+

值得注意的是,该不等式在(4.33)中利用过两次,且原推导并没有用到 Jensen 不等式的任何性质。

+

另外,加性公式有几个常见的变形,例如:

+

sup(fg)sup(fk)sup(kg)\begin{equation} +\sup(f-g) - \sup(f-k) \leq \sup(k-g) +\end{equation} +

+

该不等式在(4.29)中出现过。

+

1.21 正态分布不等式

+

XX 是一个服从标准正态分布的随机变量,那么对于任意 u0u \geq 0,有:

+

P[Xu]121e2πu2\begin{equation} +\mathbb{P}[X \leq u] \leq \frac{1}{2}\sqrt{1-e^{-\frac{2}{\pi}u^2}} +\end{equation} +

+

证明

+

G(u)=P[Xu]G(u)=\mathbb{P}[X \leq u],则有:

+

2G(u)=uu(2π)1/2ex2/2dx=uu(2π)1/2ey2/2dy\begin{equation} +2G(u) = \int_{-u}^u(2\pi)^{-1/2}e^{-x^2/2}\,dx = \int_{-u}^u(2\pi)^{-1/2}e^{-y^2/2}\,dy +\end{equation} +

+

因此:

+

2π[2G(u)]2=uuuue(x2+y2)/2dxdy\begin{equation} +2\pi[2G(u)]^2 = \int_{-u}^u \int_{-u}^u e^{-(x^2+y^2)/2}\,dx\,dy +\end{equation} +

+

让我们考虑更一般的积分形式:

+

2π[2G(u)]2=Re(x2+y2)/2dxdy\begin{equation} +2\pi[2G(u)]^2 = \iint_R e^{-(x^2+y^2)/2}\,dx\,dy +\end{equation} +

+

此时 RR 为任意面积为 4u24u^2 的区域。通过反证法可以证明,只有当 RR 为以原点为中心的圆形区域 R0R_0 时,积分值最大:

+

R0={(x,y):π(x2+y2)4u2}\begin{equation} +R_0 = \{(x,y):\pi(x^2+y^2)\leq 4u^2\} +\end{equation} +

+

此时,有:

+

2π[2G(u)]2R0e(x2+y2)/2dxdy=02π02uπ1/2er2/2rdrdφ=2π(1e2u2/π)\begin{equation} +\begin{align*} +2\pi[2G(u)]^2 &\leq \iint_{R_0} e^{-(x^2+y^2)/2}\,dx\,dy \\ +&=\int_0^{2\pi}\int_0^{2u\pi^{-1/2}} e^{-r^2/2}r\,dr\,d\varphi \\ +&= 2\pi(1-e^{-2u^2/\pi}) +\end{align*} +\end{equation} +

+

因此,有:

+

G(u)=P[Xu]121e2πu2\begin{equation} +G(u) = \mathbb{P}[X \leq u] \leq \frac{1}{2}\sqrt{1-e^{-\frac{2}{\pi}u^2}} +\end{equation} +

+

进一步,我们可以得到:

+

P[Xu]12(11e2πu2)\begin{equation} +\mathbb{P}[X \geq u] \geq \frac{1}{2}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}}) +\end{equation} +

+

\square

+

1.22 AM-GM 不等式

+

算术平均数和几何平均数的不等式,简称 AM-GM 不等式。该不等式指出非负实数序列的算术平均数大于等于该序列的几何平均数,当且仅当序列中的每个数相同时,等号成立。形式上,对于非负实数序列 {xn}\{x_n\},其算术平均值定义为:

+

An=1ni=1nxi\begin{equation} +A_n=\frac{1}{n}\sum_{i=1}^n x_i +\end{equation} +

+

其几何平均值定义为:

+

Gn=i=1nxin\begin{equation} +G_n=\sqrt[n]{\prod_{i=1}^n x_i} +\end{equation} +

+

则 AM-GM 不等式成立:

+

AnGn\begin{equation} +A_n \geq G_n +\end{equation} +

+

证明

+

我们可以通过 Jensen 不等式来证明 AM-GM 不等式。首先,我们考虑函数 f(x)=lnxf(x)=-\ln x,该函数是凸函数,因此有:

+

1ni=1nlnxiln(1ni=1nxi)\begin{equation} +\frac{1}{n}\sum_{i=1}^n -\ln x_i \geq -\ln(\frac{1}{n}\sum_{i=1}^n x_i) +\end{equation} +

+

即:

+

ln(1ni=1nxi)1ni=1nlnxi=ln(i=1nxin)1ni=1nxii=1nxin\begin{equation} +\begin{align*} +\ln(\frac{1}{n}\sum_{i=1}^n x_i) &\geq \frac{1}{n}\sum_{i=1}^n \ln x_i = \ln(\sqrt[n]{\prod_{i=1}^n x_i}) \\ +\Rightarrow \frac{1}{n}\sum_{i=1}^n x_i &\geq \sqrt[n]{\prod_{i=1}^n x_i} +\end{align*} +\end{equation} +

+

当取 x1=x2==xnx_1 = x_2 = \cdots = x_n 时,等号成立。特别地,当 n=2n=2 时,我们有:

+

x1+x22x1x2\begin{equation} +\frac{x_1 + x_2}{2} \geq \sqrt{x_1 x_2} +\end{equation} +

+

\square

+

1.23 Young 不等式

+

对于任意 a,b0a, b \geq 0p,q>1p, q \gt 1,若 1p+1q=1\frac{1}{p} + \frac{1}{q} = 1,则有:

+

abapp+bqq\begin{equation} +ab \leq \frac{a^p}{p} + \frac{b^q}{q} +\end{equation} +

+

当且仅当 ap=bqa^p = b^q 时,等号成立。

+

证明

+

我们可以通过 Jensen 不等式来证明 Young 不等式。首先,当 ab=0ab = 0 时,该不等式显然成立。当 a,b>0a, b \gt 0 时,我们令 t=1/p,1t=1/qt = 1/p, 1-t = 1/q,根据 ln(x)\ln(x) 的凹性,我们有:

+

ln(tap+(1t)bq)tln(ap)+(1t)ln(bq)=ln(a)+ln(b)=ln(ab)\begin{equation} +\begin{align*} +\ln(t a^p + (1-t) b^q) &\geq t\ln(a^p) + (1-t)\ln(b^q) \\ +&= \ln(a) + \ln(b) \\ +&= \ln(ab) +\end{align*} +\end{equation} +

+

当且仅当 ap=bqa^p = b^q 时,等号成立。\square

+

1.24 Bayes 定理

+

贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下更新事件概率的数学方法。贝叶斯定理的公式为:

+

P(AB)=P(BA)P(A)P(B)\begin{equation} +P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} +\end{equation} +

+

其中:

+ +

证明

+

根据条件概率的定义,事件 A 在事件 B 发生下的条件概率 P(AB)P(A|B) 表示为:

+

P(AB)=P(AB)P(B)\begin{equation} +P(A|B) = \frac{P(A \cap B)}{P(B)} +\end{equation} +

+

同样地,事件 B 在事件 A 发生下的条件概率 P(BA)P(B|A) 表示为:

+

P(BA)=P(AB)P(A)\begin{equation} +P(B|A) = \frac{P(A \cap B)}{P(A)} +\end{equation} +

+

通过这两个公式可以得到联合概率 P(AB)P(A \cap B) 的两种表示方式:

+

P(AB)=P(AB)P(B)\begin{equation} +P(A \cap B) = P(A|B) \cdot P(B) +\end{equation} +

+

以及:

+

P(AB)=P(BA)P(A)\begin{equation} +P(A \cap B) = P(B|A) \cdot P(A) +\end{equation} +

+

由于联合概率的性质,我们可以将上述两个等式等同:

+

P(AB)P(B)=P(BA)P(A)\begin{equation} +P(A|B) \cdot P(B) = P(B|A) \cdot P(A) +\end{equation} +

+

将上述等式两边同时除以 P(B)P(B),得到贝叶斯定理:

+

P(AB)=P(BA)P(A)P(B)\begin{equation} +P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} +\end{equation} +

+

\square

+

通过先验和后验的更新过程,贝叶斯统计提供了一种动态的、不断修正认知的不确定性量化方法。

+

1.25 广义二项式定理

+

广义二项式定理(Generalized Binomial Theorem)是二项式定理的扩展:

+

(x+y)r=k=0(rk)xrkyk,x<y,kN,rR\begin{equation} +(x + y)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^{r-k} y^k, \quad |x| \lt |y|, \quad k \in \mathbb{N}, \quad r \in \mathbb{R} +\end{equation} +

+

其中我们令 (rk):=(r)kk!\binom{r}{k} := \frac{(r)_k}{k!}(r)k=r(r1)(rk+1)(r)_k = r(r-1) \cdots (r-k+1) 为递降阶乘(falling factorial)。

+

证明

+

首先代入定义,易证:

+

(rk)(rk)+(r(k1))(rk1)=r(rk)\begin{equation} +(r-k) \binom{r}{k} + (r-(k-1)) \binom{r}{k-1} = r \binom{r}{k} +\end{equation} +

+

我们从特殊情况 y=1y = 1 开始。首先我们证明只要 x<1|x| \lt 1,后者级数就会收敛。

+

通过使用幂级数收敛半径的商式来证明这一点,由于绝对值的连续性使我们可以先在绝对值内部计算极限,可得:

+

limkakak+1=limkk+1rk=1=1\begin{equation} +\lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|} = \lim_{k \to \infty} | \frac{k+1}{r-k} | = |-1| = 1 +\end{equation} +

+

因此我们有一个为 1 的收敛半径。这种收敛使我们能够在 x<1|x| \lt 1 的收敛区域内应用逐项求导,得到:

+

ddxk=0(rk)xk=k=1(r(k1))(rk1)xk1\begin{equation} +\frac{d}{dx} \sum_{k=0}^\infty \binom{r}{k} x^k = \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^{k-1} +\end{equation} +

+

如果我们将我们正在考虑的级数定义的函数记为 g(x)g(x),我们得到:

+

(1+x)ddxg(x)=k=1(r(k1))(rk1)xk1+k=1(r(k1))(rk1)xk=r+k=1((rk)(rk)+(r(k1))(rk1))xk=r+rk=1(rk)xk=rg(x),\begin{equation} +\begin{align*} +(1 + x) \frac{d}{dx} g(x) &= \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^{k-1} + \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^k \\ +&= r + \sum_{k=1}^\infty ( (r-k) \binom{r}{k} + (r-(k-1)) \binom{r}{k-1} ) x^k \\ +&= r + r \sum_{k=1}^\infty \binom{r}{k} x^k \\ +&= r g(x), +\end{align*} +\end{equation} +

+

上式的推导使用了前述引理。

+

现在定义 f(x)=(1+x)rf(x) = (1 + x)^r,我们通过通常的求导规则得到:

+

ddx(g(x)f(x))=g(x)f(x)f(x)g(x)f(x)2=rg(x)x+1(1+x)rrg(x)(1+x)r1f(x)2=0\begin{equation} +\frac{d}{dx} ( \frac{g(x)}{f(x)} ) = \frac{g'(x) f(x) - f'(x) g(x)}{f(x)^2} = \frac{r\frac{g(x)}{x+1}(1+x)^r - rg(x)(1 + x)^{r-1}}{f(x)^2} = 0 +\end{equation} +

+

x<1|x| \lt 1 意味着 f(x)0f(x) \neq 0,因此 g/fg/f 为常数。又 f(0)=g(0)=1f(0) = g(0) = 1 可得 f(x)=g(x)f(x) = g(x)

+

对于一般的 x,yRx, y \in \mathbb{R}x<y|x| \lt |y|,我们有:

+

(x+y)ryr=(xy+1)r=k=0(rk)(xy)k;\begin{equation} +\frac{(x + y)^r}{y^r} = (\frac{x}{y} + 1)^r = \sum_{k=0}^\infty \binom{r}{k} (\frac{x}{y})^k; +\end{equation} +

+

收敛性由假设 x/y<1|x/y| \lt 1 保证。为了得到原定理的形式,我们只需乘以 yry^r 即可。\square

+

1.26 Stirling 公式

+

Stirling 公式是用于近似计算阶乘的一种公式,即使在 nn 很小时也有很高的精度。Stirling 公式的一种形式为:

+

n!=2πnn+1/2enern\begin{equation} +n! = \sqrt{2\pi} n^{n+1/2} e^{-n} e^{r_n} +\end{equation} +

+

其中,112n+1<rn<112n\frac{1}{12n + 1} \lt r_n \lt \frac{1}{12n}

+

证明

+

我们令:

+

Sn=ln(n!)=p=1n1ln(p+1)\begin{equation} +S_n = \ln(n!) = \sum_{p=1}^{n-1} \ln(p+1) +\end{equation} +

+

+

ln(p+1)=Ap+bpεp\begin{equation} +\ln(p+1) = A_p + b_p - \varepsilon_p +\end{equation} +

+

其中:

+

Ap=pp+1lnxdxbp=12[ln(p+1)ln(p)]εp=pp+1lnxdx12[ln(p+1)+ln(p)]\begin{equation} +\begin{align*} +A_p &= \int_{p}^{p+1} \ln x \, dx \\ +b_p &= \frac{1}{2} [\ln(p+1) - \ln(p)] \\ +\varepsilon_p &= \int_{p}^{p+1} \ln x \, dx - \frac{1}{2} [\ln(p+1) + \ln(p)] +\end{align*} +\end{equation} +

+

此时:

+

Sn=p=1n1(Ap+bpεp)=1nlnxdx+12lnnp=1n1εp\begin{equation} +S_n = \sum_{p=1}^{n-1} (A_p + b_p - \varepsilon_p) += \int_{1}^{n} \ln x \, dx + \frac{1}{2} \ln n - \sum_{p=1}^{n-1} \varepsilon_p +\end{equation} +

+

易证 lnxdx=xlnxx+C,CR\int \ln x \, dx = x \ln x - x + C, \, C \in \mathbb{R},故:

+

Sn=(n+1/2)lnnn+1p=1n1εp\begin{equation} +S_n = (n+1/2)\ln n - n + 1 - \sum_{p=1}^{n-1} \varepsilon_p +\end{equation} +

+

此时:

+

εp=2p+12ln(p+1p)1\begin{equation} +\varepsilon_p = \frac{2p+1}{2} \ln(\frac{p+1}{p}) - 1 +\end{equation} +

+

接下来我们对 ln(p+1p)\ln(\frac{p+1}{p}) 进行级数展开,根据广义二项式定理,即:

+

a=1,t=1p,t(1,1)a = -1, \, t = \frac{1}{p}, \, t \in (-1, 1),则有:

+

11+t=1t+t2t3+t4\begin{equation} +\frac{1}{1 + t} = 1 - t + t^2 - t^3 + t^4 - \cdots +\end{equation} +

+

对上式两边同时进行积分,我们有:

+

ln(1+t)=t12t2+13t314t4+\begin{equation} +\ln(1 + t) = t - \frac{1}{2} t^2 + \frac{1}{3} t^3 - \frac{1}{4} t^4 + \cdots +\end{equation} +

+

如果我们令 t-t 来代替 tt,则有:

+

ln11t=t+12t2+13t3+14t4+\begin{equation} +\ln \frac{1}{1 - t} = t + \frac{1}{2} t^2 + \frac{1}{3} t^3 + \frac{1}{4} t^4 + \cdots +\end{equation} +

+

将两式相加,我们有:

+

12ln1+t1t=t+13t3+15t5+\begin{equation} +\frac{1}{2} \ln \frac{1 + t}{1 - t} = t + \frac{1}{3} t^3 + \frac{1}{5} t^5 + \cdots +\end{equation} +

+

回到我们的问题,我们令 t=(2p+1)1(0,1)t = (2p + 1)^{-1} \in (0, 1),如此才满足 1+t1t=p+1p\frac{1+t}{1-t} = \frac{p+1}{p},带入前式:

+

εp=13(2p+1)2+15(2p+1)4+17(2p+1)6+\begin{equation} +\varepsilon_p = \frac{1}{3(2p+1)^2} + \frac{1}{5(2p+1)^4} + \frac{1}{7(2p+1)^6} + \cdots +\end{equation} +

+

因此:

+

εp<13(2p+1)2i=01(2p+1)2i=13(2p+1)2111(2p+1)2=13[(2p+1)21]=112(1p1p+1)\begin{equation} +\varepsilon_p \lt \frac{1}{3(2p+1)^2} \sum_{i=0}^{\infty} \frac{1}{(2p+1)^{2i}} += \frac{1}{3(2p+1)^2} \frac{1}{1 - \frac{1}{(2p+1)^2}} += \frac{1}{3[(2p+1)^2 - 1]} += \frac{1}{12} (\frac{1}{p} - \frac{1}{p+1}) +\end{equation} +

+

+

εp>13(2p+1)2i=01[3(2p+1)2]i=13(2p+1)21113(2p+1)2=13(2p+1)21\begin{equation} +\varepsilon_p \gt \frac{1}{3(2p+1)^2} \sum_{i=0}^{\infty} \frac{1}{[3(2p+1)^2]^{i}} += \frac{1}{3(2p+1)^2} \frac{1}{1 - \frac{1}{3(2p+1)^2}} += \frac{1}{3(2p+1)^2 - 1} +\end{equation} +

+

易证

+

(p+112)(p+1+112)=p2+76p+13144>p2+p+16=112[3(2p+1)21],pN+\begin{equation} +(p+\frac{1}{12})(p+1+\frac{1}{12}) += p^2 + \frac{7}{6}p + \frac{13}{144} +\gt p^2 + p + \frac{1}{6} += \frac{1}{12} [3(2p+1)^2 - 1], \quad p \in \mathbb{N}^+ +\end{equation} +

+

因此:

+

εp>112(1p+1121p+1+112)\begin{equation} +\varepsilon_p \gt \frac{1}{12} (\frac{1}{p+\frac{1}{12}} - \frac{1}{p+1+\frac{1}{12}}) +\end{equation} +

+

我们令:

+

B=p=1εp,rn=p=nεp\begin{equation} +B = \sum_{p=1}^{\infty} \varepsilon_p, \quad r_n = \sum_{p=n}^{\infty} \varepsilon_p +\end{equation} +

+

那么易得:

+

113<B<112,112(n+1)<rn<112n\begin{equation} +\frac{1}{13} \lt B \lt \frac{1}{12}, \quad \frac{1}{12(n+1)} \lt r_n \lt \frac{1}{12n} +\end{equation} +

+

带入 SnS_n 的表达式:

+

Sn=(n+12)lnnn+1B+rn\begin{equation} +S_n = (n+\frac{1}{2})\ln n - n + 1 - B + r_n +\end{equation} +

+

可得:

+

n!=e1Bnn+1/2enern\begin{equation} +n! = e^{1-B} n^{n+1/2} e^{-n} e^{r_n} +\end{equation} +

+

C=e1BC = e^{1-B},我们可知常数 CC 的取值范围为 (e11/12,e12/13)(e^{11/12}, e^{12/13}),此处我们取 C=2πC = \sqrt{2\pi},该公式得证。\square

+

1.27 散度定理

+

散度定理(Divergence Theorem),也称为高斯定理(Gauss's Theorem),是向量分析中的重要定理,它将体积积分和曲面积分联系起来。

+

具体而言,如果考虑一个 nn-维球体(nn-ball)BnB^n 的体积为 VV,其表面为 Sn1S^{n-1},对于一个位于 nn-维空间中的光滑向量场 F\mathbf{F},则有:

+

Bn(F)dV=Sn1FndS\int_{B^n} (\nabla \cdot \mathbf{F}) \, dV = \oint_{S^{n-1}} \mathbf{F} \cdot \mathbf{n} \, dS +

+

其中:

+ +

体积积分计算的是在 nn-球内的散度,而表面积分计算的是在 n1n-1 维球面上的通量。 +这种形式的散度定理在物理学和工程学中广泛应用,比如电磁学中的高斯定理、流体力学中的质量守恒等。

+

1.28 分离超平面定理

+

如果有两个不相交的非空凸集,则存在一个超平面能够将它们完全分隔开,这个超平面叫做分离超平面(Separating Hyperplane)。形式上,设 AABBRn\mathbb{R}^n 中的两个不相交的非空凸集,那么存在一个非零向量 vv 和一个实数 cc,使得:

+

x,vcy,vc\begin{equation}\langle x, v \rangle \geq c \, \text{且} \, \langle y, v \rangle \leq c\end{equation} +

+

对所有 xAx \in AyBy \in B 都成立。即超平面 ,v=c\langle \cdot, v \rangle = cvv 作为分离轴(Separating Axis),将 AABB 分开。

+

进一步,如果这两个集合都是闭集,并且至少其中一个是紧致的,那么这种分离可以是严格的,即存在 c1>c2c_1 \gt c_2 使得:

+

x,v>c1y,v<c2\begin{equation}\langle x, v \rangle \gt c_1 \, \text{且} \, \langle y, v \rangle \lt c_2\end{equation} +

+

在不同情况下,我们可以通过调整 vvcc 来使得分离超平面的边界更加清晰。

+ + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + + +
ABx,v\langle x, v \rangley,v\langle y, v \rangle
闭紧集闭集>c1\gt c_1<c2\lt c_2c2<c1c_2 \lt c_1
闭集闭紧集>c1\gt c_1<c2\lt c_2c2<c1c_2 \lt c_1
开集闭集>c\gt cc\leq c
开集开集>c\gt c<c\lt c
+

在支持向量机的背景下,最佳分离超平面(或最大边缘超平面)是分离两个点凸包并且与两者等距的超平面。

+

证明

+

证明基于以下引理:

+

AABBRn\mathbb{R}^n 中两个不相交的闭集,且假设 AA 是紧致的。则存在点 a0Aa_0 \in Ab0Bb_0 \in B 使得 ab\|a - b\|aAa \in AbBb \in B 之间取最小值。

+

我们给出引理的证明:

+

aAa \in AbBb \in B 是任意一对点,并令 r1=bar_1 = \|b - a\|。由于 AA 是紧致的,它被包含在以 aa 为中心的一些球中,设该球的半径为 r2r_2。令 S=BBr1+r2(a)S = B \cap \overline{B_{r_1 + r_2}(a)}BB 与以 aa 为中心、半径为 r1+r2r_1 + r_2 的闭球的交集。那么 SS 是紧致且非空的,因为它包含 bb。由于距离函数是连续的,存在点 a0a_0b0b_0 使得 a0b0\|a_0 - b_0\| 在所有 A×SA \times S 的点对中取最小值。现在要证明 a0a_0b0b_0 实际上在所有 A×BA \times B 的点对中具有最小距离。假设存在点 aa'bb' 使得 ab<a0b0\|a' - b'\| \lt \|a_0 - b_0\|。则特别地,ab<r1\|a' - b'\| \lt r_1,并且根据三角不等式,abaa+ab<r1+r2\|a - b'\| \leq \|a - a'\| + \|a' - b'\| \lt r_1 + r_2。因此 bb' 包含在 SS 中,这与 a0a_0b0b_0A×SA \times S 中的最小距离相矛盾。

+
+ separating_hyperplane_theorem +
+

不失一般性地,假设 AA 是紧致的。根据引理,存在点 a0Aa_0 \in Ab0Bb_0 \in B 使得它们之间的距离最小。由于 AABB 是不相交的,我们有 a0b0a_0 \neq b_0。现在,构造两条与线段 [a0,b0][a_0, b_0] 垂直的超平面 LA,LBL_A, L_B,其中 LAL_A 穿过 a0a_0LBL_B 穿过 b0b_0。我们声称 AABB 都没有进入 LA,LBL_A, L_B 之间的空间,因此与 (a0,b0)(a_0, b_0) 垂直的超平面满足定理的要求。

+

代数上,超平面 LA,LBL_A, L_B 由向量 v:=b0a0v:= b_0 - a_0 定义,并由两个常数 cA:=v,a0<cB:=v,b0c_A := \langle v, a_0\rangle \lt c_B := \langle v, b_0\rangle 确定,使得 LA={x:v,x=cA},LB={x:v,x=cB}L_A = \{x: \langle v, x\rangle = c_A\}, L_B = \{x: \langle v, x\rangle = c_B\}。我们的主张是 aA,v,acA\forall a\in A, \langle v, a\rangle \leq c_A 并且 bB,v,bcB\forall b\in B, \langle v, b\rangle \geq c_B

+

假设存在某个 aAa\in A 使得 v,a>cA\langle v, a\rangle \gt c_A,则令 aa' 为从 b0b_0 到线段 [a0,a][a_0, a] 的垂足。由于 AA 是凸集,aa'AA 内部,并且根据平面几何,aa'a0a_0 更接近 b0b_0,这与 a0a_0b0b_0 的最小距离相矛盾。类似的论证适用于 BB\square

+

1.29 支撑超平面定理

+

对于一个凸集,支撑超平面(Supporting Hyperplane)是与凸集边界切线的超平面,即它“支撑”了凸集,使得所有的凸集内的点都位于支撑超平面的一侧。形式上,若 SS 是非空凸集,且 x0x_0SS 的边界上的一点,那么存在一个包含 x0x_0 的支撑超平面。 +如果 xX\{0}x^* \in X^* \backslash \{0\}XX^*XX 的对偶空间,xx^* 是一个非零的线性泛函),并且对于所有 xSx \in S 都有 x(x0)x(x)x^*(x_0) \geq x^*(x),那么 H={xX:x(x)=x(x0)}H = \{x \in X: x^*(x) = x^*(x_0)\} 定义了一个支撑超平面。

+

证明

+

定义 TT 为所有支撑闭合半空间的交集,显然 STS \subset T。现在令 y∉Sy \not \in S,证明 y∉Ty \not \in T

+

xint(S)x \in \mathrm{int}(S),并考虑线段 [x,y][x, y]。令 tt 为最大的数,使得 [x,t(yx)+x][x, t(y-x) + x] 被包含在 SS 中。则 t(0,1)t \in (0, 1)。令 b=t(yx)+xb = t(y-x) + x,那么 bSb \in \partial S。在 bb 处画一条支撑超平面,令其表示为一个非零线性泛函 f:RnRf: \mathbb{R}^n \to \mathbb{R},使得 aT,f(a)f(b)\forall a \in T, f(a) \geq f(b)。由于 xint(S)x \in \mathrm{int}(S),我们有 f(x)>f(b)f(x) \gt f(b)。因此,由 f(y)f(b)1t=f(b)f(x)t0<0\frac{f(y) - f(b)}{1-t} = \frac{f(b) - f(x)}{t - 0} \lt 0,我们得到 f(y)<f(b)f(y) \lt f(b),所以 y∉Ty \not \in T\square

+

第2章:可学性

+

编辑:赵志民,王茂霖,李一飞,詹好

+
+

本章前言

+

本章的内容围绕学习理论中的可学性理论展开,主要讨论「事件是否能够通过机器学习来解决」这一问题。通过学习理论事先辨别某个问题是否能够被学习,将节省大量的时间与资源。

+

在讨论学习算法的设计之前,首先要思考以下几个问题:这个问题是否能被解决(从模型的角度看是否可学习),哪些内容容易学习(如两个凸集),哪些内容难学习(如两个非凸集之间的划分),在可学习的情况下,所需的样本量以及通用的学习模型有哪些?

+

在本章中,我们将通过介绍 "概率近似正确的"(PAC)学习框架,开始正式讨论这些问题。PAC 框架有助于根据实现近似解所需的样本点数量、样本复杂度以及学习算法的时间/空间复杂度(取决于概念的计算表示成本)来定义可学习的概念。

+

我们首先会描述 PAC 框架并对其进行说明,然后针对所用假设集包含要学习的概念的一致情况和相反的不一致情况,介绍当所用假设集有限时该框架内的一些一般学习保证。

+

2.1 【概念解释】概念与假设空间

+

在具体介绍 PAC 模型之前,首先需要明确几个基础定义和符号,这些定义和符号将贯穿本书的大部分内容:

+

输入空间 XX:表示所有可能的例子或实例的集合。XX 有时也被称为输入空间。

+

输出空间 YY:表示所有可能的标签或目标值的集合。YY 有时也被称为输出空间。

+

在本介绍性章节中,我们将 YY 限制为只有两个标签的情况,即 Y={0,1}Y = \{0, 1\}(或者 Y={1,1}Y = \{-1, 1\},两者仅是符号上的替代)。例如,YY 也可以是 {皮卡丘,海绵宝宝}\{皮卡丘, 海绵宝宝\}。这是二元分类问题的典型假设。虽然这种简化假设便于理解,但并不会影响后续推论的路径与思路,因为多分类问题只是二分类问题的扩展,虽然从证明和论证上更为复杂。后续章节将扩展这些结果以涵盖更一般的情况。

+

从数学角度看待机器学习中的概念,机器学习可以定义为学习一个映射函数:

+

概念(concept) c:XYc : X \rightarrow Y 是一个从 XXYY 的映射。由于 Y={0,1}Y = \{0, 1\},我们可以将 cc 视为从 XX 中得到其取值为 11 的部分,即 XX 的子集。

+

在学习理论中,学习的概念可以等同于从 XX{0,1}\{0, 1\} 的映射,或 XX 的子集。概念类是我们希望学习的概念的集合,用 C\mathcal{C} 表示。例如,它可以是平面中所有三角形的集合。

+

假设空间(hypothesis space)H\mathcal{H} 是指所有可能假设的集合,每个假设 hHh \in \mathcal{H} 是一个从输入空间 XX 到输出空间 YY 的映射函数,形式化定义为:

+

H={h:XY}\begin{equation} +\mathcal{H} = \{h: X \rightarrow Y\} +\end{equation} +

+

假设空间的大小和复杂性决定了算法能够学习到的解决方案的类型。如果假设空间太小或太简单,它可能无法捕捉到数据中的复杂模式,导致欠拟合(Underfitting)。相反,如果假设空间过大或太复杂,它可能包含过于复杂的模型,这些模型可能会过度拟合(Overfitting)训练数据,从而在新的、未见过的数据上表现不佳。

+

例如,在一个简单的线性分类器中,假设空间可能包括所有可能的线性边界,每个线性边界都是一个假设。在更复杂的模型中,如神经网络,假设空间可能包括所有可能的网络结构和权重配置,这些构成了网络的能力来学习数据的非线性和复杂模式。

+

虽然这种理解适用于机器学习,但我们必须注意,对于深度学习,需要进一步的考虑。例如双下降现象与传统机器学习理论相矛盾,后者认为增加模型大小和数据量通常会提高模型的泛化性能。

+
+ double_descent +
+

双下降现象中描绘模型泛化性能的曲线图由三个阶段组成:

+
    +
  1. 第一阶段:当模型规模小且数据量不足时,模型泛化性能较差。
  2. +
  3. 第二阶段:随着模型规模和数据量的增加,模型泛化性能最初出现下降。
  4. +
  5. 第三阶段:随着模型规模和数据量的进一步增加,模型泛化性能再次下降,但最终达到更好的水平。 +双下降现象的出现表明,对于深度神经网络来说,增加模型规模和数据量并不总是有益的。因此,应该采用诸如正则化和增广策略等技术,有效地控制模型规模和数据量,以实现最佳的泛化性能。更多实验细节参考文献:Deep Double Descent: Where Bigger Models and More Data Hurt)。
  6. +
+

2.2 【概念解释】经验误差与泛化误差

+

为了衡量学习到的概念 hh 与目标概念 cc 之间的差异,定义了以下的度量方式:

+

泛化误差

+

R(h)=PxD[h(x)c(x)]=ExD[1h(x)c(x)],\begin{equation} +R(h)=\underset{x\sim\mathcal{D}}{\operatorname*{\mathbb{P}}}\left[h(x)\neq c(x)\right]=\underset{x\sim\mathcal{D}}{\operatorname*{\mathbb{E}}}\left[1_{h(x)\neq c(x)}\right], \tag{1} +\end{equation} +

+

其中,1ω1_{\omega} 是事件 ω\omega 的指示函数。

+

由于泛化误差无法直接求得(其原因在于 D\mathcal{D} 的未知性),我们需要利用能够获取的信息来近似泛化误差,因此定义了经验误差:

+

经验误差

+

R^S(h)=1mi=1m1h(xi)c(xi).\begin{equation} +\widehat{R}_S(h)=\frac{1}{m}\sum_{i=1}^{m}1_{h(x_i)\neq c(x_i)}.\tag{2} +\end{equation} +

+

经验误差的期望等于其泛化误差:

+

E[R^(h;D)]=R(h;D)\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=R(h ; \mathcal{D}) +\end{equation} +

+

证明过程分为两步,首先考察等式右边,泛化误差可表示为:

+

R(h;D)=P(x,y)D(h(x)y)=E(x,y)D[I(h(x)y)]\begin{equation} +R(h ; \mathcal{D})=P_{(x, y) \sim \mathcal{D}}(h(x) \neq y)=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\mathbb{I}(h(x) \neq y)] +\end{equation} +

+

然后考察等式左边,经验误差可表示为:

+

R^(h;D)=1mi=1mI(h(xi)yi)\begin{equation} +\widehat{R}(h ; D)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right) +\end{equation} +

+

经验误差的期望为:

+

E[R^(h;D)]=EDDm[R^(h)]=1mi=1mE(x,y)D[I(h(xi)yi)]\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=\underset{D \sim D^{m}}{\mathrm{E}}[\widehat{R}(h)]=\frac{1}{m} \sum_{i=1}^{m} \underset{(x,y) \sim D}{\mathrm{E}}[\mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)] +\end{equation} +

+

由于样本服从独立同分布,所有样本的期望值相同,期望的平均值就等于样本的期望,因此:

+

E[R^(h;D)]=R(h;D)\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=R(h ; \mathcal{D}) +\end{equation} +

+

证毕。

+

2.3 【概念解释】假设空间的可分性与学习的复杂度

+

假设空间的可分性决定了学习算法能否有效地找到正确的假设。我们讨论假设空间的可分性与不可分性,并探讨可分性对于学习算法性能的影响。

+

假设空间:可分性是一个针对假设空间的概念,即考察对于给定学习算法,是否存在能够完全区分所有样本的映射。如果存在,则该学习算法对于此假设空间可分;如果不存在,则不可分。

+

可分性的严格性指的是其要求所有样本都可分。有时,由于噪声或异常值的影响,数据并非完全可区分,算法只能区分绝大多数样本。因此,可分性并未完全定义学习算法的有效性。

+

此外,可分性仅表示了学习算法的能力上限。例如,当我们在线性模型中使用高斯核技巧时,能够对任意二分类样本进行区分(维度为无穷)。但从如此庞大的假设空间中找到正确映射函数却非常困难,这在深度学习中尤为明显。在这个意义上,可分性仅表示了学习算法的能力上限。

+

时间复杂度与样本复杂度

+

时间复杂度和样本复杂度是评估学习算法效率的两个重要指标。我们讨论这两个概念的等价性,以及它们对学习算法选择的影响。

+

由于不同的机器、操作系统会带来完全不同的运行时间,因此在考察时间复杂度时通常会使用抽象机。抽象机通常是抽象意义上的图灵机或实体意义上的图灵机。在该抽象机中,时间复杂度被定义为「需要执行的“操作”数量」。

+

一般而言,学习问题是否可以有效解决,取决于如何将其分解为一系列特定的学习问题。考虑学习有限假设类的问题,例如训练样本的数量为 mH(ϵδ)=log(H/δ)/ϵ2m_H(\epsilon,δ)= \log(|\mathcal{H}|/δ)/\epsilon^2 的情况。如果对一个 hh 的评估花费固定的时间,那么可以通过对 H\mathcal{H} 进行详尽搜索,在时间 O(HmH(ϵδ))O(|H|m_H(\epsilon,δ)) 内完成这项任务。对于任何固定的有限假设类 H\mathcal{H},穷举搜索算法都可以在多项式时间内运行。如果问题序列 Hn=n|H_n| = n,那么穷举搜索被认为是高效的;如果 Hn=2n|H_n| = 2^n,则样本复杂度为 nn 的多项式,而穷举搜索算法的计算复杂度随 nn 呈指数增长。此时,穷举搜索被认为是低效的。

+

2.4 【概念解释】PAC-Bayes理论与样本复杂度

+

PAC学习理论主要研究如何在有限的样本和计算资源下,从给定的假设空间中找到一个近似正确的假设。PAC-Bayes理论结合了PAC学习和贝叶斯方法的优点,其核心思想是通过考虑假设空间中的概率分布来描述学习算法的行为,并给出关于学习算法在有限数据情况下泛化误差的界限。

+

PAC-Bayes不等式是PAC-Bayes理论的核心结果之一,它为后验分布下的泛化误差提供了一个上界。典型的PAC-Bayes不等式形式如下(详细证明参考:PAC-Bayesian Stochastic Model Selection):

+

EQ[L(h)]EQ[L^(h)]+KL(QP)+ln1δ+lnm+ln22m1\begin{equation} +\mathbb{E}_{Q}[L(h)] \leq \mathbb{E}_{Q}[\hat{L}(h)] + \sqrt{\frac{KL(Q \| P) + \ln\frac{1}{\delta} + \ln m + \ln 2}{2m-1}} +\end{equation} +

+

其中:

+ +

2.5 【定理证明】3项析取范式的不可PAC学习性

+

32页中有提到,3项析取范式(3-term Disjunctive Normal Form, 3-DNF)概念类并不是高效PAC可学的,除非 RP=NPRP = NP,我们这里给出完整的证明过程。

+

3项DNF的定义

+ +

RPNPRP \neq NP

+

在计算复杂性理论中,RPRP 类包含那些可以通过随机算法在多项式时间内解决的问题,其中算法在给定一个“是”的实例时有很高的概率(至少 1/21/2)返回“是”,而在给定一个“否”的实例时总是返回“否”。NPNP 类包含那些在多项式时间内可以被验证而不一定是被解决的问题。RPNPRP \neq NP 这个表达的意思是假设 RPRP 类和 NPNP 类是不相同的。即,存在一些问题在 NPNP 中,但不在 RPRP 中。

+

证明策略

+

我们通过将一个NP完全问题(在这里选择图的3-着色问题)化简为学习3项DNF公式的问题来进行证明。关键是构造一个样本集SGS_G,使得如果图GG是3-可着色的,那么存在一个3项DNF公式与SGS_G一致;反之,如果GG不可3-着色,那么不存在这样的公式与SGS_G一致。

+

图的3-着色问题

+ +

构造样本集 SGS_G

+ +

一致性和3-可着色性的等价性

+ +

3项DNF公式的构造

+

详细说明如何根据图GG的3-可着色性构造3项DNF公式,并解释为什么这种构造与样本集SGS_G一致。

+ +

因此,对于每个反例e(i,j)e(i,j),公式TRTBTYT_R \vee T_B \vee T_Y都不会为真,这就保证了公式与样本集SGS_G一致。

+

如果我们可以有效地学习3项DNF公式,那么就可以用它来解决 NPNP 完全问题(如图的3-着色),这意味着RP=NPRP = NP。由于普遍认为RPNPRP \neq NP,所以3项DNF类在PAC学习下是不可有效学习的。

+

第3章:复杂性分析

+

Edit: 王茂霖,李一飞,詹好,赵志民

+
+

本章前言

+

在机器学习理论中,复杂性分析与计算理论中的算法复杂度类似,是衡量模型和假设空间能力的关键指标。复杂性越高,模型的表达能力越强,但同时也意味着过拟合的风险增加。因此,研究假设空间的复杂性有助于理解模型的泛化能力。

+

3.1 【概念解释】VC维

+

VC维(Vapnik-Chervonenkis 维度)是衡量假设空间H\mathcal H复杂性的重要工具。它表示假设空间能够打散的最大样本集的大小,是描述二元分类问题下假设空间复杂度的核心指标。

+

VC维的定义如下:

+

VC(H)=max{m:ΠH(m)=2m}\begin{equation} +VC(\mathcal H)=\max\{m:\Pi_{\mathcal H}(m)=2^m\} +\end{equation} +

+

其中,ΠH(m)\Pi_{\mathcal H}(m)是假设空间H\mathcal H对大小为mm的样本集的增长函数。VC维可以理解为模型在二元分类问题中有效的自由度。

+

**例子:**对于假设空间sign(wx+b)sign(wx+b)(即线性分类器),其在二维空间R2R^2中的VC维为3。这意味着,线性分类器能够打散最多三个点,但无法打散四个点。

+

3.2 【概念解释】Natarajan维

+

在多分类问题中,我们使用Natarajan维来描述假设空间的复杂性。Natarajan维是能被假设空间H\mathcal H打散的最大样本集的大小。

+

当类别数K=2K=2时,Natarajan维与VC维相同:

+

VC(H)=Natarajan(H)\begin{equation} +VC(\mathcal H)=Natarajan(\mathcal H) +\end{equation} +

+

对于更一般的KK分类问题,Natarajan维的增长函数上界为:

+

ΠH(m)mdK2d\begin{equation} +\Pi_{\mathcal H}(m)\leqslant m^dK^{2d} +\end{equation} +

+

随着样本数mm和分类数KK的增加,Natarajan维的复杂度呈指数级增长。

+

3.3 【概念解释】Rademacher复杂度

+

VC维和Natarajan维均未考虑数据分布的影响,而Rademacher复杂度则引入了数据分布因素。它通过考察数据的几何结构和信噪比等特性,提供了更紧的泛化误差界。

+

函数空间F\mathcal F关于Z\mathcal Z在分布D\mathcal D上的Rademacher复杂度定义如下:

+

Z(F)=EZZ:Z=m[Eσ[supfF1mi=1mσif(zi)]]\begin{equation} +\Re_{\mathcal Z}(\mathcal F)=E_{Z\subset\mathcal Z:|Z|=m}\left[E_{\sigma}\left[\underset{f\in\mathcal F}{\sup}\frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i)\right]\right] +\end{equation} +

+

其中σi\sigma_i是服从均匀分布的随机变量。

+

假设空间H\mathcal H的Rademacher复杂度上界为:

+

m(H)2lnΠH(m)m\begin{equation} +\Re_m(\mathcal H)\leqslant\sqrt{\frac{2\ln\Pi_{\mathcal H}(m)}{m}} +\end{equation} +

+

3.4 【概念解释】shattering 概念的可视化

+

Shattering是指假设空间能够实现样本集上所有对分的能力。以下通过二维空间R2R^2中的线性分类器示例来说明。

+

**示例:**对于二维空间R2R^2中的三个点,线性分类器sign(wx+b)sign(wx+b)可以实现三点的所有对分,但无法实现四点的所有对分,如下图所示:

+
+ shattering +
+

因此,线性分类器在R2R^2中的VC维为3。

+

第4章:泛化界

+

Edit: 赵志民,李一飞,王茂霖,詹好

+
+

本章前言

+

在机器学习中,泛化能力是衡量模型性能的核心标准之一。如何从有限的训练数据中获得能够在未见数据上表现良好的模型,始终是研究者关注的重要问题。本章将深入探讨与泛化界相关的理论基础和定理,通过对关键概念的补充说明和定理的详细推导,帮助读者更好地理解泛化误差的收敛性质以及不同假设空间下的泛化能力。本章还将介绍与泛化界密切相关的Rademacher复杂度及其在实际应用中的意义,为进一步的研究提供理论支持。

+

4.1 【概念解释】可分情形中的“等效”假设

+

61页中的「可分情形」部分提到了“等效假设”的概念。这其实是我们在面对模型选择时需要处理的问题。机器学习的任务实际上是从样本空间或属性空间中选择一个最符合实际的模型假设。在理想状态下,我们希望能排除不可能的情况,直接选择唯一可能的模型。然而,这是不现实的,因为训练数据无法覆盖所有可能的情况,这些数据仅是部分经验片段的记录。因此,机器学习成为了一个不适定问题(ill-posed problem)。

+

通常而言,不适定问题是指不满足以下任一条件的问题:

+
    +
  1. 存在解:对于给定的问题,至少存在一个解,即这个问题是可以解决的。
  2. +
  3. 唯一解:对于给定的问题,解是唯一的,没有其他可能的解。
  4. +
  5. 解连续依赖于定解条件:解会随着初始条件或参数的变化而连续变化,不会出现突然跳跃或不连续的情况
  6. +
+

在这里,由于我们无法仅依靠输入数据找到唯一解,这使得学习问题成为一个不适定问题,主要违反了条件2。而在更多时候,我们说机器学习是不适定的,主要是指其违反了条件3,在那种情况下,我们通常会用正则化等方式来解决。

+

4.2 【概念解释】定理4.1与定理2.1、定理2.2的关系

+

61页中的定理4.1定理2.1定理2.2之间存在密切联系。

+

定理2.1指出一个学习算法 L\mathfrak{L} 能从假设空间 H\mathcal{H} 中PAC辨识概念类 C\mathcal{C} ,需要满足:

+

P(E(h)ϵ)1δ\begin{equation} +P(\mathbb{E}(h) \leqslant \epsilon) \geqslant 1-\delta +\end{equation} +

+

其中, 0<ϵ,δ<10 \lt \epsilon, \delta \lt 1,所有 cCc \in \mathcal{C}hHh \in \mathcal{H}

+

定理2.2指出,所谓PAC可学,是指对于任何 mpoly(1/ϵ,1/δ,size(x),size(c))m \geqslant \operatorname{poly}(1 / \epsilon, 1 / \delta, \operatorname{size}(\boldsymbol{x}), \operatorname{size}(c)) ,学习算法 L\mathfrak{L} 能从假设空间 H\mathcal{H} 中PAC辨识概念类 C\mathcal{C}

+

定理4.1中,假设学习算法 L\mathfrak{L} 能从假设空间 H\mathcal{H} 中 PAC 辨识概念类 C\mathcal{C},且这一过程依赖于大小为 mm 的训练集 DD ,其中 m1ϵ(lnH+ln1δ)m \geqslant \frac{1}{\epsilon} \left( \ln \left| \mathcal{H} \right| + \ln \frac{1}{\delta} \right),满足

+

mpoly(1/ϵ,1/δ,size(x),size(c))\begin{equation} +m \geqslant \operatorname{poly}(1 / \epsilon, 1 / \delta, \operatorname{size}(\boldsymbol{x}), \operatorname{size}(c)) +\end{equation} +

+

的条件,从而得到

+

P(E(h)ϵ)1δ\begin{equation} +P(\mathbb{E}(h) \leqslant \epsilon) \geqslant 1-\delta +\end{equation} +

+

因此,定理4.1实际上就是逆向使用了定理2.1定理2.2

+

4.3 【证明补充】定理4.2补充

+

63页中,在证明定理4.2时,省略了从式4.6到式4.7的推导过程。在这一过程中,主要用到了28页中式2.7的内容。

+

根据式4.6,有

+

P(hH:E^(h)E(h)>ϵ)=P((E^(h1)E(h1)>ϵ)(E^(hH)E(hH)>ϵ))hHP(E^(h)E(h)>ϵ)\begin{equation} +\begin{align*} +& P(\exists h \in \mathcal{H}:|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \\ +=& P\left(\left(\left|\widehat{E}\left(h_{1}\right)-E\left(h_{1}\right)\right|\gt\epsilon\right) \vee \cdots \vee\left(\left|\widehat{E}\left(h_{|\mathcal{H}|}\right)-E\left(h_{|\mathcal{H}|}\right)\right|\gt\epsilon\right)\right) \\ +\leqslant & \sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) +\end{align*} +\end{equation} +

+

引理2.1提出,若训练集 D 包含 mm 个从分布 D 上独立同分布采样而得的样本, 0<ϵ<10\lt\epsilon\lt1 则对任意 hH,h \in \mathcal{H},

+

P(E^(h)E(h)ϵ)exp(2mϵ2)P(E(h)E^(h)ϵ)exp(2mϵ2)P(E(h)E^(h)ϵ)2exp(2mϵ2)\begin{equation} +\begin{align*} +P(\widehat{E}(h)-\mathbb{E}(h) \geqslant \epsilon) & \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ +P(\mathbb{E}(h)-\widehat{E}(h) \geqslant \epsilon) & \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ +P(|\mathbb{E}(h)-\widehat{E}(h)| \geqslant \epsilon) & \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) +\end{align*} +\end{equation} +

+

使用第三个式子,即,

+

P(E(h)E^(h)ϵ)2exp(2mϵ2)\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \geqslant \epsilon) \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) +\end{equation} +

+

将其带入式4.6,则有,

+

hHP(E^(h)E(h)>ϵ)hH2exp(2mϵ2)\begin{equation} +\begin{array}{l} +\sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \leqslant \sum_{h \in \mathcal{H}} 2 \exp \left(-2 m \epsilon^{2}\right) +\end{array} +\end{equation} +

+

2exp(2mϵ2)=δ/H2 \exp \left(-2 m \epsilon^{2}\right)=\delta /|\mathcal{H}|,则有,

+

hHP(E^(h)E(h)>ϵ)hHδ/HHδ/H=δ\begin{equation} +\begin{array}{l} +\sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \leqslant \sum_{h \in \mathcal{H}} \delta /|\mathcal{H}| \leqslant|\mathcal{H}| \cdot \delta /|\mathcal{H}|=\delta +\end{array} +\end{equation} +

+

从而得到式4.7。

+

4.4 【证明补充】引理4.1的证明思路

+

63页中,引入了引理4.1及其相关的证明。由于证明过程较长,这里对其思路进行梳理和分析。

+

对于假设空间 H,hH,mN,ϵ(0,1)\mathcal{H}, h \in \mathcal{H}, m \in \mathbb{N}, \epsilon \in (0,1),当 m2/ϵ2m \ge 2/\epsilon^2 时有:

+

P(E(h)E^>ϵ)4ΠH(2m)exp(mϵ28)\begin{equation} +P(|\mathbb{E}(h)-\hat{E}| \gt \epsilon) \le 4\Pi_{\mathcal{H}}(2m)\exp(-\frac{m\epsilon^2}{8}) +\end{equation} +

+

证明简述

+

当我们要证明这个定理时,需要首先回忆增长函数的定义:对于 mNm \in\mathbb{N}, 假设空间 H\mathcal{H}增长函数 (growth function) ΠH(m)\Pi_{\mathcal{H}}(m) 表示为

+

ΠH(m)=max{x1,...,xm}X{(h(x1),...,h(xm))hH}\begin{equation} +\Pi_{\mathcal{H}}(m)=\max_{\{\mathbf{x}_1,...,\mathbf{x}_m\}\subset \mathcal{X}}|\{(h(\mathbf{x}_1),...,h(\mathbf{x}_m))|h\subset \mathcal{H}\}| +\end{equation} +

+

由于泛化误差在实际过程中难以评估,证明中首先将泛化误差和经验误差的差距缩放为经验误差之间的差距。通过概率与期望之间的转化,我们将问题进一步转化,并通过上确界的定义给出一个具体的概念 h0h_0 ,用三角不等式将经验误差与泛化误差之间的差距缩放至经验误差之间。再使用 Chebyshev 不等式中的概率与分布函数积分关系,拆分三角不等式,得出前一半概率(即经验误差与泛化误差之间的差距)与经验误差之间的不等式。

+

第二步则是将经验误差之间的差距进一步转化为增长函数的差距,即证明了第二个公式:

+

P(suphHE^D(h)E^D(h)12ϵ)2HD+Dexp(ϵ2m8)\begin{equation} +P(\sup_{h\in\mathcal{H}}|\hat E_D(h)-\hat E_{D'}(h)|\geq\frac{1}{2}\epsilon)\leq 2|\mathcal{H}_{|D+D'|}| \exp(-\frac{\epsilon^2m}{8})| +\end{equation} +

+

在这个过程中,使用了式 4.16,通过给出任意置换下的情况,将期望问题转化为级数求和,进一步缩放成有关指数函数的公式:

+

12mi=1(2m)!I(E^TiD(h)E^TiD(h))=k[l]s.t.2k/ml/mϵ/2(lk)(2mlmk)(2mm)\begin{equation} +\frac{1}{2m}\sum_{i=1}^{(2m)!}\mathbb{I}(|\hat E_{T_iD}(h)-\hat E_{T_iD'}(h)\|)=\sum_{k\in[l]\\s.t.|2k/m-l/m|\geq\epsilon/2}\frac{\tbinom{l}{k}\tbinom{2m-l}{m-k}}{\tbinom{2m}{m}} +\end{equation} +

+

注意,原不等式中的上界 2exp(ϵ2l8)2\exp(-\frac{\epsilon^2l}{8}) 可以通过 Hoeffding 不等式推导出。

+

再通过进一步缩放,得到最后的缩放公式(4.19)。此时,结合前述推导可证明引理。

+

即使将原不等式中的 2exp(ε2l8)2\exp(-\frac{ε^2l}{8}) 替换为 2exp(ε2l4)2\exp(-\frac{ε^2l}{4}),原不等关系依然成立。此结论亦可推广到定理4.3的结论,但即便如此,泛化误差的收敛率依旧为 O(ln(m/d)m/d)O(\sqrt\frac{ln(m/d)}{m/d})

+

4.5 【证明补充】定理4.3补充

+

67页中提到将式(4.24)带入引理4.1,即可证明定理4.3,具体推导如下:

+

定理4.3 表示为:

+

P(E(h)E^(h)8dln2emd+8ln4δm)1δ\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \leqslant \sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \geqslant 1-\delta +\end{equation} +

+

可以将其等价转化为:

+

P(E(h)E^(h)>8dln2emd+8ln4δm)δ\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \gt \sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant \delta +\end{equation} +

+

将(4.24)带入引理4.1可得:

+

P(E(h)E^(h)>8dln2emd+8ln4δm)4ΠH(2m)exp(mϵ28)\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant 4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +

+

根据 3.1 可得:

+

4ΠH(2m)exp(mϵ28)4(2emd)dexp(mϵ28)\begin{equation} +4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) \leqslant 4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +

+

所以引理4.1可以转化为:

+

P(E(h)E^(h)>8dln2emd+8ln4δm)4ΠH(2m)exp(mϵ28)4(2emd)dexp(mϵ28)\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant 4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) \leqslant 4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +

+

4(2emd)dexp(mϵ28)=δ4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) = \delta,由此可得:

+

P(E(h)E^(h)>8dln2emd+8ln4δm)δ\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant \delta +\end{equation} +

+

从而得到了定理4.3的结论。

+

定理4.3 说明了期望误差和经验误差之间的差异程度,以概率形式限定在一定的区域范围内,虽然这并不完全代表误差一定会在 8dln2emd+8ln4δm\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}} 这个范围内,但在此范围内的概率达到了 1δ1-\delta。我们可以发现其差异程度的控制范围和样本量及维度之间的关系。当 md\frac{m}{d} 较大时(即样本量大,而 VC 维较低),由于 ln(x)ln(x) 相对于 xx 增加较慢,所以其差异可以控制得越小,反之亦然。

+

4.6 【概念解释】回顾 Rademacher 复杂度

+

68页谈论了基于 Rademacher 的泛化误差界,这里对 Rademacher 复杂度进行回顾。

+

由于 VC 维和数据分布无关,未考虑数据的特定分布情况,其得到的结论往往是“松”的。Rademacher 复杂度则是基于数据分布的考虑,在牺牲了一定“普适性”的情况下,得到更为“紧”的结论。

+

复杂度是人为定义的一套量化复杂度程度的概念。对应 Rademacher 复杂度,假设空间中表示能力越强的函数,其复杂度越高。回到46-47页,如果 Eσ[suphH1mi=1mσih(xi)]=1\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h\left(\boldsymbol{x}_{i}\right)\right]=1 ,即对于 xx 的任意标签分布情况都能打散(特别注意这里针对的是这个特定的 xx 数据,这也是 Rademacher 复杂度和数据分布相关的原因,我们只有知道数据的具体分布情况,才能求解其 Rademacher 复杂度)。由 3.27 可等价得到 3.29 的经验 Rademacher 复杂度。

+

对于 Rademacher 复杂度的定义,我们进一步将具体的数据样本点转化为数据的样本空间分布,在经验误差的形式外面套一层期望,从而得到了一般化的 Rademacher 复杂度的定义。经验 Rademacher 复杂度和 Rademacher 复杂度的关系就如同概率论中掷硬币的观测序列和将其视为一个先验分布的随机变量序列一样。

+

4.7 【证明补充】引理4.6的证明解析

+

71页的定理4.6给出了泛化误差下界的形式化表述:

+

P(E(hD,c)>d132m)1100\begin{equation} +P\left(\mathbb{E}(h_D, c) > \frac{d-1}{32m}\right) \ge \frac{1}{100} +\end{equation} +

+

虽然不等式右边的常数 1100\frac{1}{100} 看似有些随意,但作者意在表明:对于任意学习算法,总是存在某种分布和目标概念,使得学习算法输出的假设在较高概率下产生显著错误。

+

事实上,根据公式(4.50)的推导,只要选择一个小于 1ed1127\frac{1 - e^{-\frac{d-1}{12}}}{7} 的常数,原不等式仍然成立。以 d=2d=2 为例,此时该常数约为 0.01140.0114,因此取 1100\frac{1}{100} 是较为合理的选择。

+

进一步分析发现,随着维度 dd 的增加,这个常数会逐渐增大,最终逼近 17\frac{1}{7}。然而,这并不意味着在任何数据分布和目标概念下,泛化误差下界都不会超过 17\frac{1}{7}。这一限制是由定理证明过程中所假设的数据分布(公式4.42)导致的。

+

至于常数 3232,则是证明过程中产生的结果。通过公式(4.50)的推导,可以看到为了套用公式(4.49)的结论,需要将 ϵ\epsilon 设为 d116(1+r)\frac{d-1}{16(1+r)}。在取 r=1r=1 的情况下,分母部分自然得到 3232

+

4.8 【证明补充】引理4.2补充

+

74页提出了引理4.2,这里给出完整的证明过程。

+

σ\sigma 为服从 {1,+1}\{-1,+1\}上均匀分布的随机变量,对于 0<α<10\lt\alpha\lt1构造随机变量 ασ=1/2ασ/2\alpha_{\sigma} = 1/2 - \alpha +\sigma/2,基于 σ\sigma 构造 XDσX \sim D_{\sigma},其中 DσD_{\sigma} 为伯努利分布 Bernoulli(ασ)Bernoulli(\alpha_{\sigma}),即 P(X=1)=ασP(X=1)=\alpha_{\sigma}。 +令 S={X1,,Xm}S=\{X_1,\cdots,X_m\} 表示从分布 DαmD_{\alpha}^m 独立同分布采样得到的大小为 mm 的集合,即 SDαmS \sim D_{\alpha}^m,这对于函数 f:Xm{1,+1}f:X^m \rightarrow \{-1,+1\} 有:

+

Eσ[PSDαm(f(S)σ)]Φ(2m/2,α)\begin{equation} +\mathbb{E}_{\sigma}[P_{S \sim D_{\alpha}^m}(f(S) \neq \sigma)] \ge \Phi (2\lceil m/2 \rceil, \alpha) +\end{equation} +

+

其中 Φ(m,α)=14(11exp(mα21α2))\Phi (m, \alpha) = \frac{1}{4} (1 - \sqrt{1 - \exp(-\frac{m\alpha^2}{1 - \alpha^2})})

+

证明

+

我们设想两枚硬币 xAx_AxBx_B。两枚硬币都稍有不均匀,即 P[xA=0]=1/2α/2P[x_A = 0] = 1/2−\alpha/2P[xB=0]=1/2+α/2P[x_B = 0] = 1/2+\alpha/2,其中 0<α<10\lt\alpha\lt1。0 表示正面,1 表示反面。假设我们随机从口袋里拿出一枚硬币 x{xA,xB}x \in \{x_A,x_B\},抛 mm 次,得到的 0 和 1 的序列即为引理中构造的随机变量 ασ\alpha_{\sigma}。如果我们想通过序列推测是哪一枚硬币被抛出,即选取并求得最佳决策函数 f:{0,1}m{xA,xB}f:\{0,1\}^m\rightarrow\{x_A,x_B\},则该实验假设的泛化误差可表示为 error(f)=E[PSDαm(f(S)x)]error(f)=\mathbb{E}[\mathbb{P}_{S\sim\mathcal{D}_\alpha^m}(f(S)\neq x)]

+

ff 代表任意决策函数,用 FAF_A 代表满足 f(S)=xAf(S)=x_A 的样本集合,用 FBF_B 代表满足 f(S)=xBf(S)=x_B 的样本集合,用 N(S)N(S) 表示样本 SS 中出现 0 的个数,根据泛化误差的定义,有:

+

error(f)=SFAP[SxB]+SFBP[SxA]=12SFAP[SxB]+12SFBP[SxA]=12SFAN(S)<m/2P[SxB]+12SFAN(S)m/2P[SxB]+12SFBN(S)<m/2P[SxA]+12SFBN(S)m/2P[SxA]\begin{equation} +\begin{align*} +error(f)&=\sum_{S\in F_A}\mathbb{P}[S\wedge x_B]+\sum_{S\in F_B}\mathbb{P}[S\wedge x_A]\\ +&=\frac{1}{2}\sum_{S\in F_A}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_B}\mathbb{P}[S|x_A]\\ +&=\frac{1}{2}\sum_{S\in F_A\atop N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_A\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_B] ++\frac{1}{2}\sum_{S\in F_B\atop N(S)\lt \lceil m/2\rceil}\mathbb{P}[S|x_A]+\frac{1}{2}\sum_{S\in F_B\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +\end{align*} +\end{equation} +

+

如果 N(S)m/2N(S)\ge \lceil m/2\rceil,易证 P[SxB]P[SxA]\mathbb{P}[S|x_B]\ge\mathbb{P}[S|x_A]。类似地,如果 N(S)<m/2N(S)\lt \lceil m/2\rceil,易证 P[SxA]P[SxB]\mathbb{P}[S|x_A]\ge\mathbb{P}[S|x_B]。因此,我们可以得到:

+

error(f)12SFAN(S)<m/2P[SxB]+12SFAN(S)m/2P[SxA]+12SFBN(S)<m/2P[SxB]+12SFBN(S)m/2P[SxA]=12S:N(S)<m/2P[SxB]+12S:N(S)m/2P[SxA]=error(fo)\begin{equation} +\begin{align*} +error(f) &\ge\frac{1}{2}\sum_{S\in F_A\atop N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_A\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A] ++\frac{1}{2}\sum_{S\in F_B\atop N(S)\lt \lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_B\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +&=\frac{1}{2}\sum_{S:N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S:N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +&=error(f_o) +\end{align*} +\end{equation} +

+

因此,当我们选取 fof_o 为决策函数时,泛化误差取得最小值,即当且仅当 N(S)<m/2N(S)\lt \lceil m/2\rceil 时,我们认为被抛的硬币是 fo(S)=xAf_o(S)=x_A

+

注意到 P[N(S)m/2x=xA]=P[B(2m/2,p)k]\mathbb{P}[N(S)\ge \lceil m/2\rceil|x=x_A]=\mathbb{P}[B(2\lceil m/2\rceil,p)\ge k],且 p=1/2α/2,k=m/2p=1/2-\alpha /2,k=\lceil m/2\rceil,因此 2m/2pk2m/2(1p)2\lceil m/2\rceil p\le k\le 2\lceil m/2\rceil(1-p)

+

根据 Slud 不等式,我们有:

+

error(fo)12P[Nm/2α1/2(1α2)m/2]=12P[N2m/21α2α]\begin{equation} +error(f_o) \ge \frac{1}{2}\mathbb{P}[N\ge\frac{\lceil m/2\rceil\alpha}{\sqrt{1/2(1-\alpha^2)\lceil m/2\rceil}}]=\frac{1}{2}\mathbb{P}[N\ge\sqrt{\frac{2\lceil m/2\rceil}{1-\alpha^2}}\alpha] +\end{equation} +

+

根据第一章补充内容中的正态分布不等式推论,我们有:

+

error(fo)14(11e2πu2)14(11eu2)\begin{equation} +error(f_o)\ge\frac{1}{4}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}})\ge\frac{1}{4}(1-\sqrt{1-e^{-u^2}}) +\end{equation} +

+

此处 u=2m/21α2αu=\sqrt{\frac{2\lceil m/2\rceil}{1-\alpha^2}}\alpha

+

事实上,根据上面的推导,我们可以进一步提升泛化误差的下界,即:

+

E[PSDαm(f(S)x)]14(11e2πu2)\begin{equation} +\mathbb{E}[\mathbb{P}_{S\sim\mathcal{D}_\alpha^m}(f(S)\neq x)]\ge\frac{1}{4}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}}) +\end{equation} +

+

在引理末尾处,提到了至少需要 Ω(1α2)\Omega(\frac{1}{\alpha^2}) 次采样才能准确估计 σi\sigma_i 的取值,其推理过程如下: +令泛化误差下界至多为 error(fo)=δ>0error(f_o)=\delta\gt0,则有:

+

14(11eu2)δm21ϵ22ϵ2ln18δ(12δ)\begin{equation} +\frac{1}{4}(1-\sqrt{1-e^{-u^2}})\le\delta\Leftrightarrow m\ge 2\lceil \frac{1-\epsilon^2}{2\epsilon^2} \ln\frac{1}{8\delta(1-2\delta)} \rceil +\end{equation} +

+

此时,我们发现 mm 至少为 Ω(1α2)\Omega(\frac{1}{\alpha^2}) 时,才能以 1δ1-\delta 的概率确定 σ\sigma 的取值。

+

4.9 【证明补充】引理4.7的补充

+

75页的定理4.7主要表达的是:无论算法有多强,在不可分的情况下,总会有某种“坏”分布使得输出假设的泛化误差以常数概率为O(dm)O(\sqrt\frac{d}{m})。其中(4.61)中第二步变形用到了以下等式:

+

xiS(I(h(xi)hDσ(xi))+I(h(xi)=hDσ(xi)))=d\begin{equation} +\sum_{x_i\in S}(\mathbb{I}(h(x_i)\neq h_{\mathcal{D}_{\sigma}^*}(x_i))+\mathbb{I}(h(x_i) = h_{\mathcal{D}_{\sigma}^*}(x_i))) = d +\end{equation} +

+

另外,(4.63)的第三步为何不直接利用引理4.2进行推导呢?这是考虑到函数Φ(,α)\Phi(·,\alpha)为减函数,即由m/d+12m/2m/d+1\le2\lceil m/2\rceil可知Φ(m/d+1,α)Φ(2m/2,α)\Phi(m/d+1,\alpha)\ge\Phi(2\lceil m/2\rceil,\alpha)。可见后者并不是一个特别紧致的下界,因此我们转而考虑按照Zx|Z|_x的取值进行拆分。

+

76页左下角的最后一个脚注中,提到了m/dm/d为变量Zx|Z|_x的期望值,如何得到这个结论呢?根据(4.58)和(4.59)以及U\mathcal{U}{1,+1}d\{-1,+1\}^d均匀分布的性质,我们可以得到从分布中抽取给定点xx的期望概率为1/d1/d。 +当我们从 DσD_σ 中独立抽取 mm 个样本的情况下,SS 中点 xx 出现的次数的期望值为 m/dm/d

+

此外,(4.65)中用到了引理4.3。令 Z=1α(E(hZ)E(hDσm))Z'=\frac{1}{\alpha}(\mathbb{E}(h_Z)-\mathbb{E}(h_{\mathcal{D}_{\sigma^*}^{m}}^{*})),根据(4.62)可知 0Z10\le Z'\le1。 +令 γ=γu\gamma'=\gamma u,因为 Φ(,α)\Phi(·,\alpha)为减函数,易知其最大值为1/41/4,因此有γ[0,1/4)[0,1)\gamma'\in[0,1/4)\subseteq[0,1)。此时带入引理4.3可得:

+

P(Z>γ)E[Z]γuuγ=(1γ)u\begin{equation} +P(Z'\gt\gamma')\ge \mathbb{E}[Z']-\gamma' \ge u-u\gamma = (1-\gamma)u +\end{equation} +

+

同时,(4.69)到(4.70)的推导中体现了充分条件的思想。由(4.69)可知:

+

mdAϵ2+B\begin{equation} +\frac{m}{d}\le \frac{A}{\epsilon^2}+B +\end{equation} +

+

其中 A=(764)2ln43A=(\frac{7}{64})^2 \ln \frac{4}{3}B=ln431B=-\ln \frac{4}{3}-1

+

我们希望能推导出更为简洁的 md\frac{m}{d}1ϵ2\frac{1}{\epsilon^2} 之间的关系,因此考虑寻找充分条件使以下不等式成立:

+

mdAϵ2+Bωϵ2\begin{equation} +\frac{m}{d}\le \frac{A}{\epsilon^2}+B\le\frac{\omega}{\epsilon^2} +\end{equation} +

+

即使得 ωBϵ2+A\omega\ge B\epsilon^2+A 成立。当 ϵ1/64\epsilon\le 1/64 时,很容易得到 ω\omega 的最小值(4.70)。

+

值得注意的是,整个证明过程共进行了四次启发式限制,分别为 γ=18δ\gamma=1-8\deltaα=8ϵ/(18ϵ)\alpha=8\epsilon/(1-8\epsilon)δ1/64\delta\le1/64ϵ1/64\epsilon\le1/64。这些启发式限制构造出来都是为了使得最终的不等式成立,实际上我们亦可根据实际需要进行调整,继而得到该定理的不同变种。

+

4.10 【概念解释】ρ\rho-间隔损失函数的 Lipschitz 性

+

79页提到,由经验损失(公式4.72)可知 Φρ\Phi_\rho 最多是 1ρ\frac{1}{\rho}-Lipschitz。对此进行详细解读如下:

+

根据Lipschitz连续性的定义,我们可以通过拉格朗日中值定理来证明这一点。具体来说,由拉格朗日中值定理可得:

+

Φρ(x1)Φρ(x2)Φρ(ξ)x1x2\begin{equation} +|\Phi_\rho(x_1)-\Phi_\rho(x_2)| \leq |\Phi_\rho'(\xi)| |x_1-x_2| +\end{equation} +

+

其中 ξ\xix1x_1x2x_2 之间的某一点。

+

已知 Φρ\Phi_\rho 的具体表达式,因此可以直接计算其导数 Φρ(ξ)\Phi_\rho'(\xi)。通过计算,我们可以得到:

+

Φρ(ξ)1ρ\begin{equation} +|\Phi_\rho'(\xi)| \leq \frac{1}{\rho} +\end{equation} +

+

因此,根据Lipschitz条件的定义,ρ\rho-间隔损失函数是 1ρ\frac{1}{\rho}-Lipschitz 函数。

+

4.11 【证明补充】定理4.8补充

+

79页的定理4.8给出了关于间隔损失函数的分类问题SVM的泛化误差界。

+

此处存在一个小的错误:公式4.80前的 “代入 (4.96)” 应为 “代入 (4.76)”

+

观察要证明的公式,我们发现这是关于 Rademacher 复杂度的泛化上界推理,自然地回顾一下 Rademacher 复杂度。

+

现实任务中样本标记有时会受到噪声影响,因此我们与其在假设空间 H\mathcal{H} 中选择训练集上表现最好的假设,不如选择 H\mathcal{H} 中事先已经考虑了随机噪声影响的假设。

+

在此直接考虑利用前面讲到的关于实值假设空间中的期望与 Rademacher 复杂度的不等式。通过前面 4.73 讲到的关于间隔函数的经验间隔损失的式子,可以带入得到大体形式。

+

由于前面引理提到的关于 Lipschitz 函数的性质,结合 ρ\rho-间隔损失函数的 Lipschitz 性,在简单改写复杂度之后便能得到要证明的定理。

+

第5章:稳定性

+

编辑:赵志民,李一飞,王茂霖,詹好

+
+

本章前言

+

本章将探讨学习理论中的稳定性。在前一章中,我们介绍了不同的复杂度度量方法,并给出了与特定算法无关的泛化界限。 +然而,这些泛化界限是否能通过分析特定算法的性质得到更好的学习保障?这些分析是否能够扩展到具有相似性质的其他学习算法上? +本章旨在回答这些问题,通过算法稳定性的应用推导出依赖于算法的学习保证。

+

5.1 【概念解释】留一交叉验证的风险

+

90页中提到的留一风险(leave-one-out risk)是指依次从数据集中移除某一数据后,利用剩余数据训练的模型与被移除数据之间的风险。本质上,这保证了用于风险测试的数据不会包含在训练集中,类似于模型选择时的留一验证。

+

5.2 【证明补充】均匀稳定性与泛化误差上界

+

92页中,定理5.1讨论了均匀稳定性与泛化性的关系。以下是该证明过程中均匀稳定性与泛化性之间联系的分析。

+

证明简述

+

对于读者来说,前几章的阅读应使大家对涉及 lnln 和根号的不等式已经有所了解,并能意识到这与指数函数的不等式有关,并反解风险 ϵ\epsilon。这里我们希望通过样本的稳定性推导出关于风险的泛化性。因此,在证明时必须将风险之间的差距转化为损失函数之间的风险。

+

由于定理中提到的替换样本 β\beta-均匀稳定性和移除样本 γ\gamma-均匀稳定性是非常强的条件,适用于任意的数据集 D 和任意的样本 z,因此我们可以得到关于经验风险与泛化风险差距(即 Φ(D)\Phi(D)) 的估计式。

+

通过对损失函数的差值求和平均可以得到风险 (Risk) 的差距。由于替换样本的 β\beta-均匀稳定性适用于任意 z,因此我们可以推导出 (5.22) 和 (5.23) 式,并使用 McDiarmid 不等式推导出经验风险与泛化风险的差距(即 Φ(D)\Phi(D)) 超过其平均值至少 ϵ\epsilon 的概率。即:

+

P(ϕ(D)E[Φ(D)]+ϵ)exp(2mϵ2(2mβ+M)2)\begin{equation} +P(\phi(D)\geq\mathbb{E}[\Phi(D)]+\epsilon)\leq exp(\frac{-2m\epsilon^2}{(2m\beta+M)^2}) +\end{equation} +

+

之后进行简单的放缩估计即可得到最终的结果:

+

P(R(LD)R^(LD)β+ϵ)exp(2mϵ2(2mβ+M)2)\begin{equation} +P(R(\mathcal{L_D})-\hat R(\mathcal{L_D})\geq\beta+\epsilon)\leq exp(\frac{-2m\epsilon^2}{(2m\beta+M)^2}) +\end{equation} +

+

值得注意的是,(5.22)中的最后一步不等式推导其实省略了一步:

+

(LD,zi)(LDi,zi,zi)m+ji(LD,zj)(LDi,zi,zj)mMm+m1mβMm+β\begin{equation} +\begin{align*} +&\frac{|\ell(\mathfrak{L}_D,z_i)-\ell(\mathfrak{L}_{D^{i,z'_i}},z'_i)|}{m}+\sum_{j\neq i}\frac{|\ell(\mathfrak{L}_D,z_j)-\ell(\mathfrak{L}_{D^{i,z'_i}},z_j)|}{m}\\ +&\le \frac{M}{m}+\frac{m-1}{m}\beta \\ +&\le \frac{M}{m}+\beta +\end{align*} +\end{equation} +

+

之所以这么做,是因为当样本量 mm 较大时,βm\frac{\beta}{m} 的大小可以忽略不计,因此在结论中并未出现这一项。

+

另外,(5.23)式也省略了一步:

+

EzD[(LD,z)(LDi,zi,z)]EzD[(LD,z)(LDi,zi,z)]EzD[β]=β\begin{equation} +|E_{z\sim\mathcal{D}}[\ell(\mathfrak{L}_D,z)-\ell(\mathfrak{L}_{D^{i,z'_i}},z)]|\le E_{z\sim\mathcal{D}}[|\ell(\mathfrak{L}_D,z)-\ell(\mathfrak{L}_{D^{i,z'_i}},z)|]\le E_{z\sim\mathcal{D}}[\beta]=\beta +\end{equation} +

+

关于移除样本 γ\gamma-均匀稳定性(5.18)的证明用到了(5.14)的结论,因此在不等式中构造出了类似于 2mβ2m\beta4mγ4m\gamma 形式,其他推理步骤与(5.17)基本一致。

+

均匀稳定性与泛化性的关系

+

在证明过程中,多处涉及了损失函数作差的放缩,即替换样本的 β\beta-均匀稳定性,但实际上大多数情况下使用该稳定性只是为了简化式子,只有在 (5.24) 与 (5.25) 中体现了稳定性与泛化性的关系。

+

在 (5.24) 中,通过替换样本的稳定性,我们可以得到经验风险与泛化风险的差距(即 Φ(D)\Phi(D)) 在替换样本前后的风险可以被上界 2β+M/m2\beta+M/m 控制住。根据 McDiarmid 不等式的描述,如果实值函数关于变量的替换具有较好的稳定性,那么该实值函数与期望的差距也将受到上界控制。简言之,如果实值函数替换一个变量后变化不大,那么无论如何替换,变化都不会过大,因此该实值函数的取值总会在一定范围内,与其均值(即期望)相差不大。

+

因此在 (5.25) 中,我们可以得到经验风险与泛化风险的差距(即 Φ(D)\Phi(D)) 也有了上界。通过简单的放缩可以得到一个常数上界,从而得出泛化风险的上界。

+

5.3 【证明补充】假设稳定性与泛化误差上界

+

94页中,定理5.2讨论了假设稳定性与泛化性的关系。以下是该证明过程中假设稳定性与泛化性之间联系的分析。

+

证明简述

+

证明涉及 R(LD)R^(LD)R(\mathcal{L_D})-\hat R(\mathcal{L_D}) 的平方平均,因为假设稳定性是较弱的条件,只能保证风险的期望被上界控制,因此只能得到关于期望的不等式。由于不涉及概率与置信度,因此不需要复杂的不等式,简单的放缩即可得到答案。

+

证明中的一处难点在于(5.30)至(5.33)中关于变量 zz 之间的替换。根据独立同分布假设,即 i,jN+,z,z,zi,zjD\forall i,j\in \mathbb{N}^+,z,z',z_i,z_j\sim\mathcal{D},可以任意交换 z,z,zi,zjz,z',z_i,z_j 的顺序而期望值不变。

+

例如,在(5.30)中的第一步推导中,不失一般性地用 z1,z2z_1,z_2 替代 zi,zjz_i,z_j,因此原期望值之和得以简化为只与 z1,z2z_1,z_2 相关的期望值。

+

理解这一点后,任何关于变量 zz 之间的替换都不会令人感到困惑,其中也包括了定理5.3证明中(5.35)的第二步推导。

+

另外,在(5.32)的第一步推导中,使用了绝对值不等式 E(X+Y)E(X)+E(Y)\mathbb{E}(X+Y)\le \mathbb{E}(|X|)+\mathbb{E}(|Y|)。这种在期望放缩中运用绝对值不等式的处理方式在全书中非常实用,值得读者留意。

+

假设稳定性与泛化性的关系

+

该定理实际上给出了经验风险与泛化风险的差距的平方平均的界,这是因为假设稳定性并不是非常强的条件,而是为了放松均匀稳定性这一较强的条件而引入的。

+

5.4 【概念解释】过拟合与欠拟合的关系

+

过拟合和欠拟合是泛化性研究中的重要概念。当经验风险与泛化风险的差距较大时,会发生过拟合;相反,当泛化风险与经验风险的差距较大时,则发生欠拟合。因此,我们在算法设计时,希望尽可能缩小泛化风险与经验风险的差距。

+

96页中,定理5.3从算法稳定性的角度提出了防止过拟合的方案:当替换训练集的单个样本时,算法的输出函数变化不大,我们认为学习算法 L\mathfrak{L} 是稳定的,否则就需要重新进行训练。该方法同样适用于欠拟合的情况,但在实际应用中,算法欠拟合的情况较少,因此我们更多地关注过拟合的预防。

+

5.5 【概念解释】稳定性与可学习性

+

97页中,定理5.4讨论了稳定性与可学性之间的关系。以下是定理5.4的梳理分析,探讨稳定性与可学性在证明中的关联。

+

证明简述

+

首先,我们回顾不可知 PAC 可学的概念:对于所有分布 D\mathcal{D},若存在学习算法 L\mathfrak{L} 与多项式函数 poly(,,,)poly(\cdot,\cdot,\cdot,\cdot),使得对于任意 mpoly(1/ϵ,1/δ,size(x),size(c))m\geq poly(1/\epsilon,1/\delta,size(\mathbf{x}),size(c))L\mathfrak{L} 输出的假设能够满足:

+

P(E(h)minhHE(h)ϵ)1δ\begin{equation} + P\big(\mathbb{E}(h)-\min_{h'\in\mathcal{H}}\mathbb{E}(h')\leq\epsilon\big)\geq1-\delta +\end{equation} +

+

该证明利用了经验风险与泛化风险之间的联系,构造出(5.39),然后分而治之地讨论不同情况下的稳定性关系。

+

其中,泛化风险与经验风险之差(5.40)可以根据定理5.1改写为:对于任意的 δ(0,1)\delta\in(0,1),以至少 1δ1-\delta 的概率有:

+

R(LD)R^(LD)1m+(2mβ+M)ln(1/δ)2m\begin{equation} +R(\mathfrak{L}_D)-\hat R(\mathfrak{L}_D)\le \frac{1}{m}+(2m\beta+M)\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +

+

参考95页中对 limm+mβlim_{m\rightarrow +\infty}m\beta 的讨论,发现只要满足 limm+mβ<lim_{m\rightarrow +\infty}m\beta\lt\infty 的条件,算法的泛化性能便可得到保障,因此应确保 β\beta 的取值不要太大。在此定理中,我们选取 β=1/m\beta=1/m,此时(5.40)简化为:

+

R(LD)R^(LD)1m+(2+M)ln(1/δ)2m\begin{equation} +R(\mathfrak{L}_D)-\hat R(\mathfrak{L}_D)\le \frac{1}{m}+(2+M)\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +

+

在处理 ERM 算法情况下泛化风险与经验风险之差(5.42)时,原书中有一处小错误,但对最终结论影响不大。以下是正确的推导过程:

+

根据 (LD,z)[0,M]\ell(\mathfrak{L}_D,z)\in[0,M],可以得到 R^[0,M]\hat R \in [0,M],又因为 R(h)=ED(R^(h))R(h^*)=E_{\mathcal{D}}(\hat R(h^*)),此时根据 Hoeffding 不等式(1.30),可知至少以 1δ1-\delta 的概率有:

+

R^(h)R(h)Mln(1/δ)2m\begin{equation} +\hat R(h^*)-R(h^*)\le M\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +

+

结合(5.39)至(5.42)可知,至少以 1δ1-\delta 的概率有:

+

R(LD)R(h)1m+(2+M)ln(1/δ)2m+Mln(1/δ)2m\begin{equation} +R(\mathfrak{L}_D)-R(h^*)\le \frac{1}{m}+(2+M)\sqrt{\frac{ln(1/\delta)}{2m}}+M\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +

+

此时(5.44)变为:

+

ϵ=1m+(1+M)2ln(1/δ)m\begin{equation} +\epsilon=\frac{1}{m}+(1+M)\sqrt{\frac{2ln(1/\delta)}{m}} +\end{equation} +

+

m=mm'=\sqrt m,则可以将上式转化为关于 mm' 的一元二次方程:

+

ϵm2Am1=0\begin{equation} +\epsilon m'^2-Am'-1=0 +\end{equation} +

+

其中 A=(1+M)2ln(1/δ)A=(1+M)\sqrt{2ln(1/\delta)},根据求根公式可得:

+

m=A±A2+4ϵ2ϵ=O(1ϵln(1δ))\begin{equation} +m'=\frac{A\pm\sqrt{A^2+4\epsilon}}{2\epsilon} = O(\frac{1}{\epsilon}\sqrt{ln(\frac{1}{\delta})}) +\end{equation} +

+

至此,我们得到了 mm 的渐近复杂度:

+

m=m2=O(1ϵ2ln(1δ))\begin{equation} +m=m'^2=O(\frac{1}{\epsilon^2}ln(\frac{1}{\delta})) +\end{equation} +

+

接下来的推导便水到渠成。

+

稳定性与可学性

+

这里只能达到不可知 PAC 可学的原因是泛化界只能以概率达到,无法保证在任何函数空间内都能达到上界以下。因此,这里只能讨论稳定性与不可知 PAC 可学性的关系。

+

事实上,稳定性与可学性的关系类似于第四章中讲到的泛化界与可学性的关系。通过 ERM 算法得到最小经验风险函数后,结合均匀稳定性带来的泛化上界,我们可以获得可学性。

+

5.6 【证明补充】二次分布下的 k-近邻算法稳定性

+

105页中,引理5.2讨论了二次分布 XB(k,1/2)X \sim B(k, 1/2) 的 k-近邻的稳定性。这里我们给出详细的证明过程。

+

给定整数 k>0k \gt 0,若随机变量 XX 满足:

+

P(X=i)=12k(ki),i[k]\begin{equation} +P(X=i) = \frac{1}{2^k} \binom{k}{i}, i \in [k] +\end{equation} +

+

则对任意正整数 aa 有:

+

P(Xk2a2)<22aπk\begin{equation} +P(|X-\frac{k}{2}| \le \frac{a}{2}) \lt \frac{2\sqrt{2} a}{\sqrt{\pi k}} +\end{equation} +

+

首先,我们根据 kk 的取值将情况分为两类讨论。

+

kk 为偶数时,二项式展开的最大项为:

+

12k(kk/2)22πkexp(112k26k+1)<22πk\begin{equation} +\frac{1}{2^k} \binom{k}{k/2} \leq \frac{2}{\sqrt{2\pi k}} \exp(\frac{1}{12k} - \frac{2}{6k+1}) \lt \frac{2}{\sqrt{2\pi k}} +\end{equation} +

+

第二步推导利用了 Stirling 公式,最后一步推导则利用了函数 l(x)=exp(112x26x+1)l(x) = \exp(\frac{1}{12x} - \frac{2}{6x+1})[1,)[1,\infty) 区间单调递增且取值在 (0,1)(0,1) 之间的特性。

+

因此,我们有:

+

P(Xk2a2)=(a+1)22πk<4a2πk\begin{equation} +P(|X-\frac{k}{2}| \leq \frac{a}{2}) = (a+1) \frac{2}{\sqrt{2\pi k}} \lt \frac{4a}{\sqrt{2\pi k}} +\end{equation} +

+

kk 为奇数且 k>1k\gt1 时,二项式展开的最大项为:

+

12k(k(k1)/2)<12k1(k1(k1)/2)<12π(k1)<2πk\begin{equation} +\frac{1}{2^k} \binom{k}{(k-1)/2} \lt \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2} +\lt \frac{1}{\sqrt{2\pi (k-1)}} \lt \frac{2}{\sqrt{\pi k}} +\end{equation} +

+

k=1k=1 时,二项式展开的最大项为 12<2π\frac{1}{2} \lt \frac{2}{\sqrt{\pi}} +因此,我们有:

+

P(Xk2a2)=a2πk<4a2πk\begin{equation} +P(|X-\frac{k}{2}| \leq \frac{a}{2}) = a \frac{2}{\sqrt{\pi k}} \lt \frac{4a}{\sqrt{2\pi k}} +\end{equation} +

+

综上,引理5.2得证。

+

5.7 【概念解释】稳定性理论的适用范围

+

细心的读者可能已经注意到,这里的稳定性仅在某些条件下才能适用,以下是对这些条件的总结。

+

首先,本章的分析假设输出函数 LD\mathfrak{L}_D 与训练集 DD 的顺序无关,但这在实际应用中并不一定成立。例如,在随机梯度下降算法中,训练集的顺序会影响最终的输出函数,因此这里的稳定性并不适用于随机梯度下降算法。

+

另外,在样本扰动分析中,我们几乎没有单独讨论新增样本的情况。这是因为在数据或概念发生漂移的情况下,稳定性的要求不一定成立,因为此时训练集的分布与真实分布已不再一致。而在研究训练集 DD 的扰动对算法 LD\mathfrak{L}_D 输出函数的影响时,我们希望经验风险的变化尽可能小,这恰好与在线学习(Online Learning)的目标相抵触。

+

具体而言,在线学习指的是在数据不断到来的过程中,动态地更新模型,因此该训练方式更关注模型的可塑性,即在旧场景中训练的模型是否能通过优化在新场景中表现优异。因此,在实际应用中,我们需要平衡学习算法的可塑性与稳定性。

+

为了更好地评估在线学习的性能,本书引入了遗憾界的概念,即在线学习与离线学习算法之间最小损失的差值,具体分析请参见第八章。

+

第6章:一致性

+

编辑:赵志民,王茂霖,詹好

+
+

本章前言

+

本章内容主要探讨学习理论中的一致性(consistency),研究随着训练数据的增加,通过学习算法所获得的分类器是否逐渐逼近贝叶斯最优分类器。具体内容包括一致性的定义、参数方法下的一致性分析、非参数方法下的一致性分析,以及随机森林一致性分析的案例。

+

6.1 【证明补充】泛化风险的无偏估计

+

117页中,公式(6.25)给出了分类器的经验风险 R^\hat R,并指出其为泛化风险 RR 的无偏估计。以下对这一概念进行详细说明。

+

首先,需要理解经验风险 R^\hat R 和泛化风险 RR 的概念。经验风险是基于模型的预测结果与真实结果的比较计算出的量化风险指标。泛化风险则是基于数据-标签联合分布的样本(视为随机变量)的预测结果与真实值的比较的期望值。由于实际情况下数据-标签联合分布通常未知,泛化风险 RR 更多是一个理论化的概念。

+

其次,当我们说 yyxx 的无偏估计时,意味着 E[x]=y\mathbb{E}[x]=y。根据这一概念,我们可以证明经验风险是泛化风险的无偏估计。

+

泛化风险定义为:

+

R(f)=E(x,y)D[I(yf(x)0)]=ExDX[η(x)I(f(x)0)+(1η(x))I(f(x)0)]\begin{equation} +\begin{align*} +R(f) &=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\mathbb{I}(y f(x) \leqslant 0)] \\ +&=\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x) \mathbb{I}(f(x) \leqslant 0)+(1-\eta(x)) \mathbb{I}(f(x) \geqslant 0)] +\end{align*} +\end{equation} +

+

经验风险定义为:

+

R^(f)=1mi=1mI(yif(xi)0)\begin{equation} +\hat R(f) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right) +\end{equation} +

+

现在我们证明经验风险是泛化风险的无偏估计:

+

假设所有样本都是从一个未知的样本-标签空间 DD 中独立同分布采样的,对经验风险求期望:

+

E(R^(f))=E(xi,yi)D[1mi=1mI(yif(xi)0)]=1mi=1mE(xi,yi)D[I(yif(xi)0)]=1mi=1mE(x,y)D[I(yf(x)0)]=1mi=1mR(f)=R(f)\begin{equation} +\begin{align*} +\mathbb{E}({\hat R(f)}) &=\mathbb{E}_{(\boldsymbol{x_i}, y_i) \sim \mathcal{D}}[{ \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right)}] \\ +&= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{(\boldsymbol{x_i}, y_i) \sim \mathcal{D}}[{ \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right)}]\\ +&= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{(x, y) \sim \mathcal{D}}[{ \mathbb{I}\left(y f\left(x\right) \leqslant 0\right)}]\\ +&= \frac{1}{m} \sum_{i=1}^{m} R(f)\\ +&= R(f) +\end{align*} +\end{equation} +

+

6.2 【证明补充】替代函数一致性

+

120页的定理6.1给出了替代一致性的充分条件。首先,我们推导了泛化风险与贝叶斯风险之间的差异不等式。根据一致性的定义,我们需要证明,当 Rϕ(f^m)Rϕ{R_{\phi}\left(\hat{f}_{m}\right) \rightarrow R_{\phi}^{*}} 时,R(f^m)RR\left(\hat{f}_{m}\right) \rightarrow R^{*}

+

为此,我们进一步构造了关于 Rϕ(f^m)Rϕ{R_{\phi}\left(\hat{f}_{m}\right) - R_{\phi}^{*}} 的不等式。通过分析两个不等式之间的关联性,最终得出结论:

+

R(f^m)R2cRϕ(f^m)Rϕs\begin{equation} +R\left(\hat{f}_{m}\right) - R^{*} \leqslant 2c \sqrt[s]{R_{\phi}\left(\hat{f}_{m}\right) - R_{\phi}^{*}} +\end{equation} +

+

因此,当 Rϕ(f^m)Rϕ{R_{\phi}\left(\hat{f}_{m}\right) \rightarrow R_{\phi}^{*}} 时,R(f^m)R\left(\hat{f}_{m}\right) 也会收敛于 RR^{*}

+

其中,不等式(6.40)的推导涉及一定的构造技巧,接着通过定理中的条件推导出不等式(6.43)。利用所构造的凸函数的性质,最终完成了这一证明。

+

6.3 【概念解释】划分机制方法

+

122页介绍了一种将样本空间划分成多个互不相容区域的方法,然后对各区域内的正例和反例分别计数,并以多数类别作为区域中样本的标记。这种方法本质上不同于参数方法,它并不是在参数空间中进行搜索构建划分超平面,而是在泛函空间上直接进行搜索。一个典型的例子是我们熟悉的决策树模型:

+
+ decision_tree +
+

每当构造一个决策树的节点时,相当于在样本空间上进行了一次划分(即划分机制)。这种洞察方式同样适用于解释剪枝操作,即通过减少不必要的节点来简化树结构,同时保持或提高模型的性能。

+

6.4 【概念解释】依概率成立

+

124页的定理6.2提到一个定义——依概率成立(almost sure)。这是概率论与数理统计中的一个概念,表达如下:

+

limnP((Diam(Ω)0)ϵ)=0\begin{equation} +\lim _{n \rightarrow \infty} P((Diam(\Omega)-0) \geq \epsilon)=0 +\end{equation} +

+

和对于所有 N>0N\gt0

+

limnP(N(x)>N)=1\begin{equation} +\lim _{n \rightarrow \infty} P(N(x)\gt N)=1 +\end{equation} +

+

它意味着当 nn 趋于无穷时,几乎处处(almost everywhere)的 Diam(Ω)Diam(\Omega) 都处于 00ϵ\epsilon 邻域内。而 N(x)N(x) 的极限几乎处处为无穷大。依概率成立是一种比极限更弱的情况,即可以忽略概率趋于 00 的情形。

+

6.5 【证明补充】划分机制一致性

+

124页的定理6.2给出了划分一致性的充分条件。首先我们定义了 Ω(x)\Omega(x) 作为划分区域的条件概率极大似然估计量:

+

η^(x)=xiΩ(x)I(yi=+1)N(x)\begin{equation} +\hat{\eta}(x)=\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)}{N(x)} +\end{equation} +

+

再根据划分机制构造分类器(输出函数)hm(x)=2I(η^(x)12)1h_{m}(x)=2 \mathbb{I}\left(\hat{\eta}(x) \geqslant \frac{1}{2}\right)-1。为了证明划分机制的一致性,我们需要证明其输出函数的泛化风险在 mm 趋于无穷时,趋于贝叶斯风险。

+

在此,我们利用了基于条件概率估计的插值法,并借助引理6.2得到了输出函数的泛化风险与贝叶斯风险之间的差值不等式。对于不等式右侧的期望,利用三角不等式进行放缩,可得(6.62)。

+

根据假设条件:

+

limmP((Diam(Ω)0)ϵ)=limmP((supx,xΩxx0)ϵ)=0\begin{equation} +\lim _{m \rightarrow \infty} P((Diam(\Omega)-0) \geq \epsilon) = \lim _{m \rightarrow \infty} P(( \sup _{x, x^{\prime} \in \Omega}\left\|x-x^{\prime}\right\| -0) \geq \epsilon)=0 +\end{equation} +

+

由于 η(x)\eta(x) 在样本空间中具有连续性,因此在任意邻域内我们都可以用 η^(x)\hat\eta(x) 的期望值来近似 η(x)\eta(x)。当邻域趋于 0 时,可得:

+

E[ηˉ(x)η(x)]0\begin{equation} +\mathbb{E}[|\bar{\eta}(x)-\eta(x)|] \rightarrow 0 +\end{equation} +

+

这是由于 x{x}^{\prime} 被依概率限制在一个 ϵ\epsilon 邻域内,且期望可以忽略概率趋于 0 的点,因此 ηˉ(x)\bar{\eta}(x) 由于 η(x)\eta(x) 的连续性也被限制在一个 η(x)\eta(x)ϵ\epsilon 邻域内,从而期望的极限得证。

+

接下来,针对三角不等式右式的前半部分,将其拆分为 N(x)=0N(x)=0N(x)>0N(x)\gt0 两部分:

+

E[η^(x)ηˉ(x)x,x1,,xm]=E[η^(x)ηˉ(x)N(x)=0,x,x1,,xm]+E[xiΩ(x)I(yi=+1)ηˉ(x)N(x)N(x)>0,x,x1,,xm]P(N(x)=0x,x1,,xm)+E[xiΩ(x)I(yi=+1)ηˉ(x)N(x)N(x)>0,x,x1,,xm]\begin{equation} +\begin{array}{c} +\mathbb{E}\left[|\hat{\eta}(x)-\bar{\eta}(x)| \mid x, x_{1}, \ldots, x_{m}\right] = +\mathbb{E}\left[|\hat{\eta}(x)-\bar{\eta}(x)|\mid N(x)=0 , x, x_{1}, \ldots, x_{m}\right] \\ ++\mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right]\\ +\leqslant P\left(N(x)=0 \mid x, x_{1}, \ldots, x_{m}\right) + \mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right] +\end{array} +\end{equation} +

+

然后,对于不等式右侧的第二部分,利用引理6.3的不等式,可以得到:

+

E[xiΩ(x)I(yi=+1)ηˉ(x)N(x)N(x)>0,x,x1,,xm]E[ηˉ(x)(1ηˉ(x))N(x)I(N(x)>0)x,x1,,xm]\begin{equation} +\begin{array}{l} +\mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right] \\ +\leqslant \mathbb{E}\left[\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \mathbb{I}(N(x)\gt0) \mid x, x_{1}, \ldots, x_{m}\right] +\end{array} +\end{equation} +

+

对于此不等式的右侧,再进行放缩。对于任意 k3k \geq 3,当 N(x)kN(x) \leqslant k 时,ηˉ(x)(1ηˉ(x))N(x)12\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \leqslant \frac{1}{2},当 N(x)>kN(x) \gt k 时,ηˉ(x)(1ηˉ(x))N(x)12k\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \leqslant \frac{1}{2\sqrt k},从而得到不等式右侧的进一步放缩:

+

E[ηˉ(x)(1ηˉ(x))N(x)I(N(x)>0)x,x1,,xm]12P(N(x)kx,x1,,xm)+12kP(N(x)>kx,x1,,xm)12P(N(x)kx,x1,,xm)+12k\begin{equation} +\begin{align*} +\mathbb{E}\left[\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \mathbb{I}(N(x)\gt0) \mid x, x_{1}, \ldots, x_{m}\right] &\leqslant \frac{1}{2} P\left(N(x) \leqslant k \mid x, x_{1}, \ldots, x_{m}\right)+\frac{1}{2 \sqrt{k}} P\left(N(x) \gt k \mid x, x_{1}, \ldots, x_{m}\right)\\ +&\leqslant \frac{1}{2} P\left(N(x) \leqslant k \mid x, x_{1}, \ldots, x_{m}\right)+\frac{1}{2 \sqrt{k}} +\end{align*} +\end{equation} +

+

结合前面的结果,我们可以得出:

+

E[η^(x)ηˉ(x)]12P(N(x)k)+12k+P(N(x)=0)\begin{equation} +\mathbb{E}[|\hat{\eta}(x)-\bar{\eta}(x)|] \leqslant \frac{1}{2} P(N(x) \leqslant k)+\frac{1}{2 \sqrt{k}}+P(N(x)=0) +\end{equation} +

+

根据 N(x)N(x) \rightarrow \infty 依概率成立,当 mm \rightarrow \infty 时,P(N(x)k)0P(N(x) \leqslant k) \rightarrow 0P(N(x)=0)0P(N(x) = 0) \rightarrow 0。并且当取 k=N(x)k=\sqrt{N(x)} 时,12k0\frac{1}{2 \sqrt{k}} \rightarrow 0 依概率成立,从而得出结论:

+

E[η^(x)ηˉ(x)]0\begin{equation} +\mathbb{E}[|\hat{\eta}(x)-\bar{\eta}(x)|] \rightarrow 0 +\end{equation} +

+

最终证明了其输出函数的泛化风险在 mm 趋于无穷时,趋于贝叶斯风险:

+

R(hm)R2E[η^(x)η(x)]0\begin{equation} +R\left(h_{m}\right)-R^{*} \leqslant 2 \mathbb{E}[|\hat{\eta}(x)-\eta(x)|] \rightarrow 0 +\end{equation} +

+

6.6 【证明补充】随机森林的划分一致性

+

130页中的定理6.5提到了一种简化版本的随机森林,即每次划分都是均匀随机的,并不依赖于训练集的标签。以下对证明直径 Diam(Ω(x,Z))0Diam(\Omega(x,Z))\rightarrow 0 的步骤进行补充说明。

+

首先,令 LjL_j 表示区域 Ω(x,Z)\Omega(x,Z) 中第 jj 个属性的边长,我们可以得到 Diam(Ω(x,Z))Diam(\Omega(x,Z))LjL_j 的关系:

+

Diam(Ω(x,Z))=supx,xΩxx=j=1dLj2\begin{equation} +\begin{align*} +Diam(\Omega(x,Z))&=sup_{x,x'\in\Omega}\|x-x'\| = \sqrt{\sum_{j=1}^dL_j^2} +\end{align*} +\end{equation} +

+

对于 Diam(Ω(x,Z))Diam(\Omega(x,Z)) 求期望时,我们得到:

+

E(Diam(Ω(x,Z)))=E(j=1dLj2)\begin{equation} +\mathbb{E}(Diam(\Omega(x,Z)))=\mathbb{E}(\sqrt{\sum_{j=1}^dL_j^2}) +\end{equation} +

+

L=j=1dLj2L = \sum_{j=1}^dL_j^2,因为 L\sqrt{L} 是关于 LL 的凸函数,根据 Jensen 不等式(1.11),我们可以得到:

+

E(j=1dLj2)j=1dE(Lj2)\begin{equation} +\mathbb{E}(\sqrt{\sum_{j=1}^dL_j^2})\le\sqrt{\sum_{j=1}^d\mathbb{E}(L_j^2)} +\end{equation} +

+

由于每个属性的边长 LjL_j 在随机决策树构造中都是独立同分布的,因此可以得到:

+

j=1dE(Lj2)=dE(L12)=dE(L1)\begin{equation} +\sqrt{\sum_{j=1}^d\mathbb{E}(L_j^2)}=\sqrt{d\mathbb{E}(L_1^2)}=\sqrt{d}\mathbb{E}(L_1) +\end{equation} +

+

综合以上各式,我们只需证明当 kk\rightarrow\infty 时有 E(L1)0\mathbb{E}(L_1)\rightarrow 0,便可证明 Diam(Ω(x,Z))0Diam(\Omega(x,Z))\rightarrow 0

+

令随机变量 UiU(0,1)U_i\sim \mathcal{U}(0,1) 表示第 jj 个属性在第 ii 次划分中的位置,因此 max(Ui,1Ui)max(U_i,1-U_i) 表示第 jj 个属性在第 ii 次划分中的最大长度。令 KjB(Tm,1/d)K_j\sim \mathcal{B}(T_m,1/d) 表示第 jj 个属性被选用划分的次数。此时,第 jj 个属性的边长的 KjK_j 次划分中最大长度的期望值为 EKj[i=1Kjmax(Ui,1Ui)]\mathbb{E}_{K_j}[\prod_{i=1}^{K_j}max(U_i,1-U_i)],于是我们可以得到属性边长的期望满足(6.97)。

+

TmT_m 表示区域 Ω(x,Z)\Omega(x,Z) 被划分的次数,结合(6.98)及划分点的独立性,我们可以得到:

+

E(Lj)E[EKj[i=1Kjmax(Ui,1Ui)]]=E[(E[max(U1,1U1)])Kj]=E[(34)Kj]=Kj=0TmP(Kj)(34)Kj=Kj=0Tm(TmKj)(1d)Kj(11d)TmKj(34)Kj=Kj=0Tm(TmKj)(34d)Kj(11d)Tm=(11d+34d)Tm=(114d)Tm\begin{equation} +\begin{align*} +\mathbb{E}(L_j)&\le\mathbb{E}[\mathbb{E}_{K_j}[\prod_{i=1}^{K_j}max(U_i,1-U_i)]]\\ +&=\mathbb{E}[(\mathbb{E}[max(U_1,1-U_1)])^{K_j}]\\ +&=\mathbb{E}[(\frac{3}{4})^{K_j}]\\ +&=\sum_{K_j=0}^{T_m}P(K_j)\cdot(\frac{3}{4})^{K_j}\\ +&=\sum_{K_j=0}^{T_m}\binom{T_m}{K_j}\cdot(\frac{1}{d})^{K_j}\cdot(1-\frac{1}{d})^{T_m-K_j}\cdot(\frac{3}{4})^{K_j}\\ +&=\sum_{K_j=0}^{T_m}\binom{T_m}{K_j}\cdot(\frac{3}{4d})^{K_j}\cdot(1-\frac{1}{d})^{T_m}\\ +&=(1-\frac{1}{d}+\frac{3}{4d})^{T_m}\\ +&=(1-\frac{1}{4d})^{T_m} +\end{align*} +\end{equation} +

+

此时,只需证明当 kk\rightarrow\inftyTmT_m\rightarrow\infty,便可证明 E(Lj)0\mathbb{E}(L_j)\rightarrow 0

+

每次划分节点都会增加一个新节点,且每次选择节点进行划分的概率均为 p=1/ip=1/i,其中 ii 为当前的节点数目。因此,区域 Ω(x,Z)\Omega(x,Z) 在节点数为 ii 时被选中进行划分的概率分布满足 ξiBernoulli(p)\xi_i\sim Bernoulli(p)。此时,划分次数 ξi\xi_i 之和表示 Tm=i=1kξiT_m=\sum_{i=1}^k\xi_i

+

由于 TmT_m 的期望为 E[Tm]=i=1k1i\mathbb{E}[T_m]=\sum_{i=1}^k\frac{1}{i},根据调和级数的发散性,当 kk\rightarrow\inftyE[Tm]\mathbb{E}[T_m]\rightarrow\infty。因此,TmT_m\rightarrow\infty 必然依概率成立,从而证明了 Diam(Ω(x,Z))0Diam(\Omega(x,Z))\rightarrow 0

+

第7章:收敛率

+

编辑:赵志民

+
+

本章前言

+

本章的内容围绕学习理论中的算法收敛率(convergence rate)展开。具体来说,我们将探讨在确定性优化和随机优化中的收敛率问题,并在最后分析支持向量机的实例。

+

7.1 【概念解释】算法收敛率

+

在算法分析中,收敛率是指迭代算法逼近解或收敛到最优或期望结果的速度,它衡量算法在减少当前解与最优解之间差异的快慢。

+

{xk}\{x_k\} 是算法生成的迭代序列,我们可以根据以下公式来衡量算法的收敛率:

+

limt+xt+1xxtxp=C\begin{equation} +\lim_{t\rightarrow+\infty}\frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|^p} = C +\end{equation} +

+

其中,CC为收敛因子,pp为收敛阶数,xx^* 表示最优解,.\|.\| 表示适当的范数。

+

根据收敛率的不同情况,我们可以将其分类如下:

+
    +
  1. 超线性收敛p1p\ge1C=0C=0,表明每次迭代都会使得误差减小,且减小的速度越来越快。特别地,当p>1p\gt1时,称为pp阶收敛。例如,p=2p=2时称为平方收敛,p=3p=3时称为立方收敛。
  2. +
  3. 线性收敛p=1p=1C>0C\gt0,表明每次迭代都会使得误差减小(误差呈几何级数下降),但减小的速度是一定的。
  4. +
  5. 次线性收敛p=1p=1C=1C=1,表明每次迭代都会使得误差减小,但减小的速度越来越慢。
  6. +
+

7.2 【证明补充】凸函数的确定性优化

+

书中给出的梯度下降算法中,输出的是 TT 轮迭代的均值 ω\omega,而不是最后一次迭代的结果 ωT\omega_T。这是因为在凸函数的梯度下降过程中,所设定的步长 η\eta 是启发式的,因此每次迭代产生的 ω\omega' 无法保证是局部最优解。

+

根据定理7.1,TT 轮迭代的 ω\omega 均值具有次线性收敛率,而无法证明最后一次迭代值 ωT\omega_T 也具有相同的收敛率。因此,返回 ω\omega 的均值虽然会增加计算代价,但可以确保稳定的收敛率。这一思想在7.3.1和7.3.2中梯度下降算法中也有体现。

+

作为对比,在7.2.2中的强凸函数梯度下降算法中,我们只输出了最后一次迭代值 ωT\omega_T。这是因为在强凸函数的条件下,每次迭代的梯度更新都有闭式解 ωt+1=ωt1γf(ωt)\omega_{t+1}=\omega_t-\frac{1}{\gamma}\nabla f(\omega_t)。这种情况下,每次迭代无需启发式算法便可得到该临域的全局最优解,这也是此算法拥有更快收敛率(线性收敛率)的原因。因此,无需返回历史 ω\omega 的均值。

+

另外,在 139页 定理7.1的(7.12)推导中,利用了第一章补充内容 AM-GM 不等式 n=2n=2 的结论,即对于任意非负实数 x,yx,y,有:

+

xyx+y2\begin{equation} +\sqrt{xy}\le\frac{x+y}{2} +\end{equation} +

+

当且仅当 x=yx=y 时取等号。

+

因此,只有当 Γ22ηT=ηl22\frac{\Gamma^2}{2\eta T}=\frac{\eta l^2}{2} 时,公式(7.12)中 Γ22ηT+ηl22\frac{\Gamma^2}{2\eta T}+\frac{\eta l^2}{2} 才能取得最小值 lΓT\frac{l\Gamma}{\sqrt T},此时步长 η\eta 应设置为 ΓlT\frac{\Gamma}{l\sqrt T}。类似的推导可以在(7.35)和(7.39)中找到。

+

7.3 【证明补充】强凸函数的确定性优化

+

142页 中,在证明定理7.3时,对于(7.19)的推导补充如下。

+

首先,如果目标函数满足 λ\lambda-强凸且 γ\gamma-光滑,那么根据第一章补充内容中的结论,我们有 γλ\gamma\ge\lambda。这是因为对于任意 ω,ω\omega,\omega',光滑系数 γ\gamma 被定义为:

+

f(ω)f(ω)+f(ω)T(ωω)+γ2ωω2\begin{equation} +f(\omega)\le f(\omega')+\nabla f(\omega')^T(\omega-\omega')+\frac{\gamma}{2}\|\omega-\omega'\|^2 +\end{equation} +

+

而强凸系数 λ\lambda 被定义为:

+

f(ω)f(ω)+f(ω)T(ωω)+λ2ωω2\begin{equation} +f(\omega)\ge f(\omega')+\nabla f(\omega')^T(\omega-\omega')+\frac{\lambda}{2}\|\omega-\omega'\|^2 +\end{equation} +

+

光滑系数 γ\gamma 决定了 f(ω)f(\omega) 的上界,而强凸系数 λ\lambda 决定了 f(ω)f(\omega) 的下界,因此光滑系数 γ\gamma 不小于强凸系数 λ\lambda

+

接着,令 f(α)=γλλα2αf(\alpha)=\frac{\gamma-\lambda}{\lambda}\alpha^2-\alpha,由于 γλλ0\frac{\gamma-\lambda}{\lambda}\ge0,我们可以分成以下两种情况讨论:

+
    +
  1. γλλ=0\frac{\gamma-\lambda}{\lambda}=0 时,(7.19)转化为:
  2. +
+

f(ωt+1)minα[0,1]{f(ωt)α(f(ωt)f(ω))}f(ωt+1)f(ω)minα[0,1]{1α}(f(ωt)f(ω))\begin{equation} +\begin{align*} +f(\omega_{t+1})&\le \min_{\alpha\in[0,1]}\{f(\omega_t)-\alpha (f(\omega_t)-f(\omega^*))\} \\ +\Rightarrow f(\omega_{t+1})-f(\omega^*)&\le \min_{\alpha\in[0,1]}\{1-\alpha\}(f(\omega_t)-f(\omega^*)) +\end{align*} +\end{equation} +

+

因为 f(ωt)f(ω)0f(\omega_t)-f(\omega^*)\ge0,所以当且仅当 α=1\alpha=1 时,不等式右侧取得最小值 00,此时易知 f(ωt+1)=f(ω)f(\omega_{t+1})=f(\omega^*)。根据凸函数局部最优解等于全局最优解的结论,我们可以得到 ωt+1=ω\omega_{t+1}=\omega^*,即算法在第 t+1t+1 轮迭代中收敛到最优解。

+
    +
  1. γλλ>0\frac{\gamma-\lambda}{\lambda}\gt0 时,f(α)f(\alpha) 为开口向上的二次函数。令 f(α)=2γλλα1=0f'(\alpha)=2\frac{\gamma-\lambda}{\lambda}\alpha-1=0,得到 f(α)f(\alpha) 的对称轴为 α=λ2(γλ)\alpha=\frac{\lambda}{2(\gamma-\lambda)}。我们可以分成以下两种情况讨论: +
      +
    • λ2(γλ)1\frac{\lambda}{2(\gamma-\lambda)}\ge1 时,f(α)f(\alpha) 取得最小值只能在 α=1\alpha=1 处,故而得到(7.20)。
    • +
    • 0<λ2(γλ)<10\lt\frac{\lambda}{2(\gamma-\lambda)}\lt1 时,f(α)f(\alpha) 取得最小值在 α=λ2(γλ)\alpha=\frac{\lambda}{2(\gamma-\lambda)} 处,故而得到(7.21)。
    • +
    +
  2. +
+

余下的推导部分与书中相同,此处不再赘述。

+

7.4 【定理证明】鞅差序列的 Bernstein 不等式

+

149页 定理7.6 给出了鞅差序列的 Bernstein 不等式,我们在这里给出完整的证明过程。

+

假设 X1,,XnX_1,\cdots,X_n 是定义在 f=(fi)1inf = (f_i)_{1\le i \le n} 上的有界鞅差序列且 XiK|X_i| \le K,令:

+

Si=j=1iXj\begin{equation} +S_i = \sum_{j=1}^i X_j +\end{equation} +

+

XnX_n 的条件方差定义为:

+

Vn2=k=1nE[Xk2Fk1]\begin{equation} +V_n^2 = \sum_{k=1}^n \mathbb{E}[X_k^2|F_{k-1}] +\end{equation} +

+

那么对于任意正数 ttvv,有:

+

P(maxi=1,,kSi>t,Vk2v)exp(t22(v+Kt/3))\begin{equation} +P(\max_{i=1,\cdots,k} S_i \gt t,V_k^2 \le v) \le \exp\left( -\frac{t^2}{2(v+Kt/3)}\right) +\end{equation} +

+

证明

+

考虑函数 f(x)=(eθxθx1)/x2f(x) = (e^{\theta x} -\theta x-1)/x^2,且 f(0)=θ2/2f(0) = \theta^2/2。 +通过对该函数求导,我们知道该函数是非减的。即 f(x)f(1)f(x) \leq f(1),当 x1x \leq 1 时:

+

eθx=1+θx+x2f(x)1+θx+x2f(1)=1+θx+g(θ)x2,x1\begin{equation} +e^{\theta x} = 1 + \theta x + x^2f(x) \leq 1+\theta x+x^2f(1) = 1 + \theta x + g(\theta)x^2, \quad x \leq 1 +\end{equation} +

+

将其用于随机变量 Xk/KX_k/K 的期望,可得:

+

E[exp(θXkK)Fk1]1+θKE[XkFk1]+g(θ)K2E[Xk2Fk1]\begin{equation} +\mathbb{E} \left[\exp \left(\frac{\theta X_k}{K}\right) \bigg| \mathcal{F}_{k-1}\right] \leq 1 + \frac{\theta}{K} \mathbb{E} \left[X_k | \mathcal{F}_{k-1} \right] + \frac{g(\theta)}{K^2} \mathbb{E} \left[X_k^2 | \mathcal{F}_{k-1} \right] +\end{equation} +

+

由于 {Xk}\{X_k\} 是一个鞅差序列,我们有 E[XkFk1]=0\mathbb{E} \left[X_k | \mathcal{F}_{k-1} \right] = 0,结合 1+xex,x01+x \leq e^x, x \geq 0,我们得到:

+

E[exp(θXkK)Fk1]=1+g(θ)K2E[Xk2Fk1]exp(g(θ)E[Xk2Fk1]K2)\begin{equation} +\mathbb{E} \left[\exp \left(\frac{\theta X_k}{K}\right) \bigg| \mathcal{F}_{k-1}\right] = 1 + \frac{g(\theta)}{K^2} \mathbb{E} \left[X_k^2 | \mathcal{F}_{k-1} \right] \leq \exp \left(g(\theta) \frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2} \right) +\end{equation} +

+

考虑一个随机过程:

+

Qk=exp(θSkKg(θ)Vk2K2),Q0=1\begin{equation}Q_k = \exp \left(\theta \frac{S_k}{K} - g(\theta) \frac{V_k^2}{K^2}\right), \quad Q_0 = 1\end{equation} +

+

我们证明这个过程对于滤波 Fn\mathcal{F}_n 是一个超鞅,即 E[QkFk1]Qk1\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq Q_{k-1}

+

证明如下:

+

E[QkFk1]=E[exp(θSkKg(θ)Vk2K2)Fk1]=E[exp(θSk1Kg(θ)Vk12K2g(θ)E[Xk2Fk1]K2+θXkK)Fk1]=exp(θSk1Kg(θ)Vk12K2g(θ)E[Xk2Fk1]K2)E[exp(θXkK)Fk1]\begin{equation} +\begin{align*} +\mathbb{E} [Q_k|\mathcal{F}_{k-1}] &= \mathbb{E} \left[\exp \left(\theta \frac{S_k}{K} - g(\theta) \frac{V_k^2}{K^2}\right)\bigg|\mathcal{F}_{k-1}\right] \\ +&= \mathbb{E} \left[\exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2} - g(\theta)\frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2} + \theta \frac{X_k}{K}\right)\bigg|\mathcal{F}_{k-1}\right] \\ +&= \exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2} - g(\theta)\frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2}\right) \mathbb{E} \left[ \exp \left(\theta \frac{X_k}{K}\right)\bigg|\mathcal{F}_{k-1}\right] +\end{align*} +\end{equation} +

+

应用之前证明的不等式,我们得到:

+

E[QkFk1]exp(θSk1Kg(θ)Vk12K2)=Qk1\begin{equation}\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq \exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2}\right) = Q_{k-1}\end{equation} +

+

我们定义 A={k0:maxi=1,,kSi>t,Vk2v}A = \{k \geq 0: \max_{i=1,\cdots,k} S_i \gt t,V_k^2 \le v\},则有:

+

Qkexp(θtKg(θ)vK2),kA\begin{equation}Q_k\geq \exp \left(\theta \frac{t}{K} - g(\theta) \frac{v}{K^2}\right), k \in A\end{equation} +

+

由于 {Qk}\{Q_k\} 是超鞅,我们有:

+

E[QkFk1]E[Qk1Fk2]Q0=1\begin{equation}\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq \mathbb{E} [Q_{k-1}|\mathcal{F}_{k-2}] \leq \cdots \leq Q_0 = 1\end{equation} +

+

考虑到 1P(A)1 \geq \mathbb{P}(A),我们有:

+

1E[QkFk1]exp(θtKg(θ)vK2)P(A),kA\begin{equation}1 \geq \mathbb{E} [Q_k|\mathcal{F}_{k-1}] \geq \exp \left(\theta \frac{t}{K} - g(\theta) \frac{v}{K^2}\right) \mathbb{P}(A), k \in A\end{equation} +

+

因此:

+

P(A)exp(g(θ)vK2θtK)\begin{equation} +\begin{align*} +\mathbb{P}(A) \leq \exp \left(g(\theta) \frac{v}{K^2} -\theta \frac{t}{K} \right) +\end{align*} +\end{equation} +

+

由于上述不等式对任何 θ>0\theta \gt 0 都成立,我们可以写为:

+

P(A)infθ>0exp(g(θ)vK2θtK)\begin{equation}P(A) \leq \inf_{\theta \gt 0} \exp \left(g(\theta) \frac{v}{K^2} - \theta \frac{t}{K} \right)\end{equation} +

+

检查不等式右边的一阶导数,我们知道该下确界在 θ=log(1+Kt/v)\theta = \log (1+Kt/v) 处取得。

+

对于指数内部的表达式,我们进行如下变换:

+

θtKg(θ)vK2=log(1+Ktv)tKvK2(Ktvlog(1+Ktv))=vK2((1+Ktv)log(1+Ktv)Ktv)=vK2h(Ktv)\begin{equation} +\begin{align*} +\theta \frac{t}{K} - g(\theta)\frac{v}{K^2} &= \log \left(1 + \frac{Kt}{v}\right) \frac{t}{K} - \frac{v}{K^2} \left(\frac{Kt}{v} - \log \left(1 + \frac{Kt}{v}\right) \right) \\ +&=\frac{v}{K^2} \left( \left(1+\frac{Kt}{v} \right) \log \left(1 + \frac{Kt}{v}\right) - \frac{Kt}{v} \right) \\ +&= \frac{v}{K^2} h\left( \frac{Kt}{v} \right) +\end{align*} +\end{equation} +

+

其中 h(u)=(1+u)log(1+u)uh(u) = (1+u)\log(1+u) - u

+

通过对表达式求二阶导数的方法,我们也可以证明:

+

h(u)u22(1+u/3),u0\begin{equation} +h(u) \geq \frac{u^2}{2(1 + u/3)},\quad u \geq 0 +\end{equation} +

+

综上所述,我们有:

+

P(A)exp(vK2h(Ktv))exp(vK2K2t22v(v+Kt/3))=exp(t22(v+Kt/3))\begin{equation} +P(A) \leq \exp \left( -\frac{v}{K^2} h \left( \frac{Kt}{v} \right)\right) \leq \exp \left( - \frac{v}{K^2} \frac{K^2t^2}{2v (v+Kt/3)} \right) = \exp\left( -\frac{t^2}{2(v+Kt/3)}\right) +\end{equation} +

+

7.5 【证明补充】Epoch-GD 的收敛率

+

150页 引理7.2给出了Epoch-GD外层循环收敛率的泛化上界,我们对其中部分推导进行必要补充。

+

首先,(7.60)中第二个不等式的推导利用了Cauchy-Schwarz不等式(1.14),即 xTyxy\|x^Ty\|\le\|x\|\|y\|。这里,我们令 x=[1,,1]Tx=\underbrace{[1,\cdots,1]}_{T}y=[ω1w,,ωTw]Ty=\underbrace{[\|\omega_1-w^*\|,\cdots,\|\omega_T-w^*\|]}_{T},则有:

+

xTy=t=1TωtwTt=1Tωtw2=xy\begin{equation} +|x^Ty|=\sum_{t=1}^T\|\omega_t-w^*\|\le \sqrt{T}\sqrt{\sum_{t=1}^T\|\omega_t-w^*\|^2}=|x\|y| +\end{equation} +

+

其次,(7.62)中最后两个不等式的推导利用了一些常见的缩放技巧,我们在这里给出完整形式:

+

i=1mP(t=1Tδt24l2ATτ+234l2λτ+4l2λ,VT24l2AT,AT(4l2λ2T2i1,4l2λ2T2i))i=1mP(t=1Tδt24l2ATτ+234l2λτ,VT24l2AT,AT(4l2λ2T2i1,4l2λ2T2i))i=1mP(t=1Tδt216l42iλ2Tτ+234l2λτ,VT216l42iλ2T)i=1mP(maxj=1,,Tt=1jδtSj216l42iλ2Tντ+234l2λKτ,VT216l42iλ2Tν)i=1meτ=meτ\begin{equation} +\begin{align*} +&\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge 2\sqrt{4l^2A_T\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau+\frac{4l^2}{\lambda},V_T^2\le4l^2A_T,A_T\in\left(\frac{4l^2}{\lambda^2T}2^{i-1},\frac{4l^2}{\lambda^2T}2^i\right)\right) \\ +\le &\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge 2\sqrt{4l^2A_T\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau,V_T^2\le4l^2A_T,A_T\in\left(\frac{4l^2}{\lambda^2T}2^{i-1},\frac{4l^2}{\lambda^2T}2^i\right)\right) \\ +\le &\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge \sqrt{2\frac{16l^42^i}{\lambda^2T}\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau,V_T^2\le\frac{16l^42^i}{\lambda^2T}\right) \\ +\le &\sum_{i=1}^m P\left(\max_{j=1,\cdots,T}\underbrace{\sum_{t=1}^j \delta_t}_{S_j} \ge \sqrt{2\underbrace{\frac{16l^42^i}{\lambda^2T}}_{\nu}\tau}+\frac{2}{3}\underbrace{\frac{4l^2}{\lambda}}_{K}\tau,V_T^2\le\underbrace{\frac{16l^42^i}{\lambda^2T}}_{\nu}\right) \\ +\le &\sum_{i=1}^m e^{-\tau} \\ += &me^{-\tau} +\end{align*} +\end{equation} +

+

这里,第一个不等式利用了 4l2λ>0\frac{4l^2}{\lambda} \gt 0 的事实对 t=1Tδt\sum_{t=1}^T \delta_t 的范围进行概率缩放; +第二个不等式利用了 ATA_T 的下界和上界分别对 t=1Tδt\sum_{t=1}^T \delta_tVT2V_T^2 的范围进行概率缩放; +第三个不等式利用了 maxj=1,,Tt=1jδt\max_{j=1,\cdots,T}\sum_{t=1}^j \delta_tt=1Tδt\sum_{t=1}^T \delta_t 更为宽松的事实对 VT2V_T^2 进行概率缩放; +第四个不等式利用了定理7.6的结论。

+

最后,(7.64)中第二个不等式的推导利用了开口向下的二次函数 f(x)=ax2+bx+c,a<0f(x)=ax^2+bx+c,a\lt0 拥有最大值点 x0=b2ax_0=-\frac{b}{2a} 的事实。我们令 x=ATx=\sqrt{A_T},然后取 a=λ2,b=24l2lnmδ,c=0a=-\frac{\lambda}{2},b=2\sqrt{4l^2\ln\frac{m}{\delta}},c=0,则易知 f(x)f(x) 的最大值为 8l2λlnmδ\frac{8l^2}{\lambda}\ln\frac{m}{\delta},于是得到了(7.64)中的结论。

+

进一步地,152页引理7.3利用数学归纳法给出了特定步长和迭代次数下Epoch-GD外层循环收敛率的泛化上界,这为154页定理7.7中Epoch-GD的收敛率奠定了基础。我们对后者的部分推导进行必要补充。

+

首先,观察(7.75)可以发现,Epoch-GD外层的迭代次数 kk 需要满足 α2(2k1)T\frac{\alpha}{2}(2^k-1) \le T,即 k=log2(2Tα+1)k=\lfloor \log_2(\frac{2T}{\alpha}+1)\rfloor,因此构造了(7.66)中的 kk^{\dagger}

+

其次,(7.77)的推导利用了函数 f(x)=(11x)xf(x)=(1-\frac{1}{x})^xx=kδ>1x=\frac{k^{\dagger}}{\delta}\gt1 时单调递增的事实,以下是更严格的证明。

+

对函数 f(x)f(x) 两边取对数,得到:

+

lnf(x)=xln(11x)\begin{equation} +\ln f(x)=x\ln(1-\frac{1}{x}) +\end{equation} +

+

接着对两边分别求导,可得:

+

f(x)f(x)=ln(11x)+1x1\begin{equation} +\frac{f'(x)}{f(x)}=\ln(1-\frac{1}{x})+\frac{1}{x-1} +\end{equation} +

+

易知当 x>1x\gt1 时,f(x)>0f(x)\gt0,因此我们只需要关注等式右边在 x>1x\gt1 时的符号。 +令 g(x)=ln(11x)+1x1g(x)=\ln(1-\frac{1}{x})+\frac{1}{x-1},则有:

+

g(x)=1x(x1)2\begin{equation} +g'(x)=\frac{1}{x(x-1)^2} +\end{equation} +

+

易知当 x>1x\gt1 时,g(x)<0g'(x)\lt0,因此:

+

g(x)>limx+g(x)=limx+ln(11x)+limx+1x1=0\begin{equation} +g(x)\gt\lim_{x\rightarrow+\infty}g(x)=\lim_{x\rightarrow+\infty}\ln(1-\frac{1}{x})+\lim_{x\rightarrow+\infty}\frac{1}{x-1}=0 +\end{equation} +

+

综上,当 x>1x\gt1 时,f(x)f(x)=g(x)>0\frac{f'(x)}{f(x)}=g(x)\gt0,即 f(x)>0f'(x)\gt0,因此 f(x)f(x)x>1x\gt1 时单调递增。

+

第8章:遗憾界

+

编辑:赵志民,詹好

+
+

本章前言

+

本章的内容围绕学习理论中的遗憾(regret)概念展开(有的教材里也翻译为“悔”)。通常,我们使用超额风险(excess risk)来评估批量学习的分类器性能,而用遗憾来评估在线学习的分类器性能。二者的不同在于,前者衡量的是整个学习过程结束后所得到的分类器性能,可以理解为学习算法最终输出的模型与假设空间内最优模型的风险之差;而后者衡量的是算法运行过程中,所产生的模型与假设空间内最优模型的损失之差的

+

8.1 【概念解释】超额风险与遗憾的区别

+

8.1介绍了遗憾这一评估指标的基本概念,我们在此基础上梳理一下其与超额风险这一评估指标的区别。

+

超额风险这一评估指标被定义为:

+

ER=E(x,y)D[l(wT+1,(x,y))]minwWE(x,y)D[l(w,(x,y))]\begin{equation} +ER = \mathbb{E}_{(x,y)\sim D}[l(w_{T+1},(x,y))] - \min_{w \in W} \mathbb{E}_{(x,y)\sim D}[l(w,(x,y))] +\end{equation} +

+

其中,ERER 指的是excess risk,等式右边的前半部分 E(x,y)D[l(wT+1,(x,y))]\mathbb{E}_{(x,y)\sim D}[l(w_{T+1},(x,y))] 指的是模型 wT+1w_{T+1} 的风险,等式右边的后半部分 minwWE(x,y)D[l(w,(x,y))]\min_{w \in W} \mathbb{E}_{(x,y)\sim D}[l(w,(x,y))] 指的是假设空间内的最优模型的风险。值得注意的是,这里的评估是在整个数据集上进行的,也正是因为如此,我们必须要引入期望的操作。

+

而遗憾这一评估指标,被定义为:

+

regret=t=1Tft(wt)minwWt=1Tft(w)\begin{equation} +regret = \sum^{T}_{t=1}f_t(w_t)-\min_{w\in W}\sum^{T}_{t=1}f_t(w) +\end{equation} +

+

其中,ft(wt)f_t(w_t) 指的是:

+

t=1Tl(wt,(xt,yt))minwWt=1Tl(w,(xt,yt))\begin{equation} +\sum^{T}_{t=1}l(w_t,(x_t,y_t)) - \min_{w \in W}\sum^{T}_{t=1}l(w,(x_t,y_t)) +\end{equation} +

+

由于wtw_t的计算过程与样本(xt,yt)(x_t,y_t) 无关,而是与(x1,y1),...,(xt1,yt1)(x_1,y_1),...,(x_{t-1},y_{t-1}) 有关,因此可以直接使用 l(w,(xt,yt))l(w,(x_t,y_t)) 来衡量性能。

+

由此,我们可以总结出二者之间的两个主要区别:首先,超额风险引入了期望,而遗憾没有;其次,超额风险是在所有数据上进行的一次性计算,而遗憾是对多次损失的一个求和。同时,由于在线学习不依赖于任何分布假设,因此适用于非独立同分布样本或固定分布的情形。

+

8.2 【案例分享】Maler 算法

+

在8.2.3节的170页末尾,作者提到了Maler算法(multiple sub-algorithms and learning rates)(详细证明参考:Adaptivity and Optimality: A Universal Algorithm for Online Convex Optimization),这是一个能够自适应选择最优专家的在线学习算法,并在不同类型的损失函数上实现最优的遗憾界限:

+ +

下面,我们简要补充Maler算法的原理和实现。

+

假设和定义

+
    +
  1. +

    假设 1(梯度有界性):所有损失函数 ft(x)f_t(x) 的梯度被 GG 所有界:

    +

    t>0,maxxDft(x)G\begin{equation} +\forall t \gt 0, \quad \max_{x \in D} \|\nabla f_t(x)\| \leq G +\end{equation} +

    +
  2. +
  3. +

    假设 2(行动集的直径有界性):行动集 DD 的直径被 DD 所有界:

    +

    maxx1,x2Dx1x2D\begin{equation} +\max_{x_1, x_2 \in D} \|x_1 - x_2\| \leq D +\end{equation} +

    +
  4. +
  5. +

    定义 1(凸函数):函数 f:DRf : D \rightarrow \mathbb{R} 是凸的,如果:

    +

    f(x1)f(x2)+f(x2)(x1x2),x1,x2D\begin{equation} +f(x_1) \geq f(x_2) + \nabla f(x_2)^\top (x_1 - x_2), \quad \forall x_1, x_2 \in D +\end{equation} +

    +
  6. +
  7. +

    定义 2(强凸函数):函数 f:DRf : D \rightarrow \mathbb{R}λ\lambda-强凸的,如果:

    +

    f(x1)f(x2)+f(x2)(x1x2)+λ2x1x22,x1,x2D\begin{equation} +f(x_1) \geq f(x_2) + \nabla f(x_2)^\top (x_1 - x_2) + \frac{\lambda}{2} \|x_1 - x_2\|^2, \quad \forall x_1, x_2 \in D +\end{equation} +

    +
  8. +
  9. +

    定义 3(指数凹函数):函数 f:DRf : D \rightarrow \mathbb{R}α\alpha-指数凹的(简称 α\alpha-exp-concave),如果:

    +

    exp(αf(x))是凹的\begin{equation} +\exp(-\alpha f(x)) \text{是凹的} +\end{equation} +

    +
  10. +
+

元算法(Maler)

+

输入:学习率 ηc,η1,η2,\eta^c, \eta_1, \eta_2, \dots,专家的先验权重 π1c,π1η1,s,π1η2,s\pi_1^c, \pi_1^{\eta_1,s}, \pi_1^{\eta_2,s} \dots,以及 π1η1,l,π1η2,l,\pi_1^{\eta_1,l}, \pi_1^{\eta_2,l}, \dots

+
    +
  1. 对于每个回合 t=1,,Tt = 1, \dots, T +
      +
    • +

      从凸专家算法(专家 1)获取预测 xtcx^c_t,从指数凹专家算法(专家 2)和强凸专家算法(专家 3)分别获取 xtη,lx^{\eta, l}_txtη,sx^{\eta, s}_t

      +
    • +
    • +

      执行:

      +

      xt=πtcηcxtc+η(πtη,sηxtη,s+πtη,lηxtη,l)πtcηc+η(πtη,sη+πtη,lη)\begin{equation} +x_t = \frac{\pi^c_t \eta^c x^c_t + \sum_{\eta} (\pi^{\eta,s}_t \eta x^{\eta,s}_t + \pi^{\eta,l}_t \eta x^{\eta,l}_t)}{\pi^c_t \eta^c + \sum_{\eta} (\pi^{\eta,s}_t \eta + \pi^{\eta,l}_t \eta)} +\end{equation} +

      +
    • +
    • +

      观察梯度 gtg_t 并发送给所有专家算法。

      +
    • +
    • +

      对所有的 η\eta 更新权重:

      +

      πt+1c=πtcect(xtc)Φt,πt+1η,s=πtη,sestη(xtη,s)Φt,πt+1η,l=πtη,leltη(xtη,l)Φt\begin{equation} +\pi^c_{t+1} = \frac{\pi^c_t e^{-c_t(x^c_t)}}{\Phi_t}, \quad \pi^{\eta,s}_{t+1} = \frac{\pi^{\eta,s}_t e^{-s^{\eta}_t(x^{\eta,s}_t)}}{\Phi_t}, \quad \pi^{\eta,l}_{t+1} = \frac{\pi^{\eta,l}_t e^{-l^{\eta}_t(x^{\eta,l}_t)}}{\Phi_t} +\end{equation} +

      +

      其中:

      +

      Φt=η(πtη,sestη(xtη,s)+πtη,leltη(xtη,l))+πtcect(xtc)\begin{equation} +\Phi_t = \sum_{\eta} (\pi^{\eta,s}_t e^{-s^{\eta}_t(x^{\eta,s}_t)} + \pi^{\eta,l}_t e^{-l^{\eta}_t(x^{\eta,l}_t)} ) + \pi^c_t e^{-c_t(x^c_t)} +\end{equation} +

      +
    • +
    +
  2. +
+

凸专家算法(专家 1)

+
    +
  1. x1c=0x^c_1 = 0
  2. +
  3. 对于每个回合 t=1,,Tt = 1, \dots, T +
      +
    • xtcx^c_t 发送给元算法
    • +
    • 从元算法接收梯度 gtg_t
    • +
    • 更新:

      xt+1c=ΠDId(xtcDηcGtct(xtc))\begin{equation} +x^c_{t+1} = \Pi^{I_d}_D (x^c_t - \frac{D}{\eta^c G \sqrt{t}} \nabla c_t(x^c_t)) +\end{equation} +

      +其中 ct(xtc)=ηcgt\nabla c_t(x^c_t) = \eta^c g_t
    • +
    +
  4. +
+

指数凹专家算法(专家 2)

+
    +
  1. 输入:学习率 η\eta
  2. +
  3. x1η,l=0,β=12min{14GlD,1},Gl=725D,Σ1=1β2D2Idx^{\eta,l}_1 = 0, \beta = \frac{1}{2} \min\{\frac{1}{4G^l D}, 1\}, G^l = \frac{7}{25D}, \Sigma_1 = \frac{1}{\beta^2 D^2}I_d
  4. +
  5. 对于每个回合 t=1,,Tt = 1, \dots, T +
      +
    • xtη,lx^{\eta,l}_t 发送给元算法
    • +
    • 从元算法接收梯度 gtg_t
    • +
    • 更新:

      Σt+1=Σt+ltη(xtη,l)ltη(xtη,l)xt+1η,l=ΠDΣt+1(xtη,l1βΣt+11ltη(xtη,l))\begin{equation} +\begin{align*} +\Sigma_{t+1} &= \Sigma_t + \nabla l^{\eta}_t(x^{\eta,l}_t) \nabla l^{\eta}_t(x^{\eta,l}_t)^\top \\ +x^{\eta,l}_{t+1} &= \Pi^{\Sigma_{t+1}}_D (x^{\eta,l}_t - \frac{1}{\beta} \Sigma_{t+1}^{-1} \nabla l^{\eta}_t(x^{\eta,l}_t)) \\ +\end{align*} +\end{equation} +

      +其中 ltη(xtη,l)=ηgt+2η2gtgt(xtη,lxt)\nabla l^{\eta}_t(x^{\eta,l}_t) = \eta g_t + 2 \eta^2 g_t g_t^\top (x^{\eta,l}_t - x_t)
    • +
    +
  6. +
+

强凸专家算法(专家 3)

+
    +
  1. 输入:学习率 η\eta
  2. +
  3. x1η,s=0x^{\eta,s}_1 = 0
  4. +
  5. 对于每个回合 t=1,,Tt = 1, \dots, T +
      +
    • xtη,sx^{\eta,s}_t 发送给元算法
    • +
    • 从元算法接收梯度 gtg_t
    • +
    • 更新:

      xt+1η,s=ΠDId(xtη,s12η2G2tstη(xtη,s))\begin{equation} +x^{\eta,s}_{t+1} = \Pi^{I_d}_D (x^{\eta,s}_t - \frac{1}{2\eta^2 G^2 t} \nabla s^{\eta}_t(x^{\eta,s}_t)) +\end{equation} +

      +其中 stη(xtη,s)=ηgt+2η2G2(xtη,sxt)\nabla s^{\eta}_t(x^{\eta,s}_t) = \eta g_t + 2 \eta^2 G^2 (x^{\eta,s}_t - x_t)
    • +
    +
  6. +
+

8.3 【证明补充】随机多臂赌博机的遗憾界

+

172页中定理8.3给出了随机多臂赌博机的遗憾界,我们在此基础上对公式(8.42)至(8.47)证明过程进行补充。

+

首先,(8.42)给出当μ(p)+2lntpμi(q)+2lntq\overline{\mu}_*(p)+\sqrt{\frac{2\ln t}{p}}\le\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}}成立时,必然有三种可能情况中的一种成立。但这三种情况并不是互斥的,因此显得不直观,这里将第二种情况做了细微调整,即:

+

μ(p)+2lntpμ,μμi(q)+2lntq,μi(q)+2lntqμi(p)\begin{equation} +\overline{\mu}_*(p)+\sqrt{\frac{2\ln t}{p}}\le\mu_*,\mu_*\le\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}},\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}}\le\overline{\mu}_i(p) +\end{equation} +

+

此时,构造(8.44)和(8.45)的逻辑更加顺畅。我们令l=(2lnT)/Δi2l=\lceil(2\ln T)/\Delta_i^2\rceil,则(8.45)转化为:

+

P(μμi+2lntq)=0,ql\begin{equation} +P(\mu_*\le\mu_i+\sqrt{\frac{2\ln t}{q}})=0,q\ge l +\end{equation} +

+

代入(8.44),可得:

+

E[niT]2lnTΔi2+2t=1T1p=1t1q=lt1t42lnTΔi2+1+2t=1T1p=1tq=1tt42lnTΔi2+1+2limT+t=1T1t2\begin{equation} +\begin{align*} +\mathbb{E}[n_i^T]&\le\lceil\frac{2\ln T}{\Delta_i^2}\rceil+2\sum_{t=1}^{T-1}\sum_{p=1}^{t-1}\sum_{q=l}^{t-1}t^{-4} \\ +&\le\frac{2\ln T}{\Delta_i^2}+1+2\sum_{t=1}^{T-1}\sum_{p=1}^{t}\sum_{q=1}^{t}t^{-4} \\ +&\le\frac{2\ln T}{\Delta_i^2}+1+2\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2} +\end{align*} +\end{equation} +

+

根据pp-级数判别法,当p=2>1p=2\gt1时,级数收敛,因此limT+t=1T1t2\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}是有界的。至于该级数的具体值,对定理的结论没有影响,因此我们可以将其视为一个常数,然后带入后续推导中。为了证明的完整性,我们对此进行简要说明。

+

limT+t=1T1t2\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}的取值在数学界被称为Basel问题,推导过程涉及诸多前置定理,感兴趣的读者可以查看这个讲义:The Basel Problem - Numerous Proofs。此处提供另一种在微积分变换中常见的缩放方法:

+

t=1T1t21+1T11x2dx=1+(1x)1T1=21T\begin{equation} +\begin{align*} +\sum_{t=1}^{T-1}t^{-2}&\le1+\int_{1}^{T-1}\frac{1}{x^2}dx \\ +&=1+(-\frac{1}{x})|_1^{T-1} \\ +&=2-\frac{1}{T} +\end{align*} +\end{equation} +

+

对不等式两边同时取极限,可得:

+

limT+t=1T1t22\begin{equation} +\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}\le2 +\end{equation} +

+

代入(8.46),同样可得类似(8.47)的结论。

+

这里继续沿用书中给出的limT+t=1Tt2=π26\lim_{T\rightarrow+\infty}\sum_{t=1}^{T}t^{-2}=\frac{\pi^2}{6},代入(8.46)得到遗憾界(8.47):

+

E[regret]i=1K2lnTΔi2+O(1)\begin{equation} +\mathbb{E}[regret]\le\sum_{i=1}^{K}\frac{2\ln T}{\Delta_i^2}+O(1) +\end{equation} +

+

此时(8.46)变为:

+

E[niT]iK2lnTΔi+(1+π23)Δi=O(KlogT)\begin{equation} +\mathbb{E}[n_i^T]\le\sum_{i\neq*}^K\frac{2\ln T}{\Delta_i}+(1+\frac{\pi^2}{3}){\Delta_i}=O(K\log T) +\end{equation} +

+

观察(8.47)可知,求和公式中的每一项符合对钩函数的构造,即:

+

f(x)=Ax+Bx,x>0,A>0,B>0\begin{equation} +f(x)=Ax+\frac{B}{x},x\gt0,A\gt0,B\gt0 +\end{equation} +

+

这里x=Δi,A=1+π23,B=2lnTx=\Delta_i,A=1+\frac{\pi^2}{3},B=2\ln T,因此无论Δi\Delta_i过大或过小时,都会导致遗憾界的上界变大。另外,遗憾界跟摇臂的个数KK呈线性关系,当KK越大时,遗憾界也越大。

+

8.4 【概念解释】线性赌博机

+

176页的8.3.2节介绍了线性赌博机的概念,我们在此基础上对参数估计部分进行补充。

+

为了估计线性赌博机的参数,我们将原问题转化为岭回归问题,即(8.52):

+

f(w)=(YwTX)T(YwTX)+λwTw\begin{equation} +f(w)=(Y-w^T X)^T(Y-w^T X)+\lambda w^T w +\end{equation} +

+

为了求得最优解ww^*,我们令f(w)=0f'(w)=0,可推导出(8.53):

+

f(w)w=2XT(YwTX)+2λw=0XTY=(XTX+λI)ww=(XTX+λI)1XTY\begin{equation} +\begin{align*} +\frac{\partial f(w)}{\partial w} = -2X^T(Y-w^T X)+2\lambda w &= 0 \\ +\rightarrow X^TY &= (X^TX + \lambda I)w \\ +\rightarrow w^* &= (X^TX + \lambda I)^{-1}X^TY +\end{align*} +\end{equation} +

+

相比于每次传入新数据(xt,yt)(x_t,y_t)时从头计算wtw_t,这里巧妙地利用了 Sherman-Morrison-Woodbury 公式将任何形如(A+uvT)1(A+uv^T)^{-1}的矩阵逆转化为可逆矩阵AA和列向量u,vu,v之间的运算,在O(d2)O(d^2)的时间复杂度内完成参数的更新。

+

8.5 【证明补充】Sherman-Morrison-Woodbury (或 Woodbury) 公式

+

177页的 Sherman-Morrison-Woodbury 公式变种是矩阵求逆中的一个重要工具,它可以通过已知矩阵的逆来快速计算被低秩修正的矩阵的逆。

+

该公式如下所示:

+

(A+UCV)1=A1A1U(C1+VA1U)1VA1\begin{equation} +(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1} +\end{equation} +

+

其中,A 是一个 n×nn \times n 的矩阵,C 是 k×kk \times k 的矩阵,U 和 V 是 n×kn \times k 的矩阵,(8.54)中CC为单位矩阵。

+

证明

+

该公式可以通过验证 A+UCVA + UCV 与其假设的逆(公式右侧)的乘积是否为单位矩阵来证明。我们对以下乘积进行计算:

+

(A+UCV)[A1A1U(C1+VA1U)1VA1]\begin{equation} +(A + UCV) [ A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U )^{-1} VA^{-1} ] +\end{equation} +

+

逐步推导如下:

+

={I+UCVA1}{U(C1+VA1U)1VA1+UCVA1U(C1+VA1U)1VA1}=I+UCVA1(U+UCVA1U)(C1+VA1U)1VA1=I+UCVA1UC(C1+VA1U)(C1+VA1U)1VA1=I+UCVA1UCVA1=I\begin{equation} +\begin{align*} +=& \{ I + UCVA^{-1} \} - \{ U (C^{-1} + VA^{-1}U )^{-1}VA^{-1} + UCVA^{-1}U (C^{-1} + VA^{-1}U )^{-1} VA^{-1} \} \\ +=& I + UCVA^{-1} - (U + UCVA^{-1}U ) (C^{-1} + VA^{-1}U )^{-1}VA^{-1} \\ +=& I + UCVA^{-1} - UC (C^{-1} + VA^{-1}U) (C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ +=& I + UCVA^{-1} - UCVA^{-1} \\ +=& I +\end{align*} +\end{equation} +

+

8.6 【证明补充】单样本的近似梯度

+

第181页的引理8.2给出了单样本条件下的梯度近似公式,本节将提供该引理的完整证明过程。

+

EuS[f(x+δu)u]=δdEvB[f(x+δv)]\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\delta}{d}\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +

+

其中:

+ +

证明

+

为了证明上述等式,我们将分三个步骤进行推导。

+

1. 表达左边的期望

+

首先,考虑左边的期望:

+

EuS[f(x+δu)u]=1Vold1(S)Sf(x+δu)udS(u)\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\mathbb{S})} \int_{\mathbb{S}} f(x + \delta u) u \, dS(u) +\end{equation} +

+

其中,Vold1(S)\text{Vol}_{d-1}(\mathbb{S}) 表示 (d1)(d-1) 维单位球面的体积,dS(u)dS(u) 为球面上的微分面积元素。

+

进行变量替换,令 w=δuw = \delta u。此时:

+ +

将变量替换代入期望的表达式:

+

EuS[f(x+δu)u]=1Vold1(S)Sf(x+δu)udS(u)=1Vold1(S)δd1δSf(x+w)wδdS(w)\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\mathbb{S})} \int_{\mathbb{S}} f(x + \delta u) u \, dS(u) = \frac{1}{\text{Vol}_{d-1}(\mathbb{S}) \cdot \delta^{d-1}} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\delta} \, dS(w) +\end{equation} +

+

简化后得到:

+

EuS[f(x+δu)u]=1Vold1(δS)δSf(x+w)wwdS(w)\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\delta \mathbb{S})} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\|w\|} \, dS(w) +\end{equation} +

+

2. 表达右边的期望及其梯度

+

接下来,考虑右边的期望:

+

EvB[f(x+δv)]=1Vold(B)Bf(x+δv)dv\begin{equation} +\mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\mathbb{B})} \int_{\mathbb{B}} f(x + \delta v) \, dv +\end{equation} +

+

其中,Vold(B)\text{Vol}_d(\mathbb{B}) 表示 dd 维单位球的体积,dvdv 为体积上的微分元素。

+

同样进行变量替换,令 w=δvw = \delta v。则:

+ +

代入后得到:

+

EvB[f(x+δv)]=1Vold(B)δdδBf(x+w)dw=1Vold(δB)δBf(x+w)dw\begin{equation} +\mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\mathbb{B}) \cdot \delta^d} \int_{\delta \mathbb{B}} f(x + w) \, dw = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} f(x + w) \, dw +\end{equation} +

+

为了计算 EvB[f(x+δv)]\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)],令:

+

F(x)=EvB[f(x+δv)]=1Vold(δB)δBf(x+w)dw\begin{equation} +F(x) = \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} f(x + w) \, dw +\end{equation} +

+

梯度作用在积分上,由于 xxww 是独立变量,可以将梯度算子移入积分内部:

+

F(x)=1Vold(δB)δBxf(x+w)dw\begin{equation} +\nabla F(x) = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} \nabla_x f(x + w) \, dw +\end{equation} +

+

注意到:

+

xf(x+w)=wf(x+w)\begin{equation} +\nabla_x f(x + w) = \nabla_w f(x + w) +\end{equation} +

+

这是因为 xxww 的关系是通过相加连接的,故梯度对 xx 的作用等同于对 ww 的作用。

+

根据散度定理,有:

+

δBwf(x+w)dw=δSf(x+w)n(w)dS(w)\begin{equation} +\int_{\delta \mathbb{B}} \nabla_w f(x + w) \, dw = \int_{\delta \mathbb{S}} f(x + w) n(w) \, dS(w) +\end{equation} +

+

其中,δS\delta \mathbb{S} 是半径为 δ\delta 的球面,n(w)n(w) 为点 ww 处的单位外法向量。因此:

+

F(x)=1Vold(δB)δSf(x+w)wwdS(w)\begin{equation} +\nabla F(x) = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\|w\|} \, dS(w) +\end{equation} +

+

3. 关联两边的表达式

+

将步骤 1 和步骤 2 的结果进行对比,可以得到:

+

EuS[f(x+δu)u]=Vold(δB)Vold1(δS)EvB[f(x+δv)]\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\text{Vol}_d(\delta \mathbb{B})}{\text{Vol}_{d-1}(\delta \mathbb{S})} \nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +

+

为了确定系数,我们需要利用 dd 维球的体积与表面积之间的关系。

+

dd 维球的体积与半径 δ\delta 的关系为:

+

Vold(δB)=δdVold(B)\begin{equation} +\text{Vol}_d(\delta \mathbb{B}) = \delta^d \cdot \text{Vol}_d(\mathbb{B}) +\end{equation} +

+

而球面的表面积与半径 δ\delta 的关系为:

+

Vold1(δS)=δd1Vold1(S)\begin{equation} +\text{Vol}_{d-1}(\delta \mathbb{S}) = \delta^{d-1} \cdot \text{Vol}_{d-1}(\mathbb{S}) +\end{equation} +

+

结合这两个关系,可以得到:

+

Vold(δB)=0δVold1(rS)dr=0δVold1(S)rd1dr=Vold1(S)δdd=δdVold1(δS)\begin{equation} +\text{Vol}_d(\delta \mathbb{B}) = \int_0^{\delta} \text{Vol}_{d-1}(\mathbb{rS}) \, dr = \int_0^{\delta} \text{Vol}_{d-1}(\mathbb{S}) \, r^{d-1} \, dr = \frac{\text{Vol}_{d-1}(\mathbb{S}) \cdot \delta^{d}}{d} = \frac{\delta}{d} \cdot \text{Vol}_{d-1}(\delta \mathbb{S}) +\end{equation} +

+

带入上述等式中,得证:

+

EuS[f(x+δu)u]=δdEvB[f(x+δv)]\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\delta}{d}\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +

+

8.7 【证明补充】凸赌博机的在线梯度下降

+

182页中引理8.3给出了凸赌博机的随机版本在线梯度下降,我们在此给出完整的证明过程。

+

f1,f2,,fT:WRf_1, f_2, \dots, f_T: W \to \mathbb{R} 为一列凸且可微的函数,ω1,ω2,,ωTW\omega_1, \omega_2, \dots, \omega_T \in W 的定义满足 ω1\omega_1 为任意选取的点,且 ωt+1=ΠW(ωtηgt)\omega_{t+1} = \Pi_W(\omega_t − \eta g_t),其中 η>0\eta \gt 0,且 g1,,gTg_1, \dots, g_T 是满足 E[gtωt]=ft(ωt)\mathbb{E}[g_t|\omega_t] = \nabla f_t(\omega_t) 的随机向量变量,且 gtl\|g_t\| \leq l,其中 l>0l \gt 0。则当 η=ΛlT\eta = \frac{\Lambda}{l\sqrt{T}} 时,有:

+

t=1TE[ft(ωt)]minωWt=1Tft(ω)lΛT\begin{equation} +\sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t)] - \min_{\omega \in W} \sum_{t=1}^{T} f_t(\omega) \le l\Lambda \sqrt{T} +\end{equation} +

+

证明:
+设 ω\omega^\star 为在 WW 中使 t=1Tft(ω)\sum_{t=1}^{T} f_t(\omega) 最小化的点。由于 ftf_t 是凸且可微的,我们可以使用梯度界定 ft(ωt)f_t(\omega_t)ft(ω)f_t(\omega^\star) 之间的差异:

+

ft(ω)ft(ωt)ft(ωt)(ωωt)=E[gtωt](ωωt)\begin{equation} +f_t(\omega^\star) - f_t(\omega_t) \ge \nabla f_t(\omega_t)^\top (\omega^\star − \omega_t) = \mathbb{E}[g_t|\omega_t]^\top (\omega^\star − \omega_t) +\end{equation} +

+

对该不等式取期望,得到:

+

E[ft(ωt)ft(ω)]E[gt(ωtω)]\begin{equation} +\mathbb{E}[f_t(\omega_t) − f_t(\omega^\star)] \leq \mathbb{E}[g_t^\top (\omega_t − \omega^\star)] +\end{equation} +

+

我们使用 ωtω2\|\omega_t − \omega^\star\|^2 作为潜在函数。注意到 ΠW(ω)ωωω\|\Pi_W(\omega) − \omega^\star\| \leq \|\omega − \omega^\star\|,因此:

+

ωt+1ω2=ΠW(ωtηgt)ω2ωtηgtω2=ωtω2+η2gt22η(ωtω)gtωtω2+η2l22η(ωtω)gt\begin{equation} +\begin{align*} +\|\omega_{t+1} − \omega^\star\|^2 &= \|\Pi_W(\omega_t − \eta g_t) − \omega^\star\|^2 \\ +&\leq \|\omega_t − \eta g_t − \omega^\star\|^2 \\ +&= \|\omega_t − \omega^\star\|^2 + \eta^2 \|g_t\|^2 − 2\eta (\omega_t − \omega^\star)^\top g_t \\ +&\leq \|\omega_t − \omega^\star\|^2 + \eta^2 l^2 − 2\eta (\omega_t − \omega^\star)^\top g_t +\end{align*} +\end{equation} +

+

整理后得到:

+

gt(ωtω)ωtω2ωt+1ω2+η2l22η\begin{equation} +g_t^\top (\omega_t − \omega^\star) \leq \frac{\|\omega_t − \omega^\star\|^2 − \|\omega_{t+1} − \omega^\star\|^2 + \eta^2 l^2}{2\eta} +\end{equation} +

+

因此,我们有:

+

t=1TE[ft(ωt)]t=1Tft(ω)=t=1TE[ft(ωt)ft(ω)]t=1TE[gt(ωtω)]t=1TE[ωtω2ωt+1ω2+η2l22η]=E[ω1ω2]E[ωT+1ω2]2η+Tηl22E[ω1ω2]2η+Tηl22Λ22η+Tηl22\begin{equation} +\begin{align*} +\sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t)] − \sum_{t=1}^{T} f_t(\omega^\star) &= \sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t) − f_t(\omega^\star)] \\ +&\leq \sum_{t=1}^{T} \mathbb{E}[g_t^\top (\omega_t − \omega^\star)] \\ +&\leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{\|\omega_t − \omega^\star\|^2 − \|\omega_{t+1} − \omega^\star\|^2 + \eta^2 l^2}{2\eta}\right] \\ +&= \frac{\mathbb{E}[\|\omega_1 − \omega^\star\|^2] - \mathbb{E}[\|\omega_{T+1} − \omega^\star\|^2]}{2\eta} + \frac{T \eta l^2}{2} \\ +&\le \frac{\mathbb{E}[\|\omega_1 − \omega^\star\|^2]}{2\eta} + \frac{T \eta l^2}{2} \\ +&\le \frac{\Lambda^2}{2\eta} + \frac{T \eta l^2}{2} +\end{align*} +\end{equation} +

+

代入 η=ΛlT\eta = \frac{\Lambda}{l\sqrt{T}} 可得最终结果。

+

8.8 【证明补充】凸赌博机的缩减投影误差

+

182页中引理8.4给出了凸赌博机的缩减投影误差,我们在此给出完整的证明过程。

+

f1,f2,,fT:WRf_1, f_2, \dots, f_T: W \to \mathbb{R} 为一列凸且可微的函数且 ωW,i[T]\forall \omega \in W,i \in [T] 满足 fi(ω)c|f_i(\omega)| \le c,有:

+

minω(1α)Wt=1Tft(ω)minωWt=1Tft(ω)2αcT\begin{equation} +\min_{\omega \in (1−\alpha)W} \sum_{t=1}^T f_t(\omega) - \min_{\omega \in W} \sum_{t=1}^T f_t(\omega) \leq 2\alpha cT +\end{equation} +

+

证明

+

显然,(1α)WW(1−\alpha)W \subseteq W。因此,有:

+

minω(1α)Wt=1Tft(ω)=minωWt=1Tft((1α)ω)\begin{equation} +\min_{\omega \in (1−\alpha)W} \sum_{t=1}^T f_t(\omega) = \min_{\omega \in W} \sum_{t=1}^T f_t((1−\alpha)\omega) +\end{equation} +

+

由于每个ftf_t是凸函数,且0W0 \in W,则我们有:

+

minωWt=1Tft((1α)ω)minωWt=1Tαft(0)+(1α)ft(ω)=minωWt=1Tα(ft(0)ft(ω))+ft(ω)\begin{equation} +\begin{align*} +\min_{\omega \in W} \sum_{t=1}^T f_t((1−\alpha)\omega) &\leq \min_{\omega \in W} \sum_{t=1}^T \alpha f_t(0) + (1−\alpha) f_t(\omega) \\ +&= \min_{\omega \in W} \sum_{t=1}^T \alpha (f_t(0) − f_t(\omega)) + f_t(\omega) +\end{align*} +\end{equation} +

+

最后,由于对于任意ωW\omega \in Wt{1,,T}t \in \{1, \dots, T\},我们有ft(ω)c|f_t(\omega)| \leq c,因此可以得出:

+

t=1TminωWα(ft(0)ft(ω))+ft(ω)minωWt=1T2αc+ft(ω)=2αcT+minωWt=1Tft(ω)\begin{equation} +\begin{align*} +\sum_{t=1}^{T} \min_{\omega \in W} \alpha (f_t(0) − f_t(\omega)) + f_t(\omega) &\leq \min_{\omega \in W}\sum_{t=1}^{T} 2\alpha c + f_t(\omega) \\ +&= 2\alpha cT + \min_{\omega \in W} \sum_{t=1}^{T} f_t(\omega) +\end{align*} +\end{equation} +

+

进行适当移项即可得原不等式。

+

8.9 【证明补充】凸赌博机的遗憾界

+

182页中定理8.5给出了凸赌博机的遗憾界,在证明开始时,作者对η,α,δ\eta,\alpha,\delta的取值进行了限定。我们可以发现这些取值不是很直观,证明给出的解释也较为分散,部分取值与证明略有出入,因此我们在此进行补充。

+

对于步长η\eta,在缩放(8.87)中 E[t=1Tf^t(zt)]minw(1α)Wt=1Tf^t(w)\mathbb{E}[\sum_{t=1}^T\hat f_t(z_t)]-\min_{w\in(1-\alpha)\mathcal{W}}\sum_{t=1}^T\hat f_t(w) 时,为使用引理8.3创造条件,因此采用步长η=ΛlT\eta=\frac{\Lambda}{l'\sqrt{T}}。根据(8.89)的推导,我们可令Λ=Λ2\Lambda=\Lambda_2l=dcδl'=\frac{dc}{\delta},此时,将η=Λ2(dc/δ)T\eta=\frac{\Lambda_2}{(dc/\delta)\sqrt T}带入到更新公式(8.76)中即可得到(8.88)。

+

对于缩减系数α\alpha与扰动系数δ\delta,可以一同考虑这两个系数的取值。观察(8.91)第一个不等式的形式,我们发现这是一个关于δ\delta的对钩函数:

+

f(δ)=Aδ+Bδ+C\begin{equation} +f(\delta)=A\delta+\frac{B}{\delta}+C +\end{equation} +

+

假设α\alpha的取值与δ\delta无关,那么:

+

A=3lT,B=dcΛ2T,C=2αcT\begin{equation} +A=3lT,B=dc\Lambda_2\sqrt T,C=2\alpha cT +\end{equation} +

+

f(δ)=0f'(\delta)=0,可得:

+

δ=T1/4dcΛ23l\begin{equation} +\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_2}{3l}} +\end{equation} +

+

此时,f(δ)f(\delta)的最小值为:

+

f(δ)=O(T3/4)\begin{equation} +f(\delta^*)=O(T^{3/4}) +\end{equation} +

+

如果我们想加速收敛,则可将α\alpha的取值与δ\delta相关联。根据上面的结论,当迭代次数TT足够大时,必然有δ0\delta\rightarrow0。因此,不妨取α=δΛ1\alpha=\frac{\delta}{\Lambda_1},代入(8.91)中并利用对钩函数f(δ)f(\delta)的性质,得到:

+

δ=T1/4dcΛ1Λ23(lΛ1+c)f(δ)=O(T3/4)\begin{equation} +\begin{align*} +&\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_1\Lambda_2}{3(l\Lambda_1+c)}} \\ +&f(\delta^*)=O(T^{3/4}) +\end{align*} +\end{equation} +

+

进一步地,可以发现,δ\delta^*的取值并不唯一,这是因为(8.91)的第二个不等式缩放并非必需。如果取δ=T1/4dcΛ1Λ23lΛ1+2c\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_1\Lambda_2}{3l\Lambda_1+2c}},同样可以得到更紧致的遗憾界,并保证定理的结论不变。

+

附录

+

编辑:赵志民, 李一飞

+
+

范数

+

范数(norm)是数学中用于为向量空间中的每个非零向量分配严格正长度或大小的函数。几何上,范数可理解为向量的长度或大小。例如,绝对值是实数集上的一种范数。与之相对的是半范数(seminorm),它可以将非零向量赋予零长度。

+

向量空间上的半范数需满足以下条件:

+
    +
  1. 半正定性(非负性):任何向量的范数总是非负的,对于任意向量 vvv0\|v\| \geq 0
  2. +
  3. 可伸缩性(齐次性):对于任意标量 aa 和任何向量 vv,标量乘法 avav 的范数等于标量的绝对值乘以向量的范数,即 av=av\|av\| = |a|\|v\|
  4. +
  5. 次可加性(三角不等式):对于任何向量 vvww,向量和 u=v+wu=v+w 的范数小于或等于向量 vvww 的范数之和,即 v+wv+w\|v+w\| \leq \|v\| + \|w\|
  6. +
+

范数在具备上述半范数特性的基础上,还要求:对于任意向量 vv,若 v=0\|v\|=0,则 vv 必须为零向量。换句话说,所有范数都是半范数,但它们可以将非零向量与零向量区分开来。

+

常用的向量范数包括:

+
    +
  1. 0\ell_0 范数:向量 xx 中非零元素的个数,表示为 x0=i=1nI(xi0)\|x\|_0=\sum_{i=1}^n \mathbb{I}(x_i\neq 0)
  2. +
  3. 1\ell_1 范数:向量 xx 中各元素绝对值之和,表示为 x1=i=1nxi\|x\|_1=\sum_{i=1}^n |x_i|
  4. +
  5. 2\ell_2 范数(欧几里得范数):向量 xx 各元素绝对值的平方和再开平方,表示为 x2=i=1nxi2\|x\|_2=\sqrt{\sum_{i=1}^n x_i^2}
  6. +
  7. p\ell_p 范数:向量 xx 各元素绝对值的 pp 次方和再开 pp 次方,表示为 xp=(i=1nxip)1p\|x\|_p=(\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}
  8. +
  9. \ell_\infty 范数(极大范数):向量 xx 中各元素绝对值的最大值,表示为 x=maxi=1,,nxi\|x\|_\infty=\max_{i=1,\cdots,n} |x_i|
  10. +
  11. 加权范数:设 AAnn 阶 Hermite 正定矩阵,则向量 xx 的加权范数定义为 xA=xTAx\|x\|_A=\sqrt{x^T A x}。此类范数在本书第 8.3.2 和 8.4.2 节中经常使用。
  12. +
+

凸集合

+

凸集合(convex set)是向量空间(如欧几里得空间)中的一个子集,对于集合中的任意两点,连接它们的线段完全位于该集合内。换句话说,若一个集合包含了连接集合内任意两点的线段上的所有点,则该集合是凸集合。

+

形式化地说,考虑向量空间 V\mathcal{V}。若对于该空间中的任意两点 xxyy,以及满足 α[0,1]\alpha\in[0,1] 的任意标量 α\alpha,点 αx+(1α)y\alpha x+(1-\alpha)y 也属于 D\mathcal{D},那么集合 DV\mathcal{D}\subseteq\mathcal{V} 是凸集合。

+

凸集合具有非扩张性(non-expansiveness),即对于集合内的任意两点,连接这两点的线段完全包含在集合内。这种性质使得凸集合在许多数学环境中易于处理,特别是在优化问题中:在凸集合中找到的最小值或最大值必为全局值,没有局部最小值或最大值,从而简化了搜索过程。

+

不仅凸集合具有非扩张性,映射到凸集合的投影操作也是非扩张的,即两点在凸集合上的投影之间的距离不大于两点本身之间的距离。形式上,对于闭合凸集合 KRDK\subseteq\mathbb{R}^D,投影算子 Π:RDK\Pi:\mathbb{R}^D\rightarrow K 定义为:

+

Π(x)=argminyKxy2\begin{equation} +\Pi(x)=\arg \min_{y\in K} \| x-y\|_2 +\end{equation} +

+

即将一个向量映射到最接近它的凸集合中的点。投影算子 Π\Pi2\ell_2 范数下是非扩张的,即对于任意 x,xRDx,x'\in\mathbb{R}^D,有:

+

Π(x)Π(x)2xx2\begin{equation} +\| \Pi(x) - \Pi(x')\|_2 \leq \| x - x'\|_2 +\end{equation} +

+

该性质证明如下:
+令 y=Π(x)y=\Pi(x),易知 xxKK 分处于通过 yy 的超平面 H={zRD:zy,xy=0}H=\{z\in\mathbb{R}^D:\langle z-y,x-y\rangle=0\} 的两侧。因此,对于 KK 中的任意 uu,有以下不等式成立:

+

xy,uy0\begin{equation} +\langle x-y,u-y\rangle \leq 0 +\end{equation} +

+

同理,令 y=Π(x)y'=\Pi(x'),对于 KK 中的任意 uu',有以下不等式成立:

+

xy,uy0\begin{equation} +\langle x'-y',u'-y'\rangle \leq 0 +\end{equation} +

+

此时,令 u=yu=y'u=yu'=y,则有:

+

xy,yy0xy,yy0\begin{equation} +\langle x-y,y'-y\rangle \leq 0 \\ +\langle x'-y',y-y'\rangle \leq 0 +\end{equation} +

+

将两个不等式相加可得:

+

(xx)+(yy),yy0\begin{equation} +\langle (x-x')+(y'-y),y'-y\rangle \leq 0 +\end{equation} +

+

根据 Cauchy-Schwarz 不等式,有:

+

yy22xx,yyxx2yy2yy2xx2Π(x)Π(x)2xx2\begin{equation} +\begin{align*} +&\|y-y'\|_2^2 \leq \langle x-x',y-y'\rangle \leq \|x-x'\|_2\,\|y-y'\|_2\\ +\Rightarrow &\|y-y'\|_2 \leq \|x-x'\|_2 \\ +\Rightarrow &\|\Pi(x) - \Pi(x')\|_2 \leq \|x-x'\|_2 +\end{align*} +\end{equation} +

+

这种投影映射经常用于凸优化中,因为它能将问题简化为凸优化问题,从而提高算法效率,并在许多情况下保证全局最优解。

+

Hessian 矩阵

+

Hessian 矩阵 HfH_f 是由函数 f(x)f(x) 的二阶偏导数组成的方阵,即:

+

Hf=[2fx122fx1x22fx1xn2fx2x12fx222fx2xn2fxnx12fxnx22fxn2].\begin{equation} +\mathbf H_f= \begin{bmatrix} + \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] + \dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex] + \vdots & \vdots & \ddots & \vdots \\[2.2ex] + \dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2} +\end{bmatrix}. +\end{equation} +

+

其中,x=[x1,x2,,xn]x=[x_1,x_2,\cdots,x_n]

+

凸函数

+

凸函数(convex function)是定义在凸集上的实值函数,满足以下性质:对于定义域内的任意两个点 xxyy 以及满足 α[0,1]\alpha\in[0,1] 的任意标量 α\alpha,函数图像上这两点之间的线段位于或位于函数图像上方,即:

+

f(αx+(1α)y)αf(x)+(1α)f(y)\begin{equation} +f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha) f(y) +\end{equation} +

+

该不等式被称为凸性条件。

+

除了上述定义,凸函数还有以下几种等价的定义方式:

+
    +
  1. 一阶条件:若一个定义在凸集上的函数 f(x)f(x) 满足下述条件:
  2. +
+

f(y)f(x)+f(x)T(yx)\begin{equation} +f(y) \geq f(x) + \nabla f(x)^T(y - x) +\end{equation} +

+

其中,f(x)\nabla f(x) 表示函数 f(x)f(x) 在点 xx 处的梯度。几何上,这意味着函数的图像位于任意一点处的切线之上。

+
    +
  1. +

    二阶条件:若函数 f(x)f(x) 是二次可微的,则它是凸函数当且仅当其 Hessian 矩阵 HfH_f 在其定义域内的所有点 xx 上都是半正定的(即矩阵的所有特征值均为非负)。

    +
  2. +
  3. +

    Jensen 不等式:若 f(x)f(x) 是凸函数,则对于定义域内的任意一组点 x1,x2,,xn{x_1, x_2, \cdots, x_n} 和归一化的非负权重 w1,w2,,wn{w_1, w_2, \cdots, w_n},即 i=1nwi=1\sum_{i=1}^n w_i=1,有:

    +
  4. +
+

f(i=1nwixi)i=1nwif(xi)\begin{equation} +f(\sum_{i=1}^n w_i x_i) \leq \sum_{i=1}^n w_i f(x_i) +\end{equation} +

+
    +
  1. 上图集定义:凸函数与凸集合的概念密切相关。函数 ff 是凸函数,当且仅当其上图集(epigraph)是一个凸集。上图集是位于函数图像上方的点的集合,定义为:
  2. +
+

epi(f)={(x,y)xdom(f)yf(x)}\begin{equation} +epi(f) = \{(x, y) | x \in dom(f),y \geq f(x)\} +\end{equation} +

+

其中,dom(f)dom(f) 是函数 ff 的定义域。

+

凸函数的一些特性包括:

+
    +
  1. 正比例性质:若函数 f(x)f(x) 是凸函数,则对于任意常数 α>0\alpha \gt 0,函数 αf(x)\alpha f(x) 也是凸函数。
  2. +
  3. 正移位性质:若函数 f(x)f(x) 是凸函数,则对于任意常数 c>0c \gt 0,函数 f(x)cf(x) - c 也是凸函数。
  4. +
  5. 加法性质:若 f(x)f(x)g(x)g(x) 均为凸函数,则它们的和 f(x)+g(x)f(x) + g(x) 也是凸函数。
  6. +
+

凹函数

+

凹函数(concave function)的定义与凸函数相反。对于其定义域内的任意两个点 xxyy 以及满足 α[0,1]\alpha\in[0,1] 的任意标量 α\alpha,满足以下不等式:

+

f(αx+(1α)y)αf(x)+(1α)f(y)\begin{equation} +f(\alpha x + (1-\alpha)y) \geq \alpha f(x) + (1-\alpha) f(y) +\end{equation} +

+

此不等式被称为凹性条件。

+

其他定义与凸函数类似,这里不再赘述。值得注意的是,若函数 f(x)f(x) 为凹函数,则 f(x)-f(x) 为凸函数。因此,可以将凹函数问题转化为凸函数问题,从而利用凸函数的性质来求解凹函数问题。

+

强凸函数

+

f(x)f(x)为定义在凸集上的强凸函数,则对于任意x,ydom(f)x,y \in dom(f)α[0,1]\alpha \in [0,1],存在λ>0\lambda \gt 0,使得:

+

f(αx+(1α)y)αf(x)+(1α)f(y)λ2α(1α)xy22\begin{equation} +f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) - \frac{\lambda}{2}\alpha(1-\alpha)\|x-y\|_2^2 +\end{equation} +

+

此时,称 f(x)f(x)λ\lambda-强凸(strongly convex)函数,其中 λ\lambda 为强凸系数。

+

强凸函数的其他等价定义包括:

+
    +
  1. +

    Hessian 矩阵条件:若一个两次可微的函数 f(x)f(x) 的 Hessian 矩阵 HfH_f 在凸集中的所有 xx 处均为正定的(即矩阵的所有特征值为正),则该函数是强凸的。

    +
  2. +
  3. +

    梯度条件:若一个可微函数 f(x)f(x) 是强凸的,则存在一个常数 mm,使得对于凸集中的任意 x,yx,y,有 f(x)f(y)2mxy2\|\nabla f(x) - \nabla f(y)\|_2 \geq m \|x - y\|_2。其中,f(x)\nabla f(x) 表示 f(x)f(x) 在点 xx 处的梯度。

    +
  4. +
+

直观上,对于强凸函数 f(x)f(x),可以在任意一点处构造一个二次函数作为其下界。这一性质使得优化算法更加高效,并具有类似于 90页 中定理 7.2 的良好性质。

+

以下给出定理 7.2 的证明:

+

根据强凸函数的定义,取 x=wx = wy=wy = w^*,然后两边除以 α\alpha,可得:

+

f(αw+(1α)w)αf(w)+1ααf(w)λ2(1α)ww22λ2(1α)ww22f(w)f(w)f(w+(ww)α)f(w)α\begin{equation} +\begin{align*} +&\frac{f(\alpha w + (1-\alpha)w^*)}{\alpha} \leq f(w) + \frac{1-\alpha}{\alpha}f(w^*) - \frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \\ +\Rightarrow &\frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \leq f(w) - f(w^*) - \frac{f(w^* + (w-w^*)\alpha) - f(w^*)}{\alpha} +\end{align*} +\end{equation} +

+

α0+\alpha \rightarrow 0^+,则有:

+

limα0+λ2(1α)ww22f(w)f(w)+limα0+f(w+(ww)α)f(w)αλ2ww22f(w)f(w)+f(w)T(ww)\begin{equation} +\begin{align*} +&\lim_{\alpha\rightarrow 0^+}\frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \leq f(w) - f(w^*) + \lim_{\alpha\rightarrow 0^+}\frac{f(w^* + (w-w^*)\alpha) - f(w^*)}{\alpha} \\ +\Rightarrow &\frac{\lambda}{2}\|w-w^*\|_2^2 \leq f(w) - f(w^*) + \nabla f(w^*)^T(w-w^*) +\end{align*} +\end{equation} +

+

其中 Δ=(ww)α\Delta = (w-w^*)\alpha

+

由于 ww^* 为最优解,因此 f(w)=0\nabla f(w^*) = 0,则有:

+

f(w)f(w)λ2ww22\begin{equation} +f(w) - f(w^*) \geq \frac{\lambda}{2}\|w-w^*\|_2^2 +\end{equation} +

+

指数凹函数

+

若函数 f(x)f(x) 的指数 exp(f(x))\exp(f(x)) 为凹函数,则称 f(x)f(x) 为指数凹(exponentially concave)函数。注意,当 exp(f(x))\exp(f(x)) 是凹函数时,f(x)f(x) 本身不一定是凹函数。 +若 f(x)f(x) 为指数凹函数,则 exp(f(x))\exp(-f(x)) 必为凸函数。因此,指数凹是一种弱于强凸但强于凸的性质。

+

指数凹函数的一些特性包括:

+
    +
  1. 正比例性质:若函数 f(x)f(x) 为指数凹函数,则对于任意常数 α\alpha,函数 αf(x)\alpha f(x) 也是指数凹函数。
  2. +
  3. 负移位性质:若函数 f(x)f(x) 为指数凹函数,且 cc 为常数,则函数 f(x)cf(x) - c 也是指数凹函数。
  4. +
+

指数凹函数提供了一种灵活且富有表现力的方式来建模各种现象。它能捕捉广泛的形状和行为。例如,在凸优化中使用指数凹函数可以加快迭代优化算法(如梯度下降或牛顿法)的收敛速度。因此,指数凹函数在处理概率模型或存在不确定性的场景中具有重要意义,特别是在限制或量化不确定性方面。

+

凸优化

+

凸优化(convex optimization)是优化理论的一个分支,研究的是在凸函数的凸集上进行优化的问题。凸优化的目标是在满足一组凸约束条件的情况下,找到凸目标函数的最小值。

+

一般形式的凸优化问题可以表示为:

+

min f0(x)s.t. fi(x)0,i[m] gj(x)=0,j[n]\begin{equation} +\begin{align*} +&\min\ &f_0(x) \\ +&s.t.\ &f_i(x) \leq 0, &i\in[m] \\ +&\ &g_j(x) = 0, &j\in[n] +\end{align*} +\end{equation} +

+

其中,f0(x)f_0(x) 是凸目标函数,fi(x)f_i(x) 是凸不等式约束条件,gj(x)g_j(x) 是仿射等式约束条件。

+

凸优化具有以下有利特性,使其成为一个被广泛研究和应用的领域:

+
    +
  1. +

    全局最优性:凸优化问题的一个关键性质是,任何局部最小值也是全局最小值。此性质确保凸优化算法找到的解是给定凸集中的最优解。

    +
  2. +
  3. +

    高效算法:凸优化拥有多项式时间内找到最优解的高效算法。这些算法基于凸目标函数和约束条件的凸性,能够有效解决复杂的优化问题。

    +
  4. +
  5. +

    广泛应用:凸优化在工程学、金融学、机器学习、运筹学和信号处理等领域有着广泛的应用。它被用于解决如投资组合优化、信号重构、资源分配和机器学习模型训练等问题。凸优化技术,如线性规划、二次规划和半定规划,构成了许多优化算法的基础,为高效解决复杂优化问题提供了强大工具。

    +
  6. +
+

以下证明凸函数任何局部最优解均为全局最优解的性质。

+

假设 f(x)f(x) 是凸函数,xx^*ff 在凸集合 D\mathcal{D} 中的局部最优解。由于凸集的性质,对于任意 yyyxy-x^* 是一个可行方向。因此,总可以选择足够小的 α>0\alpha \gt 0,使得:

+

f(x)f(x+α(yx))\begin{equation} +f(x^*) \leq f(x^* + \alpha(y-x^*)) +\end{equation} +

+

ff 的凸性可得:

+

f(x+α(yx))=f((1α)x+αy)(1α)f(x)+αf(y)\begin{equation} +f(x^* + \alpha(y-x^*)) = f((1-\alpha)x^* + \alpha y) \leq (1-\alpha)f(x^*) + \alpha f(y) +\end{equation} +

+

结合以上两式,可得:

+

f(x)(1α)f(x)+αf(y)rightarrowf(x)f(y)\begin{equation} +\begin{align*} +&f(x^*) \leq (1-\alpha)f(x^*) + \alpha f(y) \\ +rightarrow &f(x^*) \leq f(y) +\end{align*} +\end{equation} +

+

由于 yy 是凸集合 D\mathcal{D} 中的任意点,故 xx^* 为全局最优解。对于 f(x)f(x) 的全局最大解,可以通过考虑函数 f(x)-f(x) 的局部最优解得到类似的结论。

+

仿射

+

仿射变换(Affine transformation),又称仿射映射,是指在几何中,对一个向量空间进行一次线性变换并加上一个平移,变换为另一个向量空间。若该线性映射被表示为矩阵 AA,平移被表示为向量 b\vec{b},则仿射映射 ff 可表示为:

+

y=f(x)=Ax+b\begin{equation} +\vec{y} = f(\vec{x}) = A\vec{x} + \vec{b} +\end{equation} +

+

其中,AA 被称为仿射变换矩阵或投射变换矩阵。

+

仿射变换具有以下性质:

+
    +
  1. 点之间的共线性:在同一条直线上的三个或更多的点(即共线点)在变换后依然位于同一条直线上(共线)。
  2. +
  3. 直线的平行性:两条或以上的平行直线在变换后仍保持平行。
  4. +
  5. 集合的凸性:凸集合在变换后依然是凸集合,且最初的极值点被映射到变换后的极值点集。
  6. +
  7. 平行线段的长度比例恒定:两条由点 p1,p2,p3,p4p_1, p_2, p_3, p_4 定义的平行线段,其长度比例在变换后保持不变,即 p1p2p3p4=f(p1)f(p2)f(p3)f(p4)\frac{\overrightarrow{p_1p_2}}{\overrightarrow{p_3p_4}} = \frac{\overrightarrow{f(p_1)f(p_2)}}{\overrightarrow{f(p_3)f(p_4)}}
  8. +
  9. 质心位置恒定:不同质量的点组成集合的质心位置在仿射变换后保持不变。
  10. +
+

仿射集(affine set)是指欧氏空间 RnR^n 中具有以下性质的点集 SS:对于任意 x,ySx,y\in S,以及 λ[0,1]\forall \lambda\in[0,1],有 (1λ)x+λyS(1-\lambda)x+\lambda y\in S。容易证明,包含原点的仿射集 SSRnR^n 的子空间。

+

仿射包(affine hull/span)是包含集合 SS 的所有仿射集的交集,也是集合 SS 中元素通过不断连接直线所形成的所有元素的集合。仿射包是包含集合 SS 的最小仿射集,记为 aff(S)aff(S),即:

+

aff(S)={i=1kαixik>0,xiS,αiR,i=1kαi=1}\begin{equation} +aff(S) = \{\sum_{i=1}^k \alpha_i x_i \mid k\gt0, x_i\in S, \alpha_i\in R, \sum_{i=1}^k \alpha_i = 1\} +\end{equation} +

+

仿射包具有以下性质:

+
    +
  1. aff(aff(S))=aff(S)aff(aff(S)) = aff(S)
  2. +
  3. aff(S+T)=aff(S)+aff(T)aff(S + T) = aff(S) + aff(T)
  4. +
  5. SS 为有限维度,则 aff(S)aff(S) 为闭集合。
  6. +
+

Slater条件/定理

+

关于强对偶性的讨论,11页 已给出了详细说明,此处不再赘述。这里着重讨论 11页 左下角附注提到的 Slater 条件,即:

+

存在一点 xrelint(D)x\in \text{relint}(D),该点称为 Slater 向量,有:

+

fi(x)<0,i[m]\begin{equation} +\begin{align*} +f_i(x) \lt 0, &\quad i\in[m] +\end{align*} +\end{equation} +

+

其中,D=0mdom(fi)D = \bigcap_0^m \text{dom}(f_i)relint(D)relint(D)DD 的相对内部,即其仿射包的内部所有点,即 relint(D)=int(aff(D))relint(D) = \text{int}(aff(D))

+

当满足 Slater 条件且原始问题为凸优化问题时:

+
    +
  1. 强对偶性成立。
  2. +
  3. 对偶最优解集合非空且有界。
  4. +
+

这就是 Slater 定理。

+

证明

+

首先证明对偶间隙(Duality Gap)为零,即原始问题与对偶问题的目标函数值之差 pd=0p^* - d^* = 0。考虑集合 VRm×R\mathcal{V}\subset \mathbb{R}^m \times \mathbb{R},满足:

+

V:={(u,w)Rm×Rf0(x)w,fi(x)ui,i[m],x}\begin{equation} +\mathcal{V}:=\{(u,w)\in\mathbb{R}^m \times \mathbb{R} \mid f_0(x) \le w, f_i(x) \le u_i, \forall i\in[m], \forall x\} +\end{equation} +

+

集合 V\mathcal{V} 具有以下性质:

+
    +
  1. 它是凸集合,可由 fi, i{0}[m]f_i,\ i\in\{0\}\cup[m] 的凸性质得出。
  2. +
  3. (u,w)V(u,w)\in\mathcal{V},且 (u,w)(u,w)(u',w')\succeq(u,w),则 (u,w)V(u',w')\in\mathcal{V}
  4. +
+

易证向量 (0,p)int(V)(0,p^*)\notin int(\mathcal{V}),否则一定存在 ε>0\varepsilon \gt 0,使得 (0,pε)int(V)(0,p^*-\varepsilon)\in int(\mathcal{V}),这明显与 pp^* 为最优解矛盾。因此,必有 (0,p)V(0,p^*)\in \partial\mathcal{V}(0,p)V(0,p^*)\notin\mathcal{V}。应用支撑超平面定理(定理 23),可知存在一个非零点 (λ,λ0)Rm×R(\lambda,\lambda_0)\in \mathbb{R}^m \times \mathbb{R},满足以下条件:

+

(λ,λ0)T(u,w)=λTu+λ0wλ0p,(u,w)V\begin{equation} +(\lambda,\lambda_0)^T(u,w) = \lambda^Tu + \lambda_0w \ge \lambda_0p^*, \forall(u,w)\in\mathcal{V} +\end{equation} +

+

在此情况下,必然有 λ0\lambda \succeq 0λ00\lambda_0 \geq 0。这是因为,若 λ\lambdaλ0\lambda_0 中的分量出现任何负数,根据集合 V\mathcal{V} 的性质二,(u,w)(u, w) 的分量可以在集合 V\mathcal{V} 内取得任意大的值,从而导致上式不一定成立。

+

因此,只需考虑两种情况:

+
    +
  1. λ0=0\lambda_0 = 0:此时根据上式,可得
  2. +
+

inf(u,w)VλTu=0\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\lambda^Tu = 0 +\end{equation} +

+

另一方面,根据 V\mathcal{V} 的定义,λ0\lambda\succeq 0λ0\lambda \neq 0,可得:

+

inf(u,w)VλTu=infxi=1mλifi(x)i=1mλifi(xˉ)<0\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\lambda^Tu = \inf_{x}\sum_{i=1}^m \lambda_i f_i(x) \leq \sum_{i=1}^m \lambda_i f_i(\bar{x}) \lt 0 +\end{equation} +

+

其中,xˉ\bar{x} 是 Slater 向量,而最后一个不等式依据 Slater 条件得出。此时,两个结论互相矛盾,因此 λ00\lambda_0 \neq 0

+
    +
  1. λ0>0\lambda_0 \gt 0:对上式左右两边除以 λ0\lambda_0,得:
  2. +
+

inf(u,w)V{λ~Tu+w}p\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\{\tilde\lambda^Tu + w\} \ge p^* +\end{equation} +

+

其中,λ~:=λλ00\tilde\lambda := \frac{\lambda}{\lambda_0}\succeq 0

+

考虑拉格朗日函数 L:Rn×RnRL:\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}

+

L(x,λ~):=f0(x)+i=1mλ~ifi(x)\begin{equation} +L(x,\tilde\lambda) := f_0(x) + \sum_{i=1}^m \tilde\lambda_i f_i(x) +\end{equation} +

+

其对偶函数为:

+

g(λ~):=infxL(x,λ~)p\begin{equation} +g(\tilde\lambda) := \inf_{x} L(x,\tilde\lambda) \ge p^* +\end{equation} +

+

其对偶问题为:

+

maxλg(λ),λ0\begin{equation} +\max_{\lambda} g(\lambda), \lambda\succeq 0 +\end{equation} +

+

因此,可得 dpd^* \geq p^*。根据弱对偶性,dpd^* \leq p^*,从而推断出 d=pd^* = p^*

+

接着证明对偶问题最优解集合非空且有界。对于任意对偶最优解 λ~0\tilde\lambda\succeq 0,有:

+

d=g(λ~)=infx{f0(x)+i=1mλ~ifi(x)}f0(xˉ)+i=1mλ~ifi(xˉ)f0(xˉ)+maxi[m]{fi(xˉ)}[i=1mλ~i]\begin{equation} +\begin{align*} +d^* = g(\tilde\lambda) &= \inf_{x} \{f_0(x) + \sum_{i=1}^m \tilde\lambda_i f_i(x)\} \\ +&\leq f_0(\bar{x}) + \sum_{i=1}^m \tilde\lambda_i f_i(\bar{x}) \\ +&\leq f_0(\bar{x}) + \max_{i\in[m]}\{f_i(\bar{x})\}[\sum_{i=1}^m \tilde\lambda_i] +\end{align*} +\end{equation} +

+

因此,有:

+

mini[m]{fi(xˉ)}[i=1mλ~i]f0(xˉ)d\begin{equation} +\min_{i\in[m]}\{-f_i(\bar{x})\}[\sum_{i=1}^m \tilde\lambda_i] \leq f_0(\bar{x}) - d^* +\end{equation} +

+

进而得出:

+

λ~i=1mλ~if0(xˉ)dmini[m]{fi(xˉ)}<\begin{equation} +\|\tilde\lambda\| \leq \sum_{i=1}^m \tilde\lambda_i \leq \frac{f_0(\bar{x}) - d^*}{\min_{i\in[m]}\{-f_i(\bar{x})\}} \lt \infty +\end{equation} +

+

其中,最后一个不等式依据 Slater 条件得出。\square

+

KKT条件

+

KKT条件(Karush-Kuhn-Tucker条件)在凸优化领域具有至关重要的地位。虽然在12-13页 中对其进行了基本解释,此处将进行更为深入的分析。KKT条件中的符号 λi, i[m]\lambda_i,\ i\in[m]μi, i[n]\mu_i,\ i\in[n] 被视为 KKT 乘子。特别地,当 m=0m=0 时,即不存在不等式约束条件时,KKT条件退化为拉格朗日条件,此时 KKT 乘子也被称为拉格朗日乘子。

+

证明

+

首先,对于 x,(μ,λ)x^*,(\mu^*,\lambda^*) 满足 KKT 条件等价于它们构成一个纳什均衡。

+

固定 (μ,λ)(\mu^*,\lambda^*),并变化 xx,均衡等价于拉格朗日函数在 xx^* 处的梯度为零,即主问题的稳定性(stationarity)。

+

固定 xx,并变化 (μ,λ)(\mu^*,\lambda^*),均衡等价于主问题的约束(feasibility)和互补松弛条件。

+

充分性:若解对 x,(μ,λ)x^*,(\mu^*,\lambda^*) 满足 KKT 条件,则它们构成一个纳什均衡,从而消除对偶间隙。

+

必要性:任意解对 x,(μ,λ)x^*,(\mu^*,\lambda^*) 必然消除对偶间隙,因此它们必须构成一个纳什均衡,从而满足 KKT 条件。\square

+

在此对 KKT 和 Slater 条件进行区分:

+
    +
  1. +

    KKT条件 是一组用于确定约束优化问题中解的最优性的条件。它们通过将约束纳入条件,扩展了无约束优化中设定目标函数梯度为零的思路到约束优化问题中。
    +Slater条件 是凸优化中确保强对偶性的特定约束条件,即主问题和对偶问题最优解的等价性。

    +
  2. +
  3. +

    KKT条件包括对偶问题的约束、互补松弛条件、主问题约束和稳定性。它们整合了目标和约束函数的梯度以及 KKT 乘子,以形成最优性条件。
    +Slater 条件要求存在一个严格可行点,即严格满足所有不等式约束的点。

    +
  4. +
  5. +

    当点满足 KKT 条件时,表明问题的局部最优解已找到。这些条件弥合了主问题和对偶问题之间的差距,对于分析和解决约束优化问题至关重要。
    +满足 Slater 条件时,确保凸优化问题的强对偶性,对于简化和解决这些问题至关重要。Slater 条件并不直接提供最优性条件,但为强对偶性铺平了道路,之后可以利用强对偶性寻找最优解。

    +
  6. +
  7. +

    KKT条件 较为通用,适用于更广泛的优化问题类别,包括非凸问题。
    +Slater条件 则特定于凸优化问题,用于确保这些问题中的强对偶性。

    +
  8. +
  9. +

    对于凸且可微的问题,满足 KKT 条件意味着最优性和强对偶性。相反,最优性和强对偶性意味着所有问题的 KKT 条件得到满足。
    +当 Slater 条件成立时,KKT 条件是最优解的充要条件,此时强对偶性成立。

    +
  10. +
+

KKT条件和 Slater 条件通常被归类为“正则条件”(regularity condition)或“约束资格”(constraint qualification)。这些条件为优化问题提供了一个结构化的框架,以便在约束情况下分析和确定解的最优性。更多的正则条件详见参考文献:On regularity conditions in mathematical programming

+

偏序集

+

序理论(Order Theory)是数学的一个分支,它的核心思想是通过定义某种“序”来描述元素之间的相对关系。在序理论中,一个偏序集(partial order set,简称 poset)包含一个非空集合 PP 和一个满足特定条件的二元关系 \leq。这个二元关系称为偏序关系,它必须满足以下三个条件:

+
    +
  1. 自反性(Reflexivity):对于 PP 中的任意元素 aa,都有 aaa \leq a
  2. +
  3. 反对称性(Antisymmetry):对于 PP 中的任意元素 aabb,如果 aba \leq bbab \leq a,那么 a=ba = b
  4. +
  5. 传递性(Transitivity):对于 PP 中的任意元素 aabbcc,如果 aba \leq bbcb \leq c,那么 aca \leq c
  6. +
+

这些条件定义了偏序关系,使其与全序(total order)关系不同。在偏序集中,可能存在某些元素是不可比较的,即对于 PP 中的某些 aabb,既不满足 aba \leq b,也不满足 bab \leq a

+

上下界

+

上界(upper bound 或 majorant)是与偏序集有关的特殊元素,指偏序集中大于或等于其子集中一切元素的元素。若数集 SS 为实数集 RR 的子集且有上界,则显然有无穷多个上界,其中最小的上界常常具有重要作用,称为数集 SS 的上确界(tight upper bound 或 supremum)。同理,可以定义下界(lower bound 或 minorant)和下确界(tight lower bound 或 infimum)。

+

尾界

+

**尾界(tail bound)**是指给定一个随机变量,其概率分布尾部部分的界限。上尾界(upper tail bound)描述随机变量在其分布上尾处的概率上限,而下尾界(lower tail bound)描述随机变量在其分布下尾处的概率上限。Chebyshev 不等式、Hoeffding 不等式和 Bernstein 不等式都是尾界的例子,它们提供了随机变量偏离其期望值的概率界限。

+

置信界

+

**置信界(confidence bound)**是在估计一个未知参数时,给出一个包含该参数的区间,并且这个区间具有特定的置信水平。例如,一个95%的置信区间意味着我们有95%的信心该区间包含真实的参数值。置信界可以是上置信界(upper confidence bound),下置信界(lower confidence bound),或同时包含上下界的置信区间(confidence interval)。上置信界提供对参数估计的可能最大值的上限,下置信界提供对参数估计的可能最小值的下限。

+

连续性

+

连续性(continuity)表示函数在某处的变化不会突然中断或跳跃。形式上,如果函数 f(x)f(x)x=ax = a 处满足以下条件,则称其在该点连续:

+
    +
  1. 函数 f(x)f(x)x=ax = a 处有定义。
  2. +
  3. xx 趋近于 aa 时,f(x)f(x) 的极限存在且等于 f(a)f(a)
  4. +
+

连续性意味着输入的微小变化导致输出的微小变化。如果一个函数在其定义域的每个点上都是连续的,则称其为连续函数。

+

Lipschitz 连续性是连续性的更强形式,它要求函数在变化速度方面有界。具体而言,如果存在一个常数 LL,使得函数在任意两点的函数值之间的绝对差小于等于 LL 乘以两点之间的距离,则称该函数为 LLipschitzL-Lipschitz 连续,即:

+

x,ydom(f), L>0 使得 f(x)f(y)2Lxy2\begin{equation} +\forall x,y\in \text{dom}(f),\ \exists L \gt 0\ \text{使得}\ \|f(x)-f(y)\|_2 \leq L\|x-y\|_2 +\end{equation} +

+

其中,LL 称为 Lipschitz 常数,表示函数的最大变化率。若 LL 较大,函数可以快速变化;若 LL 较小,函数变化更渐进。

+

事实上,如果一个函数的导数有界,那么它一定是 Lipschitz 连续的;反之,如果一个可微函数是 Lipschitz 连续的,那么它的导数一定有界。

+

证明如下:

+
    +
  1. 若函数 f(x)f(x) 的导数有界,即存在常数 L0L \ge 0,使得对于任意 xx,有 f(x)L|f'(x)| \leq L。根据微分中值定理,对于任意 xyx \le y,存在 c[x,y]c \in [x,y],使得:
  2. +
+

f(x)f(y)2=f(c)2xy2f(x)f(y)2Lxy2\begin{equation} +\begin{align*} +&\|f(x)-f(y)\|_2 = \|f'(c)\|_2\|x-y\|_2 \\ +\Rightarrow &\|f(x)-f(y)\|_2 \le L \|x-y\|_2 +\end{align*} +\end{equation} +

+

此时,函数是 LLipschitzL-Lipschitz 连续的。

+
    +
  1. 若函数 f(x)f(x)LLipschitzL-Lipschitz 连续的,即对于任意 x,yx,y,有
  2. +
+

f(x)f(y)2Lxy2\begin{equation} +\|f(x)-f(y)\|_2 \le L\|x-y\|_2 +\end{equation} +

+

根据微分中值定理,对于任意 xyx \le y,存在 c[x,y]c \in [x,y],使得:

+

f(x)f(y)2=f(c)2xy2\begin{equation} +\|f(x)-f(y)\|_2 = \|f'(c)\|_2\|x-y\|_2 +\end{equation} +

+

不妨令 xyx \rightarrow y,则 cyc \rightarrow y。因为 f(y)f(y) 可微,可得:

+

f(y)2=limxyf(x)f(y)xy2=limxyf(x)f(y)2xy2limxyL=L\begin{equation} +\|f'(y)\|_2 = \|\lim_{x \rightarrow y}\frac{f(x)-f(y)}{x-y}\|_2 = \lim_{x \rightarrow y}\frac{\|f(x)-f(y)\|_2}{\|x-y\|_2} \le \lim_{x \rightarrow y} L = L +\end{equation} +

+

因为 yy 的任意性,所以函数的导数有界。

+

连续性关注函数图像中跳跃或中断的缺失,而 Lipschitz 连续性关注函数的变化速度。因此,Lipschitz 连续性是比连续性更严格的条件。一个连续函数不一定是 Lipschitz 连续的,因为连续性不要求函数变化速度有界。然而,一个 Lipschitz 连续的函数必然是连续的,因为 Lipschitz 连续性蕴含连续性。

+

Lipschitz 连续性的性质在数学的各个领域中广泛应用,如分析、优化和微分方程研究。它在保证某些数学问题的解的存在性、唯一性和稳定性方面起着关键作用。

+

光滑性

+

在数学分析中,函数的光滑性(smoothness)通过函数在某个域(称为可微性类)上的连续导数的数量来衡量。最基本的情况下,如果一个函数在每个点上都可导(因此连续),则可以认为它是光滑的。 +一方面,光滑性确保了梯度下降等优化算法能够更快收敛,并减少可能遇到的梯度震荡或发散的情况。 +另一方面,光滑性提供了函数曲率的信息,从而帮助设计更有效的优化算法,如加速梯度下降法或牛顿法。

+

在优化理论中,LL-光滑函数是指它的梯度具有 LL-Lipschitz 连续性,这意味着函数的梯度在其定义域中的变化速率被 LL 所限制。 +形式上,对于任意 x,yRnx,y \in \mathbb{R}^n,存在 L>0L \gt 0,使得:

+

f(x)f(y)2Lxy2\begin{equation} +\|\nabla f(x) - \nabla f(y)\|_2 \leq L \|x - y\|_2 +\end{equation} +

+

或者等价地,

+

2f(x)2L\begin{equation} +\|\nabla^2 f(x)\|_2 \leq L +\end{equation} +

+

或者等价地,

+

f(y)f(x)+f(x),yx+L2yx22\begin{equation} +f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2}\|y - x\|_2^2 +\end{equation} +

+

以上三种定义方式是等价的,且 LL 被称为光滑系数。 +由定义3,我们可以看出,在光滑函数的任意一点处都可以构造一个二次函数作为其上界。

+

接下来我们证明这些定义的等价性。首先,我们证明定义1可以推导出定义2。

+

考虑函数 ff 的梯度 f(x)\nabla f(x) 的二阶泰勒展开:

+

f(y)=f(x)+2f(ξ)(yx)\begin{equation} +\nabla f(y) = \nabla f(x) + \nabla^2 f(\xi)(y - x) +\end{equation} +

+

其中 ξ\xixxyy 之间的一点,2f(ξ)\nabla^2 f(\xi) 表示在点 ξ\xi 处的 Hessian 矩阵。

+

根据 LL-光滑性的定义1,我们有:

+

f(y)f(x)2Lyx2\begin{equation} +\|\nabla f(y) - \nabla f(x)\|_2 \leq L \|y - x\|_2 +\end{equation} +

+

将二阶泰勒展开的结果代入其中:

+

2f(ξ)(yx)2Lyx2\begin{equation} +\|\nabla^2 f(\xi)(y - x)\|_2 \leq L \|y - x\|_2 +\end{equation} +

+

对于任意的非零向量 v=yxv = y - x,定义:

+

v=vv2\begin{equation} +v' = \frac{v}{\|v\|_2} +\end{equation} +

+

我们得到:

+

2f(ξ)v2L\begin{equation} +\|\nabla^2 f(\xi) v'\|_2 \leq L +\end{equation} +

+

由于 vv' 是一个单位向量,这意味着 Hessian 矩阵 2f(ξ)\nabla^2 f(\xi) 作用在任意单位向量上时的范数不超过 LL,因此 Hessian 矩阵的谱范数(即最大特征值的绝对值)满足:

+

2f(ξ)2L\begin{equation} +\|\nabla^2 f(\xi)\|_2 \leq L +\end{equation} +

+

其中,由于 ξ\xixxyy 之间的一点,因此我们可以将上述结论推广到整个定义域。

+

接下来我们证明定义2可以推导出定义3。由定义2,给定 ffLL-光滑的,对任意的 x,yRnx, y \in \mathbb{R}^n,我们有:

+

f(y)f(x)+f(x),yx+L2yx22\begin{equation} +f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2 +\end{equation} +

+

将定义中的 xxyy 互换,得到:

+

f(x)f(y)+f(y),xy+L2xy22\begin{equation} +f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|_2^2 +\end{equation} +

+

将两个不等式相加可得:

+

f(x)f(y),xyLxy22\begin{equation} +\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq L \|x - y\|_2^2 +\end{equation} +

+

注意到不等式左侧的内积无论如何取值,该不等式均成立。 +根据 Cauchy-Schwarz 不等式,当 yxy - xf(x)f(y)\nabla f(x) - \nabla f(y) 平行时左侧内积取到最大值,即 f(x)f(y)2xy2\|\nabla f(x) - \nabla f(y)\|_2 \|x - y\|_2,代入可得:

+

f(x)f(y)2xy2Lxy22\begin{equation} +\|\nabla f(x) - \nabla f(y)\|_2 \|x - y\|_2 \leq L \|x - y\|_2^2 +\end{equation} +

+

化简后即得证。

+

这里对光滑性和 LipschitzLipschitz 连续性进行一些比较:

+ +

次梯度

+

次梯度(subgradient)是凸函数导数的推广形式。某些凸函数在特定区域内可能不存在导数,但我们依旧可以用次梯度来表示该区域内函数变化率的下界。形式上,对于凸函数 f(x)f(x),在任意点 x0x_0 处的次梯度 cc 必须满足以下不等式:

+

f(x)f(x0)c(xx0)\begin{equation} +f(x) - f(x_0) \geq c(x - x_0) +\end{equation} +

+

根据微分中值定理的逆命题,cc 通常在 [a,b][a,b] 之间取值,其中 a,ba,b 是函数 f(x)f(x)x0x_0 处的左右导数,即:

+

a=limxx0f(x)f(x0)xx0, b=limxx0+f(x)f(x0)xx0\begin{equation} +a = \lim_{x \rightarrow x_0^-}\frac{f(x) - f(x_0)}{x - x_0},\ b = \lim_{x \rightarrow x_0^+}\frac{f(x) - f(x_0)}{x - x_0} +\end{equation} +

+

此时,次梯度 cc 的集合 [a,b][a,b] 被称为次微分,即 f(x0)\partial f(x_0)。当 a=ba = b 时,次梯度 cc 退化为导数。

+

次梯度在机器学习领域广泛应用,特别是在训练支持向量机(SVM)和其他具有非可微损失函数的模型中。它们还构成了随机次梯度方法的基础,这些方法在处理大规模机器学习问题时非常有效。

+

对偶空间

+

线性泛函(linear functional)是指从向量空间 VV 到对应标量域 kk 的线性映射,满足加法和数乘的性质,即对于任意向量 x,yVx,y \in V 和标量 αk\alpha \in k,有:

+

f(x+y)=f(x)+f(y)f(αx)=αf(x)\begin{equation} +\begin{align*} +&f(x+y) = f(x) + f(y) \\ +&f(\alpha x) = \alpha f(x) +\end{align*} +\end{equation} +

+

所有从 VVkk 的线性泛函构成的集合称为 VV 的对偶空间(dual space),记为 V=Homk(V,k)V^* = \text{Hom}_k(V,k),对偶空间中的元素称为对偶向量。

+

Legendre变换

+

将函数转换为另一种函数,常用于改变其定义域和属性,使问题更简单或更易分析。Legendre 变换(Legendre transform)常用于将一组独立变量转换为另一组独立变量,特别是在经典力学和热力学中。以下是 Legendre 变换的基本概念和步骤:

+
    +
  1. 定义函数:假设有一个凸函数 f(x)f(x),其自变量为 xx
  2. +
  3. 定义共轭变量:定义新的变量 pp,它是原函数 f(x)f(x) 的导数,即 p=df(x)dxp = \frac{d f(x)}{dx}
  4. +
  5. 定义共轭函数:定义新的函数 g(p)g(p),其形式为:g(p)=xpf(x)g(p) = x \cdot p - f(x)。这里,xxf(x)f(x) 的自变量,同时也是 g(p)g(p) 的隐含变量。
  6. +
  7. 变换关系:通过 Legendre 变换,从原来的函数 f(x)f(x) 得到新的函数 g(p)g(p),这个新的函数 g(p)g(p) 依赖于共轭变量 pp
  8. +
+

共轭函数

+

凸共轭(convex conjugate)是 Legendre 变换的一种推广,因此也被称为 Legendre-Fenchel 变换(Legendre-Fenchel transform)。通过凸共轭变换,原函数可以转换为凸函数,从而利用凸函数的性质来解决原问题。

+

形式上,对于函数 f(x)f(x),其共轭函数 f(y)f^*(y) 定义为:

+

f(y)=supxdom(f)(yTxf(x))\begin{equation} +f^*(y) = \sup_{x \in \text{dom}(f)}(y^T x - f(x)) +\end{equation} +

+

其中,dom(f)\text{dom}(f) 是函数 f(x)f(x) 的定义域。

+

共轭函数具有以下一些有用的性质:

+
    +
  1. 凸性:函数 f(x)f(x) 的共轭函数 f(y)f^*(y) 一定是凸函数。证明如下:
  2. +
+

f(λy1+(1λ)y2)=supxdom(f){xT(λy1+(1λ)y2)f(x)}λsupxdom(f){xTy1f(x)}+(1λ)supxdom(f){xTy2f(x)}=λf(y1)+(1λ)f(y2)\begin{equation} +\begin{align*} +f^*(\lambda y_1+(1-\lambda)y_2) &= \sup_{x\in \text{dom}(f)}\{x^T(\lambda y_1+(1-\lambda)y_2)-f(x)\}\\ +&\leq \lambda \sup_{x\in \text{dom}(f)}\{x^T y_1 - f(x)\} + (1-\lambda)\sup_{x\in \text{dom}(f)}\{x^T y_2 - f(x)\}\\ +&= \lambda f^*(y_1) + (1-\lambda)f^*(y_2) +\end{align*} +\end{equation} +

+

其中的不等式利用了凸性的性质。

+
    +
  1. 逆序性:对于定义域中所有元素 xx,若 f(x)g(x)f(x) \leq g(x),则 f(y)g(y)f^*(y) \geq g^*(y)。证明如下:
  2. +
+

由于 f(x)g(x)f(x) \leq g(x),因此 xTyf(x)xTyg(x)x^T y - f(x) \geq x^T y - g(x)。两边同时取上确界,根据定义有:

+

f(y)=supxdom(f){xTyf(x)}supxdom(f){xTyg(x)}=g(y)\begin{equation} +f^*(y) = \sup_{x\in \text{dom}(f)}\{x^T y - f(x)\} \geq \sup_{x\in \text{dom}(f)}\{x^T y - g(x)\} = g^*(y) +\end{equation} +

+
    +
  1. 极值变换:若 ff 可微,则对于 y\forall y,有:
  2. +
+

f(y)f(f(x))=f(x)Txf(x)=[f(x)+f(x)T(0x)]\begin{equation} +f^*(y) \leq f^*(\nabla f(x)) = \nabla f^*(x)^T x - f(x) = -[f(x) + \nabla f(x)^T(0 - x)] +\end{equation} +

+

此性质即书中的(1.10),完整证明如下:

+

为了在 ff^* 的定义中找到上确界,对右侧的 xx 求导,并将其设置为零以找到极大值点:

+

ddx(xTyf(x))=yf(x)=0\begin{equation} +\frac{d}{dx}(x^T y − f(x)) = y − \nabla f(x) = 0 +\end{equation} +

+

此时有 y=f(x)y = \nabla f(x),得证。

+

σ-代数

+

σ-代数(或 σ-域)是测度论和概率论中的一个重要概念。σ-代数是一个满足特定封闭性质的集合族,使我们能够对这些集合定义一致的测度(如概率)。具体来说,σ-代数是一个集合族,满足以下三个性质:

+
    +
  1. 包含全集:如果 F\mathcal{F} 是定义在集合 XX 上的一个 σ-代数,那么 XX 本身属于 F\mathcal{F},即 XFX \in \mathcal{F}
  2. +
  3. 对补集封闭:如果 AAF\mathcal{F} 中的一个集合,那么它的补集 XAX \setminus A 也属于 F\mathcal{F},即 AF    XAFA \in \mathcal{F} \implies X \setminus A \in \mathcal{F}
  4. +
  5. 对可数并封闭:如果 A1,A2,A3,A_1, A_2, A_3, \ldotsF\mathcal{F} 中的集合,那么它们的可数并集 i=1Ai\bigcup_{i=1}^{\infty} A_i 也属于 F\mathcal{F},即 AiFA_i \in \mathcal{F} 对所有 iNi \in \mathbb{N},则 i=1AiF\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}
  6. +
+

σ-代数在测度论中尤为重要,因为它为定义测度提供了必要的框架。测度是定义在 σ-代数上的集合函数,用于度量集合的“大小”。在概率论中,σ-代数用于定义事件空间,从而定义概率测度。

+

过滤

+

σ-代数 F\mathcal{F} 是一个固定的集合族,满足特定的封闭性质,表示我们在某一时刻可以知道的所有信息。过滤(filtration)是关于随着时间推移而观察信息的概念,通常与随机过程(stochastic processes)相关。具体来说,过滤是一个按时间参数索引的 σ-代数序列 {Ft}tT\{\mathcal{F}_t\}_{t \in T},表示随时间变化的可观测事件的集合,满足以下性质:

+
    +
  1. 每个 Ft\mathcal{F}_t 是一个 σ-代数:对于每个时刻 ttFt\mathcal{F}_t 是定义在某个固定集合 XX 上的一个 σ-代数。
  2. +
  3. 单调性:对于任意的 t1t2t_1 \leq t_2,有 Ft1Ft2\mathcal{F}_{t_1} \subseteq \mathcal{F}_{t_2}。这意味着随着时间的推移,所包含的信息只会增加,不会减少。
  4. +
+

+

鞅(Martingale)是概率论中的一个重要概念,用于描述某些类型的随机过程。鞅过程的特点是,其未来期望值在已知当前信息的条件下等于当前值。

+

形式化定义

+

{Xt}\{X_t\} 是一个随机过程,{Ft}\{\mathcal{F}_t\} 是一个随时间 tt 变化的过滤(即包含随时间增加的所有信息的 σ-代数的序列)。当这个随机过程 {Xt}\{X_t\} 是鞅时,必须满足以下条件:

+
    +
  1. 适应性(Adaptedness):对于每一个 ttXtX_tFt\mathcal{F}_t-可测的(即 XtX_t 的值在时间 tt 时刻是已知信息的函数)。
  2. +
  3. 积分性(Integrability):对于所有 ttE[Xt]<\mathbb{E}[|X_t|] \lt \infty
  4. +
  5. 鞅性质(Martingale Property):对于所有 ttsts \geq t,有 E[XsFt]=Xt\mathbb{E}[X_s \mid \mathcal{F}_t] = X_t。这意味着在已知当前时刻 tt 的信息 Ft\mathcal{F}_t 条件下,未来某个时刻 ss 的期望值等于当前时刻 tt 的值。
  6. +
+

直观解释

+

鞅的定义保证了在已知当前信息的条件下,未来值的期望等于当前值,这反映了一种“无偏性”。因此,鞅过程可以被看作是一种“公平游戏”。设想一个赌徒在赌场中进行赌博,如果这个赌徒的资金变化形成一个鞅过程,那么在任何时刻,给定当前的资金情况,未来资金的期望值都是当前的资金,表示没有系统性的赢或输的趋势。

+

举例说明

+

考虑一个简单的随机游走过程,其中 Xt+1=Xt+Zt+1X_{t+1} = X_t + Z_{t+1},其中 Zt+1Z_{t+1} 是一个独立同分布的随机变量,取值为 +1+11-1,且概率各为 50%50\%。在这种情况下,如果设 X0=0X_0 = 0,那么 {Xt}\{X_t\} 是一个鞅,因为每一步的期望值都是零。

+

鞅的类型

+

除了标准的鞅,还有两个相关的概念:

+
    +
  1. 超鞅(Submartingale):若对于所有 ttsts \geq t,有 E[XsFt]Xt\mathbb{E}[X_s \mid \mathcal{F}_t] \geq X_t,则称 {Xt}\{X_t\} 为超鞅(或上鞅)。
  2. +
  3. 亚鞅(Supermartingale):若对于所有 ttsts \geq t,有 E[XsFt]Xt\mathbb{E}[X_s \mid \mathcal{F}_t] \leq X_t,则称 {Xt}\{X_t\} 为亚鞅(或下鞅)。
  4. +
+

一个区分超鞅和亚鞅的记忆方法是:“生活是一个超鞅:随着时间的推进,期望降低。”

+

鞅差序列

+

鞅差 DtD_t 定义为 Dt=XtXt1D_t = X_t - X_{t-1},鞅差序列(Martingale Difference Sequence){Dt}\{D_t\} 则满足以下条件:

+
    +
  1. 适应性(Adaptedness):对于每一个 ttDtD_tFt\mathcal{F}_t-可测的。
  2. +
  3. 零条件期望(Zero Conditional Expectation):对于所有 tt,有 E[DtFt1]=0\mathbb{E}[D_t \mid \mathcal{F}_{t-1}] = 0,即在已知过去信息 Ft1\mathcal{F}_{t-1} 的条件下,DtD_t 的条件期望为零。这意味着当前的观察值不提供对未来观察值的系统性偏差,即每一步的变化是纯随机的。
  4. +
+

虽然鞅差序列中的每个元素的条件期望为零,但这并不意味着这些元素是独立的。相反,它们可以有复杂的依赖关系。鞅差序列的关键性质是每个元素在条件期望下为零,这使得它在分析鞅和集中不等式(如 Bernstein 不等式)中非常有用。

+

KL 散度

+

KL 散度(Kullback-Leibler 散度),也称为相对熵,是一种用于衡量两个概率分布之间差异的非对称度量,在信息论和统计学中广泛应用。KL 散度衡量的是在使用近似分布时,相比于使用真实分布,所增加的“信息损失”或“不确定性”。

+

定义

+

假设有两个概率分布 PPQQ,它们定义在同一个概率空间上。PP 通常被认为是“真实”分布,而 QQ 是近似分布。KL 散度 DKL(PQ)D_{KL}(P \| Q) 表示为:

+

DKL(PQ)=xP(x)lnP(x)Q(x)\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)} +\end{equation} +

+

对于连续分布:

+

DKL(PQ)=+p(x)lnp(x)q(x)dx\begin{equation} +D_{KL}(P \| Q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} \, dx +\end{equation} +

+

其中,P(x)P(x)Q(x)Q(x) 分别是分布 PPQQxx 处的概率密度函数(或概率质量函数)。

+

性质

+
    +
  1. 非负性:KL 散度总是非负的,即 DKL(PQ)0D_{KL}(P \| Q) \geq 0,只有当 PPQQ 完全相同时,KL 散度才为零。
  2. +
+

非负性的证明

+

KL 散度的非负性可以通过 Jensen 不等式来证明。首先,考虑离散情况下的 KL 散度定义:

+

DKL(PQ)=xP(x)lnP(x)Q(x)\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)} +\end{equation} +

+

由于对数函数是一个凹函数,可以应用 Jensen 不等式。对于凹函数 ff 和随机变量 XX,有:

+

f(E[X])E[f(X)]\begin{equation} +f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)] +\end{equation} +

+

f(x)=ln(x)f(x) = \ln(x),并令 X=Q(x)P(x)X = \frac{Q(x)}{P(x)}。则有:

+

ln(E[Q(x)P(x)])E[ln(Q(x)P(x))]\begin{equation} +\ln(\mathbb{E}[\frac{Q(x)}{P(x)}]) \geq \mathbb{E}[\ln(\frac{Q(x)}{P(x)})] +\end{equation} +

+

因为 xP(x)=1\sum_{x} P(x) = 1Q(x)0Q(x) \geq 0,所以:

+

E[Q(x)P(x)]=xP(x)Q(x)P(x)=xQ(x)=1\begin{equation} +\mathbb{E}[\frac{Q(x)}{P(x)}] = \sum_{x} P(x) \frac{Q(x)}{P(x)} = \sum_{x} Q(x) = 1 +\end{equation} +

+

于是,有:

+

0=ln(1)xP(x)ln(Q(x)P(x))\begin{equation} +0 = \ln(1) \geq \sum_{x} P(x) \ln(\frac{Q(x)}{P(x)}) +\end{equation} +

+

即:

+

DKL(PQ)=xP(x)ln(P(x)Q(x))0\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln(\frac{P(x)}{Q(x)}) \geq 0 +\end{equation} +

+
    +
  1. 非对称性DKL(PQ)DKL(QP)D_{KL}(P \| Q) \neq D_{KL}(Q \| P),即 KL 散度不是对称的,交换 PPQQ 一般会导致不同的结果。
  2. +
+

应用

+ +

先验和后验

+

先验(Prior)和后验(Posterior)是贝叶斯统计中的两个核心概念,用于描述不确定性和信息更新的过程。

+

先验概率(Prior Probability)

+

定义:先验概率是指在获得新数据之前,根据已有的知识或经验对某一事件或参数的初始估计。先验概率反映了在观察到新数据之前,我们对某一事件或参数的不确定性。

+

表示方法:用 P(θ)P(\theta) 表示,其中 θ\theta 代表参数或事件。

+

作用:先验概率提供了一个起点,在进行贝叶斯推断时,它与新的数据结合,更新我们的认知。

+

后验概率(Posterior Probability)

+

定义:后验概率是指在获得新数据之后,根据贝叶斯定理更新的某一事件或参数的概率分布。后验概率反映了在观察到新数据之后,我们对某一事件或参数的不确定性。

+

表示方法:用 P(θD)P(\theta \mid D) 表示,其中 θ\theta 代表参数或事件, DD 代表新观察到的数据。

+

计算方法:根据贝叶斯定理,后验概率可以通过先验概率、似然函数和边际似然计算得到:

+

P(θD)=P(Dθ)P(θ)P(D)\begin{equation} +P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)} +\end{equation} +

+

其中:

+ +

拓扑向量空间

+

拓扑向量空间(Topological Vector Space,简称 TVS)是一个定义在拓扑域 K\mathbb{K}(通常是带有标准拓扑的实数或复数)上的向量空间,该空间被赋予了一个拓扑结构,使得向量加法 +  :X×XX\cdot\, + \,\cdot\; : X \times X \to X 和标量乘法 :K×XX\cdot : \mathbb{K} \times X \to X 是连续函数(这些函数的定义域赋予了乘积拓扑)。这样的拓扑被称为 XX 上的向量拓扑TVS 拓扑

+

拓扑向量空间是数学分析和函数空间理论中的重要概念,它们将向量空间的代数结构与拓扑空间的结构相结合,从而使我们能够更好地理解向量空间中的连续性和收敛性。

+

超平面

+

超平面(Hyperplane)是指一个比所在拓扑向量空间少一维的平滑仿射子空间。
+半空间(Half Space)是指拓扑向量空间被超平面划分出的两个区域之一。

+

假设有一个超平面,其由以下方程定义:

+

nx=c\begin{equation} +\mathbf{n} \cdot \mathbf{x} = c +\end{equation} +

+

其中,n\mathbf{n} 是垂直于超平面的法向量,x\mathbf{x} 是空间中的一个点,cc 是一个常数。

+

两个半空间分别由以下不等式定义:

+

nxc\begin{equation} +\mathbf{n} \cdot \mathbf{x} \geq c +\end{equation} +

+

+

nxc\begin{equation} +\mathbf{n} \cdot \mathbf{x} \leq c +\end{equation} +

+

这些不等式中的每一个代表了超平面两侧的一个半空间,满足其中一个不等式的点位于相应的半空间中。

+

紧空间

+

紧空间(Compact Space)在数学中是一种具有特殊性质的空间,即它在某种意义上表现得像“有限的”,即使它可能看起来非常大,甚至是无限的。

+

一个空间被称为紧致的,如果可以用有限数量的小而重叠的片段完全覆盖整个空间。换句话说,即使这个空间本身可能非常大或无限大,但紧致性意味着总能用有限数量的部分来描述它的全貌。

+

紧空间可以理解为一种“有限”或“被包含”的空间。这种空间不会让你“无限延伸”,而是会将你限制在某个范围内。想象你在一个小岛上,无论你走到哪里,总会遇到岛的边缘——你不能无限制地前进,总有一个尽头。这类似于紧空间。

+

相反地,如果你在一片无边无际的沙漠中,可以一直走下去而永远不会到达尽头,这类似于非紧空间。在紧空间中,总有一种“有限”的感觉,而在非紧空间中,感觉像是没有尽头的延伸。

+

Taylor展开

+

Taylor展开(Taylor Expansion)是用多项式来近似一个函数的工具。它表示一个函数在某一点附近的值为该函数在该点的导数信息的线性组合,从而通过简单的多项式来逼近复杂的函数。

+

定义:

+

给定一个在某点 aa 处可导多次的函数 f(x)f(x),它的 Taylor 展开 在点 aa 处的表达式为:

+

f(x)=f(a)+f(a)(xa)+f(a)2!(xa)2+f(3)(a)3!(xa)3++f(n)(a)n!(xa)n+Rn(x)\begin{equation} +f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x) +\end{equation} +

+

其中:

+ +

xx 足够接近 aa 时,截取足够多项的 Taylor 展开可以非常准确地逼近函数值。

+

特殊情况:麦克劳林(Maclaurin)展开

+

a=0a = 0 时,Taylor 展开被称为 麦克劳林展开,形式为:

+

f(x)=f(0)+f(0)x+f(0)2!x2+f(3)(0)3!x3+\begin{equation} +f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots +\end{equation} +

+

例子:

+
    +
  1. +

    指数函数的 Taylor 展开(以 a=0a = 0 为例,即 麦克劳林展开):

    +

    ex=1+x+x22!+x33!+\begin{equation} +e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots +\end{equation} +

    +
  2. +
  3. +

    正弦函数的 Taylor 展开(在 a=0a = 0 处):

    +

    sin(x)=xx33!+x55!\begin{equation} +\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots +\end{equation} +

    +
  4. +
+

通过 Taylor 展开,我们可以在某个点附近用有限项多项式来近似复杂的函数。这在数值计算和分析中非常有用。

+

参考文献

+
+

Abernethy, Jacob, et al. "Optimal strategies and minimax lower bounds for online convex games." Proceedings of the 21st annual conference on learning theory. 2008.

+
+
+

Auer, Peter. "Using confidence bounds for exploitation-exploration trade-offs." Journal of Machine Learning Research 3.Nov (2002): 397-422.

+
+
+

Bouneffouf, Djallel. "Finite-time analysis of the multi-armed bandit problem with known trend." 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016.

+
+
+

Bubeck, Sébastien, Ronen Eldan, and Yin Tat Lee. "Kernel-based methods for bandit convex optimization." Journal of the ACM (JACM) 68.4 (2021): 1-35.

+
+
+

Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.

+
+
+

Devroye, Luc, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition. Vol. 31. Springer Science & Business Media, 2013.

+
+
+

Feller, William. "An introduction to probability theory and its applications." (1971).

+
+
+

Flaxman, Abraham D., Adam Tauman Kalai, and H. Brendan McMahan. "Online convex optimization in the bandit setting: gradient descent without a gradient." arXiv preprint cs/0408007 (2004).

+
+
+

Hazan, Elad, Amit Agarwal, and Satyen Kale. "Logarithmic regret algorithms for online convex optimization." Machine Learning 69.2 (2007): 169-192.

+
+
+

Kearns, Michael J., and Umesh Vazirani. An introduction to computational learning theory. MIT press, 1994.

+
+
+

Lai, Tze Leung, and Herbert Robbins. "Asymptotically efficient adaptive allocation rules." Advances in applied mathematics 6.1 (1985): 4-22.

+
+
+

McAllester, David A. "PAC-Bayesian stochastic model selection." Machine Learning 51.1 (2003): 5-21.

+
+
+

Mohri, Mehryar. "Foundations of machine learning." (2018).

+
+
+

Nakkiran, Preetum, et al. "Deep double descent: Where bigger models and more data hurt." Journal of Statistical Mechanics: Theory and Experiment 2021.12 (2021): 124003.

+
+
+

Penot, Jean-Paul. "On regularity conditions in mathematical programming." Optimality and Stability in Mathematical Programming (1982): 167-199.

+
+
+

Robbins, Herbert. "Some aspects of the sequential design of experiments." (1952): 527-535.

+
+
+

Thompson, William R. "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples." Biometrika 25.3-4 (1933): 285-294.

+
+
+

Wainwright, Martin J. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cambridge university press, 2019.

+
+
+

Wang, Guanghui, Shiyin Lu, and Lijun Zhang. "Adaptivity and optimality: A universal algorithm for online convex optimization." Uncertainty in Artificial Intelligence. PMLR, 2020.

+
+
+

Zhang, Lijun, Shiyin Lu, and Zhi-Hua Zhou. "Adaptive online learning in dynamic environments." Advances in neural information processing systems 31 (2018)

+
+
+

Zhang, Lijun, Tie-Yan Liu, and Zhi-Hua Zhou. "Adaptive regret of convex and smooth functions." International Conference on Machine Learning. PMLR, 2019.

+
+
+

Zinkevich, Martin. "Online convex programming and generalized infinitesimal gradient ascent." Proceedings of the 20th international conference on machine learning (icml-03). 2003.

+
+ + + + + \ No newline at end of file diff --git a/releases/preview.md b/releases/preview.md new file mode 100644 index 00000000..43f3e4bc --- /dev/null +++ b/releases/preview.md @@ -0,0 +1,4871 @@ +# 序言 + +*编辑:詹好,赵志民,王茂霖* + +--- + +## 关于《机器学习理论导引》 + +近年来,机器学习领域发展迅猛,相关的课程与教材层出不穷。国内的经典教材如周志华的 **[《机器学习》](https://book.douban.com/subject/26708119)** 和李航的 **[《统计学习方法》](https://book.douban.com/subject/33437381)**,为许多学子提供了机器学习的入门指引。而在国外,Mitchell 的 *Machine Learning*、Duda 等人的 *Pattern Classification*、Alpaydin 的 *Introduction to Machine Learning* 等书籍则提供了更为系统的学习路径。对于希望深入学习的读者,Bishop 的 *Pattern Recognition and Machine Learning*、Murphy 的 *Machine Learning - A Probabilistic Perspective*、Hastie 等人的 *The Elements of Statistical Learning* 等著作也能提供详尽的理论指导。这些书籍无论在国内外,都成为了学习机器学习的重要资源。 + +然而,从**机器学习理论**的角度来看,现有的学习材料仍存在不足之处。相比于聚焦机器学习算法的著作,专注于机器学习理论的书籍未得到足够的重视。尽管上述一些经典著作中涉及到理论探讨,但篇幅有限,往往仅以独立章节或片段呈现,难以满足深入研究的需求。 + +以往的机器学习理论经典教材大多为英文撰写。上世纪末围绕统计学习理论展开的讨论,催生了诸如 Vapnik 的 *The Nature of Statistical Learning Theory* 和 *Statistical Learning Theory*,以及 Devroye 等人的 *A Probabilistic Theory of Pattern Recognition* 等经典文献。近年来,Shalev-Shwartz 和 Ben-David 的 *Understanding Machine Learning*,以及 Mohri 等人的 *Foundations of Machine Learning* 进一步推进了这一领域的发展。虽然部分经典著作已有高质量的中文译本,但由中文作者撰写的机器学习理论入门书籍仍显不足。 + +如今,周志华、王魏、高尉、张利军等老师合著的 **[《机器学习理论导引》](https://book.douban.com/subject/35074844)**(以下简称《导引》)填补了这一空白。该书以通俗易懂的语言,为有志于学习和研究机器学习理论的读者提供了良好的入门指引。全书涵盖了 **可学性、假设空间复杂度、泛化界、稳定性、一致性、收敛率、遗憾界** 七个重要的概念和理论工具。 + +尽管学习机器学习理论可能不像学习算法那样能够立即应用,但只要持之以恒,深入探究,必将能够领悟到机器学习中的重要思想,并体会其中的深邃奥妙。 + +-- *詹好* + +## 关于《机器学习理论导引》讲解笔记 + +《导引》的讲解笔记在团队内部被亲切地称为《钥匙书》。“钥匙”寓意着帮助读者开启知识之门,解答学习中的疑惑。 + +《导引》作为一本理论性较强的著作,涵盖了大量数学定理和证明。尽管作者团队已尽力降低学习难度,但由于机器学习理论本身的复杂性,读者仍需具备较高的数学基础。这可能导致部分读者在学习过程中感到困惑,影响学习效果。此外,由于篇幅限制,书中对某些概念和理论的实例说明不足,也增加了理解的难度。 + +基于以上原因,我们决定编辑这本《钥匙书》作为参考笔记,对《导引》进行深入的注解和补充。其目的是帮助读者更快理解并掌握书中内容,同时记录我们在学习过程中的思考和心得。 + +《钥匙书》主要包含以下四个部分: + +1. **概念解释**:介绍书中涉及但未详细阐释的相关概念。 +2. **证明补充**:详细解释部分证明的思路,并补充书中省略的证明过程。 +3. **案例分享**:增加相关实例,帮助读者加深对抽象概念的理解。 + +鉴于《导引》第一章的内容简明易懂,《钥匙书》从第二章开始详细展开。 + +对我个人而言,《机器学习理论导引》与*Understanding Machine Learning*和*Foundations of Machine Learning*一样,都是既“无用”又“有用”的书籍。“无用”在于目前的经典机器学习理论尚难全面解释深度学习,尤其是现代生成式大模型的惊人表现。然而,我坚信未来的理论突破将基于现有研究成果,开创新的篇章。因此,分析结论可能并非最重要,真正宝贵的是其中蕴含的思想和分析思路。数学作为一种强有力的工具,能够帮助我们更深入地理解和探索。我期望未来的深度学习能够拥有更多坚实的理论支撑,从而更好地指导实践。正如费曼所言:“What I cannot create, I do not understand.”——“凡我不能创造,我就不能理解。”希望大家能从这些理论中获得启发,创造出更有意义的成果。 + +另一方面,这本书也让我认识到自身的不足。不同于传统的机器学习算法教材,本书要求读者具备良好的数学功底,通过数学工具从更抽象的角度分析机器学习算法的性质,而非算法本身。学习之路或许漫长,但正如《牧羊少年的奇幻漂流》中所言:“每个人的寻梦过程都是以‘新手的运气’为开端,又总是以‘对远征者的考验’收尾。”希望大家能坚持经历考验,最终实现自己的梦想。 + +自《钥匙书》v1.0 版本发布以来,受到了众多学习者的关注。我们也收到了许多关于教材内容的疑问。为进一步深入理解相关知识,并记录团队对机器学习理论相关书籍的学习过程,我们将持续对《钥匙书》进行不定期更新,期待大家的关注。 + +-- 王茂霖 + +## 关于机器学习理论与实践 + +随着机器学习的蓬勃发展,**SOTA(State-of-the-art,最先进技术)**几乎成了评判算法优劣的唯一标准。这种对表面表现的单一追求,常常忽视了支撑其背后的基础理论。正如硅谷投资人吴军曾指出的,最顶尖的科学家通过理论设定学科的边界,赋予未来研究者方向和框架。1936年,图灵在其著名的论文中为可计算性理论奠定了基础,定义了哪些问题可以通过算法解决。同样,机器学习领域的研究者只有具备深厚的理论根基,才能在实践中面对瓶颈时不至于迷失,而是继续探索,甚至开拓新的领域。 + +**没有免费午餐定理(No Free Lunch Theorem)**便是一个鲜明的例子。该定理告诉我们,不存在一种能够应对所有问题的通用算法。尽管许多算法在特定领域或时间点看似“无敌”,如神经网络的兴起,但每个算法的优势往往局限于特定的任务和环境。因此,过度依赖某一种算法的短期成功,可能导致长期陷入困境。通过理论学习,研究者能够意识到这种局限,并避免在实践中过分追逐SOTA,而忽视更为长远的技术路线。 + +当然,理论和实践之间的差距依然存在。许多理论假设在现实应用中并不完全成立,尤其是在面对大数据和复杂模型时,理论的指导可能显得力不从心。但这并不意味着理论无用,恰恰相反,这正是学科发展的驱动力。正如机器学习的发展史所示,当实践进展遇到瓶颈时,往往是理论创新引领了新的突破。例如,在早期,受限于数据和算力,机器学习中的理论研究主导了整个领域的发展;而到了互联网时代,随着数据量的指数级增长和计算资源的提升,实践逐渐超越了理论。如今,面对数据、能源和算力等问题的挑战,理论又重新成为了优化模型效率和算法性能的焦点。 + +一个鲜明的例子是,近期在 ICLR 2024 大会上,斯隆奖得主马腾宇及其团队通过数学方法证明了Transformer 模型具备模拟任意多项式规模数字电路的能力。这一成果表明,随着**思维链(Chain of Thought, CoT)**的不断延展,Transformer能够有效地处理更为复杂的问题。 这项研究不仅展示了理论在推动前沿技术进步中的重要性,还让我们认识到,尽管外界对数据质量不足、模型的算力需求以及能源消耗提出了诸多质疑,但这些问题并非不可逾越。通过深入学习机器学习理论,我们可以更好地理解这些挑战,意识到它们实际上是迈向**通用人工智能(AGI)**过程中必须面对和解决的关键节点。 + +不仅如此,理论学习还有助于我们建立对算法泛化能力的深刻理解。通过对机器学习理论的深入研究,我们能够推导出在不同假设条件下,算法的性能极限。比如,我们可以评估某一算法的收敛速度,预测其在不同数据量和模型复杂度下的表现。这些理论工具不仅提高了研究的严谨性,还为实际应用提供了有力的指导。例如,正是通过理论推导,我们能够理解大规模语言模型的训练为何需要如此庞大的数据集,同时又能预见在某些任务上微调模型的效果。 + +最后,掌握机器学习理论不仅能够为初学者奠定坚实的基础,增强他们的信心,还能帮助他们在面对外界质疑时保持理性和清醒的判断。无论是在研究中追求算法的提升,还是在实践中应对现实的挑战,理论的力量都不可或缺。在本书的编撰中,我们特别对部分证明进行了必要的诠释和展开,主要集中在原书中存在流畅性不足的内容,或那些虽提供了参考文献但证明篇幅不超过5页的论述。对于超出5页的文献,我们建议读者直接参阅原文,以便进行更深入的探究;此类情况在本书中出现频率较低,约不超过五处。 + +-- 赵志民 + +## 项目成员贡献与特别鸣谢 + +[詹好](https://github.com/zhanhao93)负责了项目的初期规划与统筹,并参与了第一版的编辑和审核;[赵志民](https://github.com/zhimin-z)主导了项目二期的更新与维护,并负责全书最终编辑和校验;[李一飞](https://github.com/leafy-lee)参与了第1-5章内容的编辑;[王茂霖](https://github.com/mlw67)参与了第2-6章内容的编辑。 + +另外,特别鸣谢了[谢文睿](https://github.com/Sm1les)和[杨昱文](https://github.com/youngfish42),他们共同提供了本书的在线阅读功能;[张雨](https://github.com/Drizzle-Zhang)对第2章的早期内容进行了修订,各成员的协作确保了本书高质量的编写和顺利完成。 + + +# 主要符号表 + +$x$ 标量 +$x$ 向量 +$A$ 矩阵 +$I$ 单位阵 +$\mathcal{X}$ 样本空间或状态空间 +$\mathcal{H}$ 假设空间 +$\mathcal{D}$ 概率分布 +$D$ 数据样本(数据集) +$\mathbb{R}$ 实数集 +$\mathbb{R}^+$ 正实数集 +$\mathfrak{L}$ 学习算法 +$(·,·,·)$ 行向量 +$(;,;,)$ 列向量 +$(·)^T$ 向量或矩阵转置 +${\cdots}$ 集合 +$[m]$ 集合 $\{1,\dots,m\}$ +$|{\cdots}|$ 集合 ${\cdots}$ 中元素的个数 +$\|·\|_p$ 范数, $p$ 缺省时为 $L_2$ 范数 +$P()$, $P(·|·)$ 概率质量函数, 条件概率质量函数 +$p(·)$, $p(·|·)$ 概率密度函数, 条件概率密度函数 +$E_{.~\mathcal{D}}[f(·)]$ 函数 $f(·)$ 对 $·$ 在分布 $D$ 下的数学期望, 意义明确时将省略 $D$ 和(或)$·$ +$\sup(·)$ 上确界 +$\inf(·)$ 下确界 +$\mathbb{I}(·)$ 指示函数, 在 $·$ 为真和假时分别取值为 $1, 0$ +$\text{sign}(·)$ 符号函数, 在 $·<0,=0,>0$ 时分别取值为 $-1, 0, 1$ + + +# 第1章:预备定理 + +*编辑:赵志民, 李一飞* + +------ + +本章将对书中出现或用到的重要定理进行回顾,并简要解释其证明和应用场景。对于可能不熟悉相关基础知识的读者,建议参考附录中的基础知识部分。通过这些定理的阐述,希望帮助读者更好地理解数学推导的核心原理,并为后续章节的学习打下坚实基础。大数定律(Law of Large Numbers)和集中不等式(Concentration Inequality)密切相关,二者共同揭示了随机变量偏离其期望值的行为。大数定律说明,当样本量足够大时,样本均值会以概率收敛于总体的期望值,反映了长期平均结果的稳定性。而集中不等式(定理 1.8 至 1.18)则更进一步,为随机变量在有限样本量下偏离其期望值的可能性提供了精确的上界。这些不等式描述了随机变量偏离期望值的程度有多大,通过对概率的约束,确保这种偏离发生的概率较小,从而为各种随机现象提供了更细致的控制。集中不等式在大数定律的基础上提供了有力的工具,用于分析有限样本中的波动。 + +## 1.1 Jensen 不等式 + +对于任意凸函数 $f$,则有: +$$ +\begin{equation} +f(\mathbb{E}[X]) \leq \mathbb{E}[f(X)] +\end{equation} +$$ +成立。 + +### 证明 + +设 $p(x)$ 为 $X$ 的概率密度函数。由 Taylor 展开式及 $f$ 的凸性,可知 $\exists \xi$ 使得: +$$ +\begin{equation} +\begin{align*} +f(x) &= f(\mathbb{E}[X]) + f^{\prime}(\mathbb{E}[X])(x-\mathbb{E}[X]) + \frac{f^{\prime \prime}(\xi)}{2}(x-\mathbb{E}[X])^{2} \\ +& \geq f(\mathbb{E}[X]) + f^{\prime}(\mathbb{E}[X])(x-\mathbb{E}[X]) +\end{align*} +\end{equation} +$$ +对上式取期望,得到: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}[f(X)] &= \int p(x) f(x) \,dx \\ +&\geq f(\mathbb{E}[X]) \int p(x) \,dx + f^{\prime}(\mathbb{E}[X]) \int p(x)(x-\mathbb{E}[X]) \,dx \\ +&= f(\mathbb{E}[X]) +\end{align*} +\end{equation} +$$ +因此,原不等式得证。 + +如果 $f$ 是凹函数,则 Jensen 不等式变为: +$$ +\begin{equation} +f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)] +\end{equation} +$$ +这一结论可以通过将上述证明中的 $f$ 替换为 $-f$ 得到。$\square$ + + + +## 1.2 Hölder 不等式 + +对于任意 $p, q \in \mathbb{R}^{+}$,且满足 $\frac{1}{p} + \frac{1}{q} = 1$,则有: +$$ +\begin{equation} +\mathbb{E}[|XY|] \leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}} +\end{equation} +$$ +成立。 + +### 证明 + +设 $f(x)$ 和 $g(y)$ 分别为 $X$ 和 $Y$ 的概率密度函数,定义: +$$ +\begin{equation} +M = \frac{|x|}{(\int_X |x|^p f(x) \,dx)^{\frac{1}{p}}}, \quad N = \frac{|y|}{(\int_Y |y|^q g(y) \,dy)^{\frac{1}{q}}} +\end{equation} +$$ +代入 Young 不等式: +$$ +\begin{equation} +MN \leq \frac{1}{p}M^p + \frac{1}{q}N^q +\end{equation} +$$ +对该不等式两边同时取期望: +$$ +\begin{equation} +\begin{align*} +\frac{\mathbb{E}[|XY|]}{(\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|Y|^q])^{\frac{1}{q}}} &= \frac{\int_{XY} |xy| f(x)g(y) \,dx\,dy}{(\int_X |x|^p f(x) \,dx)^{\frac{1}{p}} (\int_Y |y|^q g(y) \,dy)^{\frac{1}{q}}} \\ +&\leq \frac{\int_X |x|^p f(x) \,dx}{p \int_X |x|^p f(x) \,dx} + \frac{\int_Y |y|^q g(y) \,dy}{q \int_Y |y|^q g(y) \,dy} \\ +&= \frac{1}{p} + \frac{1}{q} \\ +&= 1 +\end{align*} +\end{equation} +$$ +因此,Hölder 不等式得证。$\square$ + + + +## 1.3 Cauchy-Schwarz 不等式 + +当 $p = q = 2$ 时,Hölder 不等式退化为 Cauchy-Schwarz 不等式: +$$ +\begin{equation} +\mathbb{E}[|XY|] \leq \sqrt{\mathbb{E}[X^{2}] \cdot \mathbb{E}[Y^{2}]} +\end{equation} +$$ + + + +## 1.4 Lyapunov 不等式 + +对于任意 $0 \lt r \leq s$,有: +$$ +\begin{equation} +\sqrt[r]{\mathbb{E}[|X|^{r}]} \leq \sqrt[s]{\mathbb{E}[|X|^{s}]} +\end{equation} +$$ + +### 证明 + +由 Hölder 不等式: +对任意 $p \geq 1$,有: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}[|X|^{r}] &= \mathbb{E}[|X \cdot 1|^{r}] \\ +&\leq (\mathbb{E}[|X|^{rp}])^{\frac{1}{p}} \cdot (\mathbb{E}[1^q])^{\frac{1}{q}} \\ +&= (\mathbb{E}[|X|^{rp}])^{\frac{1}{p}} +\end{align*} +\end{equation} +$$ +记 $s = rp \geq r$,则: +$$ +\begin{equation} +\mathbb{E}[|X|^{r}] \leq (\mathbb{E}[|X|^{s}])^{\frac{r}{s}} +\end{equation} +$$ +因此,原不等式得证。$\square$ + + + +## 1.5 Minkowski 不等式 + +对于任意 $p \geq 1$,有: +$$ +\begin{equation} +\sqrt[p]{\mathbb{E}[|X+Y|^p]} \leq \sqrt[p]{\mathbb{E}[|X|^p]} + \sqrt[p]{\mathbb{E}[|Y|^p]} +\end{equation} +$$ + +### 证明 + +由三角不等式和 Hölder 不等式,可得: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}[|X+Y|^p] &\leq \mathbb{E}[(|X|+|Y|)|X+Y|^{p-1}] \\ +&= \mathbb{E}[|X\|X+Y|^{p-1}] + \mathbb{E}[|Y\|X+Y|^{p-1}] \\ +&\leq (\mathbb{E}[|X|^p])^{\frac{1}{p}} (\mathbb{E}[|X+Y|^{(p-1)q}])^{\frac{1}{q}} + (\mathbb{E}[|Y|^p])^{\frac{1}{p}} (\mathbb{E}[|X+Y|^{(p-1)q}])^{\frac{1}{q}} \\ +&= [(\mathbb{E}[|X|^p])^{\frac{1}{p}} + (\mathbb{E}[|Y|^p])^{\frac{1}{p}}] \cdot \frac{\mathbb{E}[|X+Y|^p]}{(\mathbb{E}[|X+Y|^p])^{\frac{1}{p}}} +\end{align*} +\end{equation} +$$ +化简后即得证。$\square$ + + + +## 1.6 Bhatia-Davis 不等式 + +对 $X \in [a,b]$,有: +$$ +\begin{equation} +\mathbb{V}[X] \leq (b - \mathbb{E}[X])(\mathbb{E}[X] - a) \leq \frac{(b-a)^2}{4} +\end{equation} +$$ + +### 证明 + +因为 $a \leq X \leq b$,所以有: +$$ +\begin{equation} +\begin{align*} +0 &\leq \mathbb{E}[(b-X)(X-a)] \\ +&= -\mathbb{E}[X^2] - ab + (a+b)\mathbb{E}[X] +\end{align*} +\end{equation} +$$ +因此, +$$ +\begin{equation} +\begin{align*} +\mathbb{V}[X] &= \mathbb{E}[X^2] - \mathbb{E}[X]^2 \\ +&\leq -ab + (a+b)\mathbb{E}[X] - \mathbb{E}[X^2] \\ +&= (b - \mathbb{E}[X])(\mathbb{E}[X] - a) +\end{align*} +\end{equation} +$$ + +考虑 AM-GM 不等式: +$$ +\begin{equation} +xy \leq (\frac{x+y}{2})^2 +\end{equation} +$$ +将 $x = b - \mathbb{E}[X]$ 和 $y = \mathbb{E}[X] - a$ 带入并化简即得证。$\square$ + + + +## 1.7 Union Bound(Boole's)不等式 + +对于任意事件 $X$ 和 $Y$,有: +$$ +\begin{equation} +P(X \cup Y) \leq P(X) + P(Y) +\end{equation} +$$ + +### 证明 + +根据概率的加法公式: +$$ +\begin{equation} +P(X \cup Y) = P(X) + P(Y) - P(X \cap Y) \leq P(X) + P(Y) +\end{equation} +$$ +由于 $P(X \cap Y) \geq 0$,因此不等式得证。$\square$ + + + +## 1.8 Markov 不等式 + +若 $X \geq 0$,则对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +P(X \geq \varepsilon) \leq \frac{\mathbb{E}[X]}{\varepsilon} +\end{equation} +$$ + +### 证明 + +由定义可得: +$$ +\begin{equation} +\mathbb{E}[X] = \int_{0}^{\infty} x p(x) \,dx \geq \int_{\varepsilon}^{\infty} x p(x) \,dx \geq \varepsilon \int_{\varepsilon}^{\infty} p(x) \,dx = \varepsilon P(X \geq \varepsilon) +\end{equation} +$$ +因此,原不等式得证。$\square$ + + + +## 1.9 Chebyshev 不等式 + +对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +P(|X-\mathbb{E}[X]| \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\varepsilon^{2}} +\end{equation} +$$ + +### 证明 + +利用 Markov 不等式,得到: +$$ +\begin{equation} +P(|X-\mathbb{E}[X]| \geq \varepsilon) = P((X-\mathbb{E}[X])^2 \geq \varepsilon^{2}) \leq \frac{\mathbb{E}[(X-\mathbb{E}[X])^2]}{\varepsilon^{2}} = \frac{\mathbb{V}[X]}{\varepsilon^{2}} +\end{equation} +$$ +因此,Chebyshev 不等式得证。$\square$ + + + +## 1.10 Cantelli 不等式 + +对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +P(X-\mathbb{E}[X] \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}} +\end{equation} +$$ + +### 证明 + +设 $Y = X - \mathbb{E}[X]$,则对于任意 $\lambda \geq 0$,有: +$$ +\begin{equation} +\begin{align*} +P(X-\mathbb{E}[X] \geq \varepsilon) &= P(Y \geq \varepsilon) \\ +&= P(Y+\lambda \geq \varepsilon+\lambda) \\ +&= P((Y+\lambda)^{2} \geq (\varepsilon+\lambda)^{2}) \\ +&\leq \frac{\mathbb{E}[(Y+\lambda)^{2}]}{(\varepsilon+\lambda)^{2}} = \frac{\mathbb{V}[X]+\lambda^{2}}{(\varepsilon+\lambda)^{2}} +\end{align*} +\end{equation} +$$ +通过对 $\lambda$ 求导,得右端在 $\lambda = \frac{\mathbb{V}[X]}{\varepsilon}$ 时取得最小值 $\frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}}$,因此: +$$ +\begin{equation} +P(X-\mathbb{E}[X] \geq \varepsilon) \leq \frac{\mathbb{V}[X]}{\mathbb{V}[X]+\varepsilon^{2}} +\end{equation} +$$ +原不等式得证。$\square$ + +值得注意的是,Cantelli 不等式是 Chebyshev 不等式的加强版,也称为单边 Chebyshev 不等式。通过类似的构造方法,可以推导出比 Cantelli 不等式更严格的上界。 + + + +## 1.11 Chernoff 界(Chernoff-Cramér 界) + +对于任意 $\lambda \gt 0, \varepsilon \gt 0$,有: +$$ +\begin{equation} +P(X \geq \varepsilon) \leq \min_{\lambda \gt 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}} +\end{equation} +$$ +对于任意 $\lambda \lt 0, \varepsilon \gt 0$,有: +$$ +\begin{equation} +P(X \leq \varepsilon) \leq \min_{\lambda \lt 0} \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}} +\end{equation} +$$ + +### 证明 + +应用 Markov 不等式,有: +$$ +\begin{equation} +P(X \geq \varepsilon) = P(e^{\lambda X} \geq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}}, \quad \lambda \gt 0, \varepsilon \gt 0 +\end{equation} +$$ +同理, +$$ +\begin{equation} +P(X \leq \varepsilon) = P(e^{\lambda X} \leq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda X}]}{e^{\lambda \varepsilon}}, \quad \lambda \lt 0, \varepsilon \gt 0 +\end{equation} +$$ +因此,Chernoff 界得证。$\square$ + +基于上述 Chernoff 界的技术,我们可以进一步定义次高斯性: + +**定义 1** (随机变量的次高斯性):若一个期望为零的随机变量 $X$ 的矩母函数满足 $\forall \lambda \in \mathbb{R}^+$: +$$ +\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \exp(\frac{\sigma^2\lambda^2}{2}) +\end{equation} +$$ +则称 $X$ 服从参数为 $\sigma$ 的次高斯分布。 + +实际上,Hoeffding 引理中的随机变量 $X$ 服从 $\frac{(b-a)}{2}$ 的次高斯分布。Hoeffding 引理也是次高斯分布的直接体现。次高斯性还有一系列等价定义,这里不作详细讨论。 + +次高斯分布有一个直接的性质:假设两个独立的随机变量 $X_1, X_2$ 都是次高斯分布的,分别服从参数 $\sigma_1, \sigma_2$,那么 $X_1 + X_2$ 就是服从参数为 $\sqrt{\sigma_1^2 + \sigma_2^2}$ 的次高斯分布。这个结果的证明可以直接利用定义来完成。 + +显然,并非所有常见的随机变量都是次高斯的,例如指数分布。为此可以扩大定义: + +**定义 2** (随机变量的次指数性):若非负的随机变量 $X$ 的矩母函数满足 $\forall \lambda \in (0,a)$: +$$ +\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \frac{a}{a - \lambda} +\end{equation} +$$ +则称 $X$ 服从参数为 $(\mathbb{V}[X], 1/a)$ 的次指数分布。 + +同样地,次指数性也有一系列等价定义。一种不直观但更常用的定义如下:存在 $(\sigma^2, b)$,使得 $\forall |s| \lt 1/b$: +$$ +\begin{equation} +\mathbb{E}[e^{s(X−\mathbb{E}[X])}] \leq \exp ( \frac{s^2\sigma^2}{2} ) +\end{equation} +$$ + +常见的次指数分布包括:指数分布,Gamma 分布,以及**任何有界随机变量**。 + +类似地,次指数分布对于加法也是封闭的:如果 $X_1, X_2$ 分别是服从 $(\sigma_1^2, b_1)$ 和 $(\sigma_2^2, b_2)$ 的次指数分布,那么 $X_1 + X_2$ 是服从 $(\sigma_1^2 + \sigma_2^2, \max(b_1, b_2))$ 的次指数分布。在高维统计问题中,次高斯分布和次指数分布的尾端控制能得到一些重要的结论。 + + + +## 1.12 Chernoff 不等式(乘积形式) + +对于 $m$ 个独立同分布的随机变量 $x_i \in [0, 1], i \in [m]$,设 $X = \sum_{i=1}^m X_i$,$\mu \gt 0$ 且 $r \leq 1$。若对所有 $i \leq m$ 都有 $\mathbb{E}[x_i] \leq \mu$,则: +$$ +\begin{equation} +\begin{align*} +P(X \geq (1+r)\mu m) \leq e^{-\frac{r^2 \mu m}{3}}, \quad r \geq 0 \\ +P(X \leq (1-r)\mu m) \leq e^{-\frac{r^2 \mu m}{2}}, \quad r \geq 0 +\end{align*} +\end{equation} +$$ + +### 证明 + +应用 Markov 不等式,有: +$$ +\begin{equation} +P(X \geq (1+r)\mu m) = P((1+r)^X \geq (1+r)^{(1+r)\mu m}) \leq \frac{\mathbb{E}[(1+r)^X]}{(1+r)^{(1+r)\mu m}} +\end{equation} +$$ +由于 $x_i$ 之间是独立的,可得: +$$ +\begin{equation} +\mathbb{E}[(1+r)^X] = \prod_{i=1}^m \mathbb{E}[(1+r)^{x_i}] \leq \prod_{i=1}^m \mathbb{E}[1+rx_i] \leq \prod_{i=1}^m (1+r\mu) \leq e^{r\mu m} +\end{equation} +$$ +其中,第二步使用了 $\forall x \in [0,1]$ 都有 $(1+r)^x \leq 1+rx$,第三步使用了 $\mathbb{E}[x_i] \leq \mu$,第四步使用了 $\forall x \in [0,1]$ 都有 $1+x \leq e^x$。 + +又由于 $\forall r \in [0,1]$,有 $\frac{e^r}{(1+r)^{1+r}} \leq e^{-\frac{r^2}{3}}$,综上所述: +$$ +\begin{equation} +P(X \geq (1+r)\mu m) \leq (\frac{e^r}{(1+r)^{(1+r)}})^{\mu m} \leq e^{-\frac{r^2 \mu m}{3}} +\end{equation} +$$ + +当我们将 $r$ 替换为 $-r$ 时,根据之前的推导,并利用 $\forall r \in [0,1]$ 有 $\frac{e^r}{(1-r)^{1-r}} \leq e^{-\frac{r^2}{2}}$,可得第二个不等式的证明。$\square$ + + + +## 1.13 最优 Chernoff 界 + +如果 $X$ 是一个随机变量,并且 $\mathbb{E}[e^{\lambda(X-\mathbb{E}X)}] \leq e^{\phi(\lambda)}$ 对于所有 $\lambda \geq 0$ 成立,则有以下结论: +$$ +\begin{equation} +P(X - \mathbb{E}X \geq \varepsilon) \leq e^{-\phi^*(\varepsilon)}, \quad \varepsilon \geq 0 +\end{equation} +$$ +或 +$$ +\begin{equation} +P(X - \mathbb{E}X \leq (\phi^*)^{-1}(\ln(1/\delta))) \geq 1 - \delta, \quad \delta \in [0,1] +\end{equation} +$$ +其中,$\phi^*$ 是 $\phi$ 的凸共轭函数,即 $\phi^*(x) = \sup_{\lambda \geq 0}(\lambda x - \phi(\lambda))$。 + +### 证明 + +根据 Chernoff 不等式,有: +$$ +\begin{equation} +\begin{align*} +P(X - \mathbb{E}X \geq \varepsilon) &\leq \inf_{\lambda \geq 0} e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(X-\mathbb{E}X)}] \\ +&\leq \inf_{\lambda \geq 0} e^{\phi(\lambda) - \lambda \varepsilon} \\ +&= e^{-\sup_{\lambda \geq 0}(\lambda \varepsilon - \phi(\lambda))} \\ +&= e^{-\phi^*(\varepsilon)} +\end{align*} +\end{equation} +$$ +因此,最优 Chernoff 界得证。$\square$ + + + +## 1.14 Hoeffding 不等式 + +设有 $m$ 个独立随机变量 $X_{i} \in [a_{i}, b_{i}]$,令 $\bar{X}$ 为 $X_{i}$ 的均值。Hoeffding 不等式表示: + +$$ +\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}) +\end{equation} +$$ + +### 证明 + +首先,我们引入一个引理 (Hoeffding 定理): + +对于 $\mathbb{E}[X] = 0$ 且 $X \in [a, b]$ 的随机变量,对于任意 $\lambda \in \mathbb{R}$,有: + +$$ +\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \exp( \frac{\lambda^2(b-a)^2}{8} ) +\end{equation} +$$ + +由于 $e^x$ 是凸函数,对于任意 $x \in [a, b]$,可以写为: + +$$ +\begin{equation} +e^{\lambda x} \leq \frac{b-x}{b-a}e^{\lambda a} + \frac{x-a}{b-a}e^{\lambda b} +\end{equation} +$$ + +对上式取期望,得到: + +$$ +\begin{equation} +\mathbb{E}[e^{\lambda X}] \leq \frac{b-\mathbb{E}[X]}{b-a}e^{\lambda a} + \frac{\mathbb{E}[X]-a}{b-a}e^{\lambda b} = \frac{be^{\lambda a} - ae^{\lambda b}}{b - a} +\end{equation} +$$ + +记 $\theta = -\frac{a}{b-a}$,$h = \lambda(b-a)$,则: + +$$ +\begin{equation} +\frac{be^{\lambda a} - ae^{\lambda b}}{b - a} = [1-\theta + \theta e^{h}]e^{-\theta h} = e^{\ln(1-\theta + \theta e^{h})}e^{-\theta h} = e^{\ln(1-\theta + \theta e^{h}) -\theta h} +\end{equation} +$$ + +定义函数 $\varphi(\theta, h) = \ln(1-\theta + \theta e^{h}) -\theta h$。注意到 $\theta$ 实际上与 $h$ 无关。对 $h$ 求偏导数: + +$$ +\begin{equation} +\frac{\partial \varphi}{\partial h} = \frac{\theta e^h}{1 - \theta + \theta e^h} - \theta +\end{equation} +$$ + +显然有 $\frac{\partial \varphi}{\partial h}\big|_{h=0^+} = 0$。同理,利用链式法则可得: + +$$ +\begin{equation} +\frac{\partial^2 \varphi}{\partial h^2} = \frac{\theta e^h(1 - \theta + \theta e^h) - \theta^2e^{2h}}{(1 - \theta + \theta e^h)^2} = \frac{\theta e^h}{1 - \theta + \theta e^h}(1- \frac{\theta e^h}{1 - \theta + \theta e^h}) \leq \frac{1}{4} +\end{equation} +$$ + +根据泰勒展开式,可以得到: + +$$ +\begin{equation} +\varphi(\theta, h) \leq \frac{h^2}{8} = \frac{\lambda^2(b-a)^2}{8} +\end{equation} +$$ + +由 Markov 不等式可知,对于任意 $\lambda \gt 0$: + +$$ +\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) = P(e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])} \geq e^{\lambda \varepsilon}) \leq \frac{\mathbb{E}[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}])}]}{e^{\lambda \varepsilon}} +\end{equation} +$$ + +利用随机变量的独立性及 Hoeffding 引理,有: + +$$ +\begin{equation} +\frac{\mathbb{E}[e^{\lambda(\bar{X} - \mathbb{E}[\bar{X}]})]}{e^{\lambda \varepsilon}} = e^{-\lambda \varepsilon} \prod_{i=1}^{m} \mathbb{E}[e^{\lambda(X_{i} - \mathbb{E}[X_{i}]) / m}] \leq e^{-\lambda \varepsilon} \prod_{i=1}^{m} \exp (\frac{\lambda^{2}(b_{i} - a_{i})^{2}}{8 m^{2}}) +\end{equation} +$$ + +考虑二次函数 $g(\lambda) = -\lambda \varepsilon + \frac{\lambda^{2}}{8 m^{2}} \sum_{i=1}^{m}(b_{i} - a_{i})^{2}$,其最小值为 $-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}$。 + +因此可以得到: + +$$ +\begin{equation} +P(\bar{X} - \mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{2 m^{2} \varepsilon^{2}}{\sum_{i=1}^{m}(b_{i} - a_{i})^{2}}) +\end{equation} +$$ +$\square$ + +注意,这里并未要求随机变量同分布,因此Hoeffding 不等式常用来解释集成学习的基本原理。 + + + +## 1.15 McDiarmid 不等式 + +对于 $m$ 个独立随机变量 $X_{i} \in \mathcal{X}$,若函数 $f$ 是差有界的,则对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +P(f(X_{1}, \cdots, X_{m})-\mathbb{E}[f(X_{1}, \cdots, X_{m})] \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +$$ + +### 证明 + +构造一个鞅差序列: +$$ +\begin{equation} +D_j = \mathbb{E}[f(X) \mid X_1, \cdots, X_j] - \mathbb{E}[f(X) \mid X_1, \cdots, X_{j-1}] +\end{equation} +$$ +容易验证: +$$ +\begin{equation} +f(X) - \mathbb{E}[f(X)] = \sum_{i=1}^m D_i +\end{equation} +$$ +由于 $f$ 是差有界的,因此满足 Azuma-Hoeffding 引理。代入后可得: +$$ +\begin{equation} +P(f(X_1, \cdots, X_m) - \mathbb{E}[f(X_1, \cdots, X_m)] \geq \varepsilon) \leq \exp( -\frac{\varepsilon^2}{2\sum_{i=1}^m c_i^2} ) +\end{equation} +$$ +原不等式得证。$\square$ + + + +## 1.16 Bennett 不等式 + +对于 $m$ 个独立随机变量 $X_{i}$,令 $\bar{X}$ 为 $X_{i}$ 的均值,若存在 $b \gt 0$,使得 $|X_i-\mathbb{E}[X_i]| \lt b$,则有: +$$ +\begin{equation} +P(\bar{X}-\mathbb{E}[\bar{X}] \geq \varepsilon) \leq \exp (-\frac{m \varepsilon^{2}}{2(\sum_{i=1}^{m} \mathbb{V}[X_{i}] / m + b \varepsilon / 3)}) +\end{equation} +$$ + +### 证明 + +首先,Bennett 不等式是 Hoeffding 不等式的一个加强版,对于独立随机变量的条件可以放宽为弱独立条件,结论仍然成立。 + +这些 Bernstein 类的集中不等式更多地反映了在非渐近观点下的大数定律表现,即它们刻画了样本均值如何集中在总体均值附近。 + +如果将样本均值看作是样本(数据点的函数),即令 $f(X_{1}, \cdots, X_{m}) = \sum_{i=1}^{m} X_{i} / m$,那么 Bernstein 类不等式刻画了如下的概率: +$$ +\begin{equation} +P(f(X_{1}, \cdots, X_{m}) - \mathbb{E}[f(X_{1}, \cdots, X_{m})] \geq \varepsilon) +\end{equation} +$$ +为了在某些泛函上也具有类似 Bernstein 类的集中不等式形式,显然 $f$ 需要满足某些特定性质。差有界性是一种常见的约束条件。 + +### 定义 3: 差有界性 + +函数 $f: \mathcal{X}^{m} \rightarrow \mathbb{R}$ 满足对于每个 $i$,存在常数 $c_{i} \lt \infty$,使得: +$$ +\begin{equation} +|f(x_{1}, \cdots, x_{i}, \cdots, x_{m})-f(x_{1}, \cdots, x_{i}^{\prime}, \cdots, x_{m})| \leq c_{i} +\end{equation} +$$ +则称 $f$ 是差有界的。 + +为了证明这些结果,需要引入一些新的数学工具。 + +### 定义 4: 离散鞅 + +若离散随机变量序列(随机过程)$Z_m$ 满足: + +1. $\mathbb{E}[|Z_{i}|] \lt \infty$ +2. $\mathbb{E}[Z_{m+1} \mid Z_{1}, \cdots, Z_{m}] = \mathbb{E}[Z_{m+1} \mid \mathcal{F}_{m}] = Z_{m}$ + +则称序列 $Z_i$ 为离散鞅。 + +### 引理 2: Azuma-Hoeffding 定理 + +对于鞅 $Z_{i}$,若 $\mathbb{E}[Z_{i}] = \mu, Z_{1} = \mu_{\circ}$,则构造鞅差序列 $X_{i} = Z_{i} - Z_{i-1}$,且 $|X_{i}| \leq c_{i}$,则对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) = P(\sum_{i=1}^{m} X_{i} \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +$$ + +### 证明 + +首先,若 $\mathbb{E}[X \mid Y] = 0$,则有 $\forall \lambda \gt 0$: +$$ +\begin{equation} +\mathbb{E}[e^{\lambda X} \mid Y] \leq \mathbb{E}[e^{\lambda X}] +\end{equation} +$$ +因此,由恒等式 $\mathbb{E}[\mathbb{E}[X \mid Y]] = \mathbb{E}[X]$ 及 Chernoff 一般性技巧,对于任意 $\lambda \gt 0$: +$$ +\begin{equation} +\begin{align*} +P(Z_{m}-\mu \geq \varepsilon) &\geq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m}-\mu)}] \\ +& = e^{-\lambda \varepsilon} \mathbb{E}[\mathbb{E}[e^{\lambda(Z_{m}-\mu)} \mid \mathcal{F}_{m-1}]] \\ +& = e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}\mathbb{E}[e^{\lambda (Z_{m}-Z_{m-1})} \mid \mathcal{F}_{m-1}]] +\end{align*} +\end{equation} +$$ + +由于 $\{X_{i}\}$ 是鞅差序列,因此 $\mathbb{E}[X_{m} \mid \mathcal{F}_{m-1}] = 0, \mathbb{E}[X_{i}] = 0$。再结合不等式 $\mathbb{E}[e^{\lambda X} \mid Y] \leq \mathbb{E}[e^{\lambda X}]$ 及 Hoeffding 引理,有: +$$ +\begin{equation} +\begin{align*} +P(Z_{m}-\mu \geq \varepsilon) & \leq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}] \mathbb{E}[e^{\lambda X_{n}}] \\ +& \leq e^{-\lambda \varepsilon} \mathbb{E}[e^{\lambda(Z_{m-1}-\mu)}] \exp (\frac{\lambda^{2} c_{m}^{2}}{2}) +\end{align*} +\end{equation} +$$ +迭代上不等式可得: +$$ +\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) \leq e^{-\lambda \varepsilon} \prod_{i=1}^{m} \exp (\frac{\lambda^{2} c_{i}^{2}}{2}) +\end{equation} +$$ +当 $\lambda = \frac{\varepsilon}{\sum_{i=1}^{m} c_{i}^{2}}$ 时,上式右端取得极小值: +$$ +\begin{equation} +P(Z_{m}-\mu \geq \varepsilon) \leq \exp (-\frac{\varepsilon^{2}}{2 \sum_{i=1}^{m} c_{i}^{2}}) +\end{equation} +$$ +原不等式得证。$\square$ + + + +## 1.17 Bernstein 不等式 + +考虑 $m$ 个独立同分布的随机变量 $X_i, i \in [m]$。令 $\bar{X} = \frac{\sum_{i=1}^{m} X_i}{m}$。若存在常数 $b > 0$,使得对所有 $k \geq 2$,第 $k$ 阶矩满足 $\mathbb{E}[|X_i|^k] \leq \frac{k! b^{k-2}}{2} \mathbb{V}[X_1]$,则该不等式成立: + +$$ +\begin{equation} +\mathbb{P}(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon) \leq \exp\left(\frac{-m\epsilon^2}{2 \mathbb{V}[X_1] + 2b\epsilon}\right) +\end{equation} +$$ + +### 证明 + +首先,我们需要将**矩条件**(moment condition)转换为**亚指数条件**(sub-exponential condition),以便进一步推导,即: + +- **矩条件:** + 对于随机变量 $X$,其 $k$-阶中心矩 满足如下条件: + $$ + \begin{equation} + \mathbb{E}\left[|X - \mathbb{E}[X]|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X], \quad \forall k \geq 2 + \end{equation} + $$ + 其中: + 1. **中心矩**:随机变量 $X$ 的 $k$ 阶中心矩为 $\mathbb{E}\left[|X - \mathbb{E}[X]|^k\right]$,表示 $X$ 偏离其期望值的 $k$ 次幂的期望值。中心矩用于衡量随机变量的分布形状,尤其是描述其尾部行为。当 $k = 2$ 时,中心矩即为随机变量的方差。 + 2. $\frac{k!}{2}$ 是阶乘项,随着 $k$ 增大迅速增长。 + 3. $b^{k-2}$ 是一个修正因子,其中 $b$ 为常数,用以控制高阶矩的增长速率。 + 4. $\mathbb{V}[X]$ 表示随机变量 $X$ 的方差,它作为标准的离散度量来标定中心矩的大小。 + +- **亚指数条件**: + 给定随机变量 $X$,其均值为 $\mathbb{E}[X]$,方差为 $\mathbb{V}[X]$,则其偏离均值的随机变量 $X - \mathbb{E}[X]$ 的矩母函数(MGF)满足如下不等式: + $$ + \begin{equation} + \mathbb{E}\left[e^{\lambda (X - \mathbb{E}[X])}\right] \leq \exp\left(\frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) + \end{equation} + $$ + 其中: + 1. **矩母函数**:这是一个重要的工具,用于控制随机变量的尾部概率。矩母函数的形式是 $\mathbb{E}[e^{\lambda X}]$,它通过调整 $\lambda$ 来捕捉不同程度的偏差行为。 + 2. **方差主导项**:不等式右边的表达式包含一个方差主导的项 $\frac{\mathbb{V}[X] \lambda^2}{2}$,类似于高斯分布的尾部特性,表明当 $\lambda$ 较小时,$X$ 的偏差行为主要由其方差控制,尾部概率呈现指数衰减。 + 3. **修正项 $(1 - b\lambda)$**:该项显示,当 $\lambda$ 接近 $\frac{1}{b}$ 时,尾部偏差的控制变得更加复杂。这种形式通常出现在亚指数条件中,意味着随机变量的尾部行为介于高斯分布和重尾分布之间,尾部衰减较慢但仍比重尾分布快。 + +--- + +- **步骤 1:中心化随机变量** + +设: +$$ +\begin{equation} +Y = X - \mathbb{E}[X] +\end{equation} +$$ + +我们的目标是对 $Y$ 的矩母函数(MGF)进行上界: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] +\end{equation} +$$ + +--- + +- **步骤 2:展开指数矩** + +将 MGF 展开为幂级数(Taylor展开): +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] = \mathbb{E}\left[\sum_{k=0}^\infty \frac{(\lambda Y)^k}{k!}\right] = \sum_{k=0}^\infty \frac{\lambda^k}{k!} \mathbb{E}[Y^k] +\end{equation} +$$ + +由于 $\mathbb{E}[Y] = 0$,故 $k = 1$ 项消失: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] = 1 + \sum_{k=2}^\infty \frac{\lambda^k}{k!} \mathbb{E}[Y^k] +\end{equation} +$$ + +--- + +- **步骤 3:使用矩条件对中心矩进行上界** + +根据矩条件: +$$ +\begin{equation} +\mathbb{E}\left[|Y|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] +\end{equation} +$$ + +因此: +$$ +\begin{equation} +|\mathbb{E}[Y^k]| \leq \mathbb{E}\left[|Y|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] +\end{equation} +$$ + +--- + +- **步骤 4:代入 MGF 展开式** + +将上界代入 MGF 展开式: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \sum_{k=2}^\infty \frac{\lambda^k}{k!} \cdot \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X] = 1 + \frac{\mathbb{V}[X]}{2} \sum_{k=2}^\infty (b\lambda)^{k-2} \lambda^2 +\end{equation} +$$ + +通过令 $j = k - 2$ 进行简化: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \frac{\mathbb{V}[X] \lambda^2}{2} \sum_{j=0}^\infty (b\lambda)^j +\end{equation} +$$ + +--- + +- **步骤 5:求解几何级数的和** + +当 $b\lambda < 1$ 时,几何级数收敛: +$$ +\begin{equation} +\sum_{j=0}^\infty (b\lambda)^j = \frac{1}{1 - b\lambda} +\end{equation} +$$ + +因此: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq 1 + \frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)} +\end{equation} +$$ + +--- + +- **步骤 6:应用指数不等式** + +使用不等式 $1 + x \leq e^{x}$ 对所有实数 $x$ 成立: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +$$ + +这与**亚指数条件**相符: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[X] \lambda^2}{2(1 - b\lambda)}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +$$ + +--- + +接下来我们完成在给定矩条件下的**Bernstein 不等式**的证明,即: + +**陈述:** + +给定 $m$ 个独立同分布的随机变量 $X_i, i \in [m]$,令 $\bar{X} = \frac{1}{m}\sum_{i=1}^{m} X_i$。若存在常数 $b > 0$,使得对所有 $k \geq 2$, +$$ +\begin{equation} +\mathbb{E}\left[|X_i - \mathbb{E}[X_i]|^k\right] \leq \frac{k! \, b^{k-2}}{2} \, \mathbb{V}[X_1], +\end{equation} +$$ + +则对于任意 $\epsilon > 0$, +$$ +\begin{equation} +\mathbb{P}\left(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon\right) \leq \exp\left(\frac{-m\epsilon^2}{2 \mathbb{V}[X_1] + 2b\epsilon}\right) +\end{equation} +$$ + +--- + +- **步骤 1:定义单侧 Bernstein 条件** + +首先,回顾对于参数 $b > 0$ 的**单侧 Bernstein 条件**: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda(Y)}\right] \leq \exp\left(\frac{\mathbb{V}[Y] \lambda^2 / 2}{1 - b\lambda}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +$$ +其中 $Y = X - \mathbb{E}[X]$。 + +根据**矩条件**,我们已经证明 $Y$ 满足**亚指数条件**: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda Y}\right] \leq \exp\left(\frac{\mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right), \quad \forall \lambda \in \left[0, \frac{1}{b}\right) +\end{equation} +$$ + +因此,$Y$ 满足**单侧 Bernstein 条件**,且 $\mathbb{V}[Y] = \mathbb{V}[X]$。 + +- **步骤 2:应用 Chernoff 界** + +考虑 $m$ 个独立同分布随机变量 $Y_i = X_i - \mathbb{E}[X_i]$ 的和: +$$ +\begin{equation} +S_m = \sum_{i=1}^{m} Y_i = m(\bar{X} - \mathbb{E}[\bar{X}]) +\end{equation} +$$ + +我们的目标是对概率 $\mathbb{P}(S_m \geq m\epsilon)$ 进行上界,这等价于 $\mathbb{P}(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon)$。 + +使用**Chernoff 界**: +$$ +\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \inf_{\lambda > 0} \exp(-\lambda m \epsilon) \mathbb{E}\left[e^{\lambda S_m}\right] +\end{equation} +$$ + +- **步骤 3:对和的矩母函数进行上界** + +由于 $Y_i$ 是独立的: +$$ +\begin{equation} +\mathbb{E}\left[e^{\lambda S_m}\right] = \prod_{i=1}^{m} \mathbb{E}\left[e^{\lambda Y_i}\right] \leq \left[\exp\left(\frac{\mathbb{V}[Y_i] \lambda^2}{2(1 - b\lambda)}\right)\right]^m = \exp\left(\frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +$$ + +因此: +$$ +\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \inf_{\lambda > 0} \exp\left(-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)}\right) +\end{equation} +$$ + +- **步骤 4:对 $\lambda$ 进行优化** + +为了找到最紧的界,我们需要对 $\lambda$ 进行优化。最优的 $\lambda$ 是使指数最小的值: +$$ +\begin{equation} +-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)} +\end{equation} +$$ + +对 $\lambda$ 求导并令其为零: +$$ +\begin{equation} +-\epsilon + \frac{\mathbb{V}[Y] \lambda}{1 - b\lambda} + \frac{\mathbb{V}[Y] \lambda^2 b}{2(1 - b\lambda)^2} = 0 +\end{equation} +$$ + +然而,直接求解该方程较为复杂。我们可以选择: +$$ +\begin{equation} +\lambda = \frac{\epsilon}{\mathbb{V}[Y] + b\epsilon} +\end{equation} +$$ + +此时 $\lambda$ 满足 $\left[0, \frac{1}{b}\right)$ 的范围,因为: +$$ +\begin{equation} +\lambda b = \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon} < 1 +\end{equation} +$$ + +- **步骤 5:将最优的 $\lambda$ 代入界中** + +将 $\lambda = \frac{\epsilon}{\mathbb{V}[Y] + b\epsilon}$ 代入指数中: +$$ +\begin{equation} +-\lambda m \epsilon + \frac{m \mathbb{V}[Y] \lambda^2}{2(1 - b\lambda)} = -\frac{m \epsilon^2}{\mathbb{V}[Y] + b\epsilon} + \frac{m \mathbb{V}[Y] \left(\frac{\epsilon}{\mathbb{V}[Y] + b\epsilon}\right)^2}{2\left(1 - \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon}\right)} +\end{equation} +$$ + +在第二项中简化分母: +$$ +\begin{equation} +1 - b\lambda = 1 - \frac{b\epsilon}{\mathbb{V}[Y] + b\epsilon} = \frac{\mathbb{V}[Y]}{\mathbb{V}[Y] + b\epsilon} +\end{equation} +$$ + +现在,代入回去: +$$ +\begin{equation} +-\frac{m \epsilon^2}{\mathbb{V}[Y] + b\epsilon} + \frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)} = -\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)} +\end{equation} +$$ + +因此: +$$ +\begin{equation} +\mathbb{P}(S_m \geq m\epsilon) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)}\right) +\end{equation} +$$ + +- **步骤 6:回到样本均值** + +回忆: +$$ +\begin{equation} +S_m = m(\bar{X} - \mathbb{E}[\bar{X}]) +\end{equation} +$$ + +因此: +$$ +\begin{equation} +\mathbb{P}\left(\bar{X} - \mathbb{E}[\bar{X}] \geq \epsilon\right) = \mathbb{P}(S_m \geq m\epsilon) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[Y] + b\epsilon)}\right) +\end{equation} +$$ + +由于 $\mathbb{V}[Y] = \mathbb{V}[X]$,我们得到: +$$ +\begin{equation} +\mathbb{P}\left(\bar{X} \geq \mathbb{E}[\bar{X}] + \epsilon\right) \leq \exp\left(-\frac{m \epsilon^2}{2(\mathbb{V}[X] + b\epsilon)}\right) +\end{equation} +$$ +$\square$ + + + +## 1.18 Azuma–Hoeffding(Azuma)不等式 + +对于均值为 $Z_0 = \mu$ 的鞅差序列 $\{Z_m, m \geq 1\}$,若 $|Z_i - Z_{i-1}| \leq c_i$,其中$c_i \gt 0$为已知常数,则对于任意 $\varepsilon \gt 0$,有: +$$ +\begin{equation} +\begin{align*} +P(Z_{m} - \mu \geq \varepsilon) &\leq \exp(-\frac{\varepsilon^{2}}{2\sum_{i=1}^{m} c_{i}^{2}}) \\ +P(Z_{m} - \mu \leq -\varepsilon) &\leq \exp(-\frac{\varepsilon^{2}}{2\sum_{i=1}^{m} c_{i}^{2}}) +\end{align*} +\end{equation} +$$ + +### 证明 + +1. **构造指数鞅** + + 考虑参数 $s \gt 0$,构造如下的指数鞅: + + $$ + \begin{equation} + M_m = \exp(s(Z_m - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) + \end{equation} + $$ + + 我们需要证明 $\{M_m\}_{m \geq 0}$ 是一个超鞅。 + +2. **验证鞅性质** + + 对于任意 $m \geq 1$,有 + + $$ + \begin{equation} + \mathbb{E}[M_m \mid \mathcal{F}_{m-1}] = \mathbb{E}[\exp(s(Z_m - Z_{m-1})) \mid \mathcal{F}_{m-1}] \cdot \exp(s(Z_{m-1} - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) + \end{equation} + $$ + + 由于 $|Z_m - Z_{m-1}| \leq c_m$,并且 $\mathbb{E}[Z_m - Z_{m-1} \mid \mathcal{F}_{m-1}] = 0$(鞅性质),可以应用 Hoeffding 引理得到: + + $$ + \begin{equation} + \mathbb{E}[\exp(s(Z_m - Z_{m-1})) \mid \mathcal{F}_{m-1}] \leq \exp(s\mathbb{E}[Z_m - Z_{m-1} \mid \mathcal{F}_{m-1}] + \frac{s^2(c_m-(-c_m))^2}{8}) = \exp(\frac{s^2 c_m^2}{2}) + \end{equation} + $$ + + 因此, + + $$ + \begin{equation} + \mathbb{E}[M_m \mid \mathcal{F}_{m-1}] \leq \exp(\frac{s^2 c_m^2}{2}) \cdot \exp(s(Z_{m-1} - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) = M_{m-1} + \end{equation} + $$ + + 这表明 $\{M_m\}$ 是一个超鞅。 + +3. **应用鞅不等式** + + 由于 $\{M_m\}$ 是一个超鞅,且 $M_0 = \exp(0) = 1$,根据超鞅的性质,有 + + $$ + \begin{equation} + \mathbb{E}[M_m] \le M_0 = 1 + \end{equation} + $$ + + 对于事件 $\{Z_m - \mu \geq \varepsilon\}$,有 + + $$ + \begin{equation} + M_m = \exp(s(Z_m - \mu) - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) \geq \exp(s \varepsilon - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2) + \end{equation} + $$ + + 我们令 $a = \exp\left(s \varepsilon - \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right)$,由于 $\{Z_m - \mu \geq \varepsilon\}$ 蕴含了 $\{M_m \geq a\}$,所以: + + $$ + \begin{equation} + P\left(Z_m - \mu \geq \varepsilon\right) \leq P\left(M_m \geq a\right) + \end{equation} + $$ + + 结合已知的 $\mathbb{E}[M_m] \leq 1$,应用 Markov 不等式可得: + + $$ + \begin{equation} + P\left(M_m \geq a\right) \leq \frac{1}{a} = \exp\left(-s \varepsilon + \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right) + \end{equation} + $$ + + 因此,我们得到: + + $$ + \begin{equation} + P\left(Z_m - \mu \geq \varepsilon\right) \leq \exp\left(-s \varepsilon + \frac{s^2}{2}\sum_{i=1}^{m} c_i^2\right) + \end{equation} + $$ + +4. **优化参数 $s$** + + 为了得到最优的上界,选择 $s$ 使得表达式 $-s \varepsilon + \frac{s^2}{2}\sum c_i^2$ 最小化。对 $s$ 求导并取零: + + $$ + \begin{equation} + -\varepsilon + s \sum_{i=1}^{m} c_i^2 = 0 \quad \Rightarrow \quad s = \frac{\varepsilon}{\sum_{i=1}^{m} c_i^2} + \end{equation} + $$ + + 代入得: + + $$ + \begin{equation} + P(Z_m - \mu \geq \varepsilon) \leq \exp(-\frac{\varepsilon^2}{2\sum_{i=1}^{m} c_i^2}) + \end{equation} + $$ + + 这即是 Azuma 不等式的上侧不等式。 + +5. **下侧不等式的证明** + + 对于下侧不等式,可以类似地考虑 $-Z_m$ 作为鞅,应用相同的方法得到: + + $$ + \begin{equation} + P(Z_m - \mu \leq -\varepsilon) \leq \exp(-\frac{\varepsilon^2}{2\sum_{i=1}^{m} c_i^2}) + \end{equation} + $$ + + 因此,Azuma 不等式得证。$\square$ + + + +## 1.19 Slud 不等式 + +若 $X \sim B(m,p)$,则有: +$$ +\begin{equation} +P(\frac{X}{m} \geq \frac{1}{2}) \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{m\varepsilon^{2}}{1-\varepsilon^{2}})}] +\end{equation} +$$ +其中 $p = \frac{1-\varepsilon}{2}$。 + +### 证明 + +二项随机变量 $X$ 表示在 $m$ 次独立伯努利试验中成功的次数,成功概率为 $p$。对于大的 $m$,二项分布 $B(m,p)$ 可以近似为均值 $\mu=mp$ 和方差 $\sigma^2=mp(1-p)$ 的正态分布: +$$ +\begin{equation} +\begin{align*} +\mu &= \frac{m(1-\varepsilon)}{2} \\ +\sigma^2 &= \frac{m(1-\varepsilon^2)}{4} +\end{align*} +\end{equation} +$$ +令 $Z=\frac{X-\mu}{\sigma}$,代入 $\mu$ 和 $\sigma$,有: +$$ +\begin{equation} +P[\frac{X}{m} \geq \frac{1}{2}] = P[Z \geq \frac{\frac{m}{2}-\mu}{\sigma}] = P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] +\end{equation} +$$ +根据正态分布不等式(定理 21),有: +$$ +\begin{equation} +P[Z \geq x] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{2x^2}{\pi})}] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-x^2)}] +\end{equation} +$$ +代入可得: +$$ +\begin{equation} +P[Z \geq \frac{\varepsilon\sqrt{m}}{\sqrt{1-\varepsilon^2}}] \geq \frac{1}{2}[1 - \sqrt{1-\exp(-\frac{m\varepsilon^2}{1-\varepsilon^2})}] +\end{equation} +$$ +$\square$ + + + +## 1.20 上界不等式之加性公式 + +若 $\sup(f)$ 和 $\sup(g)$ 分别为函数 $f$ 和 $g$ 的上界,则有: +$$ +\begin{equation} +\sup(f+g) \leq \sup(f) + \sup(g) +\end{equation} +$$ + +### 证明 + +假设 $f,g$ 分别有相同的定义域 $D_f,D_g$。根据上确界的定义,对于每一个 $x \in D_f \cap D_g$,我们有 +$$ +\begin{equation} +g(x) \leq \sup_{y \in D_g} g(y), +\end{equation} +$$ +从而 +$$ +\begin{equation} +f(x) + g(x) \leq f(x) + \sup_{y \in D_g} g(y). +\end{equation} +$$ +因为这对于每一个 $x \in D_f \cap D_g$ 都成立,我们可以在不等式的两边取上确界,得到: +$$ +\begin{equation} +\sup_{x \in D_f \cap D_g}(f(x) + g(x)) \leq \sup_{x \in D_f \cap D_g} f(x) + \sup_{y \in D_g} g(y) \leq \sup_{z \in D_f} f(z) + \sup_{y \in D_g} g(y). +\end{equation} +$$ +这里我们使用了 $\sup_{x \in D_f \cap D_g} f(x) \leq \sup_{z \in D_f} f(z)$,因为 $D_f \cap D_g \subset D_f$。$\square$ + +值得注意的是,该不等式在(4.33)中利用过两次,且原推导并没有用到 Jensen 不等式的任何性质。 + +另外,加性公式有几个常见的变形,例如: +$$ +\begin{equation} +\sup(f-g) - \sup(f-k) \leq \sup(k-g) +\end{equation} +$$ +该不等式在(4.29)中出现过。 + + + +## 1.21 正态分布不等式 + +若 $X$ 是一个服从标准正态分布的随机变量,那么对于任意 $u \geq 0$,有: +$$ +\begin{equation} +\mathbb{P}[X \leq u] \leq \frac{1}{2}\sqrt{1-e^{-\frac{2}{\pi}u^2}} +\end{equation} +$$ + +### 证明 + +令 $G(u)=\mathbb{P}[X \leq u]$,则有: +$$ +\begin{equation} +2G(u) = \int_{-u}^u(2\pi)^{-1/2}e^{-x^2/2}\,dx = \int_{-u}^u(2\pi)^{-1/2}e^{-y^2/2}\,dy +\end{equation} +$$ +因此: +$$ +\begin{equation} +2\pi[2G(u)]^2 = \int_{-u}^u \int_{-u}^u e^{-(x^2+y^2)/2}\,dx\,dy +\end{equation} +$$ +让我们考虑更一般的积分形式: +$$ +\begin{equation} +2\pi[2G(u)]^2 = \iint_R e^{-(x^2+y^2)/2}\,dx\,dy +\end{equation} +$$ +此时 $R$ 为任意面积为 $4u^2$ 的区域。通过反证法可以证明,只有当 $R$ 为以原点为中心的圆形区域 $R_0$ 时,积分值最大: +$$ +\begin{equation} +R_0 = \{(x,y):\pi(x^2+y^2)\leq 4u^2\} +\end{equation} +$$ +此时,有: +$$ +\begin{equation} +\begin{align*} +2\pi[2G(u)]^2 &\leq \iint_{R_0} e^{-(x^2+y^2)/2}\,dx\,dy \\ +&=\int_0^{2\pi}\int_0^{2u\pi^{-1/2}} e^{-r^2/2}r\,dr\,d\varphi \\ +&= 2\pi(1-e^{-2u^2/\pi}) +\end{align*} +\end{equation} +$$ +因此,有: +$$ +\begin{equation} +G(u) = \mathbb{P}[X \leq u] \leq \frac{1}{2}\sqrt{1-e^{-\frac{2}{\pi}u^2}} +\end{equation} +$$ +进一步,我们可以得到: +$$ +\begin{equation} +\mathbb{P}[X \geq u] \geq \frac{1}{2}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}}) +\end{equation} +$$ +$\square$ + + + +## 1.22 AM-GM 不等式 + +算术平均数和几何平均数的不等式,简称 AM-GM 不等式。该不等式指出非负实数序列的算术平均数大于等于该序列的几何平均数,当且仅当序列中的每个数相同时,等号成立。形式上,对于非负实数序列 $\{x_n\}$,其算术平均值定义为: +$$ +\begin{equation} +A_n=\frac{1}{n}\sum_{i=1}^n x_i +\end{equation} +$$ +其几何平均值定义为: +$$ +\begin{equation} +G_n=\sqrt[n]{\prod_{i=1}^n x_i} +\end{equation} +$$ +则 AM-GM 不等式成立: +$$ +\begin{equation} +A_n \geq G_n +\end{equation} +$$ + +### 证明 + +我们可以通过 Jensen 不等式来证明 AM-GM 不等式。首先,我们考虑函数 $f(x)=-\ln x$,该函数是凸函数,因此有: +$$ +\begin{equation} +\frac{1}{n}\sum_{i=1}^n -\ln x_i \geq -\ln(\frac{1}{n}\sum_{i=1}^n x_i) +\end{equation} +$$ +即: +$$ +\begin{equation} +\begin{align*} +\ln(\frac{1}{n}\sum_{i=1}^n x_i) &\geq \frac{1}{n}\sum_{i=1}^n \ln x_i = \ln(\sqrt[n]{\prod_{i=1}^n x_i}) \\ +\Rightarrow \frac{1}{n}\sum_{i=1}^n x_i &\geq \sqrt[n]{\prod_{i=1}^n x_i} +\end{align*} +\end{equation} +$$ +当取 $x_1 = x_2 = \cdots = x_n$ 时,等号成立。特别地,当 $n=2$ 时,我们有: +$$ +\begin{equation} +\frac{x_1 + x_2}{2} \geq \sqrt{x_1 x_2} +\end{equation} +$$ +$\square$ + + + +## 1.23 Young 不等式 + +对于任意 $a, b \geq 0$ 且 $p, q \gt 1$,若 $\frac{1}{p} + \frac{1}{q} = 1$,则有: +$$ +\begin{equation} +ab \leq \frac{a^p}{p} + \frac{b^q}{q} +\end{equation} +$$ +当且仅当 $a^p = b^q$ 时,等号成立。 + +### 证明 + +我们可以通过 Jensen 不等式来证明 Young 不等式。首先,当 $ab = 0$ 时,该不等式显然成立。当 $a, b \gt 0$ 时,我们令 $t = 1/p, 1-t = 1/q$,根据 $\ln(x)$ 的凹性,我们有: +$$ +\begin{equation} +\begin{align*} +\ln(t a^p + (1-t) b^q) &\geq t\ln(a^p) + (1-t)\ln(b^q) \\ +&= \ln(a) + \ln(b) \\ +&= \ln(ab) +\end{align*} +\end{equation} +$$ +当且仅当 $a^p = b^q$ 时,等号成立。$\square$ + + + +## 1.24 Bayes 定理 + +贝叶斯定理是概率论中的一个重要定理,它描述了在已知某些条件下更新事件概率的数学方法。贝叶斯定理的公式为: +$$ +\begin{equation} +P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} +\end{equation} +$$ +其中: +- $P(A|B)$ 是在事件 B 发生的情况下事件 A 发生的后验概率。 +- $P(B|A)$ 是在事件 A 发生的情况下事件 B 发生的似然函数。 +- $P(A)$ 是事件 A 的先验概率。 +- $P(B)$ 是事件 B 的边缘概率。 + +### 证明 + +根据条件概率的定义,事件 A 在事件 B 发生下的条件概率 $P(A|B)$ 表示为: +$$ +\begin{equation} +P(A|B) = \frac{P(A \cap B)}{P(B)} +\end{equation} +$$ + +同样地,事件 B 在事件 A 发生下的条件概率 $P(B|A)$ 表示为: +$$ +\begin{equation} +P(B|A) = \frac{P(A \cap B)}{P(A)} +\end{equation} +$$ + +通过这两个公式可以得到联合概率 $P(A \cap B)$ 的两种表示方式: +$$ +\begin{equation} +P(A \cap B) = P(A|B) \cdot P(B) +\end{equation} +$$ + +以及: +$$ +\begin{equation} +P(A \cap B) = P(B|A) \cdot P(A) +\end{equation} +$$ + +由于联合概率的性质,我们可以将上述两个等式等同: +$$ +\begin{equation} +P(A|B) \cdot P(B) = P(B|A) \cdot P(A) +\end{equation} +$$ + +将上述等式两边同时除以 $P(B)$,得到贝叶斯定理: +$$ +\begin{equation} +P(A|B) = \frac{P(B|A) \cdot P(A)}{P(B)} +\end{equation} +$$ +$\square$ + +通过先验和后验的更新过程,贝叶斯统计提供了一种动态的、不断修正认知的不确定性量化方法。 + + + +## 1.25 广义二项式定理 + +广义二项式定理(Generalized Binomial Theorem)是二项式定理的扩展: +$$ +\begin{equation} +(x + y)^r = \sum_{k=0}^{\infty} \binom{r}{k} x^{r-k} y^k, \quad |x| \lt |y|, \quad k \in \mathbb{N}, \quad r \in \mathbb{R} +\end{equation} +$$ +其中我们令 $\binom{r}{k} := \frac{(r)_k}{k!}$,$(r)_k = r(r-1) \cdots (r-k+1)$ 为递降阶乘(falling factorial)。 + +### 证明 + +首先代入定义,易证: +$$ +\begin{equation} +(r-k) \binom{r}{k} + (r-(k-1)) \binom{r}{k-1} = r \binom{r}{k} +\end{equation} +$$ + +我们从特殊情况 $y = 1$ 开始。首先我们证明只要 $|x| \lt 1$,后者级数就会收敛。 + +通过使用幂级数收敛半径的商式来证明这一点,由于绝对值的连续性使我们可以先在绝对值内部计算极限,可得: +$$ +\begin{equation} +\lim_{k \to \infty} \frac{|a_k|}{|a_{k+1}|} = \lim_{k \to \infty} | \frac{k+1}{r-k} | = |-1| = 1 +\end{equation} +$$ +因此我们有一个为 1 的收敛半径。这种收敛使我们能够在 $|x| \lt 1$ 的收敛区域内应用逐项求导,得到: +$$ +\begin{equation} +\frac{d}{dx} \sum_{k=0}^\infty \binom{r}{k} x^k = \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^{k-1} +\end{equation} +$$ +如果我们将我们正在考虑的级数定义的函数记为 $g(x)$,我们得到: +$$ +\begin{equation} +\begin{align*} +(1 + x) \frac{d}{dx} g(x) &= \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^{k-1} + \sum_{k=1}^\infty (r-(k-1)) \binom{r}{k-1} x^k \\ +&= r + \sum_{k=1}^\infty ( (r-k) \binom{r}{k} + (r-(k-1)) \binom{r}{k-1} ) x^k \\ +&= r + r \sum_{k=1}^\infty \binom{r}{k} x^k \\ +&= r g(x), +\end{align*} +\end{equation} +$$ +上式的推导使用了前述引理。 + +现在定义 $f(x) = (1 + x)^r$,我们通过通常的求导规则得到: +$$ +\begin{equation} +\frac{d}{dx} ( \frac{g(x)}{f(x)} ) = \frac{g'(x) f(x) - f'(x) g(x)}{f(x)^2} = \frac{r\frac{g(x)}{x+1}(1+x)^r - rg(x)(1 + x)^{r-1}}{f(x)^2} = 0 +\end{equation} +$$ +$|x| \lt 1$ 意味着 $f(x) \neq 0$,因此 $g/f$ 为常数。又 $f(0) = g(0) = 1$ 可得 $f(x) = g(x)$。 + +对于一般的 $x, y \in \mathbb{R}$ 且 $|x| \lt |y|$,我们有: +$$ +\begin{equation} +\frac{(x + y)^r}{y^r} = (\frac{x}{y} + 1)^r = \sum_{k=0}^\infty \binom{r}{k} (\frac{x}{y})^k; +\end{equation} +$$ +收敛性由假设 $|x/y| \lt 1$ 保证。为了得到原定理的形式,我们只需乘以 $y^r$ 即可。$\square$ + + + +## 1.26 Stirling 公式 + +Stirling 公式是用于近似计算阶乘的一种公式,即使在 $n$ 很小时也有很高的精度。Stirling 公式的一种形式为: +$$ +\begin{equation} +n! = \sqrt{2\pi} n^{n+1/2} e^{-n} e^{r_n} +\end{equation} +$$ +其中,$\frac{1}{12n + 1} \lt r_n \lt \frac{1}{12n}$。 + +### 证明 + +我们令: +$$ +\begin{equation} +S_n = \ln(n!) = \sum_{p=1}^{n-1} \ln(p+1) +\end{equation} +$$ +且 +$$ +\begin{equation} +\ln(p+1) = A_p + b_p - \varepsilon_p +\end{equation} +$$ +其中: +$$ +\begin{equation} +\begin{align*} +A_p &= \int_{p}^{p+1} \ln x \, dx \\ +b_p &= \frac{1}{2} [\ln(p+1) - \ln(p)] \\ +\varepsilon_p &= \int_{p}^{p+1} \ln x \, dx - \frac{1}{2} [\ln(p+1) + \ln(p)] +\end{align*} +\end{equation} +$$ +此时: +$$ +\begin{equation} +S_n = \sum_{p=1}^{n-1} (A_p + b_p - \varepsilon_p) += \int_{1}^{n} \ln x \, dx + \frac{1}{2} \ln n - \sum_{p=1}^{n-1} \varepsilon_p +\end{equation} +$$ +易证 $\int \ln x \, dx = x \ln x - x + C, \, C \in \mathbb{R}$,故: +$$ +\begin{equation} +S_n = (n+1/2)\ln n - n + 1 - \sum_{p=1}^{n-1} \varepsilon_p +\end{equation} +$$ +此时: +$$ +\begin{equation} +\varepsilon_p = \frac{2p+1}{2} \ln(\frac{p+1}{p}) - 1 +\end{equation} +$$ + +接下来我们对 $\ln(\frac{p+1}{p})$ 进行级数展开,根据广义二项式定理,即: + +令 $a = -1, \, t = \frac{1}{p}, \, t \in (-1, 1)$,则有: +$$ +\begin{equation} +\frac{1}{1 + t} = 1 - t + t^2 - t^3 + t^4 - \cdots +\end{equation} +$$ +对上式两边同时进行积分,我们有: +$$ +\begin{equation} +\ln(1 + t) = t - \frac{1}{2} t^2 + \frac{1}{3} t^3 - \frac{1}{4} t^4 + \cdots +\end{equation} +$$ +如果我们令 $-t$ 来代替 $t$,则有: +$$ +\begin{equation} +\ln \frac{1}{1 - t} = t + \frac{1}{2} t^2 + \frac{1}{3} t^3 + \frac{1}{4} t^4 + \cdots +\end{equation} +$$ +将两式相加,我们有: +$$ +\begin{equation} +\frac{1}{2} \ln \frac{1 + t}{1 - t} = t + \frac{1}{3} t^3 + \frac{1}{5} t^5 + \cdots +\end{equation} +$$ + +回到我们的问题,我们令 $t = (2p + 1)^{-1} \in (0, 1)$,如此才满足 $\frac{1+t}{1-t} = \frac{p+1}{p}$,带入前式: +$$ +\begin{equation} +\varepsilon_p = \frac{1}{3(2p+1)^2} + \frac{1}{5(2p+1)^4} + \frac{1}{7(2p+1)^6} + \cdots +\end{equation} +$$ +因此: +$$ +\begin{equation} +\varepsilon_p \lt \frac{1}{3(2p+1)^2} \sum_{i=0}^{\infty} \frac{1}{(2p+1)^{2i}} += \frac{1}{3(2p+1)^2} \frac{1}{1 - \frac{1}{(2p+1)^2}} += \frac{1}{3[(2p+1)^2 - 1]} += \frac{1}{12} (\frac{1}{p} - \frac{1}{p+1}) +\end{equation} +$$ +且 +$$ +\begin{equation} +\varepsilon_p \gt \frac{1}{3(2p+1)^2} \sum_{i=0}^{\infty} \frac{1}{[3(2p+1)^2]^{i}} += \frac{1}{3(2p+1)^2} \frac{1}{1 - \frac{1}{3(2p+1)^2}} += \frac{1}{3(2p+1)^2 - 1} +\end{equation} +$$ +易证 +$$ +\begin{equation} +(p+\frac{1}{12})(p+1+\frac{1}{12}) += p^2 + \frac{7}{6}p + \frac{13}{144} +\gt p^2 + p + \frac{1}{6} += \frac{1}{12} [3(2p+1)^2 - 1], \quad p \in \mathbb{N}^+ +\end{equation} +$$ +因此: +$$ +\begin{equation} +\varepsilon_p \gt \frac{1}{12} (\frac{1}{p+\frac{1}{12}} - \frac{1}{p+1+\frac{1}{12}}) +\end{equation} +$$ +我们令: +$$ +\begin{equation} +B = \sum_{p=1}^{\infty} \varepsilon_p, \quad r_n = \sum_{p=n}^{\infty} \varepsilon_p +\end{equation} +$$ +那么易得: +$$ +\begin{equation} +\frac{1}{13} \lt B \lt \frac{1}{12}, \quad \frac{1}{12(n+1)} \lt r_n \lt \frac{1}{12n} +\end{equation} +$$ +带入 $S_n$ 的表达式: +$$ +\begin{equation} +S_n = (n+\frac{1}{2})\ln n - n + 1 - B + r_n +\end{equation} +$$ +可得: +$$ +\begin{equation} +n! = e^{1-B} n^{n+1/2} e^{-n} e^{r_n} +\end{equation} +$$ +令 $C = e^{1-B}$,我们可知常数 $C$ 的取值范围为 $(e^{11/12}, e^{12/13})$,此处我们取 $C = \sqrt{2\pi}$,该公式得证。$\square$ + + + +## 1.27 散度定理 + +散度定理(Divergence Theorem),也称为高斯定理(Gauss's Theorem),是向量分析中的重要定理,它将体积积分和曲面积分联系起来。 + +具体而言,如果考虑一个 $n$-维球体($n$-ball)$B^n$ 的体积为 $V$,其表面为 $S^{n-1}$,对于一个位于 $n$-维空间中的光滑向量场 $\mathbf{F}$,则有: + +$$ +\int_{B^n} (\nabla \cdot \mathbf{F}) \, dV = \oint_{S^{n-1}} \mathbf{F} \cdot \mathbf{n} \, dS +$$ + +其中: +- $\nabla \cdot \mathbf{F}$ 是向量场 $\mathbf{F}$ 的散度。 +- $dV$ 是体积元素。 +- $dS$ 是边界表面的面积元素。 +- $\mathbf{n}$ 是边界的单位外法向量。 + +体积积分计算的是在 $n$-球内的散度,而表面积分计算的是在 $n-1$ 维球面上的通量。 +这种形式的散度定理在物理学和工程学中广泛应用,比如电磁学中的高斯定理、流体力学中的质量守恒等。 + + + +## 1.28 分离超平面定理 + +如果有两个不相交的非空凸集,则存在一个超平面能够将它们完全分隔开,这个超平面叫做分离超平面(Separating Hyperplane)。形式上,设 $A$ 和 $B$ 是 $\mathbb{R}^n$ 中的两个不相交的非空凸集,那么存在一个非零向量 $v$ 和一个实数 $c$,使得: +$$ +\begin{equation}\langle x, v \rangle \geq c \, \text{且} \, \langle y, v \rangle \leq c\end{equation} +$$ +对所有 $x \in A$ 和 $y \in B$ 都成立。即超平面 $\langle \cdot, v \rangle = c$ 以 $v$ 作为分离轴(Separating Axis),将 $A$ 和 $B$ 分开。 + +进一步,如果这两个集合都是闭集,并且至少其中一个是紧致的,那么这种分离可以是严格的,即存在 $c_1 \gt c_2$ 使得: +$$ +\begin{equation}\langle x, v \rangle \gt c_1 \, \text{且} \, \langle y, v \rangle \lt c_2\end{equation} +$$ + +在不同情况下,我们可以通过调整 $v$ 和 $c$ 来使得分离超平面的边界更加清晰。 + +| A | B | $\langle x, v \rangle$ | $\langle y, v \rangle$ | +|---------------|--------------|---------------------------|---------------------------| +| 闭紧集 | 闭集 | $\gt c_1$ | $\lt c_2$ 且 $c_2 \lt c_1$ | +| 闭集 | 闭紧集 | $\gt c_1$ | $\lt c_2$ 且 $c_2 \lt c_1$ | +| 开集 | 闭集 | $\gt c$ | $\leq c$ | +| 开集 | 开集 | $\gt c$ | $\lt c$ | + +在支持向量机的背景下,最佳分离超平面(或最大边缘超平面)是分离两个点凸包并且与两者等距的超平面。 + +### 证明 + +证明基于以下引理: + +设 $A$ 和 $B$ 是 $\mathbb{R}^n$ 中两个不相交的闭集,且假设 $A$ 是紧致的。则存在点 $a_0 \in A$ 和 $b_0 \in B$ 使得 $\|a - b\|$ 在 $a \in A$ 和 $b \in B$ 之间取最小值。 + +我们给出引理的证明: + +令 $a \in A$ 和 $b \in B$ 是任意一对点,并令 $r_1 = \|b - a\|$。由于 $A$ 是紧致的,它被包含在以 $a$ 为中心的一些球中,设该球的半径为 $r_2$。令 $S = B \cap \overline{B_{r_1 + r_2}(a)}$ 为 $B$ 与以 $a$ 为中心、半径为 $r_1 + r_2$ 的闭球的交集。那么 $S$ 是紧致且非空的,因为它包含 $b$。由于距离函数是连续的,存在点 $a_0$ 和 $b_0$ 使得 $\|a_0 - b_0\|$ 在所有 $A \times S$ 的点对中取最小值。现在要证明 $a_0$ 和 $b_0$ 实际上在所有 $A \times B$ 的点对中具有最小距离。假设存在点 $a'$ 和 $b'$ 使得 $\|a' - b'\| \lt \|a_0 - b_0\|$。则特别地,$\|a' - b'\| \lt r_1$,并且根据三角不等式,$\|a - b'\| \leq \|a - a'\| + \|a' - b'\| \lt r_1 + r_2$。因此 $b'$ 包含在 $S$ 中,这与 $a_0$ 和 $b_0$ 在 $A \times S$ 中的最小距离相矛盾。 + +
+ separating_hyperplane_theorem +
+ +不失一般性地,假设 $A$ 是紧致的。根据引理,存在点 $a_0 \in A$ 和 $b_0 \in B$ 使得它们之间的距离最小。由于 $A$ 和 $B$ 是不相交的,我们有 $a_0 \neq b_0$。现在,构造两条与线段 $[a_0, b_0]$ 垂直的超平面 $L_A, L_B$,其中 $L_A$ 穿过 $a_0$,$L_B$ 穿过 $b_0$。我们声称 $A$ 和 $B$ 都没有进入 $L_A, L_B$ 之间的空间,因此与 $(a_0, b_0)$ 垂直的超平面满足定理的要求。 + +代数上,超平面 $L_A, L_B$ 由向量 $v:= b_0 - a_0$ 定义,并由两个常数 $c_A := \langle v, a_0\rangle \lt c_B := \langle v, b_0\rangle$ 确定,使得 $L_A = \{x: \langle v, x\rangle = c_A\}, L_B = \{x: \langle v, x\rangle = c_B\}$。我们的主张是 $\forall a\in A, \langle v, a\rangle \leq c_A$ 并且 $\forall b\in B, \langle v, b\rangle \geq c_B$。 + +假设存在某个 $a\in A$ 使得 $\langle v, a\rangle \gt c_A$,则令 $a'$ 为从 $b_0$ 到线段 $[a_0, a]$ 的垂足。由于 $A$ 是凸集,$a'$ 在 $A$ 内部,并且根据平面几何,$a'$ 比 $a_0$ 更接近 $b_0$,这与 $a_0$ 和 $b_0$ 的最小距离相矛盾。类似的论证适用于 $B$。$\square$ + + + +## 1.29 支撑超平面定理 + +对于一个凸集,支撑超平面(Supporting Hyperplane)是与凸集边界切线的超平面,即它“支撑”了凸集,使得所有的凸集内的点都位于支撑超平面的一侧。形式上,若 $S$ 是非空凸集,且 $x_0$ 是 $S$ 的边界上的一点,那么存在一个包含 $x_0$ 的支撑超平面。 +如果 $x^* \in X^* \backslash \{0\}$($X^*$ 是 $X$ 的对偶空间,$x^*$ 是一个非零的线性泛函),并且对于所有 $x \in S$ 都有 $x^*(x_0) \geq x^*(x)$,那么 $H = \{x \in X: x^*(x) = x^*(x_0)\}$ 定义了一个支撑超平面。 + +### 证明 + +定义 $T$ 为所有支撑闭合半空间的交集,显然 $S \subset T$。现在令 $y \not \in S$,证明 $y \not \in T$。 + +设 $x \in \mathrm{int}(S)$,并考虑线段 $[x, y]$。令 $t$ 为最大的数,使得 $[x, t(y-x) + x]$ 被包含在 $S$ 中。则 $t \in (0, 1)$。令 $b = t(y-x) + x$,那么 $b \in \partial S$。在 $b$ 处画一条支撑超平面,令其表示为一个非零线性泛函 $f: \mathbb{R}^n \to \mathbb{R}$,使得 $\forall a \in T, f(a) \geq f(b)$。由于 $x \in \mathrm{int}(S)$,我们有 $f(x) \gt f(b)$。因此,由 $\frac{f(y) - f(b)}{1-t} = \frac{f(b) - f(x)}{t - 0} \lt 0$,我们得到 $f(y) \lt f(b)$,所以 $y \not \in T$。$\square$ + + +# 第2章:可学性 + +*编辑:赵志民,王茂霖,李一飞,詹好* + +--- + +## 本章前言 + +本章的内容围绕学习理论中的可学性理论展开,主要讨论「事件是否能够通过机器学习来解决」这一问题。通过学习理论事先辨别某个问题是否能够被学习,将节省大量的时间与资源。 + +在讨论学习算法的设计之前,首先要思考以下几个问题:这个问题是否能被解决(从模型的角度看是否可学习),哪些内容容易学习(如两个凸集),哪些内容难学习(如两个非凸集之间的划分),在可学习的情况下,所需的样本量以及通用的学习模型有哪些? + +在本章中,我们将通过介绍 "概率近似正确的"(PAC)学习框架,开始正式讨论这些问题。PAC 框架有助于根据实现近似解所需的样本点数量、样本复杂度以及学习算法的时间/空间复杂度(取决于概念的计算表示成本)来定义可学习的概念。 + +我们首先会描述 PAC 框架并对其进行说明,然后针对所用假设集包含要学习的概念的一致情况和相反的不一致情况,介绍当所用假设集有限时该框架内的一些一般学习保证。 + +## 2.1 【概念解释】概念与假设空间 + +在具体介绍 PAC 模型之前,首先需要明确几个基础定义和符号,这些定义和符号将贯穿本书的大部分内容: + +**输入空间** $X$:表示所有可能的例子或实例的集合。$X$ 有时也被称为输入空间。 + +**输出空间** $Y$:表示所有可能的标签或目标值的集合。$Y$ 有时也被称为输出空间。 + +在本介绍性章节中,我们将 $Y$ 限制为只有两个标签的情况,即 $Y = \{0, 1\}$(或者 $Y = \{-1, 1\}$,两者仅是符号上的替代)。例如,$Y$ 也可以是 $\{皮卡丘, 海绵宝宝\}$。这是二元分类问题的典型假设。虽然这种简化假设便于理解,但并不会影响后续推论的路径与思路,因为多分类问题只是二分类问题的扩展,虽然从证明和论证上更为复杂。后续章节将扩展这些结果以涵盖更一般的情况。 + +从数学角度看待机器学习中的概念,机器学习可以定义为学习一个映射函数: + +**概念**(concept) $c : X \rightarrow Y$ 是一个从 $X$ 到 $Y$ 的映射。由于 $Y = \{0, 1\}$,我们可以将 $c$ 视为从 $X$ 中得到其取值为 $1$ 的部分,即 $X$ 的子集。 + +在学习理论中,学习的概念可以等同于从 $X$ 到 $\{0, 1\}$ 的映射,或 $X$ 的子集。概念类是我们希望学习的概念的集合,用 $\mathcal{C}$ 表示。例如,它可以是平面中所有三角形的集合。 + +**假设空间**(hypothesis space)$\mathcal{H}$ 是指所有可能假设的集合,每个假设 $h \in \mathcal{H}$ 是一个从输入空间 $X$ 到输出空间 $Y$ 的映射函数,形式化定义为: + +$$ +\begin{equation} +\mathcal{H} = \{h: X \rightarrow Y\} +\end{equation} +$$ + +假设空间的大小和复杂性决定了算法能够学习到的解决方案的类型。如果假设空间太小或太简单,它可能无法捕捉到数据中的复杂模式,导致欠拟合(Underfitting)。相反,如果假设空间过大或太复杂,它可能包含过于复杂的模型,这些模型可能会过度拟合(Overfitting)训练数据,从而在新的、未见过的数据上表现不佳。 + +例如,在一个简单的线性分类器中,假设空间可能包括所有可能的线性边界,每个线性边界都是一个假设。在更复杂的模型中,如神经网络,假设空间可能包括所有可能的网络结构和权重配置,这些构成了网络的能力来学习数据的非线性和复杂模式。 + +虽然这种理解适用于机器学习,但我们必须注意,对于深度学习,需要进一步的考虑。例如双下降现象与传统机器学习理论相矛盾,后者认为增加模型大小和数据量通常会提高模型的泛化性能。 + +
+ double_descent +
+ +双下降现象中描绘模型泛化性能的曲线图由三个阶段组成: +1. 第一阶段:当模型规模小且数据量不足时,模型泛化性能较差。 +2. 第二阶段:随着模型规模和数据量的增加,模型泛化性能最初出现下降。 +2. 第三阶段:随着模型规模和数据量的进一步增加,模型泛化性能再次下降,但最终达到更好的水平。 +双下降现象的出现表明,对于深度神经网络来说,增加模型规模和数据量并不总是有益的。因此,应该采用诸如正则化和增广策略等技术,有效地控制模型规模和数据量,以实现最佳的泛化性能。更多实验细节参考文献:[Deep Double Descent: Where Bigger Models and More Data Hurt](https://iopscience.iop.org/article/10.1088/1742-5468/ac3a74))。 + +## 2.2 【概念解释】经验误差与泛化误差 + +为了衡量学习到的概念 $h$ 与目标概念 $c$ 之间的差异,定义了以下的度量方式: + +**泛化误差**: +$$ +\begin{equation} +R(h)=\underset{x\sim\mathcal{D}}{\operatorname*{\mathbb{P}}}\left[h(x)\neq c(x)\right]=\underset{x\sim\mathcal{D}}{\operatorname*{\mathbb{E}}}\left[1_{h(x)\neq c(x)}\right], \tag{1} +\end{equation} +$$ +其中,$1_{\omega}$ 是事件 $\omega$ 的指示函数。 + +由于泛化误差无法直接求得(其原因在于 $\mathcal{D}$ 的未知性),我们需要利用能够获取的信息来近似泛化误差,因此定义了经验误差: + +**经验误差**: +$$ +\begin{equation} +\widehat{R}_S(h)=\frac{1}{m}\sum_{i=1}^{m}1_{h(x_i)\neq c(x_i)}.\tag{2} +\end{equation} +$$ + +经验误差的期望等于其泛化误差: + +$$ +\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=R(h ; \mathcal{D}) +\end{equation} +$$ + +证明过程分为两步,首先考察等式右边,泛化误差可表示为: + +$$ +\begin{equation} +R(h ; \mathcal{D})=P_{(x, y) \sim \mathcal{D}}(h(x) \neq y)=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\mathbb{I}(h(x) \neq y)] +\end{equation} +$$ + +然后考察等式左边,经验误差可表示为: + +$$ +\begin{equation} +\widehat{R}(h ; D)=\frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right) +\end{equation} +$$ + +经验误差的期望为: + +$$ +\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=\underset{D \sim D^{m}}{\mathrm{E}}[\widehat{R}(h)]=\frac{1}{m} \sum_{i=1}^{m} \underset{(x,y) \sim D}{\mathrm{E}}[\mathbb{I}\left(h\left(\boldsymbol{x}_{i}\right) \neq y_{i}\right)] +\end{equation} +$$ + +由于样本服从独立同分布,所有样本的期望值相同,期望的平均值就等于样本的期望,因此: + +$$ +\begin{equation} +\mathrm{E}[\widehat{R}(h ; D)]=R(h ; \mathcal{D}) +\end{equation} +$$ + +证毕。 + +## 2.3 【概念解释】假设空间的可分性与学习的复杂度 + +假设空间的可分性决定了学习算法能否有效地找到正确的假设。我们讨论假设空间的可分性与不可分性,并探讨可分性对于学习算法性能的影响。 + +**假设空间**:可分性是一个针对假设空间的概念,即考察对于给定学习算法,是否存在能够完全区分所有样本的映射。如果存在,则该学习算法对于此假设空间可分;如果不存在,则不可分。 + +可分性的严格性指的是其要求所有样本都可分。有时,由于噪声或异常值的影响,数据并非完全可区分,算法只能区分绝大多数样本。因此,可分性并未完全定义学习算法的有效性。 + +此外,可分性仅表示了学习算法的能力上限。例如,当我们在线性模型中使用高斯核技巧时,能够对任意二分类样本进行区分(维度为无穷)。但从如此庞大的假设空间中找到正确映射函数却非常困难,这在深度学习中尤为明显。在这个意义上,可分性仅表示了学习算法的能力上限。 + +#### 时间复杂度与样本复杂度 + +时间复杂度和样本复杂度是评估学习算法效率的两个重要指标。我们讨论这两个概念的等价性,以及它们对学习算法选择的影响。 + +由于不同的机器、操作系统会带来完全不同的运行时间,因此在考察时间复杂度时通常会使用抽象机。抽象机通常是抽象意义上的图灵机或实体意义上的图灵机。在该抽象机中,时间复杂度被定义为「需要执行的“操作”数量」。 + +一般而言,学习问题是否可以有效解决,取决于如何将其分解为一系列特定的学习问题。考虑学习有限假设类的问题,例如训练样本的数量为 $m_H(\epsilon,δ)= \log(|\mathcal{H}|/δ)/\epsilon^2$ 的情况。如果对一个 $h$ 的评估花费固定的时间,那么可以通过对 $\mathcal{H}$ 进行详尽搜索,在时间 $O(|H|m_H(\epsilon,δ))$ 内完成这项任务。对于任何固定的有限假设类 $\mathcal{H}$,穷举搜索算法都可以在多项式时间内运行。如果问题序列 $|H_n| = n$,那么穷举搜索被认为是高效的;如果 $|H_n| = 2^n$,则样本复杂度为 $n$ 的多项式,而穷举搜索算法的计算复杂度随 $n$ 呈指数增长。此时,穷举搜索被认为是低效的。 + +## 2.4 【概念解释】PAC-Bayes理论与样本复杂度 + +PAC学习理论主要研究如何在有限的样本和计算资源下,从给定的假设空间中找到一个近似正确的假设。PAC-Bayes理论结合了PAC学习和贝叶斯方法的优点,其核心思想是通过考虑假设空间中的概率分布来描述学习算法的行为,并给出关于学习算法在有限数据情况下泛化误差的界限。 + +PAC-Bayes不等式是PAC-Bayes理论的核心结果之一,它为后验分布下的泛化误差提供了一个上界。典型的PAC-Bayes不等式形式如下(详细证明参考:[PAC-Bayesian Stochastic Model Selection](https://link.springer.com/article/10.1023/A:1021840411064)): +$$ +\begin{equation} +\mathbb{E}_{Q}[L(h)] \leq \mathbb{E}_{Q}[\hat{L}(h)] + \sqrt{\frac{KL(Q \| P) + \ln\frac{1}{\delta} + \ln m + \ln 2}{2m-1}} +\end{equation} +$$ + +其中: +- $L(h)$ 是假设 $h$ 的真实误差(泛化误差)。 +- $\hat{L}(h)$ 是假设 $h$ 在训练集上的经验误差。 +- $Q$ 是假设的后验分布。 +- $P$ 是假设的先验分布。 +- $KL(Q \| P)$ 是后验分布 $Q$ 和先验分布 $P$ 之间的 KL 散度。 +- $\delta$ 是置信参数,表示上界成立的概率。 +- $m$ 是样本数量。 + +## 2.5 【定理证明】3项析取范式的不可PAC学习性 + +**32页**中有提到,3项析取范式(3-term Disjunctive Normal Form, 3-DNF)概念类并不是高效PAC可学的,除非 $RP = NP$,我们这里给出完整的证明过程。 + +#### 3项DNF的定义 + +- **3项DNF公式**: 由三个子句(项)组成,每个子句是布尔变量的合取(AND)。整个公式是这三个子句的析取(OR)。 +- **公式的大小**: 由所有子句中的文字(变量或其否定)数量之和决定。对于$n$个布尔变量,这个大小最多为$6n$。 + +#### $RP \neq NP$ + +在计算复杂性理论中,$RP$ 类包含那些可以通过随机算法在多项式时间内解决的问题,其中算法在给定一个“是”的实例时有很高的概率(至少 $1/2$)返回“是”,而在给定一个“否”的实例时总是返回“否”。$NP$ 类包含那些在多项式时间内可以被验证而不一定是被解决的问题。$RP \neq NP$ 这个表达的意思是假设 $RP$ 类和 $NP$ 类是不相同的。即,存在一些问题在 $NP$ 中,但不在 $RP$ 中。 + +#### 证明策略 + +我们通过将一个NP完全问题(在这里选择图的3-着色问题)化简为学习3项DNF公式的问题来进行证明。关键是构造一个样本集$S_G$,使得如果图$G$是3-可着色的,那么存在一个3项DNF公式与$S_G$一致;反之,如果$G$不可3-着色,那么不存在这样的公式与$S_G$一致。 + +#### 图的3-着色问题 + +- **图的3-着色**: 给定一个无向图$G=(V,E)$,判断是否可以用三种颜色对顶点进行着色,使得任意一条边的两个端点颜色不同。 + +#### 构造样本集 $S_G$ + +- **正例 $S_G^+$**: 对于每个顶点$i$,构造向量$v(i)$,该向量在第$i$位为0,其他位为1,并标记为正例$(v(i), 1)$。 +- **反例 $S_G^-$**: 对于每条边$(i, j)$,构造向量$e(i,j)$,该向量在第$i$和第$j$位为0,其他位为1,并标记为反例$(e(i,j), 0)$。 + +#### 一致性和3-可着色性的等价性 + +- **一致性**: 如果一个3项DNF公式对样本集$S_G$中的所有样本都给出正确的分类结果,我们说这个公式与$S_G$一致。 +- **等价性**: 图$G$是3-可着色的,当且仅当存在一个3项DNF公式与$S_G$一致。 + +#### 3项DNF公式的构造 + +详细说明如何根据图$G$的3-可着色性构造3项DNF公式,并解释为什么这种构造与样本集$S_G$一致。 + +- **颜色划分与子句构造**: + - 假设图$G$是3-可着色的,意味着我们可以将所有顶点分成三组,分别着红、蓝、黄三种颜色。 + - 对于每种颜色,我们构造一个合取项。例如,假设$T_R$表示红色顶点的集合,那么$T_R$由所有不着红色的顶点的变量的否定组成。 + - 例如,如果顶点$j$和$k$不着红色,则$T_R = \neg x_j \wedge \neg x_k$。这里的$\neg x_j$表示顶点$j$没有被着红色。 + +- **正例与一致性**: + - 对于每个正例$v(i)$,我们需要这个向量能满足某个子句$T_c$,即$v(i)$输入到$T_c$中时,$T_c$应该为真。 + - 假设顶点$i$被着成红色,那么$v(i)$中在第$i$位是0,其他位置是1。此时,$v(i)$会使$T_R$为真,因为$T_R$的合取项中的所有文字都与$v(i)$一致——即$v(i)$中对应于非红色顶点的位置都是1,这些位置的$\neg x_j$为真。 + +- **反例与一致性**: + - 对于每条边$(i, j)$的反例$e(i,j)$,我们需要这个向量不能满足整个DNF公式$T_R \vee T_B \vee T_Y$,即$e(i,j)$输入到该公式中时,公式应为假。 + - 假设顶点$i$着红色,顶点$j$着蓝色。则$T_R$由不着红色的顶点变量的否定组成,$T_B$则由不着蓝色的顶点变量的否定组成。 + - 因为$e(i,j)$在第$i$和$j$位都是0,$T_R$的合取项需要这些位是1才能为真,因此$e(i,j)$不能满足$T_R$。同理,由于$j$着蓝色,$e(i,j)$也不能满足$T_B$,同样它也不能满足$T_Y$。 + +因此,对于每个反例$e(i,j)$,公式$T_R \vee T_B \vee T_Y$都不会为真,这就保证了公式与样本集$S_G$一致。 + +如果我们可以有效地学习3项DNF公式,那么就可以用它来解决 $NP$ 完全问题(如图的3-着色),这意味着$RP = NP$。由于普遍认为$RP \neq NP$,所以3项DNF类在PAC学习下是不可有效学习的。 + + +# 第3章:复杂性分析 + +*Edit: 王茂霖,李一飞,詹好,赵志民* + +--- + +## 本章前言 + +在机器学习理论中,复杂性分析与计算理论中的算法复杂度类似,是衡量模型和假设空间能力的关键指标。复杂性越高,模型的表达能力越强,但同时也意味着过拟合的风险增加。因此,研究假设空间的复杂性有助于理解模型的泛化能力。 + +## 3.1 【概念解释】VC维 + +VC维(Vapnik-Chervonenkis 维度)是衡量假设空间$\mathcal H$复杂性的重要工具。它表示假设空间能够打散的最大样本集的大小,是描述二元分类问题下假设空间复杂度的核心指标。 + +VC维的定义如下: +$$ +\begin{equation} +VC(\mathcal H)=\max\{m:\Pi_{\mathcal H}(m)=2^m\} +\end{equation} +$$ +其中,$\Pi_{\mathcal H}(m)$是假设空间$\mathcal H$对大小为$m$的样本集的增长函数。VC维可以理解为模型在二元分类问题中有效的自由度。 + +**例子:**对于假设空间$sign(wx+b)$(即线性分类器),其在二维空间$R^2$中的VC维为3。这意味着,线性分类器能够打散最多三个点,但无法打散四个点。 + +## 3.2 【概念解释】Natarajan维 + +在多分类问题中,我们使用Natarajan维来描述假设空间的复杂性。Natarajan维是能被假设空间$\mathcal H$打散的最大样本集的大小。 + +当类别数$K=2$时,Natarajan维与VC维相同: +$$ +\begin{equation} +VC(\mathcal H)=Natarajan(\mathcal H) +\end{equation} +$$ +对于更一般的$K$分类问题,Natarajan维的增长函数上界为: +$$ +\begin{equation} +\Pi_{\mathcal H}(m)\leqslant m^dK^{2d} +\end{equation} +$$ +随着样本数$m$和分类数$K$的增加,Natarajan维的复杂度呈指数级增长。 + +## 3.3 【概念解释】Rademacher复杂度 + +VC维和Natarajan维均未考虑数据分布的影响,而Rademacher复杂度则引入了数据分布因素。它通过考察数据的几何结构和信噪比等特性,提供了更紧的泛化误差界。 + +函数空间$\mathcal F$关于$\mathcal Z$在分布$\mathcal D$上的Rademacher复杂度定义如下: +$$ +\begin{equation} +\Re_{\mathcal Z}(\mathcal F)=E_{Z\subset\mathcal Z:|Z|=m}\left[E_{\sigma}\left[\underset{f\in\mathcal F}{\sup}\frac{1}{m} \sum_{i=1}^m \sigma_i f(z_i)\right]\right] +\end{equation} +$$ +其中$\sigma_i$是服从均匀分布的随机变量。 + +假设空间$\mathcal H$的Rademacher复杂度上界为: +$$ +\begin{equation} +\Re_m(\mathcal H)\leqslant\sqrt{\frac{2\ln\Pi_{\mathcal H}(m)}{m}} +\end{equation} +$$ + +## 3.4 【概念解释】shattering 概念的可视化 + +**Shattering**是指假设空间能够实现样本集上所有对分的能力。以下通过二维空间$R^2$中的线性分类器示例来说明。 + +**示例:**对于二维空间$R^2$中的三个点,线性分类器$sign(wx+b)$可以实现三点的所有对分,但无法实现四点的所有对分,如下图所示: + +
+ shattering +
+ +因此,线性分类器在$R^2$中的VC维为3。 + + +# 第4章:泛化界 + +*Edit: 赵志民,李一飞,王茂霖,詹好* + +------ + +## 本章前言 + +在机器学习中,泛化能力是衡量模型性能的核心标准之一。如何从有限的训练数据中获得能够在未见数据上表现良好的模型,始终是研究者关注的重要问题。本章将深入探讨与泛化界相关的理论基础和定理,通过对关键概念的补充说明和定理的详细推导,帮助读者更好地理解泛化误差的收敛性质以及不同假设空间下的泛化能力。本章还将介绍与泛化界密切相关的Rademacher复杂度及其在实际应用中的意义,为进一步的研究提供理论支持。 + +## 4.1 【概念解释】可分情形中的“等效”假设 + +**61页**中的「可分情形」部分提到了“等效假设”的概念。这其实是我们在面对模型选择时需要处理的问题。机器学习的任务实际上是从样本空间或属性空间中选择一个最符合实际的模型假设。在理想状态下,我们希望能排除不可能的情况,直接选择唯一可能的模型。然而,这是不现实的,因为训练数据无法覆盖所有可能的情况,这些数据仅是部分经验片段的记录。因此,机器学习成为了一个不适定问题(ill-posed problem)。 + +通常而言,不适定问题是指不满足以下任一条件的问题: + +1. **存在解**:对于给定的问题,至少存在一个解,即这个问题是可以解决的。 +2. **唯一解**:对于给定的问题,解是唯一的,没有其他可能的解。 +3. **解连续依赖于定解条件**:解会随着初始条件或参数的变化而连续变化,不会出现突然跳跃或不连续的情况 + +在这里,由于我们无法仅依靠输入数据找到唯一解,这使得学习问题成为一个不适定问题,主要违反了条件2。而在更多时候,我们说机器学习是不适定的,主要是指其违反了条件3,在那种情况下,我们通常会用正则化等方式来解决。 + +## 4.2 【概念解释】定理4.1与定理2.1、定理2.2的关系 + +**61页**中的**定理4.1**与**定理2.1**和**定理2.2**之间存在密切联系。 + +**定理2.1**指出一个学习算法 $\mathfrak{L}$ 能从假设空间 $\mathcal{H}$ 中PAC辨识概念类 $\mathcal{C}$ ,需要满足: +$$ +\begin{equation} +P(\mathbb{E}(h) \leqslant \epsilon) \geqslant 1-\delta +\end{equation} +$$ +其中, $0 \lt \epsilon, \delta \lt 1$,所有 $c \in \mathcal{C}$, $h \in \mathcal{H}$ 。 + +**定理2.2**指出,所谓PAC可学,是指对于任何 $m \geqslant \operatorname{poly}(1 / \epsilon, 1 / \delta, \operatorname{size}(\boldsymbol{x}), \operatorname{size}(c))$ ,学习算法 $\mathfrak{L}$ 能从假设空间 $\mathcal{H}$ 中PAC辨识概念类 $\mathcal{C}$ 。 + +在**定理4.1**中,假设学习算法 $\mathfrak{L}$ 能从假设空间 $\mathcal{H}$ 中 PAC 辨识概念类 $\mathcal{C}$,且这一过程依赖于大小为 $m$ 的训练集 $D$ ,其中 $m \geqslant \frac{1}{\epsilon} \left( \ln \left| \mathcal{H} \right| + \ln \frac{1}{\delta} \right)$,满足 +$$ +\begin{equation} +m \geqslant \operatorname{poly}(1 / \epsilon, 1 / \delta, \operatorname{size}(\boldsymbol{x}), \operatorname{size}(c)) +\end{equation} +$$ +的条件,从而得到 +$$ +\begin{equation} +P(\mathbb{E}(h) \leqslant \epsilon) \geqslant 1-\delta +\end{equation} +$$ +因此,**定理4.1**实际上就是逆向使用了**定理2.1**和**定理2.2**。 + +## 4.3 【证明补充】定理4.2补充 + +**63页**中,在证明定理4.2时,省略了从式4.6到式4.7的推导过程。在这一过程中,主要用到了**28页**中式2.7的内容。 + +根据式4.6,有 +$$ +\begin{equation} +\begin{align*} +& P(\exists h \in \mathcal{H}:|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \\ +=& P\left(\left(\left|\widehat{E}\left(h_{1}\right)-E\left(h_{1}\right)\right|\gt\epsilon\right) \vee \cdots \vee\left(\left|\widehat{E}\left(h_{|\mathcal{H}|}\right)-E\left(h_{|\mathcal{H}|}\right)\right|\gt\epsilon\right)\right) \\ +\leqslant & \sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) +\end{align*} +\end{equation} +$$ +引理2.1提出,若训练集 D 包含 $m$ 个从分布 D 上独立同分布采样而得的样本, $0\lt\epsilon\lt1$ 则对任意 $h \in \mathcal{H},$ 有 +$$ +\begin{equation} +\begin{align*} +P(\widehat{E}(h)-\mathbb{E}(h) \geqslant \epsilon) & \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ +P(\mathbb{E}(h)-\widehat{E}(h) \geqslant \epsilon) & \leqslant \exp \left(-2 m \epsilon^{2}\right) \\ +P(|\mathbb{E}(h)-\widehat{E}(h)| \geqslant \epsilon) & \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) +\end{align*} +\end{equation} +$$ +使用第三个式子,即, +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \geqslant \epsilon) \leqslant 2 \exp \left(-2 m \epsilon^{2}\right) +\end{equation} +$$ +将其带入式4.6,则有, +$$ +\begin{equation} +\begin{array}{l} +\sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \leqslant \sum_{h \in \mathcal{H}} 2 \exp \left(-2 m \epsilon^{2}\right) +\end{array} +\end{equation} +$$ +令 $2 \exp \left(-2 m \epsilon^{2}\right)=\delta /|\mathcal{H}|$,则有, +$$ +\begin{equation} +\begin{array}{l} +\sum_{h \in \mathcal{H}} P(|\widehat{E}(h)-\mathbb{E}(h)|\gt\epsilon) \leqslant \sum_{h \in \mathcal{H}} \delta /|\mathcal{H}| \leqslant|\mathcal{H}| \cdot \delta /|\mathcal{H}|=\delta +\end{array} +\end{equation} +$$ +从而得到式4.7。 + +## 4.4 【证明补充】引理4.1的证明思路 + +**63页**中,引入了引理4.1及其相关的证明。由于证明过程较长,这里对其思路进行梳理和分析。 + +对于假设空间 $\mathcal{H}, h \in \mathcal{H}, m \in \mathbb{N}, \epsilon \in (0,1)$,当 $m \ge 2/\epsilon^2$ 时有: + +$$ +\begin{equation} +P(|\mathbb{E}(h)-\hat{E}| \gt \epsilon) \le 4\Pi_{\mathcal{H}}(2m)\exp(-\frac{m\epsilon^2}{8}) +\end{equation} +$$ + +### 证明简述 + +当我们要证明这个定理时,需要首先回忆增长函数的定义:对于 $m \in\mathbb{N}$, 假设空间 $\mathcal{H}$ 的**增长函数** (growth function) $\Pi_{\mathcal{H}}(m)$ 表示为 +$$ +\begin{equation} +\Pi_{\mathcal{H}}(m)=\max_{\{\mathbf{x}_1,...,\mathbf{x}_m\}\subset \mathcal{X}}|\{(h(\mathbf{x}_1),...,h(\mathbf{x}_m))|h\subset \mathcal{H}\}| +\end{equation} +$$ + +由于泛化误差在实际过程中难以评估,证明中首先将泛化误差和经验误差的差距缩放为经验误差之间的差距。通过概率与期望之间的转化,我们将问题进一步转化,并通过上确界的定义给出一个具体的概念 $h_0$ ,用三角不等式将经验误差与泛化误差之间的差距缩放至经验误差之间。再使用 Chebyshev 不等式中的概率与分布函数积分关系,拆分三角不等式,得出前一半概率(即经验误差与泛化误差之间的差距)与经验误差之间的不等式。 + +第二步则是将经验误差之间的差距进一步转化为增长函数的差距,即证明了第二个公式: +$$ +\begin{equation} +P(\sup_{h\in\mathcal{H}}|\hat E_D(h)-\hat E_{D'}(h)|\geq\frac{1}{2}\epsilon)\leq 2|\mathcal{H}_{|D+D'|}| \exp(-\frac{\epsilon^2m}{8})| +\end{equation} +$$ + +在这个过程中,使用了式 4.16,通过给出任意置换下的情况,将期望问题转化为级数求和,进一步缩放成有关指数函数的公式: +$$ +\begin{equation} +\frac{1}{2m}\sum_{i=1}^{(2m)!}\mathbb{I}(|\hat E_{T_iD}(h)-\hat E_{T_iD'}(h)\|)=\sum_{k\in[l]\\s.t.|2k/m-l/m|\geq\epsilon/2}\frac{\tbinom{l}{k}\tbinom{2m-l}{m-k}}{\tbinom{2m}{m}} +\end{equation} +$$ + +注意,原不等式中的上界 $2\exp(-\frac{\epsilon^2l}{8})$ 可以通过 Hoeffding 不等式推导出。 + +再通过进一步缩放,得到最后的缩放公式(4.19)。此时,结合前述推导可证明引理。 + +即使将原不等式中的 $2\exp(-\frac{ε^2l}{8})$ 替换为 $2\exp(-\frac{ε^2l}{4})$,原不等关系依然成立。此结论亦可推广到定理4.3的结论,但即便如此,泛化误差的收敛率依旧为 $O(\sqrt\frac{ln(m/d)}{m/d})$。 + + + +## 4.5 【证明补充】定理4.3补充 + +**67页**中提到将式(4.24)带入引理4.1,即可证明定理4.3,具体推导如下: + +定理4.3 表示为: +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \leqslant \sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \geqslant 1-\delta +\end{equation} +$$ + +可以将其等价转化为: +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)| \gt \sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant \delta +\end{equation} +$$ + +将(4.24)带入引理4.1可得: +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant 4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +$$ + +根据 3.1 可得: +$$ +\begin{equation} +4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) \leqslant 4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +$$ + +所以引理4.1可以转化为: +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant 4 \Pi_{\mathcal{H}}(2 m) \exp \left(-\frac{m \epsilon^{2}}{8}\right) \leqslant 4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) +\end{equation} +$$ + +令 $4\left(\frac{2 e m}{d}\right)^{d} \exp \left(-\frac{m \epsilon^{2}}{8}\right) = \delta$,由此可得: +$$ +\begin{equation} +P(|\mathbb{E}(h)-\widehat{E}(h)|\gt\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}) \leqslant \delta +\end{equation} +$$ +从而得到了定理4.3的结论。 + +定理4.3 说明了期望误差和经验误差之间的差异程度,以概率形式限定在一定的区域范围内,虽然这并不完全代表误差一定会在 $\sqrt{\frac{8 d \ln \frac{2 e m}{d}+8 \ln \frac{4}{\delta}}{m}}$ 这个范围内,但在此范围内的概率达到了 $1-\delta$。我们可以发现其差异程度的控制范围和样本量及维度之间的关系。当 $\frac{m}{d}$ 较大时(即样本量大,而 VC 维较低),由于 $ln(x)$ 相对于 $x$ 增加较慢,所以其差异可以控制得越小,反之亦然。 + +## 4.6 【概念解释】回顾 Rademacher 复杂度 + +**68页**谈论了基于 Rademacher 的泛化误差界,这里对 Rademacher 复杂度进行回顾。 + +由于 VC 维和数据分布无关,未考虑数据的特定分布情况,其得到的结论往往是“松”的。Rademacher 复杂度则是基于数据分布的考虑,在牺牲了一定“普适性”的情况下,得到更为“紧”的结论。 + +复杂度是人为定义的一套量化复杂度程度的概念。对应 Rademacher 复杂度,假设空间中表示能力越强的函数,其复杂度越高。回到**46-47页**,如果 $\mathbb{E}_{\boldsymbol{\sigma}}\left[\sup _{h \in \mathcal{H}} \frac{1}{m} \sum_{i=1}^{m} \sigma_{i} h\left(\boldsymbol{x}_{i}\right)\right]=1$ ,即对于 $x$ 的任意标签分布情况都能打散(特别注意这里针对的是这个特定的 $x$ 数据,这也是 Rademacher 复杂度和数据分布相关的原因,我们只有知道数据的具体分布情况,才能求解其 Rademacher 复杂度)。由 3.27 可等价得到 3.29 的经验 Rademacher 复杂度。 + +对于 Rademacher 复杂度的定义,我们进一步将具体的数据样本点转化为数据的样本空间分布,在经验误差的形式外面套一层期望,从而得到了一般化的 Rademacher 复杂度的定义。经验 Rademacher 复杂度和 Rademacher 复杂度的关系就如同概率论中掷硬币的观测序列和将其视为一个先验分布的随机变量序列一样。 + +## 4.7 【证明补充】引理4.6的证明解析 + +**71页**的定理4.6给出了泛化误差下界的形式化表述: + +$$ +\begin{equation} +P\left(\mathbb{E}(h_D, c) > \frac{d-1}{32m}\right) \ge \frac{1}{100} +\end{equation} +$$ + +虽然不等式右边的常数 $\frac{1}{100}$ 看似有些随意,但作者意在表明:对于任意学习算法,总是存在某种分布和目标概念,使得学习算法输出的假设在较高概率下产生显著错误。 + +事实上,根据公式(4.50)的推导,只要选择一个小于 $\frac{1 - e^{-\frac{d-1}{12}}}{7}$ 的常数,原不等式仍然成立。以 $d=2$ 为例,此时该常数约为 $0.0114$,因此取 $\frac{1}{100}$ 是较为合理的选择。 + +进一步分析发现,随着维度 $d$ 的增加,这个常数会逐渐增大,最终逼近 $\frac{1}{7}$。然而,这并不意味着在任何数据分布和目标概念下,泛化误差下界都不会超过 $\frac{1}{7}$。这一限制是由定理证明过程中所假设的数据分布(公式4.42)导致的。 + +至于常数 $32$,则是证明过程中产生的结果。通过公式(4.50)的推导,可以看到为了套用公式(4.49)的结论,需要将 $\epsilon$ 设为 $\frac{d-1}{16(1+r)}$。在取 $r=1$ 的情况下,分母部分自然得到 $32$。 + + + +## 4.8 【证明补充】引理4.2补充 + +**74页**提出了引理4.2,这里给出完整的证明过程。 + +令 $\sigma$ 为服从 $\{-1,+1\}$上均匀分布的随机变量,对于 $0\lt\alpha\lt1$构造随机变量 $\alpha_{\sigma} = 1/2 - \alpha +\sigma/2$,基于 $\sigma$ 构造 $X \sim D_{\sigma}$,其中 $D_{\sigma}$ 为伯努利分布 $Bernoulli(\alpha_{\sigma})$,即 $P(X=1)=\alpha_{\sigma}$。 +令 $S=\{X_1,\cdots,X_m\}$ 表示从分布 $D_{\alpha}^m$ 独立同分布采样得到的大小为 $m$ 的集合,即 $S \sim D_{\alpha}^m$,这对于函数 $f:X^m \rightarrow \{-1,+1\}$ 有: + +$$ +\begin{equation} +\mathbb{E}_{\sigma}[P_{S \sim D_{\alpha}^m}(f(S) \neq \sigma)] \ge \Phi (2\lceil m/2 \rceil, \alpha) +\end{equation} +$$ + +其中 $\Phi (m, \alpha) = \frac{1}{4} (1 - \sqrt{1 - \exp(-\frac{m\alpha^2}{1 - \alpha^2})})$ + +### 证明 + +我们设想两枚硬币 $x_A$ 和 $x_B$。两枚硬币都稍有不均匀,即 $P[x_A = 0] = 1/2−\alpha/2$ 和 $P[x_B = 0] = 1/2+\alpha/2$,其中 $0\lt\alpha\lt1$。0 表示正面,1 表示反面。假设我们随机从口袋里拿出一枚硬币 $x \in \{x_A,x_B\}$,抛 $m$ 次,得到的 0 和 1 的序列即为引理中构造的随机变量 $\alpha_{\sigma}$。如果我们想通过序列推测是哪一枚硬币被抛出,即选取并求得最佳决策函数 $f:\{0,1\}^m\rightarrow\{x_A,x_B\}$,则该实验假设的泛化误差可表示为 $error(f)=\mathbb{E}[\mathbb{P}_{S\sim\mathcal{D}_\alpha^m}(f(S)\neq x)]$。 + +用 $f$ 代表任意决策函数,用 $F_A$ 代表满足 $f(S)=x_A$ 的样本集合,用 $F_B$ 代表满足 $f(S)=x_B$ 的样本集合,用 $N(S)$ 表示样本 $S$ 中出现 0 的个数,根据泛化误差的定义,有: + +$$ +\begin{equation} +\begin{align*} +error(f)&=\sum_{S\in F_A}\mathbb{P}[S\wedge x_B]+\sum_{S\in F_B}\mathbb{P}[S\wedge x_A]\\ +&=\frac{1}{2}\sum_{S\in F_A}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_B}\mathbb{P}[S|x_A]\\ +&=\frac{1}{2}\sum_{S\in F_A\atop N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_A\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_B] ++\frac{1}{2}\sum_{S\in F_B\atop N(S)\lt \lceil m/2\rceil}\mathbb{P}[S|x_A]+\frac{1}{2}\sum_{S\in F_B\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +\end{align*} +\end{equation} +$$ + +如果 $N(S)\ge \lceil m/2\rceil$,易证 $\mathbb{P}[S|x_B]\ge\mathbb{P}[S|x_A]$。类似地,如果 $N(S)\lt \lceil m/2\rceil$,易证 $\mathbb{P}[S|x_A]\ge\mathbb{P}[S|x_B]$。因此,我们可以得到: + +$$ +\begin{equation} +\begin{align*} +error(f) &\ge\frac{1}{2}\sum_{S\in F_A\atop N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_A\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A] ++\frac{1}{2}\sum_{S\in F_B\atop N(S)\lt \lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S\in F_B\atop N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +&=\frac{1}{2}\sum_{S:N(S)\lt\lceil m/2\rceil}\mathbb{P}[S|x_B]+\frac{1}{2}\sum_{S:N(S)\ge \lceil m/2\rceil}\mathbb{P}[S|x_A]\\ +&=error(f_o) +\end{align*} +\end{equation} +$$ + +因此,当我们选取 $f_o$ 为决策函数时,泛化误差取得最小值,即当且仅当 $N(S)\lt \lceil m/2\rceil$ 时,我们认为被抛的硬币是 $f_o(S)=x_A$。 + +注意到 $\mathbb{P}[N(S)\ge \lceil m/2\rceil|x=x_A]=\mathbb{P}[B(2\lceil m/2\rceil,p)\ge k]$,且 $p=1/2-\alpha /2,k=\lceil m/2\rceil$,因此 $2\lceil m/2\rceil p\le k\le 2\lceil m/2\rceil(1-p)$。 + +根据 Slud 不等式,我们有: +$$ +\begin{equation} +error(f_o) \ge \frac{1}{2}\mathbb{P}[N\ge\frac{\lceil m/2\rceil\alpha}{\sqrt{1/2(1-\alpha^2)\lceil m/2\rceil}}]=\frac{1}{2}\mathbb{P}[N\ge\sqrt{\frac{2\lceil m/2\rceil}{1-\alpha^2}}\alpha] +\end{equation} +$$ + +根据第一章补充内容中的正态分布不等式推论,我们有: +$$ +\begin{equation} +error(f_o)\ge\frac{1}{4}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}})\ge\frac{1}{4}(1-\sqrt{1-e^{-u^2}}) +\end{equation} +$$ +此处 $u=\sqrt{\frac{2\lceil m/2\rceil}{1-\alpha^2}}\alpha$ + +事实上,根据上面的推导,我们可以进一步提升泛化误差的下界,即: +$$ +\begin{equation} +\mathbb{E}[\mathbb{P}_{S\sim\mathcal{D}_\alpha^m}(f(S)\neq x)]\ge\frac{1}{4}(1-\sqrt{1-e^{-\frac{2}{\pi}u^2}}) +\end{equation} +$$ + +在引理末尾处,提到了至少需要 $\Omega(\frac{1}{\alpha^2})$ 次采样才能准确估计 $\sigma_i$ 的取值,其推理过程如下: +令泛化误差下界至多为 $error(f_o)=\delta\gt0$,则有: +$$ +\begin{equation} +\frac{1}{4}(1-\sqrt{1-e^{-u^2}})\le\delta\Leftrightarrow m\ge 2\lceil \frac{1-\epsilon^2}{2\epsilon^2} \ln\frac{1}{8\delta(1-2\delta)} \rceil +\end{equation} +$$ +此时,我们发现 $m$ 至少为 $\Omega(\frac{1}{\alpha^2})$ 时,才能以 $1-\delta$ 的概率确定 $\sigma$ 的取值。 + + + +## 4.9 【证明补充】引理4.7的补充 + +**75页**的定理4.7主要表达的是:无论算法有多强,在不可分的情况下,总会有某种“坏”分布使得输出假设的泛化误差以常数概率为$O(\sqrt\frac{d}{m})$。其中(4.61)中第二步变形用到了以下等式: +$$ +\begin{equation} +\sum_{x_i\in S}(\mathbb{I}(h(x_i)\neq h_{\mathcal{D}_{\sigma}^*}(x_i))+\mathbb{I}(h(x_i) = h_{\mathcal{D}_{\sigma}^*}(x_i))) = d +\end{equation} +$$ +另外,(4.63)的第三步为何不直接利用引理4.2进行推导呢?这是考虑到函数$\Phi(·,\alpha)$为减函数,即由$m/d+1\le2\lceil m/2\rceil$可知$\Phi(m/d+1,\alpha)\ge\Phi(2\lceil m/2\rceil,\alpha)$。可见后者并不是一个特别紧致的下界,因此我们转而考虑按照$|Z|_x$的取值进行拆分。 + +在**76页**左下角的最后一个脚注中,提到了$m/d$为变量$|Z|_x$的期望值,如何得到这个结论呢?根据(4.58)和(4.59)以及$\mathcal{U}$为$\{-1,+1\}^d$均匀分布的性质,我们可以得到从分布中抽取给定点$x$的期望概率为$1/d$。 +当我们从 $D_σ$ 中独立抽取 $m$ 个样本的情况下,$S$ 中点 $x$ 出现的次数的期望值为 $m/d$。 + +此外,(4.65)中用到了引理4.3。令 $Z'=\frac{1}{\alpha}(\mathbb{E}(h_Z)-\mathbb{E}(h_{\mathcal{D}_{\sigma^*}^{m}}^{*}))$,根据(4.62)可知 $0\le Z'\le1$。 +令 $\gamma'=\gamma u$,因为 $\Phi(·,\alpha)$为减函数,易知其最大值为$1/4$,因此有$\gamma'\in[0,1/4)\subseteq[0,1)$。此时带入引理4.3可得: +$$ +\begin{equation} +P(Z'\gt\gamma')\ge \mathbb{E}[Z']-\gamma' \ge u-u\gamma = (1-\gamma)u +\end{equation} +$$ + +同时,(4.69)到(4.70)的推导中体现了充分条件的思想。由(4.69)可知: +$$ +\begin{equation} +\frac{m}{d}\le \frac{A}{\epsilon^2}+B +\end{equation} +$$ +其中 $A=(\frac{7}{64})^2 \ln \frac{4}{3}$,$B=-\ln \frac{4}{3}-1$。 + +我们希望能推导出更为简洁的 $\frac{m}{d}$ 与 $\frac{1}{\epsilon^2}$ 之间的关系,因此考虑寻找充分条件使以下不等式成立: +$$ +\begin{equation} +\frac{m}{d}\le \frac{A}{\epsilon^2}+B\le\frac{\omega}{\epsilon^2} +\end{equation} +$$ +即使得 $\omega\ge B\epsilon^2+A$ 成立。当 $\epsilon\le 1/64$ 时,很容易得到 $\omega$ 的最小值(4.70)。 + +值得注意的是,整个证明过程共进行了四次启发式限制,分别为 $\gamma=1-8\delta$,$\alpha=8\epsilon/(1-8\epsilon)$,$\delta\le1/64$ 和 $\epsilon\le1/64$。这些启发式限制构造出来都是为了使得最终的不等式成立,实际上我们亦可根据实际需要进行调整,继而得到该定理的不同变种。 + + + +## 4.10 【概念解释】$\rho$-间隔损失函数的 Lipschitz 性 + +**79页**提到,由经验损失(公式4.72)可知 $\Phi_\rho$ 最多是 $\frac{1}{\rho}$-Lipschitz。对此进行详细解读如下: + +根据Lipschitz连续性的定义,我们可以通过拉格朗日中值定理来证明这一点。具体来说,由拉格朗日中值定理可得: + +$$ +\begin{equation} +|\Phi_\rho(x_1)-\Phi_\rho(x_2)| \leq |\Phi_\rho'(\xi)| |x_1-x_2| +\end{equation} +$$ + +其中 $\xi$ 是 $x_1$ 和 $x_2$ 之间的某一点。 + +已知 $\Phi_\rho$ 的具体表达式,因此可以直接计算其导数 $\Phi_\rho'(\xi)$。通过计算,我们可以得到: + +$$ +\begin{equation} +|\Phi_\rho'(\xi)| \leq \frac{1}{\rho} +\end{equation} +$$ + +因此,根据Lipschitz条件的定义,$\rho$-间隔损失函数是 $\frac{1}{\rho}$-Lipschitz 函数。 + + + +## 4.11 【证明补充】定理4.8补充 + +**79页**的定理4.8给出了关于间隔损失函数的分类问题SVM的泛化误差界。 + +此处存在一个小的错误:公式4.80前的 **“代入 (4.96)”** 应为 **“代入 (4.76)”**。 + +观察要证明的公式,我们发现这是关于 Rademacher 复杂度的泛化上界推理,自然地回顾一下 Rademacher 复杂度。 + +现实任务中样本标记有时会受到噪声影响,因此我们与其在假设空间 $\mathcal{H}$ 中选择训练集上表现最好的假设,不如选择 $\mathcal{H}$ 中事先已经考虑了随机噪声影响的假设。 + +在此直接考虑利用前面讲到的关于实值假设空间中的期望与 Rademacher 复杂度的不等式。通过前面 4.73 讲到的关于间隔函数的经验间隔损失的式子,可以带入得到大体形式。 + +由于前面引理提到的关于 Lipschitz 函数的性质,结合 $\rho$-间隔损失函数的 Lipschitz 性,在简单改写复杂度之后便能得到要证明的定理。 + + +# 第5章:稳定性 + +*编辑:赵志民,李一飞,王茂霖,詹好* + +------ + +## 本章前言 + +本章将探讨学习理论中的稳定性。在前一章中,我们介绍了不同的复杂度度量方法,并给出了与特定算法无关的泛化界限。 +然而,这些泛化界限是否能通过分析特定算法的性质得到更好的学习保障?这些分析是否能够扩展到具有相似性质的其他学习算法上? +本章旨在回答这些问题,通过算法稳定性的应用推导出依赖于算法的学习保证。 + +## 5.1 【概念解释】留一交叉验证的风险 + +**90页**中提到的留一风险(leave-one-out risk)是指依次从数据集中移除某一数据后,利用剩余数据训练的模型与被移除数据之间的风险。本质上,这保证了用于风险测试的数据不会包含在训练集中,类似于模型选择时的留一验证。 + +## 5.2 【证明补充】均匀稳定性与泛化误差上界 + +**92页**中,定理5.1讨论了**均匀稳定性**与泛化性的关系。以下是该证明过程中均匀稳定性与泛化性之间联系的分析。 + +### 证明简述 + +对于读者来说,前几章的阅读应使大家对涉及 $ln$ 和根号的不等式已经有所了解,并能意识到这与指数函数的不等式有关,并反解风险 $\epsilon$。这里我们希望通过样本的稳定性推导出关于风险的泛化性。因此,在证明时必须将风险之间的差距转化为损失函数之间的风险。 + +由于定理中提到的替换样本 $\beta$-均匀稳定性和移除样本 $\gamma$-均匀稳定性是非常强的条件,适用于任意的数据集 D 和任意的样本 **z**,因此我们可以得到关于*经验风险与泛化风险差距*(即 $\Phi(D)$) 的估计式。 + +通过对损失函数的差值求和平均可以得到风险 (Risk) 的差距。由于替换样本的 $\beta$-均匀稳定性适用于任意 **z**,因此我们可以推导出 (5.22) 和 (5.23) 式,并使用 McDiarmid 不等式推导出*经验风险与泛化风险的差距*(即 $\Phi(D)$) 超过其平均值至少 $\epsilon$ 的概率。即: +$$ +\begin{equation} +P(\phi(D)\geq\mathbb{E}[\Phi(D)]+\epsilon)\leq exp(\frac{-2m\epsilon^2}{(2m\beta+M)^2}) +\end{equation} +$$ +之后进行简单的放缩估计即可得到最终的结果: +$$ +\begin{equation} +P(R(\mathcal{L_D})-\hat R(\mathcal{L_D})\geq\beta+\epsilon)\leq exp(\frac{-2m\epsilon^2}{(2m\beta+M)^2}) +\end{equation} +$$ + +值得注意的是,(5.22)中的最后一步不等式推导其实省略了一步: +$$ +\begin{equation} +\begin{align*} +&\frac{|\ell(\mathfrak{L}_D,z_i)-\ell(\mathfrak{L}_{D^{i,z'_i}},z'_i)|}{m}+\sum_{j\neq i}\frac{|\ell(\mathfrak{L}_D,z_j)-\ell(\mathfrak{L}_{D^{i,z'_i}},z_j)|}{m}\\ +&\le \frac{M}{m}+\frac{m-1}{m}\beta \\ +&\le \frac{M}{m}+\beta +\end{align*} +\end{equation} +$$ +之所以这么做,是因为当样本量 $m$ 较大时,$\frac{\beta}{m}$ 的大小可以忽略不计,因此在结论中并未出现这一项。 + +另外,(5.23)式也省略了一步: +$$ +\begin{equation} +|E_{z\sim\mathcal{D}}[\ell(\mathfrak{L}_D,z)-\ell(\mathfrak{L}_{D^{i,z'_i}},z)]|\le E_{z\sim\mathcal{D}}[|\ell(\mathfrak{L}_D,z)-\ell(\mathfrak{L}_{D^{i,z'_i}},z)|]\le E_{z\sim\mathcal{D}}[\beta]=\beta +\end{equation} +$$ + +关于移除样本 $\gamma$-均匀稳定性(5.18)的证明用到了(5.14)的结论,因此在不等式中构造出了类似于 $2m\beta$ 的 $4m\gamma$ 形式,其他推理步骤与(5.17)基本一致。 + +### 均匀稳定性与泛化性的关系 + +在证明过程中,多处涉及了损失函数作差的放缩,即替换样本的 $\beta$-均匀稳定性,但实际上大多数情况下使用该稳定性只是为了简化式子,只有在 (5.24) 与 (5.25) 中体现了稳定性与泛化性的关系。 + +在 (5.24) 中,通过替换样本的稳定性,我们可以得到*经验风险与泛化风险的差距*(即 $\Phi(D)$) 在替换样本前后的风险可以被上界 $2\beta+M/m$ 控制住。根据 McDiarmid 不等式的描述,如果实值函数关于变量的替换具有较好的稳定性,那么该实值函数与期望的差距也将受到上界控制。简言之,如果实值函数替换一个变量后变化不大,那么无论如何替换,变化都不会过大,因此该实值函数的取值总会在一定范围内,与其均值(即期望)相差不大。 + +因此在 (5.25) 中,我们可以得到*经验风险与泛化风险的差距*(即 $\Phi(D)$) 也有了上界。通过简单的放缩可以得到一个常数上界,从而得出泛化风险的上界。 + +## 5.3 【证明补充】假设稳定性与泛化误差上界 + +**94页**中,定理5.2讨论了**假设稳定性**与泛化性的关系。以下是该证明过程中假设稳定性与泛化性之间联系的分析。 + +### 证明简述 + +证明涉及 $R(\mathcal{L_D})-\hat R(\mathcal{L_D})$ 的平方平均,因为假设稳定性是较弱的条件,只能保证风险的期望被上界控制,因此只能得到关于期望的不等式。由于不涉及概率与置信度,因此不需要复杂的不等式,简单的放缩即可得到答案。 + +证明中的一处难点在于(5.30)至(5.33)中关于变量 $z$ 之间的替换。根据独立同分布假设,即 $\forall i,j\in \mathbb{N}^+,z,z',z_i,z_j\sim\mathcal{D}$,可以任意交换 $z,z',z_i,z_j$ 的顺序而期望值不变。 + +例如,在(5.30)中的第一步推导中,不失一般性地用 $z_1,z_2$ 替代 $z_i,z_j$,因此原期望值之和得以简化为只与 $z_1,z_2$ 相关的期望值。 + +理解这一点后,任何关于变量 $z$ 之间的替换都不会令人感到困惑,其中也包括了定理5.3证明中(5.35)的第二步推导。 + +另外,在(5.32)的第一步推导中,使用了绝对值不等式 $\mathbb{E}(X+Y)\le \mathbb{E}(|X|)+\mathbb{E}(|Y|)$。这种在期望放缩中运用绝对值不等式的处理方式在全书中非常实用,值得读者留意。 + +### 假设稳定性与泛化性的关系 + +该定理实际上给出了经验风险与泛化风险的差距的平方平均的界,这是因为假设稳定性并不是非常强的条件,而是为了放松均匀稳定性这一较强的条件而引入的。 + +## 5.4 【概念解释】过拟合与欠拟合的关系 + +过拟合和欠拟合是泛化性研究中的重要概念。当经验风险与泛化风险的差距较大时,会发生过拟合;相反,当泛化风险与经验风险的差距较大时,则发生欠拟合。因此,我们在算法设计时,希望尽可能缩小泛化风险与经验风险的差距。 + +**96页**中,定理5.3从算法稳定性的角度提出了防止过拟合的方案:当替换训练集的单个样本时,算法的输出函数变化不大,我们认为学习算法 $\mathfrak{L}$ 是稳定的,否则就需要重新进行训练。该方法同样适用于欠拟合的情况,但在实际应用中,算法欠拟合的情况较少,因此我们更多地关注过拟合的预防。 + +## 5.5 【概念解释】稳定性与可学习性 + +**97页**中,定理5.4讨论了稳定性与可学性之间的关系。以下是定理5.4的梳理分析,探讨稳定性与可学性在证明中的关联。 + +### 证明简述 + +首先,我们回顾不可知 PAC 可学的概念:对于所有分布 $\mathcal{D}$,若存在学习算法 $\mathfrak{L}$ 与多项式函数 $poly(\cdot,\cdot,\cdot,\cdot)$,使得对于任意 $m\geq poly(1/\epsilon,1/\delta,size(\mathbf{x}),size(c))$,$\mathfrak{L}$ 输出的假设能够满足: +$$ +\begin{equation} + P\big(\mathbb{E}(h)-\min_{h'\in\mathcal{H}}\mathbb{E}(h')\leq\epsilon\big)\geq1-\delta +\end{equation} +$$ + +该证明利用了经验风险与泛化风险之间的联系,构造出(5.39),然后分而治之地讨论不同情况下的稳定性关系。 + +其中,泛化风险与经验风险之差(5.40)可以根据定理5.1改写为:对于任意的 $\delta\in(0,1)$,以至少 $1-\delta$ 的概率有: +$$ +\begin{equation} +R(\mathfrak{L}_D)-\hat R(\mathfrak{L}_D)\le \frac{1}{m}+(2m\beta+M)\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +$$ +参考**95页**中对 $lim_{m\rightarrow +\infty}m\beta$ 的讨论,发现只要满足 $lim_{m\rightarrow +\infty}m\beta\lt\infty$ 的条件,算法的泛化性能便可得到保障,因此应确保 $\beta$ 的取值不要太大。在此定理中,我们选取 $\beta=1/m$,此时(5.40)简化为: +$$ +\begin{equation} +R(\mathfrak{L}_D)-\hat R(\mathfrak{L}_D)\le \frac{1}{m}+(2+M)\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +$$ + +在处理 ERM 算法情况下泛化风险与经验风险之差(5.42)时,原书中有一处小错误,但对最终结论影响不大。以下是正确的推导过程: + +根据 $\ell(\mathfrak{L}_D,z)\in[0,M]$,可以得到 $\hat R \in [0,M]$,又因为 $R(h^*)=E_{\mathcal{D}}(\hat R(h^*))$,此时根据 Hoeffding 不等式(1.30),可知至少以 $1-\delta$ 的概率有: +$$ +\begin{equation} +\hat R(h^*)-R(h^*)\le M\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +$$ +结合(5.39)至(5.42)可知,至少以 $1-\delta$ 的概率有: +$$ +\begin{equation} +R(\mathfrak{L}_D)-R(h^*)\le \frac{1}{m}+(2+M)\sqrt{\frac{ln(1/\delta)}{2m}}+M\sqrt{\frac{ln(1/\delta)}{2m}} +\end{equation} +$$ +此时(5.44)变为: +$$ +\begin{equation} +\epsilon=\frac{1}{m}+(1+M)\sqrt{\frac{2ln(1/\delta)}{m}} +\end{equation} +$$ +令 $m'=\sqrt m$,则可以将上式转化为关于 $m'$ 的一元二次方程: +$$ +\begin{equation} +\epsilon m'^2-Am'-1=0 +\end{equation} +$$ +其中 $A=(1+M)\sqrt{2ln(1/\delta)}$,根据求根公式可得: +$$ +\begin{equation} +m'=\frac{A\pm\sqrt{A^2+4\epsilon}}{2\epsilon} = O(\frac{1}{\epsilon}\sqrt{ln(\frac{1}{\delta})}) +\end{equation} +$$ +至此,我们得到了 $m$ 的渐近复杂度: +$$ +\begin{equation} +m=m'^2=O(\frac{1}{\epsilon^2}ln(\frac{1}{\delta})) +\end{equation} +$$ +接下来的推导便水到渠成。 + +### 稳定性与可学性 + +这里只能达到不可知 PAC 可学的原因是泛化界只能以概率达到,无法保证在任何函数空间内都能达到上界以下。因此,这里只能讨论稳定性与不可知 PAC 可学性的关系。 + +事实上,稳定性与可学性的关系类似于第四章中讲到的泛化界与可学性的关系。通过 ERM 算法得到最小经验风险函数后,结合均匀稳定性带来的**泛化上界**,我们可以获得可学性。 + +## 5.6 【证明补充】二次分布下的 k-近邻算法稳定性 + +**105页**中,引理5.2讨论了二次分布 $X \sim B(k, 1/2)$ 的 k-近邻的稳定性。这里我们给出详细的证明过程。 + +给定整数 $k \gt 0$,若随机变量 $X$ 满足: + +$$ +\begin{equation} +P(X=i) = \frac{1}{2^k} \binom{k}{i}, i \in [k] +\end{equation} +$$ + +则对任意正整数 $a$ 有: + +$$ +\begin{equation} +P(|X-\frac{k}{2}| \le \frac{a}{2}) \lt \frac{2\sqrt{2} a}{\sqrt{\pi k}} +\end{equation} +$$ + +首先,我们根据 $k$ 的取值将情况分为两类讨论。 + +当 $k$ 为偶数时,二项式展开的最大项为: +$$ +\begin{equation} +\frac{1}{2^k} \binom{k}{k/2} \leq \frac{2}{\sqrt{2\pi k}} \exp(\frac{1}{12k} - \frac{2}{6k+1}) \lt \frac{2}{\sqrt{2\pi k}} +\end{equation} +$$ +第二步推导利用了 Stirling 公式,最后一步推导则利用了函数 $l(x) = \exp(\frac{1}{12x} - \frac{2}{6x+1})$ 在 $[1,\infty)$ 区间单调递增且取值在 $(0,1)$ 之间的特性。 + +因此,我们有: +$$ +\begin{equation} +P(|X-\frac{k}{2}| \leq \frac{a}{2}) = (a+1) \frac{2}{\sqrt{2\pi k}} \lt \frac{4a}{\sqrt{2\pi k}} +\end{equation} +$$ +当 $k$ 为奇数且 $k\gt1$ 时,二项式展开的最大项为: +$$ +\begin{equation} +\frac{1}{2^k} \binom{k}{(k-1)/2} \lt \frac{1}{2^{k-1}} \binom{k-1}{(k-1)/2} +\lt \frac{1}{\sqrt{2\pi (k-1)}} \lt \frac{2}{\sqrt{\pi k}} +\end{equation} +$$ +当 $k=1$ 时,二项式展开的最大项为 $\frac{1}{2} \lt \frac{2}{\sqrt{\pi}}$ +因此,我们有: +$$ +\begin{equation} +P(|X-\frac{k}{2}| \leq \frac{a}{2}) = a \frac{2}{\sqrt{\pi k}} \lt \frac{4a}{\sqrt{2\pi k}} +\end{equation} +$$ +综上,引理5.2得证。 + +## 5.7 【概念解释】稳定性理论的适用范围 + +细心的读者可能已经注意到,这里的稳定性仅在某些条件下才能适用,以下是对这些条件的总结。 + +首先,本章的分析假设输出函数 $\mathfrak{L}_D$ 与训练集 $D$ 的顺序无关,但这在实际应用中并不一定成立。例如,在随机梯度下降算法中,训练集的顺序会影响最终的输出函数,因此这里的稳定性并不适用于随机梯度下降算法。 + +另外,在样本扰动分析中,我们几乎没有单独讨论新增样本的情况。这是因为在数据或概念发生漂移的情况下,稳定性的要求不一定成立,因为此时训练集的分布与真实分布已不再一致。而在研究训练集 $D$ 的扰动对算法 $\mathfrak{L}_D$ 输出函数的影响时,我们希望经验风险的变化尽可能小,这恰好与在线学习(Online Learning)的目标相抵触。 + +具体而言,在线学习指的是在数据不断到来的过程中,动态地更新模型,因此该训练方式更关注模型的可塑性,即在旧场景中训练的模型是否能通过优化在新场景中表现优异。因此,在实际应用中,我们需要平衡学习算法的可塑性与稳定性。 + +为了更好地评估在线学习的性能,本书引入了遗憾界的概念,即在线学习与离线学习算法之间最小损失的差值,具体分析请参见第八章。 + + +# 第6章:一致性 + +*编辑:赵志民,王茂霖,詹好* + +------ + +## 本章前言 + +本章内容主要探讨学习理论中的一致性(consistency),研究随着训练数据的增加,通过学习算法所获得的分类器是否逐渐逼近贝叶斯最优分类器。具体内容包括一致性的定义、参数方法下的一致性分析、非参数方法下的一致性分析,以及随机森林一致性分析的案例。 + +## 6.1 【证明补充】泛化风险的无偏估计 + +**117页**中,公式(6.25)给出了分类器的经验风险 $\hat R$,并指出其为泛化风险 $R$ 的无偏估计。以下对这一概念进行详细说明。 + +首先,需要理解经验风险 $\hat R$ 和泛化风险 $R$ 的概念。经验风险是基于模型的预测结果与真实结果的比较计算出的量化风险指标。泛化风险则是基于数据-标签联合分布的样本(视为随机变量)的预测结果与真实值的比较的期望值。由于实际情况下数据-标签联合分布通常未知,泛化风险 $R$ 更多是一个理论化的概念。 + +其次,当我们说 $y$ 是 $x$ 的无偏估计时,意味着 $\mathbb{E}[x]=y$。根据这一概念,我们可以证明经验风险是泛化风险的无偏估计。 + +泛化风险定义为: +$$ +\begin{equation} +\begin{align*} +R(f) &=\mathbb{E}_{(x, y) \sim \mathcal{D}}[\mathbb{I}(y f(x) \leqslant 0)] \\ +&=\mathbb{E}_{x \sim \mathcal{D}_{\mathcal{X}}}[\eta(x) \mathbb{I}(f(x) \leqslant 0)+(1-\eta(x)) \mathbb{I}(f(x) \geqslant 0)] +\end{align*} +\end{equation} +$$ + +经验风险定义为: +$$ +\begin{equation} +\hat R(f) = \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right) +\end{equation} +$$ + +现在我们证明经验风险是泛化风险的无偏估计: + +假设所有样本都是从一个未知的样本-标签空间 $D$ 中独立同分布采样的,对经验风险求期望: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}({\hat R(f)}) &=\mathbb{E}_{(\boldsymbol{x_i}, y_i) \sim \mathcal{D}}[{ \frac{1}{m} \sum_{i=1}^{m} \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right)}] \\ +&= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{(\boldsymbol{x_i}, y_i) \sim \mathcal{D}}[{ \mathbb{I}\left(y_{i} f\left(x_{i}\right) \leqslant 0\right)}]\\ +&= \frac{1}{m} \sum_{i=1}^{m} \mathbb{E}_{(x, y) \sim \mathcal{D}}[{ \mathbb{I}\left(y f\left(x\right) \leqslant 0\right)}]\\ +&= \frac{1}{m} \sum_{i=1}^{m} R(f)\\ +&= R(f) +\end{align*} +\end{equation} +$$ + +## 6.2 【证明补充】替代函数一致性 + +**120页**的定理6.1给出了替代一致性的充分条件。首先,我们推导了泛化风险与贝叶斯风险之间的差异不等式。根据一致性的定义,我们需要证明,当 ${R_{\phi}\left(\hat{f}_{m}\right) \rightarrow R_{\phi}^{*}}$ 时,$R\left(\hat{f}_{m}\right) \rightarrow R^{*}$。 + +为此,我们进一步构造了关于 ${R_{\phi}\left(\hat{f}_{m}\right) - R_{\phi}^{*}}$ 的不等式。通过分析两个不等式之间的关联性,最终得出结论: + +$$ +\begin{equation} +R\left(\hat{f}_{m}\right) - R^{*} \leqslant 2c \sqrt[s]{R_{\phi}\left(\hat{f}_{m}\right) - R_{\phi}^{*}} +\end{equation} +$$ + +因此,当 ${R_{\phi}\left(\hat{f}_{m}\right) \rightarrow R_{\phi}^{*}}$ 时,$R\left(\hat{f}_{m}\right)$ 也会收敛于 $R^{*}$。 + +其中,不等式(6.40)的推导涉及一定的构造技巧,接着通过定理中的条件推导出不等式(6.43)。利用所构造的凸函数的性质,最终完成了这一证明。 + +## 6.3 【概念解释】划分机制方法 + +**122页**介绍了一种将样本空间划分成多个互不相容区域的方法,然后对各区域内的正例和反例分别计数,并以多数类别作为区域中样本的标记。这种方法本质上不同于参数方法,它并不是在参数空间中进行搜索构建划分超平面,而是在泛函空间上直接进行搜索。一个典型的例子是我们熟悉的决策树模型: + +
+ decision_tree +
+ +每当构造一个决策树的节点时,相当于在样本空间上进行了一次划分(即划分机制)。这种洞察方式同样适用于解释剪枝操作,即通过减少不必要的节点来简化树结构,同时保持或提高模型的性能。 + +## 6.4 【概念解释】依概率成立 + +**124页**的定理6.2提到一个定义——依概率成立(almost sure)。这是概率论与数理统计中的一个概念,表达如下: +$$ +\begin{equation} +\lim _{n \rightarrow \infty} P((Diam(\Omega)-0) \geq \epsilon)=0 +\end{equation} +$$ +和对于所有 $N\gt0$: +$$ +\begin{equation} +\lim _{n \rightarrow \infty} P(N(x)\gt N)=1 +\end{equation} +$$ +它意味着当 $n$ 趋于无穷时,几乎处处(almost everywhere)的 $Diam(\Omega)$ 都处于 $0$ 的 $\epsilon$ 邻域内。而 $N(x)$ 的极限几乎处处为无穷大。依概率成立是一种比极限更弱的情况,即可以忽略概率趋于 $0$ 的情形。 + +## 6.5 【证明补充】划分机制一致性 + +**124页**的定理6.2给出了划分一致性的充分条件。首先我们定义了 $\Omega(x)$ 作为划分区域的条件概率极大似然估计量: +$$ +\begin{equation} +\hat{\eta}(x)=\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)}{N(x)} +\end{equation} +$$ +再根据划分机制构造分类器(输出函数)$h_{m}(x)=2 \mathbb{I}\left(\hat{\eta}(x) \geqslant \frac{1}{2}\right)-1$。为了证明划分机制的一致性,我们需要证明其输出函数的泛化风险在 $m$ 趋于无穷时,趋于贝叶斯风险。 + +在此,我们利用了基于条件概率估计的插值法,并借助引理6.2得到了输出函数的泛化风险与贝叶斯风险之间的差值不等式。对于不等式右侧的期望,利用三角不等式进行放缩,可得(6.62)。 + +根据假设条件: +$$ +\begin{equation} +\lim _{m \rightarrow \infty} P((Diam(\Omega)-0) \geq \epsilon) = \lim _{m \rightarrow \infty} P(( \sup _{x, x^{\prime} \in \Omega}\left\|x-x^{\prime}\right\| -0) \geq \epsilon)=0 +\end{equation} +$$ + +由于 $\eta(x)$ 在样本空间中具有连续性,因此在任意邻域内我们都可以用 $\hat\eta(x)$ 的期望值来近似 $\eta(x)$。当邻域趋于 0 时,可得: +$$ +\begin{equation} +\mathbb{E}[|\bar{\eta}(x)-\eta(x)|] \rightarrow 0 +\end{equation} +$$ +这是由于 ${x}^{\prime}$ 被依概率限制在一个 $\epsilon$ 邻域内,且期望可以忽略概率趋于 0 的点,因此 $\bar{\eta}(x)$ 由于 $\eta(x)$ 的连续性也被限制在一个 $\eta(x)$ 的 $\epsilon$ 邻域内,从而期望的极限得证。 + +接下来,针对三角不等式右式的前半部分,将其拆分为 $N(x)=0$ 和 $N(x)\gt0$ 两部分: +$$ +\begin{equation} +\begin{array}{c} +\mathbb{E}\left[|\hat{\eta}(x)-\bar{\eta}(x)| \mid x, x_{1}, \ldots, x_{m}\right] = +\mathbb{E}\left[|\hat{\eta}(x)-\bar{\eta}(x)|\mid N(x)=0 , x, x_{1}, \ldots, x_{m}\right] \\ ++\mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right]\\ +\leqslant P\left(N(x)=0 \mid x, x_{1}, \ldots, x_{m}\right) + \mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right] +\end{array} +\end{equation} +$$ +然后,对于不等式右侧的第二部分,利用引理6.3的不等式,可以得到: +$$ +\begin{equation} +\begin{array}{l} +\mathbb{E}\left[\left|\sum_{x_{i} \in \Omega(x)} \frac{\mathbb{I}\left(y_{i}=+1\right)-\bar{\eta}(x)}{N(x)}\right| N(x)\gt0, x, x_{1}, \ldots, x_{m}\right] \\ +\leqslant \mathbb{E}\left[\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \mathbb{I}(N(x)\gt0) \mid x, x_{1}, \ldots, x_{m}\right] +\end{array} +\end{equation} +$$ + +对于此不等式的右侧,再进行放缩。对于任意 $k \geq 3$,当 $N(x) \leqslant k$ 时,$\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \leqslant \frac{1}{2}$,当 $N(x) \gt k$ 时,$\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \leqslant \frac{1}{2\sqrt k}$,从而得到不等式右侧的进一步放缩: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}\left[\sqrt{\frac{\bar{\eta}(x)(1-\bar{\eta}(x))}{N(x)}} \mathbb{I}(N(x)\gt0) \mid x, x_{1}, \ldots, x_{m}\right] &\leqslant \frac{1}{2} P\left(N(x) \leqslant k \mid x, x_{1}, \ldots, x_{m}\right)+\frac{1}{2 \sqrt{k}} P\left(N(x) \gt k \mid x, x_{1}, \ldots, x_{m}\right)\\ +&\leqslant \frac{1}{2} P\left(N(x) \leqslant k \mid x, x_{1}, \ldots, x_{m}\right)+\frac{1}{2 \sqrt{k}} +\end{align*} +\end{equation} +$$ + +结合前面的结果,我们可以得出: +$$ +\begin{equation} +\mathbb{E}[|\hat{\eta}(x)-\bar{\eta}(x)|] \leqslant \frac{1}{2} P(N(x) \leqslant k)+\frac{1}{2 \sqrt{k}}+P(N(x)=0) +\end{equation} +$$ + +根据 $N(x) \rightarrow \infty$ 依概率成立,当 $m \rightarrow \infty$ 时,$P(N(x) \leqslant k) \rightarrow 0$,$P(N(x) = 0) \rightarrow 0$。并且当取 $k=\sqrt{N(x)}$ 时,$\frac{1}{2 \sqrt{k}} \rightarrow 0$ 依概率成立,从而得出结论: +$$ +\begin{equation} +\mathbb{E}[|\hat{\eta}(x)-\bar{\eta}(x)|] \rightarrow 0 +\end{equation} +$$ +最终证明了其输出函数的泛化风险在 $m$ 趋于无穷时,趋于贝叶斯风险: +$$ +\begin{equation} +R\left(h_{m}\right)-R^{*} \leqslant 2 \mathbb{E}[|\hat{\eta}(x)-\eta(x)|] \rightarrow 0 +\end{equation} +$$ + +## 6.6 【证明补充】随机森林的划分一致性 + +**130页**中的定理6.5提到了一种简化版本的随机森林,即每次划分都是均匀随机的,并不依赖于训练集的标签。以下对证明直径 $Diam(\Omega(x,Z))\rightarrow 0$ 的步骤进行补充说明。 + +首先,令 $L_j$ 表示区域 $\Omega(x,Z)$ 中第 $j$ 个属性的边长,我们可以得到 $Diam(\Omega(x,Z))$ 与 $L_j$ 的关系: +$$ +\begin{equation} +\begin{align*} +Diam(\Omega(x,Z))&=sup_{x,x'\in\Omega}\|x-x'\| = \sqrt{\sum_{j=1}^dL_j^2} +\end{align*} +\end{equation} +$$ + +对于 $Diam(\Omega(x,Z))$ 求期望时,我们得到: +$$ +\begin{equation} +\mathbb{E}(Diam(\Omega(x,Z)))=\mathbb{E}(\sqrt{\sum_{j=1}^dL_j^2}) +\end{equation} +$$ + +令 $L = \sum_{j=1}^dL_j^2$,因为 $\sqrt{L}$ 是关于 $L$ 的凸函数,根据 Jensen 不等式(1.11),我们可以得到: +$$ +\begin{equation} +\mathbb{E}(\sqrt{\sum_{j=1}^dL_j^2})\le\sqrt{\sum_{j=1}^d\mathbb{E}(L_j^2)} +\end{equation} +$$ + +由于每个属性的边长 $L_j$ 在随机决策树构造中都是独立同分布的,因此可以得到: +$$ +\begin{equation} +\sqrt{\sum_{j=1}^d\mathbb{E}(L_j^2)}=\sqrt{d\mathbb{E}(L_1^2)}=\sqrt{d}\mathbb{E}(L_1) +\end{equation} +$$ + +综合以上各式,我们只需证明当 $k\rightarrow\infty$ 时有 $\mathbb{E}(L_1)\rightarrow 0$,便可证明 $Diam(\Omega(x,Z))\rightarrow 0$。 + +令随机变量 $U_i\sim \mathcal{U}(0,1)$ 表示第 $j$ 个属性在第 $i$ 次划分中的位置,因此 $max(U_i,1-U_i)$ 表示第 $j$ 个属性在第 $i$ 次划分中的最大长度。令 $K_j\sim \mathcal{B}(T_m,1/d)$ 表示第 $j$ 个属性被选用划分的次数。此时,第 $j$ 个属性的边长的 $K_j$ 次划分中最大长度的期望值为 $\mathbb{E}_{K_j}[\prod_{i=1}^{K_j}max(U_i,1-U_i)]$,于是我们可以得到属性边长的期望满足(6.97)。 + +令 $T_m$ 表示区域 $\Omega(x,Z)$ 被划分的次数,结合(6.98)及划分点的独立性,我们可以得到: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}(L_j)&\le\mathbb{E}[\mathbb{E}_{K_j}[\prod_{i=1}^{K_j}max(U_i,1-U_i)]]\\ +&=\mathbb{E}[(\mathbb{E}[max(U_1,1-U_1)])^{K_j}]\\ +&=\mathbb{E}[(\frac{3}{4})^{K_j}]\\ +&=\sum_{K_j=0}^{T_m}P(K_j)\cdot(\frac{3}{4})^{K_j}\\ +&=\sum_{K_j=0}^{T_m}\binom{T_m}{K_j}\cdot(\frac{1}{d})^{K_j}\cdot(1-\frac{1}{d})^{T_m-K_j}\cdot(\frac{3}{4})^{K_j}\\ +&=\sum_{K_j=0}^{T_m}\binom{T_m}{K_j}\cdot(\frac{3}{4d})^{K_j}\cdot(1-\frac{1}{d})^{T_m}\\ +&=(1-\frac{1}{d}+\frac{3}{4d})^{T_m}\\ +&=(1-\frac{1}{4d})^{T_m} +\end{align*} +\end{equation} +$$ + +此时,只需证明当 $k\rightarrow\infty$ 时 $T_m\rightarrow\infty$,便可证明 $\mathbb{E}(L_j)\rightarrow 0$。 + +每次划分节点都会增加一个新节点,且每次选择节点进行划分的概率均为 $p=1/i$,其中 $i$ 为当前的节点数目。因此,区域 $\Omega(x,Z)$ 在节点数为 $i$ 时被选中进行划分的概率分布满足 $\xi_i\sim Bernoulli(p)$。此时,划分次数 $\xi_i$ 之和表示 $T_m=\sum_{i=1}^k\xi_i$。 + +由于 $T_m$ 的期望为 $\mathbb{E}[T_m]=\sum_{i=1}^k\frac{1}{i}$,根据调和级数的发散性,当 $k\rightarrow\infty$ 时 $\mathbb{E}[T_m]\rightarrow\infty$。因此,$T_m\rightarrow\infty$ 必然依概率成立,从而证明了 $Diam(\Omega(x,Z))\rightarrow 0$。 + + +# 第7章:收敛率 + +*编辑:赵志民* + +------ + +## 本章前言 + +本章的内容围绕学习理论中的算法收敛率(convergence rate)展开。具体来说,我们将探讨在确定性优化和随机优化中的收敛率问题,并在最后分析支持向量机的实例。 + +## 7.1 【概念解释】算法收敛率 + +在算法分析中,收敛率是指迭代算法逼近解或收敛到最优或期望结果的速度,它衡量算法在减少当前解与最优解之间差异的快慢。 + +设 $\{x_k\}$ 是算法生成的迭代序列,我们可以根据以下公式来衡量算法的收敛率: +$$ +\begin{equation} +\lim_{t\rightarrow+\infty}\frac{\|x_{t+1} - x^*\|}{\|x_t - x^*\|^p} = C +\end{equation} +$$ +其中,$C$为收敛因子,$p$为收敛阶数,$x^*$ 表示最优解,$\|.\|$ 表示适当的范数。 + +根据收敛率的不同情况,我们可以将其分类如下: +1. **超线性收敛**:$p\ge1$,$C=0$,表明每次迭代都会使得误差减小,且减小的速度越来越快。特别地,当$p\gt1$时,称为$p$阶收敛。例如,$p=2$时称为平方收敛,$p=3$时称为立方收敛。 +2. **线性收敛**:$p=1$,$C\gt0$,表明每次迭代都会使得误差减小(误差呈几何级数下降),但减小的速度是一定的。 +3. **次线性收敛**:$p=1$,$C=1$,表明每次迭代都会使得误差减小,但减小的速度越来越慢。 + +## 7.2 【证明补充】凸函数的确定性优化 + +书中给出的梯度下降算法中,输出的是 $T$ 轮迭代的均值 $\omega$,而不是最后一次迭代的结果 $\omega_T$。这是因为在凸函数的梯度下降过程中,所设定的步长 $\eta$ 是启发式的,因此每次迭代产生的 $\omega'$ 无法保证是局部最优解。 + +根据定理7.1,$T$ 轮迭代的 $\omega$ 均值具有次线性收敛率,而无法证明最后一次迭代值 $\omega_T$ 也具有相同的收敛率。因此,返回 $\omega$ 的均值虽然会增加计算代价,但可以确保稳定的收敛率。这一思想在7.3.1和7.3.2中梯度下降算法中也有体现。 + +作为对比,在7.2.2中的强凸函数梯度下降算法中,我们只输出了最后一次迭代值 $\omega_T$。这是因为在强凸函数的条件下,每次迭代的梯度更新都有闭式解 $\omega_{t+1}=\omega_t-\frac{1}{\gamma}\nabla f(\omega_t)$。这种情况下,每次迭代无需启发式算法便可得到该临域的全局最优解,这也是此算法拥有更快收敛率(线性收敛率)的原因。因此,无需返回历史 $\omega$ 的均值。 + +另外,在 **139页** 定理7.1的(7.12)推导中,利用了第一章补充内容 AM-GM 不等式 $n=2$ 的结论,即对于任意非负实数 $x,y$,有: +$$ +\begin{equation} +\sqrt{xy}\le\frac{x+y}{2} +\end{equation} +$$ +当且仅当 $x=y$ 时取等号。 + +因此,只有当 $\frac{\Gamma^2}{2\eta T}=\frac{\eta l^2}{2}$ 时,公式(7.12)中 $\frac{\Gamma^2}{2\eta T}+\frac{\eta l^2}{2}$ 才能取得最小值 $\frac{l\Gamma}{\sqrt T}$,此时步长 $\eta$ 应设置为 $\frac{\Gamma}{l\sqrt T}$。类似的推导可以在(7.35)和(7.39)中找到。 + +## 7.3 【证明补充】强凸函数的确定性优化 + +**142页** 中,在证明定理7.3时,对于(7.19)的推导补充如下。 + +首先,如果目标函数满足 $\lambda$-强凸且 $\gamma$-光滑,那么根据第一章补充内容中的结论,我们有 $\gamma\ge\lambda$。这是因为对于任意 $\omega,\omega'$,光滑系数 $\gamma$ 被定义为: +$$ +\begin{equation} +f(\omega)\le f(\omega')+\nabla f(\omega')^T(\omega-\omega')+\frac{\gamma}{2}\|\omega-\omega'\|^2 +\end{equation} +$$ +而强凸系数 $\lambda$ 被定义为: +$$ +\begin{equation} +f(\omega)\ge f(\omega')+\nabla f(\omega')^T(\omega-\omega')+\frac{\lambda}{2}\|\omega-\omega'\|^2 +\end{equation} +$$ +光滑系数 $\gamma$ 决定了 $f(\omega)$ 的上界,而强凸系数 $\lambda$ 决定了 $f(\omega)$ 的下界,因此光滑系数 $\gamma$ 不小于强凸系数 $\lambda$。 + +接着,令 $f(\alpha)=\frac{\gamma-\lambda}{\lambda}\alpha^2-\alpha$,由于 $\frac{\gamma-\lambda}{\lambda}\ge0$,我们可以分成以下两种情况讨论: + +1. 当 $\frac{\gamma-\lambda}{\lambda}=0$ 时,(7.19)转化为: +$$ +\begin{equation} +\begin{align*} +f(\omega_{t+1})&\le \min_{\alpha\in[0,1]}\{f(\omega_t)-\alpha (f(\omega_t)-f(\omega^*))\} \\ +\Rightarrow f(\omega_{t+1})-f(\omega^*)&\le \min_{\alpha\in[0,1]}\{1-\alpha\}(f(\omega_t)-f(\omega^*)) +\end{align*} +\end{equation} +$$ +因为 $f(\omega_t)-f(\omega^*)\ge0$,所以当且仅当 $\alpha=1$ 时,不等式右侧取得最小值 $0$,此时易知 $f(\omega_{t+1})=f(\omega^*)$。根据凸函数局部最优解等于全局最优解的结论,我们可以得到 $\omega_{t+1}=\omega^*$,即算法在第 $t+1$ 轮迭代中收敛到最优解。 + +2. 当 $\frac{\gamma-\lambda}{\lambda}\gt0$ 时,$f(\alpha)$ 为开口向上的二次函数。令 $f'(\alpha)=2\frac{\gamma-\lambda}{\lambda}\alpha-1=0$,得到 $f(\alpha)$ 的对称轴为 $\alpha=\frac{\lambda}{2(\gamma-\lambda)}$。我们可以分成以下两种情况讨论: + - 当 $\frac{\lambda}{2(\gamma-\lambda)}\ge1$ 时,$f(\alpha)$ 取得最小值只能在 $\alpha=1$ 处,故而得到(7.20)。 + - 当 $0\lt\frac{\lambda}{2(\gamma-\lambda)}\lt1$ 时,$f(\alpha)$ 取得最小值在 $\alpha=\frac{\lambda}{2(\gamma-\lambda)}$ 处,故而得到(7.21)。 + +余下的推导部分与书中相同,此处不再赘述。 + +## 7.4 【定理证明】鞅差序列的 Bernstein 不等式 + +**149页** 定理7.6 给出了鞅差序列的 Bernstein 不等式,我们在这里给出完整的证明过程。 + +假设 $X_1,\cdots,X_n$ 是定义在 $f = (f_i)_{1\le i \le n}$ 上的有界鞅差序列且 $|X_i| \le K$,令: + +$$ +\begin{equation} +S_i = \sum_{j=1}^i X_j +\end{equation} +$$ + +将$X_n$ 的条件方差定义为: +$$ +\begin{equation} +V_n^2 = \sum_{k=1}^n \mathbb{E}[X_k^2|F_{k-1}] +\end{equation} +$$ + +那么对于任意正数 $t$ 和 $v$,有: + +$$ +\begin{equation} +P(\max_{i=1,\cdots,k} S_i \gt t,V_k^2 \le v) \le \exp\left( -\frac{t^2}{2(v+Kt/3)}\right) +\end{equation} +$$ + +### 证明 + +考虑函数 $f(x) = (e^{\theta x} -\theta x-1)/x^2$,且 $f(0) = \theta^2/2$。 +通过对该函数求导,我们知道该函数是非减的。即 $f(x) \leq f(1)$,当 $x \leq 1$ 时: +$$ +\begin{equation} +e^{\theta x} = 1 + \theta x + x^2f(x) \leq 1+\theta x+x^2f(1) = 1 + \theta x + g(\theta)x^2, \quad x \leq 1 +\end{equation} +$$ + +将其用于随机变量 $X_k/K$ 的期望,可得: +$$ +\begin{equation} +\mathbb{E} \left[\exp \left(\frac{\theta X_k}{K}\right) \bigg| \mathcal{F}_{k-1}\right] \leq 1 + \frac{\theta}{K} \mathbb{E} \left[X_k | \mathcal{F}_{k-1} \right] + \frac{g(\theta)}{K^2} \mathbb{E} \left[X_k^2 | \mathcal{F}_{k-1} \right] +\end{equation} +$$ + +由于 $\{X_k\}$ 是一个鞅差序列,我们有 $\mathbb{E} \left[X_k | \mathcal{F}_{k-1} \right] = 0$,结合 $1+x \leq e^x, x \geq 0$,我们得到: +$$ +\begin{equation} +\mathbb{E} \left[\exp \left(\frac{\theta X_k}{K}\right) \bigg| \mathcal{F}_{k-1}\right] = 1 + \frac{g(\theta)}{K^2} \mathbb{E} \left[X_k^2 | \mathcal{F}_{k-1} \right] \leq \exp \left(g(\theta) \frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2} \right) +\end{equation} +$$ + +考虑一个随机过程: +$$ +\begin{equation}Q_k = \exp \left(\theta \frac{S_k}{K} - g(\theta) \frac{V_k^2}{K^2}\right), \quad Q_0 = 1\end{equation} +$$ +我们证明这个过程对于滤波 $\mathcal{F}_n$ 是一个超鞅,即 $\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq Q_{k-1}$。 + +证明如下: +$$ +\begin{equation} +\begin{align*} +\mathbb{E} [Q_k|\mathcal{F}_{k-1}] &= \mathbb{E} \left[\exp \left(\theta \frac{S_k}{K} - g(\theta) \frac{V_k^2}{K^2}\right)\bigg|\mathcal{F}_{k-1}\right] \\ +&= \mathbb{E} \left[\exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2} - g(\theta)\frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2} + \theta \frac{X_k}{K}\right)\bigg|\mathcal{F}_{k-1}\right] \\ +&= \exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2} - g(\theta)\frac{\mathbb{E} [X_k^2|\mathcal{F}_{k-1}]}{K^2}\right) \mathbb{E} \left[ \exp \left(\theta \frac{X_k}{K}\right)\bigg|\mathcal{F}_{k-1}\right] +\end{align*} +\end{equation} +$$ + +应用之前证明的不等式,我们得到: +$$ +\begin{equation}\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq \exp \left(\theta \frac{S_{k-1}}{K} - g(\theta) \frac{V_{k-1}^2}{K^2}\right) = Q_{k-1}\end{equation} +$$ + +我们定义 $A = \{k \geq 0: \max_{i=1,\cdots,k} S_i \gt t,V_k^2 \le v\}$,则有: +$$ +\begin{equation}Q_k\geq \exp \left(\theta \frac{t}{K} - g(\theta) \frac{v}{K^2}\right), k \in A\end{equation} +$$ + +由于 $\{Q_k\}$ 是超鞅,我们有: +$$ +\begin{equation}\mathbb{E} [Q_k|\mathcal{F}_{k-1}] \leq \mathbb{E} [Q_{k-1}|\mathcal{F}_{k-2}] \leq \cdots \leq Q_0 = 1\end{equation} +$$ + +考虑到 $1 \geq \mathbb{P}(A)$,我们有: +$$ +\begin{equation}1 \geq \mathbb{E} [Q_k|\mathcal{F}_{k-1}] \geq \exp \left(\theta \frac{t}{K} - g(\theta) \frac{v}{K^2}\right) \mathbb{P}(A), k \in A\end{equation} +$$ + +因此: +$$ +\begin{equation} +\begin{align*} +\mathbb{P}(A) \leq \exp \left(g(\theta) \frac{v}{K^2} -\theta \frac{t}{K} \right) +\end{align*} +\end{equation} +$$ + +由于上述不等式对任何 $\theta \gt 0$ 都成立,我们可以写为: +$$ +\begin{equation}P(A) \leq \inf_{\theta \gt 0} \exp \left(g(\theta) \frac{v}{K^2} - \theta \frac{t}{K} \right)\end{equation} +$$ +检查不等式右边的一阶导数,我们知道该下确界在 $\theta = \log (1+Kt/v)$ 处取得。 + +对于指数内部的表达式,我们进行如下变换: +$$ +\begin{equation} +\begin{align*} +\theta \frac{t}{K} - g(\theta)\frac{v}{K^2} &= \log \left(1 + \frac{Kt}{v}\right) \frac{t}{K} - \frac{v}{K^2} \left(\frac{Kt}{v} - \log \left(1 + \frac{Kt}{v}\right) \right) \\ +&=\frac{v}{K^2} \left( \left(1+\frac{Kt}{v} \right) \log \left(1 + \frac{Kt}{v}\right) - \frac{Kt}{v} \right) \\ +&= \frac{v}{K^2} h\left( \frac{Kt}{v} \right) +\end{align*} +\end{equation} +$$ +其中 $h(u) = (1+u)\log(1+u) - u$。 + +通过对表达式求二阶导数的方法,我们也可以证明: +$$ +\begin{equation} +h(u) \geq \frac{u^2}{2(1 + u/3)},\quad u \geq 0 +\end{equation} +$$ + +综上所述,我们有: +$$ +\begin{equation} +P(A) \leq \exp \left( -\frac{v}{K^2} h \left( \frac{Kt}{v} \right)\right) \leq \exp \left( - \frac{v}{K^2} \frac{K^2t^2}{2v (v+Kt/3)} \right) = \exp\left( -\frac{t^2}{2(v+Kt/3)}\right) +\end{equation} +$$ + +## 7.5 【证明补充】Epoch-GD 的收敛率 + +**150页** 引理7.2给出了Epoch-GD外层循环收敛率的泛化上界,我们对其中部分推导进行必要补充。 + +首先,(7.60)中第二个不等式的推导利用了Cauchy-Schwarz不等式(1.14),即 $\|x^Ty\|\le\|x\|\|y\|$。这里,我们令 $x=\underbrace{[1,\cdots,1]}_{T}$,$y=\underbrace{[\|\omega_1-w^*\|,\cdots,\|\omega_T-w^*\|]}_{T}$,则有: +$$ +\begin{equation} +|x^Ty|=\sum_{t=1}^T\|\omega_t-w^*\|\le \sqrt{T}\sqrt{\sum_{t=1}^T\|\omega_t-w^*\|^2}=|x\|y| +\end{equation} +$$ + +其次,(7.62)中最后两个不等式的推导利用了一些常见的缩放技巧,我们在这里给出完整形式: +$$ +\begin{equation} +\begin{align*} +&\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge 2\sqrt{4l^2A_T\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau+\frac{4l^2}{\lambda},V_T^2\le4l^2A_T,A_T\in\left(\frac{4l^2}{\lambda^2T}2^{i-1},\frac{4l^2}{\lambda^2T}2^i\right)\right) \\ +\le &\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge 2\sqrt{4l^2A_T\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau,V_T^2\le4l^2A_T,A_T\in\left(\frac{4l^2}{\lambda^2T}2^{i-1},\frac{4l^2}{\lambda^2T}2^i\right)\right) \\ +\le &\sum_{i=1}^m P\left(\sum_{t=1}^T \delta_t \ge \sqrt{2\frac{16l^42^i}{\lambda^2T}\tau}+\frac{2}{3}\frac{4l^2}{\lambda}\tau,V_T^2\le\frac{16l^42^i}{\lambda^2T}\right) \\ +\le &\sum_{i=1}^m P\left(\max_{j=1,\cdots,T}\underbrace{\sum_{t=1}^j \delta_t}_{S_j} \ge \sqrt{2\underbrace{\frac{16l^42^i}{\lambda^2T}}_{\nu}\tau}+\frac{2}{3}\underbrace{\frac{4l^2}{\lambda}}_{K}\tau,V_T^2\le\underbrace{\frac{16l^42^i}{\lambda^2T}}_{\nu}\right) \\ +\le &\sum_{i=1}^m e^{-\tau} \\ += &me^{-\tau} +\end{align*} +\end{equation} +$$ + +这里,第一个不等式利用了 $\frac{4l^2}{\lambda} \gt 0$ 的事实对 $\sum_{t=1}^T \delta_t$ 的范围进行概率缩放; +第二个不等式利用了 $A_T$ 的下界和上界分别对 $\sum_{t=1}^T \delta_t$ 和 $V_T^2$ 的范围进行概率缩放; +第三个不等式利用了 $\max_{j=1,\cdots,T}\sum_{t=1}^j \delta_t$ 比 $\sum_{t=1}^T \delta_t$ 更为宽松的事实对 $V_T^2$ 进行概率缩放; +第四个不等式利用了定理7.6的结论。 + +最后,(7.64)中第二个不等式的推导利用了开口向下的二次函数 $f(x)=ax^2+bx+c,a\lt0$ 拥有最大值点 $x_0=-\frac{b}{2a}$ 的事实。我们令 $x=\sqrt{A_T}$,然后取 $a=-\frac{\lambda}{2},b=2\sqrt{4l^2\ln\frac{m}{\delta}},c=0$,则易知 $f(x)$ 的最大值为 $\frac{8l^2}{\lambda}\ln\frac{m}{\delta}$,于是得到了(7.64)中的结论。 + +进一步地,**152页**引理7.3利用数学归纳法给出了特定步长和迭代次数下Epoch-GD外层循环收敛率的泛化上界,这为**154页**定理7.7中Epoch-GD的收敛率奠定了基础。我们对后者的部分推导进行必要补充。 + +首先,观察(7.75)可以发现,Epoch-GD外层的迭代次数 $k$ 需要满足 $\frac{\alpha}{2}(2^k-1) \le T$,即 $k=\lfloor \log_2(\frac{2T}{\alpha}+1)\rfloor$,因此构造了(7.66)中的 $k^{\dagger}$。 + +其次,(7.77)的推导利用了函数 $f(x)=(1-\frac{1}{x})^x$ 在 $x=\frac{k^{\dagger}}{\delta}\gt1$ 时单调递增的事实,以下是更严格的证明。 + +对函数 $f(x)$ 两边取对数,得到: +$$ +\begin{equation} +\ln f(x)=x\ln(1-\frac{1}{x}) +\end{equation} +$$ +接着对两边分别求导,可得: +$$ +\begin{equation} +\frac{f'(x)}{f(x)}=\ln(1-\frac{1}{x})+\frac{1}{x-1} +\end{equation} +$$ +易知当 $x\gt1$ 时,$f(x)\gt0$,因此我们只需要关注等式右边在 $x\gt1$ 时的符号。 +令 $g(x)=\ln(1-\frac{1}{x})+\frac{1}{x-1}$,则有: +$$ +\begin{equation} +g'(x)=\frac{1}{x(x-1)^2} +\end{equation} +$$ +易知当 $x\gt1$ 时,$g'(x)\lt0$,因此: +$$ +\begin{equation} +g(x)\gt\lim_{x\rightarrow+\infty}g(x)=\lim_{x\rightarrow+\infty}\ln(1-\frac{1}{x})+\lim_{x\rightarrow+\infty}\frac{1}{x-1}=0 +\end{equation} +$$ +综上,当 $x\gt1$ 时,$\frac{f'(x)}{f(x)}=g(x)\gt0$,即 $f'(x)\gt0$,因此 $f(x)$ 在 $x\gt1$ 时单调递增。 + + +# 第8章:遗憾界 + +*编辑:赵志民,詹好* + +--- + +## 本章前言 + +本章的内容围绕学习理论中的遗憾(regret)概念展开(有的教材里也翻译为“悔”)。通常,我们使用超额风险(excess risk)来评估批量学习的分类器性能,而用遗憾来评估在线学习的分类器性能。二者的不同在于,前者衡量的是整个学习过程结束后所得到的分类器性能,可以理解为学习算法**最终输出的模型**与假设空间内**最优模型**的风险之差;而后者衡量的是算法运行过程中,所产生的**模型**与假设空间内**最优模型**的损失之差的**和**。 + +## 8.1 【概念解释】超额风险与遗憾的区别 + +8.1介绍了遗憾这一评估指标的基本概念,我们在此基础上梳理一下其与超额风险这一评估指标的区别。 + +超额风险这一评估指标被定义为: +$$ +\begin{equation} +ER = \mathbb{E}_{(x,y)\sim D}[l(w_{T+1},(x,y))] - \min_{w \in W} \mathbb{E}_{(x,y)\sim D}[l(w,(x,y))] +\end{equation} +$$ +其中,$ER$ 指的是excess risk,等式右边的前半部分 $\mathbb{E}_{(x,y)\sim D}[l(w_{T+1},(x,y))]$ 指的是模型 $w_{T+1}$ 的风险,等式右边的后半部分 $\min_{w \in W} \mathbb{E}_{(x,y)\sim D}[l(w,(x,y))]$ 指的是假设空间内的最优模型的风险。值得注意的是,这里的评估是在整个数据集上进行的,也正是因为如此,我们必须要引入期望的操作。 + +而遗憾这一评估指标,被定义为: +$$ +\begin{equation} +regret = \sum^{T}_{t=1}f_t(w_t)-\min_{w\in W}\sum^{T}_{t=1}f_t(w) +\end{equation} +$$ +其中,$f_t(w_t)$ 指的是: +$$ +\begin{equation} +\sum^{T}_{t=1}l(w_t,(x_t,y_t)) - \min_{w \in W}\sum^{T}_{t=1}l(w,(x_t,y_t)) +\end{equation} +$$ +由于$w_t$的计算过程与样本$(x_t,y_t)$ 无关,而是与$(x_1,y_1),...,(x_{t-1},y_{t-1})$ 有关,因此可以直接使用 $l(w,(x_t,y_t))$ 来衡量性能。 + +由此,我们可以总结出二者之间的两个主要区别:首先,超额风险引入了**期望**,而遗憾没有;其次,超额风险是在所有数据上进行的一次性计算,而遗憾是对多次损失的一个**求和**。同时,由于在线学习不依赖于任何分布假设,因此适用于非独立同分布样本或固定分布的情形。 + +## 8.2 【案例分享】Maler 算法 + +在8.2.3节的**170页**末尾,作者提到了Maler算法(multiple sub-algorithms and learning rates)(详细证明参考:[Adaptivity and Optimality: A Universal Algorithm for Online Convex Optimization](http://proceedings.mlr.press/v115/wang20e.html)),这是一个能够自适应选择最优专家的在线学习算法,并在不同类型的损失函数上实现最优的遗憾界限: +- **一般凸函数**:$R(T) \leq O\sqrt{T})$ +- **指数凹函数**:$R(T) \leq O(d\log T)$ +- **强凸函数**:$R(T) \leq O(\log T)$ +这里$T$表示时间总步数,$d$表示特征空间的维度。 + +下面,我们简要补充Maler算法的原理和实现。 + +### 假设和定义 + +1. **假设 1(梯度有界性)**:所有损失函数 $f_t(x)$ 的梯度被 $G$ 所有界: + $$ + \begin{equation} + \forall t \gt 0, \quad \max_{x \in D} \|\nabla f_t(x)\| \leq G + \end{equation} + $$ + +2. **假设 2(行动集的直径有界性)**:行动集 $D$ 的直径被 $D$ 所有界: + $$ + \begin{equation} + \max_{x_1, x_2 \in D} \|x_1 - x_2\| \leq D + \end{equation} + $$ + +3. **定义 1(凸函数)**:函数 $f : D \rightarrow \mathbb{R}$ 是凸的,如果: + $$ + \begin{equation} + f(x_1) \geq f(x_2) + \nabla f(x_2)^\top (x_1 - x_2), \quad \forall x_1, x_2 \in D + \end{equation} + $$ + +4. **定义 2(强凸函数)**:函数 $f : D \rightarrow \mathbb{R}$ 是 $\lambda$-强凸的,如果: + $$ + \begin{equation} + f(x_1) \geq f(x_2) + \nabla f(x_2)^\top (x_1 - x_2) + \frac{\lambda}{2} \|x_1 - x_2\|^2, \quad \forall x_1, x_2 \in D + \end{equation} + $$ + +5. **定义 3(指数凹函数)**:函数 $f : D \rightarrow \mathbb{R}$ 是 $\alpha$-指数凹的(简称 $\alpha$-exp-concave),如果: + $$ + \begin{equation} + \exp(-\alpha f(x)) \text{是凹的} + \end{equation} + $$ + +### 元算法(Maler) + +**输入**:学习率 $\eta^c, \eta_1, \eta_2, \dots$,专家的先验权重 $\pi_1^c, \pi_1^{\eta_1,s}, \pi_1^{\eta_2,s} \dots$,以及 $\pi_1^{\eta_1,l}, \pi_1^{\eta_2,l}, \dots$。 + +1. **对于每个回合 $t = 1, \dots, T$:** + - 从凸专家算法(专家 1)获取预测 $x^c_t$,从指数凹专家算法(专家 2)和强凸专家算法(专家 3)分别获取 $x^{\eta, l}_t$ 和 $x^{\eta, s}_t$。 + - 执行: + $$ + \begin{equation} + x_t = \frac{\pi^c_t \eta^c x^c_t + \sum_{\eta} (\pi^{\eta,s}_t \eta x^{\eta,s}_t + \pi^{\eta,l}_t \eta x^{\eta,l}_t)}{\pi^c_t \eta^c + \sum_{\eta} (\pi^{\eta,s}_t \eta + \pi^{\eta,l}_t \eta)} + \end{equation} + $$ + - 观察梯度 $g_t$ 并发送给所有专家算法。 + - 对所有的 $\eta$ 更新权重: + $$ + \begin{equation} + \pi^c_{t+1} = \frac{\pi^c_t e^{-c_t(x^c_t)}}{\Phi_t}, \quad \pi^{\eta,s}_{t+1} = \frac{\pi^{\eta,s}_t e^{-s^{\eta}_t(x^{\eta,s}_t)}}{\Phi_t}, \quad \pi^{\eta,l}_{t+1} = \frac{\pi^{\eta,l}_t e^{-l^{\eta}_t(x^{\eta,l}_t)}}{\Phi_t} + \end{equation} + $$ + + 其中: + $$ + \begin{equation} + \Phi_t = \sum_{\eta} (\pi^{\eta,s}_t e^{-s^{\eta}_t(x^{\eta,s}_t)} + \pi^{\eta,l}_t e^{-l^{\eta}_t(x^{\eta,l}_t)} ) + \pi^c_t e^{-c_t(x^c_t)} + \end{equation} + $$ + +### 凸专家算法(专家 1) + +1. $x^c_1 = 0$ +2. **对于每个回合 $t = 1, \dots, T$:** + - 将 $x^c_t$ 发送给元算法 + - 从元算法接收梯度 $g_t$ + - 更新: + $$ + \begin{equation} + x^c_{t+1} = \Pi^{I_d}_D (x^c_t - \frac{D}{\eta^c G \sqrt{t}} \nabla c_t(x^c_t)) + \end{equation} + $$ + 其中 $\nabla c_t(x^c_t) = \eta^c g_t$ + +### 指数凹专家算法(专家 2) + +1. **输入**:学习率 $\eta$ +2. $x^{\eta,l}_1 = 0, \beta = \frac{1}{2} \min\{\frac{1}{4G^l D}, 1\}, G^l = \frac{7}{25D}, \Sigma_1 = \frac{1}{\beta^2 D^2}I_d$ +3. **对于每个回合 $t = 1, \dots, T$:** + - 将 $x^{\eta,l}_t$ 发送给元算法 + - 从元算法接收梯度 $g_t$ + - 更新: + $$ + \begin{equation} + \begin{align*} + \Sigma_{t+1} &= \Sigma_t + \nabla l^{\eta}_t(x^{\eta,l}_t) \nabla l^{\eta}_t(x^{\eta,l}_t)^\top \\ + x^{\eta,l}_{t+1} &= \Pi^{\Sigma_{t+1}}_D (x^{\eta,l}_t - \frac{1}{\beta} \Sigma_{t+1}^{-1} \nabla l^{\eta}_t(x^{\eta,l}_t)) \\ + \end{align*} + \end{equation} + $$ + 其中 $\nabla l^{\eta}_t(x^{\eta,l}_t) = \eta g_t + 2 \eta^2 g_t g_t^\top (x^{\eta,l}_t - x_t)$ + +### 强凸专家算法(专家 3) + +1. **输入**:学习率 $\eta$ +2. $x^{\eta,s}_1 = 0$ +3. **对于每个回合 $t = 1, \dots, T$:** + - 将 $x^{\eta,s}_t$ 发送给元算法 + - 从元算法接收梯度 $g_t$ + - 更新: + $$ + \begin{equation} + x^{\eta,s}_{t+1} = \Pi^{I_d}_D (x^{\eta,s}_t - \frac{1}{2\eta^2 G^2 t} \nabla s^{\eta}_t(x^{\eta,s}_t)) + \end{equation} + $$ + 其中 $\nabla s^{\eta}_t(x^{\eta,s}_t) = \eta g_t + 2 \eta^2 G^2 (x^{\eta,s}_t - x_t)$ + + + +## 8.3 【证明补充】随机多臂赌博机的遗憾界 + +**172页**中定理8.3给出了随机多臂赌博机的遗憾界,我们在此基础上对公式(8.42)至(8.47)证明过程进行补充。 + +首先,(8.42)给出当$\overline{\mu}_*(p)+\sqrt{\frac{2\ln t}{p}}\le\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}}$成立时,必然有三种可能情况中的一种成立。但这三种情况并不是互斥的,因此显得不直观,这里将第二种情况做了细微调整,即: +$$ +\begin{equation} +\overline{\mu}_*(p)+\sqrt{\frac{2\ln t}{p}}\le\mu_*,\mu_*\le\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}},\overline{\mu}_i(q)+\sqrt{\frac{2\ln t}{q}}\le\overline{\mu}_i(p) +\end{equation} +$$ +此时,构造(8.44)和(8.45)的逻辑更加顺畅。我们令$l=\lceil(2\ln T)/\Delta_i^2\rceil$,则(8.45)转化为: +$$ +\begin{equation} +P(\mu_*\le\mu_i+\sqrt{\frac{2\ln t}{q}})=0,q\ge l +\end{equation} +$$ +代入(8.44),可得: +$$ +\begin{equation} +\begin{align*} +\mathbb{E}[n_i^T]&\le\lceil\frac{2\ln T}{\Delta_i^2}\rceil+2\sum_{t=1}^{T-1}\sum_{p=1}^{t-1}\sum_{q=l}^{t-1}t^{-4} \\ +&\le\frac{2\ln T}{\Delta_i^2}+1+2\sum_{t=1}^{T-1}\sum_{p=1}^{t}\sum_{q=1}^{t}t^{-4} \\ +&\le\frac{2\ln T}{\Delta_i^2}+1+2\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2} +\end{align*} +\end{equation} +$$ +根据$p$-级数判别法,当$p=2\gt1$时,级数收敛,因此$\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}$是有界的。至于该级数的具体值,对定理的结论没有影响,因此我们可以将其视为一个常数,然后带入后续推导中。为了证明的完整性,我们对此进行简要说明。 + +$\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}$的取值在数学界被称为Basel问题,推导过程涉及诸多前置定理,感兴趣的读者可以查看这个讲义:[The Basel Problem - Numerous Proofs](https://www.math.cmu.edu/~bwsulliv/basel-problem.pdf)。此处提供另一种在微积分变换中常见的缩放方法: +$$ +\begin{equation} +\begin{align*} +\sum_{t=1}^{T-1}t^{-2}&\le1+\int_{1}^{T-1}\frac{1}{x^2}dx \\ +&=1+(-\frac{1}{x})|_1^{T-1} \\ +&=2-\frac{1}{T} +\end{align*} +\end{equation} +$$ +对不等式两边同时取极限,可得: +$$ +\begin{equation} +\lim_{T\rightarrow+\infty}\sum_{t=1}^{T-1}t^{-2}\le2 +\end{equation} +$$ +代入(8.46),同样可得类似(8.47)的结论。 + +这里继续沿用书中给出的$\lim_{T\rightarrow+\infty}\sum_{t=1}^{T}t^{-2}=\frac{\pi^2}{6}$,代入(8.46)得到遗憾界(8.47): +$$ +\begin{equation} +\mathbb{E}[regret]\le\sum_{i=1}^{K}\frac{2\ln T}{\Delta_i^2}+O(1) +\end{equation} +$$ + +此时(8.46)变为: +$$ +\begin{equation} +\mathbb{E}[n_i^T]\le\sum_{i\neq*}^K\frac{2\ln T}{\Delta_i}+(1+\frac{\pi^2}{3}){\Delta_i}=O(K\log T) +\end{equation} +$$ +观察(8.47)可知,求和公式中的每一项符合对钩函数的构造,即: +$$ +\begin{equation} +f(x)=Ax+\frac{B}{x},x\gt0,A\gt0,B\gt0 +\end{equation} +$$ +这里$x=\Delta_i,A=1+\frac{\pi^2}{3},B=2\ln T$,因此无论$\Delta_i$过大或过小时,都会导致遗憾界的上界变大。另外,遗憾界跟摇臂的个数$K$呈线性关系,当$K$越大时,遗憾界也越大。 + + + +## 8.4 【概念解释】线性赌博机 + +**176页**的8.3.2节介绍了线性赌博机的概念,我们在此基础上对参数估计部分进行补充。 + +为了估计线性赌博机的参数,我们将原问题转化为岭回归问题,即(8.52): +$$ +\begin{equation} +f(w)=(Y-w^T X)^T(Y-w^T X)+\lambda w^T w +\end{equation} +$$ +为了求得最优解$w^*$,我们令$f'(w)=0$,可推导出(8.53): +$$ +\begin{equation} +\begin{align*} +\frac{\partial f(w)}{\partial w} = -2X^T(Y-w^T X)+2\lambda w &= 0 \\ +\rightarrow X^TY &= (X^TX + \lambda I)w \\ +\rightarrow w^* &= (X^TX + \lambda I)^{-1}X^TY +\end{align*} +\end{equation} +$$ +相比于每次传入新数据$(x_t,y_t)$时从头计算$w_t$,这里巧妙地利用了 Sherman-Morrison-Woodbury 公式将任何形如$(A+uv^T)^{-1}$的矩阵逆转化为可逆矩阵$A$和列向量$u,v$之间的运算,在$O(d^2)$的时间复杂度内完成参数的更新。 + + + +## 8.5 【证明补充】Sherman-Morrison-Woodbury (或 Woodbury) 公式 + +**177页**的 Sherman-Morrison-Woodbury 公式变种是矩阵求逆中的一个重要工具,它可以通过已知矩阵的逆来快速计算被低秩修正的矩阵的逆。 + +该公式如下所示: +$$ +\begin{equation} +(A + UCV)^{-1} = A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U)^{-1} VA^{-1} +\end{equation} +$$ + +其中,A 是一个 $n \times n$ 的矩阵,C 是 $k \times k$ 的矩阵,U 和 V 是 $n \times k$ 的矩阵,(8.54)中$C$为单位矩阵。 + +### 证明 + +该公式可以通过验证 $A + UCV$ 与其假设的逆(公式右侧)的乘积是否为单位矩阵来证明。我们对以下乘积进行计算: + +$$ +\begin{equation} +(A + UCV) [ A^{-1} - A^{-1}U (C^{-1} + VA^{-1}U )^{-1} VA^{-1} ] +\end{equation} +$$ + +逐步推导如下: +$$ +\begin{equation} +\begin{align*} +=& \{ I + UCVA^{-1} \} - \{ U (C^{-1} + VA^{-1}U )^{-1}VA^{-1} + UCVA^{-1}U (C^{-1} + VA^{-1}U )^{-1} VA^{-1} \} \\ +=& I + UCVA^{-1} - (U + UCVA^{-1}U ) (C^{-1} + VA^{-1}U )^{-1}VA^{-1} \\ +=& I + UCVA^{-1} - UC (C^{-1} + VA^{-1}U) (C^{-1} + VA^{-1}U)^{-1}VA^{-1} \\ +=& I + UCVA^{-1} - UCVA^{-1} \\ +=& I +\end{align*} +\end{equation} +$$ + + + +## 8.6 【证明补充】单样本的近似梯度 + +**第181页**的引理8.2给出了单样本条件下的梯度近似公式,本节将提供该引理的完整证明过程。 + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\delta}{d}\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +$$ + +其中: +- $d$ 为空间的维数; +- $\delta$ 为任意正数; +- $\mathbb{B}$ 为单位球的空间,即 $\mathbb{B} = \{v \in \mathbb{R}^d \mid \|v\| \leq 1\}$; +- $\mathbb{S}$ 为单位球的表面,即 $\mathbb{S} = \{u \in \mathbb{R}^d \mid \|u\| = 1\}$。 + +### 证明 + +为了证明上述等式,我们将分三个步骤进行推导。 + +#### 1. 表达左边的期望 + +首先,考虑左边的期望: + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\mathbb{S})} \int_{\mathbb{S}} f(x + \delta u) u \, dS(u) +\end{equation} +$$ + +其中,$\text{Vol}_{d-1}(\mathbb{S})$ 表示 $(d-1)$ 维单位球面的体积,$dS(u)$ 为球面上的微分面积元素。 + +进行变量替换,令 $w = \delta u$。此时: +- 当 $u \in \mathbb{S}$ 时,$w \in \delta \mathbb{S}$; +- 球面上的微分面积元素变化为 $dS(u) = \frac{dS(w)}{\delta^{d-1}}$,因为每个维度按 $\delta$ 缩放,$(d-1)$ 维体积按 $\delta^{d-1}$ 缩放。 + +将变量替换代入期望的表达式: + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\mathbb{S})} \int_{\mathbb{S}} f(x + \delta u) u \, dS(u) = \frac{1}{\text{Vol}_{d-1}(\mathbb{S}) \cdot \delta^{d-1}} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\delta} \, dS(w) +\end{equation} +$$ + +简化后得到: + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{1}{\text{Vol}_{d-1}(\delta \mathbb{S})} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\|w\|} \, dS(w) +\end{equation} +$$ + +#### 2. 表达右边的期望及其梯度 + +接下来,考虑右边的期望: + +$$ +\begin{equation} +\mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\mathbb{B})} \int_{\mathbb{B}} f(x + \delta v) \, dv +\end{equation} +$$ + +其中,$\text{Vol}_d(\mathbb{B})$ 表示 $d$ 维单位球的体积,$dv$ 为体积上的微分元素。 + +同样进行变量替换,令 $w = \delta v$。则: +- 当 $v \in \mathbb{B}$ 时,$w \in \delta \mathbb{B}$; +- 微分体积元素变化为 $dv = \frac{dw}{\delta^d}$,因为每个维度按 $\delta$ 缩放,体积按 $\delta^d$ 缩放。 + +代入后得到: + +$$ +\begin{equation} +\mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\mathbb{B}) \cdot \delta^d} \int_{\delta \mathbb{B}} f(x + w) \, dw = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} f(x + w) \, dw +\end{equation} +$$ + +为了计算 $\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)]$,令: + +$$ +\begin{equation} +F(x) = \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} f(x + w) \, dw +\end{equation} +$$ + +梯度作用在积分上,由于 $x$ 和 $w$ 是独立变量,可以将梯度算子移入积分内部: + +$$ +\begin{equation} +\nabla F(x) = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{B}} \nabla_x f(x + w) \, dw +\end{equation} +$$ + +注意到: + +$$ +\begin{equation} +\nabla_x f(x + w) = \nabla_w f(x + w) +\end{equation} +$$ + +这是因为 $x$ 和 $w$ 的关系是通过相加连接的,故梯度对 $x$ 的作用等同于对 $w$ 的作用。 + +根据散度定理,有: + +$$ +\begin{equation} +\int_{\delta \mathbb{B}} \nabla_w f(x + w) \, dw = \int_{\delta \mathbb{S}} f(x + w) n(w) \, dS(w) +\end{equation} +$$ + +其中,$\delta \mathbb{S}$ 是半径为 $\delta$ 的球面,$n(w)$ 为点 $w$ 处的单位外法向量。因此: + +$$ +\begin{equation} +\nabla F(x) = \frac{1}{\text{Vol}_d(\delta \mathbb{B})} \int_{\delta \mathbb{S}} f(x + w) \frac{w}{\|w\|} \, dS(w) +\end{equation} +$$ + +#### 3. 关联两边的表达式 + +将步骤 1 和步骤 2 的结果进行对比,可以得到: + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\text{Vol}_d(\delta \mathbb{B})}{\text{Vol}_{d-1}(\delta \mathbb{S})} \nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +$$ + +为了确定系数,我们需要利用 $d$ 维球的体积与表面积之间的关系。 + +$d$ 维球的体积与半径 $\delta$ 的关系为: + +$$ +\begin{equation} +\text{Vol}_d(\delta \mathbb{B}) = \delta^d \cdot \text{Vol}_d(\mathbb{B}) +\end{equation} +$$ + +而球面的表面积与半径 $\delta$ 的关系为: + +$$ +\begin{equation} +\text{Vol}_{d-1}(\delta \mathbb{S}) = \delta^{d-1} \cdot \text{Vol}_{d-1}(\mathbb{S}) +\end{equation} +$$ + +结合这两个关系,可以得到: + +$$ +\begin{equation} +\text{Vol}_d(\delta \mathbb{B}) = \int_0^{\delta} \text{Vol}_{d-1}(\mathbb{rS}) \, dr = \int_0^{\delta} \text{Vol}_{d-1}(\mathbb{S}) \, r^{d-1} \, dr = \frac{\text{Vol}_{d-1}(\mathbb{S}) \cdot \delta^{d}}{d} = \frac{\delta}{d} \cdot \text{Vol}_{d-1}(\delta \mathbb{S}) +\end{equation} +$$ + +带入上述等式中,得证: + +$$ +\begin{equation} +\mathbb{E}_{u \in \mathbb{S}}[f(x+\delta u)u] = \frac{\delta}{d}\nabla \mathbb{E}_{v \in \mathbb{B}}[f(x + \delta v)] +\end{equation} +$$ + + + +## 8.7 【证明补充】凸赌博机的在线梯度下降 + + +**182页**中引理8.3给出了凸赌博机的随机版本在线梯度下降,我们在此给出完整的证明过程。 + +设 $f_1, f_2, \dots, f_T: W \to \mathbb{R}$ 为一列凸且可微的函数,$\omega_1, \omega_2, \dots, \omega_T \in W$ 的定义满足 $\omega_1$ 为任意选取的点,且 $\omega_{t+1} = \Pi_W(\omega_t − \eta g_t)$,其中 $\eta \gt 0$,且 $g_1, \dots, g_T$ 是满足 $\mathbb{E}[g_t|\omega_t] = \nabla f_t(\omega_t)$ 的随机向量变量,且 $\|g_t\| \leq l$,其中 $l \gt 0$。则当 $\eta = \frac{\Lambda}{l\sqrt{T}}$ 时,有: + +$$ +\begin{equation} +\sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t)] - \min_{\omega \in W} \sum_{t=1}^{T} f_t(\omega) \le l\Lambda \sqrt{T} +\end{equation} +$$ + +**证明:** +设 $\omega^\star$ 为在 $W$ 中使 $\sum_{t=1}^{T} f_t(\omega)$ 最小化的点。由于 $f_t$ 是凸且可微的,我们可以使用梯度界定 $f_t(\omega_t)$ 和 $f_t(\omega^\star)$ 之间的差异: + +$$ +\begin{equation} +f_t(\omega^\star) - f_t(\omega_t) \ge \nabla f_t(\omega_t)^\top (\omega^\star − \omega_t) = \mathbb{E}[g_t|\omega_t]^\top (\omega^\star − \omega_t) +\end{equation} +$$ + +对该不等式取期望,得到: + +$$ +\begin{equation} +\mathbb{E}[f_t(\omega_t) − f_t(\omega^\star)] \leq \mathbb{E}[g_t^\top (\omega_t − \omega^\star)] +\end{equation} +$$ + +我们使用 $\|\omega_t − \omega^\star\|^2$ 作为潜在函数。注意到 $\|\Pi_W(\omega) − \omega^\star\| \leq \|\omega − \omega^\star\|$,因此: + +$$ +\begin{equation} +\begin{align*} +\|\omega_{t+1} − \omega^\star\|^2 &= \|\Pi_W(\omega_t − \eta g_t) − \omega^\star\|^2 \\ +&\leq \|\omega_t − \eta g_t − \omega^\star\|^2 \\ +&= \|\omega_t − \omega^\star\|^2 + \eta^2 \|g_t\|^2 − 2\eta (\omega_t − \omega^\star)^\top g_t \\ +&\leq \|\omega_t − \omega^\star\|^2 + \eta^2 l^2 − 2\eta (\omega_t − \omega^\star)^\top g_t +\end{align*} +\end{equation} +$$ + +整理后得到: + +$$ +\begin{equation} +g_t^\top (\omega_t − \omega^\star) \leq \frac{\|\omega_t − \omega^\star\|^2 − \|\omega_{t+1} − \omega^\star\|^2 + \eta^2 l^2}{2\eta} +\end{equation} +$$ + +因此,我们有: + +$$ +\begin{equation} +\begin{align*} +\sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t)] − \sum_{t=1}^{T} f_t(\omega^\star) &= \sum_{t=1}^{T} \mathbb{E}[f_t(\omega_t) − f_t(\omega^\star)] \\ +&\leq \sum_{t=1}^{T} \mathbb{E}[g_t^\top (\omega_t − \omega^\star)] \\ +&\leq \sum_{t=1}^{T} \mathbb{E} \left[\frac{\|\omega_t − \omega^\star\|^2 − \|\omega_{t+1} − \omega^\star\|^2 + \eta^2 l^2}{2\eta}\right] \\ +&= \frac{\mathbb{E}[\|\omega_1 − \omega^\star\|^2] - \mathbb{E}[\|\omega_{T+1} − \omega^\star\|^2]}{2\eta} + \frac{T \eta l^2}{2} \\ +&\le \frac{\mathbb{E}[\|\omega_1 − \omega^\star\|^2]}{2\eta} + \frac{T \eta l^2}{2} \\ +&\le \frac{\Lambda^2}{2\eta} + \frac{T \eta l^2}{2} +\end{align*} +\end{equation} +$$ + +代入 $\eta = \frac{\Lambda}{l\sqrt{T}}$ 可得最终结果。 + + + +## 8.8 【证明补充】凸赌博机的缩减投影误差 + +**182页**中引理8.4给出了凸赌博机的缩减投影误差,我们在此给出完整的证明过程。 + +设 $f_1, f_2, \dots, f_T: W \to \mathbb{R}$ 为一列凸且可微的函数且 $\forall \omega \in W,i \in [T]$ 满足 $|f_i(\omega)| \le c$,有: + +$$ +\begin{equation} +\min_{\omega \in (1−\alpha)W} \sum_{t=1}^T f_t(\omega) - \min_{\omega \in W} \sum_{t=1}^T f_t(\omega) \leq 2\alpha cT +\end{equation} +$$ + +### 证明 + +显然,$(1−\alpha)W \subseteq W$。因此,有: + +$$ +\begin{equation} +\min_{\omega \in (1−\alpha)W} \sum_{t=1}^T f_t(\omega) = \min_{\omega \in W} \sum_{t=1}^T f_t((1−\alpha)\omega) +\end{equation} +$$ + +由于每个$f_t$是凸函数,且$0 \in W$,则我们有: + +$$ +\begin{equation} +\begin{align*} +\min_{\omega \in W} \sum_{t=1}^T f_t((1−\alpha)\omega) &\leq \min_{\omega \in W} \sum_{t=1}^T \alpha f_t(0) + (1−\alpha) f_t(\omega) \\ +&= \min_{\omega \in W} \sum_{t=1}^T \alpha (f_t(0) − f_t(\omega)) + f_t(\omega) +\end{align*} +\end{equation} +$$ + +最后,由于对于任意$\omega \in W$和$t \in \{1, \dots, T\}$,我们有$|f_t(\omega)| \leq c$,因此可以得出: + +$$ +\begin{equation} +\begin{align*} +\sum_{t=1}^{T} \min_{\omega \in W} \alpha (f_t(0) − f_t(\omega)) + f_t(\omega) &\leq \min_{\omega \in W}\sum_{t=1}^{T} 2\alpha c + f_t(\omega) \\ +&= 2\alpha cT + \min_{\omega \in W} \sum_{t=1}^{T} f_t(\omega) +\end{align*} +\end{equation} +$$ + +进行适当移项即可得原不等式。 + + + +## 8.9 【证明补充】凸赌博机的遗憾界 + +**182页**中定理8.5给出了凸赌博机的遗憾界,在证明开始时,作者对$\eta,\alpha,\delta$的取值进行了限定。我们可以发现这些取值不是很直观,证明给出的解释也较为分散,部分取值与证明略有出入,因此我们在此进行补充。 + +对于步长$\eta$,在缩放(8.87)中 $\mathbb{E}[\sum_{t=1}^T\hat f_t(z_t)]-\min_{w\in(1-\alpha)\mathcal{W}}\sum_{t=1}^T\hat f_t(w)$ 时,为使用引理8.3创造条件,因此采用步长$\eta=\frac{\Lambda}{l'\sqrt{T}}$。根据(8.89)的推导,我们可令$\Lambda=\Lambda_2$且$l'=\frac{dc}{\delta}$,此时,将$\eta=\frac{\Lambda_2}{(dc/\delta)\sqrt T}$带入到更新公式(8.76)中即可得到(8.88)。 + +对于缩减系数$\alpha$与扰动系数$\delta$,可以一同考虑这两个系数的取值。观察(8.91)第一个不等式的形式,我们发现这是一个关于$\delta$的对钩函数: +$$ +\begin{equation} +f(\delta)=A\delta+\frac{B}{\delta}+C +\end{equation} +$$ +假设$\alpha$的取值与$\delta$无关,那么: +$$ +\begin{equation} +A=3lT,B=dc\Lambda_2\sqrt T,C=2\alpha cT +\end{equation} +$$ +令$f'(\delta)=0$,可得: +$$ +\begin{equation} +\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_2}{3l}} +\end{equation} +$$ +此时,$f(\delta)$的最小值为: +$$ +\begin{equation} +f(\delta^*)=O(T^{3/4}) +\end{equation} +$$ +如果我们想加速收敛,则可将$\alpha$的取值与$\delta$相关联。根据上面的结论,当迭代次数$T$足够大时,必然有$\delta\rightarrow0$。因此,不妨取$\alpha=\frac{\delta}{\Lambda_1}$,代入(8.91)中并利用对钩函数$f(\delta)$的性质,得到: +$$ +\begin{equation} +\begin{align*} +&\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_1\Lambda_2}{3(l\Lambda_1+c)}} \\ +&f(\delta^*)=O(T^{3/4}) +\end{align*} +\end{equation} +$$ +进一步地,可以发现,$\delta^*$的取值并不唯一,这是因为(8.91)的第二个不等式缩放并非必需。如果取$\delta^*=T^{-1/4}\sqrt{\frac{dc\Lambda_1\Lambda_2}{3l\Lambda_1+2c}}$,同样可以得到更紧致的遗憾界,并保证定理的结论不变。 + + +# 附录 + +*编辑:赵志民, 李一飞* + +------ + +## 范数 + +范数(norm)是数学中用于为向量空间中的每个非零向量分配严格正长度或大小的函数。几何上,范数可理解为向量的长度或大小。例如,绝对值是实数集上的一种范数。与之相对的是半范数(seminorm),它可以将非零向量赋予零长度。 + +向量空间上的半范数需满足以下条件: + +1. **半正定性(非负性)**:任何向量的范数总是非负的,对于任意向量 $v$,$\|v\| \geq 0$。 +2. **可伸缩性(齐次性)**:对于任意标量 $a$ 和任何向量 $v$,标量乘法 $av$ 的范数等于标量的绝对值乘以向量的范数,即 $\|av\| = |a|\|v\|$。 +3. **次可加性(三角不等式)**:对于任何向量 $v$ 和 $w$,向量和 $u=v+w$ 的范数小于或等于向量 $v$ 和 $w$ 的范数之和,即 $\|v+w\| \leq \|v\| + \|w\|$。 + +范数在具备上述半范数特性的基础上,还要求:对于任意向量 $v$,若 $\|v\|=0$,则 $v$ 必须为零向量。换句话说,所有范数都是半范数,但它们可以将非零向量与零向量区分开来。 + +常用的向量范数包括: + +1. **$\ell_0$ 范数**:向量 $x$ 中非零元素的个数,表示为 $\|x\|_0=\sum_{i=1}^n \mathbb{I}(x_i\neq 0)$。 +2. **$\ell_1$ 范数**:向量 $x$ 中各元素绝对值之和,表示为 $\|x\|_1=\sum_{i=1}^n |x_i|$。 +3. **$\ell_2$ 范数(欧几里得范数)**:向量 $x$ 各元素绝对值的平方和再开平方,表示为 $\|x\|_2=\sqrt{\sum_{i=1}^n x_i^2}$。 +4. **$\ell_p$ 范数**:向量 $x$ 各元素绝对值的 $p$ 次方和再开 $p$ 次方,表示为 $\|x\|_p=(\sum_{i=1}^n |x_i|^p)^{\frac{1}{p}}$。 +5. **$\ell_\infty$ 范数(极大范数)**:向量 $x$ 中各元素绝对值的最大值,表示为 $\|x\|_\infty=\max_{i=1,\cdots,n} |x_i|$。 +6. **加权范数**:设 $A$ 为 $n$ 阶 Hermite 正定矩阵,则向量 $x$ 的加权范数定义为 $\|x\|_A=\sqrt{x^T A x}$。此类范数在本书第 8.3.2 和 8.4.2 节中经常使用。 + + + +## 凸集合 + +凸集合(convex set)是向量空间(如欧几里得空间)中的一个子集,对于集合中的任意两点,连接它们的线段完全位于该集合内。换句话说,若一个集合包含了连接集合内任意两点的线段上的所有点,则该集合是凸集合。 + +形式化地说,考虑向量空间 $\mathcal{V}$。若对于该空间中的任意两点 $x$ 和 $y$,以及满足 $\alpha\in[0,1]$ 的任意标量 $\alpha$,点 $\alpha x+(1-\alpha)y$ 也属于 $\mathcal{D}$,那么集合 $\mathcal{D}\subseteq\mathcal{V}$ 是凸集合。 + +凸集合具有非扩张性(non-expansiveness),即对于集合内的任意两点,连接这两点的线段完全包含在集合内。这种性质使得凸集合在许多数学环境中易于处理,特别是在优化问题中:在凸集合中找到的最小值或最大值必为全局值,没有局部最小值或最大值,从而简化了搜索过程。 + +不仅凸集合具有非扩张性,映射到凸集合的投影操作也是非扩张的,即两点在凸集合上的投影之间的距离不大于两点本身之间的距离。形式上,对于闭合凸集合 $K\subseteq\mathbb{R}^D$,投影算子 $\Pi:\mathbb{R}^D\rightarrow K$ 定义为: +$$ +\begin{equation} +\Pi(x)=\arg \min_{y\in K} \| x-y\|_2 +\end{equation} +$$ +即将一个向量映射到最接近它的凸集合中的点。投影算子 $\Pi$ 在 $\ell_2$ 范数下是非扩张的,即对于任意 $x,x'\in\mathbb{R}^D$,有: +$$ +\begin{equation} +\| \Pi(x) - \Pi(x')\|_2 \leq \| x - x'\|_2 +\end{equation} +$$ + +该性质证明如下: +令 $y=\Pi(x)$,易知 $x$ 和 $K$ 分处于通过 $y$ 的超平面 $H=\{z\in\mathbb{R}^D:\langle z-y,x-y\rangle=0\}$ 的两侧。因此,对于 $K$ 中的任意 $u$,有以下不等式成立: +$$ +\begin{equation} +\langle x-y,u-y\rangle \leq 0 +\end{equation} +$$ +同理,令 $y'=\Pi(x')$,对于 $K$ 中的任意 $u'$,有以下不等式成立: +$$ +\begin{equation} +\langle x'-y',u'-y'\rangle \leq 0 +\end{equation} +$$ +此时,令 $u=y'$ 且 $u'=y$,则有: +$$ +\begin{equation} +\langle x-y,y'-y\rangle \leq 0 \\ +\langle x'-y',y-y'\rangle \leq 0 +\end{equation} +$$ +将两个不等式相加可得: +$$ +\begin{equation} +\langle (x-x')+(y'-y),y'-y\rangle \leq 0 +\end{equation} +$$ +根据 Cauchy-Schwarz 不等式,有: +$$ +\begin{equation} +\begin{align*} +&\|y-y'\|_2^2 \leq \langle x-x',y-y'\rangle \leq \|x-x'\|_2\,\|y-y'\|_2\\ +\Rightarrow &\|y-y'\|_2 \leq \|x-x'\|_2 \\ +\Rightarrow &\|\Pi(x) - \Pi(x')\|_2 \leq \|x-x'\|_2 +\end{align*} +\end{equation} +$$ + +这种投影映射经常用于凸优化中,因为它能将问题简化为凸优化问题,从而提高算法效率,并在许多情况下保证全局最优解。 + + + +## Hessian 矩阵 + +Hessian 矩阵 $H_f$ 是由函数 $f(x)$ 的二阶偏导数组成的方阵,即: +$$ +\begin{equation} +\mathbf H_f= \begin{bmatrix} + \dfrac{\partial^2 f}{\partial x_1^2} & \dfrac{\partial^2 f}{\partial x_1\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_1\,\partial x_n} \\[2.2ex] + \dfrac{\partial^2 f}{\partial x_2\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_2^2} & \cdots & \dfrac{\partial^2 f}{\partial x_2\,\partial x_n} \\[2.2ex] + \vdots & \vdots & \ddots & \vdots \\[2.2ex] + \dfrac{\partial^2 f}{\partial x_n\,\partial x_1} & \dfrac{\partial^2 f}{\partial x_n\,\partial x_2} & \cdots & \dfrac{\partial^2 f}{\partial x_n^2} +\end{bmatrix}. +\end{equation} +$$ +其中,$x=[x_1,x_2,\cdots,x_n]$。 + + +## 凸函数 + +凸函数(convex function)是定义在凸集上的实值函数,满足以下性质:对于定义域内的任意两个点 $x$ 和 $y$ 以及满足 $\alpha\in[0,1]$ 的任意标量 $\alpha$,函数图像上这两点之间的线段位于或位于函数图像上方,即: +$$ +\begin{equation} +f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha) f(y) +\end{equation} +$$ +该不等式被称为凸性条件。 + +除了上述定义,凸函数还有以下几种等价的定义方式: + +1. **一阶条件**:若一个定义在凸集上的函数 $f(x)$ 满足下述条件: +$$ +\begin{equation} +f(y) \geq f(x) + \nabla f(x)^T(y - x) +\end{equation} +$$ +其中,$\nabla f(x)$ 表示函数 $f(x)$ 在点 $x$ 处的梯度。几何上,这意味着函数的图像位于任意一点处的切线之上。 + +2. **二阶条件**:若函数 $f(x)$ 是二次可微的,则它是凸函数当且仅当其 Hessian 矩阵 $H_f$ 在其定义域内的所有点 $x$ 上都是半正定的(即矩阵的所有特征值均为非负)。 + +3. **Jensen 不等式**:若 $f(x)$ 是凸函数,则对于定义域内的任意一组点 ${x_1, x_2, \cdots, x_n}$ 和归一化的非负权重 ${w_1, w_2, \cdots, w_n}$,即 $\sum_{i=1}^n w_i=1$,有: +$$ +\begin{equation} +f(\sum_{i=1}^n w_i x_i) \leq \sum_{i=1}^n w_i f(x_i) +\end{equation} +$$ + +4. **上图集定义**:凸函数与凸集合的概念密切相关。函数 $f$ 是凸函数,当且仅当其上图集(epigraph)是一个凸集。上图集是位于函数图像上方的点的集合,定义为: +$$ +\begin{equation} +epi(f) = \{(x, y) | x \in dom(f),y \geq f(x)\} +\end{equation} +$$ +其中,$dom(f)$ 是函数 $f$ 的定义域。 + +凸函数的一些特性包括: + +1. **正比例性质**:若函数 $f(x)$ 是凸函数,则对于任意常数 $\alpha \gt 0$,函数 $\alpha f(x)$ 也是凸函数。 +2. **正移位性质**:若函数 $f(x)$ 是凸函数,则对于任意常数 $c \gt 0$,函数 $f(x) - c$ 也是凸函数。 +3. **加法性质**:若 $f(x)$ 和 $g(x)$ 均为凸函数,则它们的和 $f(x) + g(x)$ 也是凸函数。 + + + +## 凹函数 + +凹函数(concave function)的定义与凸函数相反。对于其定义域内的任意两个点 $x$ 和 $y$ 以及满足 $\alpha\in[0,1]$ 的任意标量 $\alpha$,满足以下不等式: +$$ +\begin{equation} +f(\alpha x + (1-\alpha)y) \geq \alpha f(x) + (1-\alpha) f(y) +\end{equation} +$$ +此不等式被称为凹性条件。 + +其他定义与凸函数类似,这里不再赘述。值得注意的是,若函数 $f(x)$ 为凹函数,则 $-f(x)$ 为凸函数。因此,可以将凹函数问题转化为凸函数问题,从而利用凸函数的性质来求解凹函数问题。 + + + +## 强凸函数 + +若$f(x)$为定义在凸集上的强凸函数,则对于任意$x,y \in dom(f)$,$\alpha \in [0,1]$,存在$\lambda \gt 0$,使得: +$$ +\begin{equation} +f(\alpha x + (1-\alpha)y) \leq \alpha f(x) + (1-\alpha)f(y) - \frac{\lambda}{2}\alpha(1-\alpha)\|x-y\|_2^2 +\end{equation} +$$ +此时,称 $f(x)$ 为 $\lambda$-强凸(strongly convex)函数,其中 $\lambda$ 为强凸系数。 + +强凸函数的其他等价定义包括: + +1. **Hessian 矩阵条件**:若一个两次可微的函数 $f(x)$ 的 Hessian 矩阵 $H_f$ 在凸集中的所有 $x$ 处均为正定的(即矩阵的所有特征值为正),则该函数是强凸的。 + +2. **梯度条件**:若一个可微函数 $f(x)$ 是强凸的,则存在一个常数 $m$,使得对于凸集中的任意 $x,y$,有 $\|\nabla f(x) - \nabla f(y)\|_2 \geq m \|x - y\|_2$。其中,$\nabla f(x)$ 表示 $f(x)$ 在点 $x$ 处的梯度。 + +直观上,对于强凸函数 $f(x)$,可以在任意一点处构造一个二次函数作为其下界。这一性质使得优化算法更加高效,并具有类似于 **90页** 中定理 7.2 的良好性质。 + +以下给出定理 7.2 的证明: + +根据强凸函数的定义,取 $x = w$,$y = w^*$,然后两边除以 $\alpha$,可得: +$$ +\begin{equation} +\begin{align*} +&\frac{f(\alpha w + (1-\alpha)w^*)}{\alpha} \leq f(w) + \frac{1-\alpha}{\alpha}f(w^*) - \frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \\ +\Rightarrow &\frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \leq f(w) - f(w^*) - \frac{f(w^* + (w-w^*)\alpha) - f(w^*)}{\alpha} +\end{align*} +\end{equation} +$$ +令 $\alpha \rightarrow 0^+$,则有: +$$ +\begin{equation} +\begin{align*} +&\lim_{\alpha\rightarrow 0^+}\frac{\lambda}{2}(1-\alpha)\|w-w^*\|_2^2 \leq f(w) - f(w^*) + \lim_{\alpha\rightarrow 0^+}\frac{f(w^* + (w-w^*)\alpha) - f(w^*)}{\alpha} \\ +\Rightarrow &\frac{\lambda}{2}\|w-w^*\|_2^2 \leq f(w) - f(w^*) + \nabla f(w^*)^T(w-w^*) +\end{align*} +\end{equation} +$$ +其中 $\Delta = (w-w^*)\alpha$。 + +由于 $w^*$ 为最优解,因此 $\nabla f(w^*) = 0$,则有: +$$ +\begin{equation} +f(w) - f(w^*) \geq \frac{\lambda}{2}\|w-w^*\|_2^2 +\end{equation} +$$ + + + +## 指数凹函数 + +若函数 $f(x)$ 的指数 $\exp(f(x))$ 为凹函数,则称 $f(x)$ 为指数凹(exponentially concave)函数。注意,当 $\exp(f(x))$ 是凹函数时,$f(x)$ 本身不一定是凹函数。 +若 $f(x)$ 为指数凹函数,则 $\exp(-f(x))$ 必为凸函数。因此,指数凹是一种弱于强凸但强于凸的性质。 + +指数凹函数的一些特性包括: + +1. **正比例性质**:若函数 $f(x)$ 为指数凹函数,则对于任意常数 $\alpha$,函数 $\alpha f(x)$ 也是指数凹函数。 +2. **负移位性质**:若函数 $f(x)$ 为指数凹函数,且 $c$ 为常数,则函数 $f(x) - c$ 也是指数凹函数。 + +指数凹函数提供了一种灵活且富有表现力的方式来建模各种现象。它能捕捉广泛的形状和行为。例如,在凸优化中使用指数凹函数可以加快迭代优化算法(如梯度下降或牛顿法)的收敛速度。因此,指数凹函数在处理概率模型或存在不确定性的场景中具有重要意义,特别是在限制或量化不确定性方面。 + + + +## 凸优化 + +凸优化(convex optimization)是优化理论的一个分支,研究的是在凸函数的凸集上进行优化的问题。凸优化的目标是在满足一组凸约束条件的情况下,找到凸目标函数的最小值。 + +一般形式的凸优化问题可以表示为: +$$ +\begin{equation} +\begin{align*} +&\min\ &f_0(x) \\ +&s.t.\ &f_i(x) \leq 0, &i\in[m] \\ +&\ &g_j(x) = 0, &j\in[n] +\end{align*} +\end{equation} +$$ +其中,$f_0(x)$ 是凸目标函数,$f_i(x)$ 是凸不等式约束条件,$g_j(x)$ 是仿射等式约束条件。 + +凸优化具有以下有利特性,使其成为一个被广泛研究和应用的领域: + +1. **全局最优性**:凸优化问题的一个关键性质是,任何局部最小值也是全局最小值。此性质确保凸优化算法找到的解是给定凸集中的最优解。 + +2. **高效算法**:凸优化拥有多项式时间内找到最优解的高效算法。这些算法基于凸目标函数和约束条件的凸性,能够有效解决复杂的优化问题。 + +3. **广泛应用**:凸优化在工程学、金融学、机器学习、运筹学和信号处理等领域有着广泛的应用。它被用于解决如投资组合优化、信号重构、资源分配和机器学习模型训练等问题。凸优化技术,如线性规划、二次规划和半定规划,构成了许多优化算法的基础,为高效解决复杂优化问题提供了强大工具。 + +以下证明凸函数任何局部最优解均为全局最优解的性质。 + +假设 $f(x)$ 是凸函数,$x^*$ 是 $f$ 在凸集合 $\mathcal{D}$ 中的局部最优解。由于凸集的性质,对于任意 $y$,$y-x^*$ 是一个可行方向。因此,总可以选择足够小的 $\alpha \gt 0$,使得: +$$ +\begin{equation} +f(x^*) \leq f(x^* + \alpha(y-x^*)) +\end{equation} +$$ +由 $f$ 的凸性可得: +$$ +\begin{equation} +f(x^* + \alpha(y-x^*)) = f((1-\alpha)x^* + \alpha y) \leq (1-\alpha)f(x^*) + \alpha f(y) +\end{equation} +$$ +结合以上两式,可得: +$$ +\begin{equation} +\begin{align*} +&f(x^*) \leq (1-\alpha)f(x^*) + \alpha f(y) \\ +rightarrow &f(x^*) \leq f(y) +\end{align*} +\end{equation} +$$ +由于 $y$ 是凸集合 $\mathcal{D}$ 中的任意点,故 $x^*$ 为全局最优解。对于 $f(x)$ 的全局最大解,可以通过考虑函数 $-f(x)$ 的局部最优解得到类似的结论。 + + + +## 仿射 + +仿射变换(Affine transformation),又称仿射映射,是指在几何中,对一个向量空间进行一次线性变换并加上一个平移,变换为另一个向量空间。若该线性映射被表示为矩阵 $A$,平移被表示为向量 $\vec{b}$,则仿射映射 $f$ 可表示为: +$$ +\begin{equation} +\vec{y} = f(\vec{x}) = A\vec{x} + \vec{b} +\end{equation} +$$ +其中,$A$ 被称为仿射变换矩阵或投射变换矩阵。 + +仿射变换具有以下性质: + +1. **点之间的共线性**:在同一条直线上的三个或更多的点(即共线点)在变换后依然位于同一条直线上(共线)。 +2. **直线的平行性**:两条或以上的平行直线在变换后仍保持平行。 +3. **集合的凸性**:凸集合在变换后依然是凸集合,且最初的极值点被映射到变换后的极值点集。 +4. **平行线段的长度比例恒定**:两条由点 $p_1, p_2, p_3, p_4$ 定义的平行线段,其长度比例在变换后保持不变,即 $\frac{\overrightarrow{p_1p_2}}{\overrightarrow{p_3p_4}} = \frac{\overrightarrow{f(p_1)f(p_2)}}{\overrightarrow{f(p_3)f(p_4)}}$。 +5. **质心位置恒定**:不同质量的点组成集合的质心位置在仿射变换后保持不变。 + +仿射集(affine set)是指欧氏空间 $R^n$ 中具有以下性质的点集 $S$:对于任意 $x,y\in S$,以及 $\forall \lambda\in[0,1]$,有 $(1-\lambda)x+\lambda y\in S$。容易证明,包含原点的仿射集 $S$ 是 $R^n$ 的子空间。 + +仿射包(affine hull/span)是包含集合 $S$ 的所有仿射集的交集,也是集合 $S$ 中元素通过不断连接直线所形成的所有元素的集合。仿射包是包含集合 $S$ 的最小仿射集,记为 $aff(S)$,即: +$$ +\begin{equation} +aff(S) = \{\sum_{i=1}^k \alpha_i x_i \mid k\gt0, x_i\in S, \alpha_i\in R, \sum_{i=1}^k \alpha_i = 1\} +\end{equation} +$$ +仿射包具有以下性质: + +1. $aff(aff(S)) = aff(S)$ +2. $aff(S + T) = aff(S) + aff(T)$ +3. 若 $S$ 为有限维度,则 $aff(S)$ 为闭集合。 + + + +## Slater条件/定理 + +关于强对偶性的讨论,**11页** 已给出了详细说明,此处不再赘述。这里着重讨论 **11页** 左下角附注提到的 Slater 条件,即: + +存在一点 $x\in \text{relint}(D)$,该点称为 Slater 向量,有: +$$ +\begin{equation} +\begin{align*} +f_i(x) \lt 0, &\quad i\in[m] +\end{align*} +\end{equation} +$$ +其中,$D = \bigcap_0^m \text{dom}(f_i)$,$relint(D)$ 为 $D$ 的相对内部,即其仿射包的内部所有点,即 $relint(D) = \text{int}(aff(D))$。 + +当满足 Slater 条件且原始问题为凸优化问题时: + +1. 强对偶性成立。 +2. 对偶最优解集合非空且有界。 + +这就是 Slater 定理。 + +### 证明 + +首先证明对偶间隙(Duality Gap)为零,即原始问题与对偶问题的目标函数值之差 $p^* - d^* = 0$。考虑集合 $\mathcal{V}\subset \mathbb{R}^m \times \mathbb{R}$,满足: +$$ +\begin{equation} +\mathcal{V}:=\{(u,w)\in\mathbb{R}^m \times \mathbb{R} \mid f_0(x) \le w, f_i(x) \le u_i, \forall i\in[m], \forall x\} +\end{equation} +$$ +集合 $\mathcal{V}$ 具有以下性质: + +1. 它是凸集合,可由 $f_i,\ i\in\{0\}\cup[m]$ 的凸性质得出。 +2. 若 $(u,w)\in\mathcal{V}$,且 $(u',w')\succeq(u,w)$,则 $(u',w')\in\mathcal{V}$。 + +易证向量 $(0,p^*)\notin int(\mathcal{V})$,否则一定存在 $\varepsilon \gt 0$,使得 $(0,p^*-\varepsilon)\in int(\mathcal{V})$,这明显与 $p^*$ 为最优解矛盾。因此,必有 $(0,p^*)\in \partial\mathcal{V}$ 或 $(0,p^*)\notin\mathcal{V}$。应用支撑超平面定理(定理 23),可知存在一个非零点 $(\lambda,\lambda_0)\in \mathbb{R}^m \times \mathbb{R}$,满足以下条件: +$$ +\begin{equation} +(\lambda,\lambda_0)^T(u,w) = \lambda^Tu + \lambda_0w \ge \lambda_0p^*, \forall(u,w)\in\mathcal{V} +\end{equation} +$$ +在此情况下,必然有 $\lambda \succeq 0$ 和 $\lambda_0 \geq 0$。这是因为,若 $\lambda$ 和 $\lambda_0$ 中的分量出现任何负数,根据集合 $\mathcal{V}$ 的性质二,$(u, w)$ 的分量可以在集合 $\mathcal{V}$ 内取得任意大的值,从而导致上式不一定成立。 + +因此,只需考虑两种情况: + +1. **$\lambda_0 = 0$**:此时根据上式,可得 +$$ +\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\lambda^Tu = 0 +\end{equation} +$$ +另一方面,根据 $\mathcal{V}$ 的定义,$\lambda\succeq 0$ 且 $\lambda \neq 0$,可得: +$$ +\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\lambda^Tu = \inf_{x}\sum_{i=1}^m \lambda_i f_i(x) \leq \sum_{i=1}^m \lambda_i f_i(\bar{x}) \lt 0 +\end{equation} +$$ +其中,$\bar{x}$ 是 Slater 向量,而最后一个不等式依据 Slater 条件得出。此时,两个结论互相矛盾,因此 $\lambda_0 \neq 0$。 + +2. **$\lambda_0 \gt 0$**:对上式左右两边除以 $\lambda_0$,得: +$$ +\begin{equation} +\inf_{(u,w)\in\mathcal{V}}\{\tilde\lambda^Tu + w\} \ge p^* +\end{equation} +$$ +其中,$\tilde\lambda := \frac{\lambda}{\lambda_0}\succeq 0$。 + +考虑拉格朗日函数 $L:\mathbb{R}^n \times \mathbb{R}^n \rightarrow \mathbb{R}$: +$$ +\begin{equation} +L(x,\tilde\lambda) := f_0(x) + \sum_{i=1}^m \tilde\lambda_i f_i(x) +\end{equation} +$$ +其对偶函数为: +$$ +\begin{equation} +g(\tilde\lambda) := \inf_{x} L(x,\tilde\lambda) \ge p^* +\end{equation} +$$ +其对偶问题为: +$$ +\begin{equation} +\max_{\lambda} g(\lambda), \lambda\succeq 0 +\end{equation} +$$ +因此,可得 $d^* \geq p^*$。根据弱对偶性,$d^* \leq p^*$,从而推断出 $d^* = p^*$。 + +接着证明对偶问题最优解集合非空且有界。对于任意对偶最优解 $\tilde\lambda\succeq 0$,有: +$$ +\begin{equation} +\begin{align*} +d^* = g(\tilde\lambda) &= \inf_{x} \{f_0(x) + \sum_{i=1}^m \tilde\lambda_i f_i(x)\} \\ +&\leq f_0(\bar{x}) + \sum_{i=1}^m \tilde\lambda_i f_i(\bar{x}) \\ +&\leq f_0(\bar{x}) + \max_{i\in[m]}\{f_i(\bar{x})\}[\sum_{i=1}^m \tilde\lambda_i] +\end{align*} +\end{equation} +$$ +因此,有: +$$ +\begin{equation} +\min_{i\in[m]}\{-f_i(\bar{x})\}[\sum_{i=1}^m \tilde\lambda_i] \leq f_0(\bar{x}) - d^* +\end{equation} +$$ +进而得出: +$$ +\begin{equation} +\|\tilde\lambda\| \leq \sum_{i=1}^m \tilde\lambda_i \leq \frac{f_0(\bar{x}) - d^*}{\min_{i\in[m]}\{-f_i(\bar{x})\}} \lt \infty +\end{equation} +$$ +其中,最后一个不等式依据 Slater 条件得出。$\square$ + + + +## KKT条件 + +KKT条件(Karush-Kuhn-Tucker条件)在凸优化领域具有至关重要的地位。虽然在**12-13页** 中对其进行了基本解释,此处将进行更为深入的分析。KKT条件中的符号 $\lambda_i,\ i\in[m]$ 和 $\mu_i,\ i\in[n]$ 被视为 KKT 乘子。特别地,当 $m=0$ 时,即不存在不等式约束条件时,KKT条件退化为拉格朗日条件,此时 KKT 乘子也被称为拉格朗日乘子。 + +### 证明 + +首先,对于 $x^*,(\mu^*,\lambda^*)$ 满足 KKT 条件等价于它们构成一个纳什均衡。 + +固定 $(\mu^*,\lambda^*)$,并变化 $x$,均衡等价于拉格朗日函数在 $x^*$ 处的梯度为零,即主问题的稳定性(stationarity)。 + +固定 $x$,并变化 $(\mu^*,\lambda^*)$,均衡等价于主问题的约束(feasibility)和互补松弛条件。 + +**充分性**:若解对 $x^*,(\mu^*,\lambda^*)$ 满足 KKT 条件,则它们构成一个纳什均衡,从而消除对偶间隙。 + +**必要性**:任意解对 $x^*,(\mu^*,\lambda^*)$ 必然消除对偶间隙,因此它们必须构成一个纳什均衡,从而满足 KKT 条件。$\square$ + +在此对 KKT 和 Slater 条件进行区分: + +1. **KKT条件** 是一组用于确定约束优化问题中解的最优性的条件。它们通过将约束纳入条件,扩展了无约束优化中设定目标函数梯度为零的思路到约束优化问题中。 + **Slater条件** 是凸优化中确保强对偶性的特定约束条件,即主问题和对偶问题最优解的等价性。 + +2. KKT条件包括对偶问题的约束、互补松弛条件、主问题约束和稳定性。它们整合了目标和约束函数的梯度以及 KKT 乘子,以形成最优性条件。 + Slater 条件要求存在一个严格可行点,即严格满足所有不等式约束的点。 + +3. 当点满足 KKT 条件时,表明问题的局部最优解已找到。这些条件弥合了主问题和对偶问题之间的差距,对于分析和解决约束优化问题至关重要。 + 满足 Slater 条件时,确保凸优化问题的强对偶性,对于简化和解决这些问题至关重要。Slater 条件并不直接提供最优性条件,但为强对偶性铺平了道路,之后可以利用强对偶性寻找最优解。 + +4. **KKT条件** 较为通用,适用于更广泛的优化问题类别,包括非凸问题。 + **Slater条件** 则特定于凸优化问题,用于确保这些问题中的强对偶性。 + +5. 对于凸且可微的问题,满足 KKT 条件意味着最优性和强对偶性。相反,最优性和强对偶性意味着所有问题的 KKT 条件得到满足。 + 当 Slater 条件成立时,KKT 条件是最优解的充要条件,此时强对偶性成立。 + +KKT条件和 Slater 条件通常被归类为“正则条件”(regularity condition)或“约束资格”(constraint qualification)。这些条件为优化问题提供了一个结构化的框架,以便在约束情况下分析和确定解的最优性。更多的正则条件详见参考文献:[On regularity conditions in mathematical programming](https://link.springer.com/chapter/10.1007/BFb0120988)。 + + + +## 偏序集 + +序理论(Order Theory)是数学的一个分支,它的核心思想是通过定义某种“序”来描述元素之间的相对关系。在序理论中,一个偏序集(partial order set,简称 poset)包含一个非空集合 $P$ 和一个满足特定条件的二元关系 $\leq$。这个二元关系称为偏序关系,它必须满足以下三个条件: + +1. **自反性(Reflexivity)**:对于 $P$ 中的任意元素 $a$,都有 $a \leq a$。 +2. **反对称性(Antisymmetry)**:对于 $P$ 中的任意元素 $a$ 和 $b$,如果 $a \leq b$ 且 $b \leq a$,那么 $a = b$。 +3. **传递性(Transitivity)**:对于 $P$ 中的任意元素 $a$、$b$ 和 $c$,如果 $a \leq b$ 且 $b \leq c$,那么 $a \leq c$。 + +这些条件定义了偏序关系,使其与全序(total order)关系不同。在偏序集中,可能存在某些元素是不可比较的,即对于 $P$ 中的某些 $a$ 和 $b$,既不满足 $a \leq b$,也不满足 $b \leq a$。 + + + +## 上下界 + +上界(upper bound 或 majorant)是与偏序集有关的特殊元素,指偏序集中大于或等于其子集中一切元素的元素。若数集 $S$ 为实数集 $R$ 的子集且有上界,则显然有无穷多个上界,其中最小的上界常常具有重要作用,称为数集 $S$ 的上确界(tight upper bound 或 supremum)。同理,可以定义下界(lower bound 或 minorant)和下确界(tight lower bound 或 infimum)。 + + + +## 尾界 + +**尾界(tail bound)**是指给定一个随机变量,其概率分布尾部部分的界限。上尾界(upper tail bound)描述随机变量在其分布上尾处的概率上限,而下尾界(lower tail bound)描述随机变量在其分布下尾处的概率上限。Chebyshev 不等式、Hoeffding 不等式和 Bernstein 不等式都是尾界的例子,它们提供了随机变量偏离其期望值的概率界限。 + + + +## 置信界 + +**置信界(confidence bound)**是在估计一个未知参数时,给出一个包含该参数的区间,并且这个区间具有特定的置信水平。例如,一个95%的置信区间意味着我们有95%的信心该区间包含真实的参数值。置信界可以是上置信界(upper confidence bound),下置信界(lower confidence bound),或同时包含上下界的置信区间(confidence interval)。上置信界提供对参数估计的可能最大值的上限,下置信界提供对参数估计的可能最小值的下限。 + + + +## 连续性 + +连续性(continuity)表示函数在某处的变化不会突然中断或跳跃。形式上,如果函数 $f(x)$ 在 $x = a$ 处满足以下条件,则称其在该点连续: + +1. 函数 $f(x)$ 在 $x = a$ 处有定义。 +2. 当 $x$ 趋近于 $a$ 时,$f(x)$ 的极限存在且等于 $f(a)$。 + +连续性意味着输入的微小变化导致输出的微小变化。如果一个函数在其定义域的每个点上都是连续的,则称其为连续函数。 + +Lipschitz 连续性是连续性的更强形式,它要求函数在变化速度方面有界。具体而言,如果存在一个常数 $L$,使得函数在任意两点的函数值之间的绝对差小于等于 $L$ 乘以两点之间的距离,则称该函数为 $L-Lipschitz$ 连续,即: +$$ +\begin{equation} +\forall x,y\in \text{dom}(f),\ \exists L \gt 0\ \text{使得}\ \|f(x)-f(y)\|_2 \leq L\|x-y\|_2 +\end{equation} +$$ +其中,$L$ 称为 Lipschitz 常数,表示函数的最大变化率。若 $L$ 较大,函数可以快速变化;若 $L$ 较小,函数变化更渐进。 + +事实上,如果一个函数的导数有界,那么它一定是 Lipschitz 连续的;反之,如果一个可微函数是 Lipschitz 连续的,那么它的导数一定有界。 + +证明如下: + +1. 若函数 $f(x)$ 的导数有界,即存在常数 $L \ge 0$,使得对于任意 $x$,有 $|f'(x)| \leq L$。根据微分中值定理,对于任意 $x \le y$,存在 $c \in [x,y]$,使得: +$$ +\begin{equation} +\begin{align*} +&\|f(x)-f(y)\|_2 = \|f'(c)\|_2\|x-y\|_2 \\ +\Rightarrow &\|f(x)-f(y)\|_2 \le L \|x-y\|_2 +\end{align*} +\end{equation} +$$ +此时,函数是 $L-Lipschitz$ 连续的。 + +2. 若函数 $f(x)$ 是 $L-Lipschitz$ 连续的,即对于任意 $x,y$,有 +$$ +\begin{equation} +\|f(x)-f(y)\|_2 \le L\|x-y\|_2 +\end{equation} +$$ +根据微分中值定理,对于任意 $x \le y$,存在 $c \in [x,y]$,使得: +$$ +\begin{equation} +\|f(x)-f(y)\|_2 = \|f'(c)\|_2\|x-y\|_2 +\end{equation} +$$ +不妨令 $x \rightarrow y$,则 $c \rightarrow y$。因为 $f(y)$ 可微,可得: +$$ +\begin{equation} +\|f'(y)\|_2 = \|\lim_{x \rightarrow y}\frac{f(x)-f(y)}{x-y}\|_2 = \lim_{x \rightarrow y}\frac{\|f(x)-f(y)\|_2}{\|x-y\|_2} \le \lim_{x \rightarrow y} L = L +\end{equation} +$$ +因为 $y$ 的任意性,所以函数的导数有界。 + +连续性关注函数图像中跳跃或中断的缺失,而 Lipschitz 连续性关注函数的变化速度。因此,Lipschitz 连续性是比连续性更严格的条件。一个连续函数不一定是 Lipschitz 连续的,因为连续性不要求函数变化速度有界。然而,一个 Lipschitz 连续的函数必然是连续的,因为 Lipschitz 连续性蕴含连续性。 + +Lipschitz 连续性的性质在数学的各个领域中广泛应用,如分析、优化和微分方程研究。它在保证某些数学问题的解的存在性、唯一性和稳定性方面起着关键作用。 + + + +## 光滑性 + +在数学分析中,函数的光滑性(smoothness)通过函数在某个域(称为可微性类)上的连续导数的数量来衡量。最基本的情况下,如果一个函数在每个点上都可导(因此连续),则可以认为它是光滑的。 +一方面,光滑性确保了梯度下降等优化算法能够更快收敛,并减少可能遇到的梯度震荡或发散的情况。 +另一方面,光滑性提供了函数曲率的信息,从而帮助设计更有效的优化算法,如加速梯度下降法或牛顿法。 + +在优化理论中,$L$-光滑函数是指它的梯度具有 $L$-Lipschitz 连续性,这意味着函数的梯度在其定义域中的变化速率被 $L$ 所限制。 +形式上,对于任意 $x,y \in \mathbb{R}^n$,存在 $L \gt 0$,使得: +$$ +\begin{equation} +\|\nabla f(x) - \nabla f(y)\|_2 \leq L \|x - y\|_2 +\end{equation} +$$ +或者等价地, +$$ +\begin{equation} +\|\nabla^2 f(x)\|_2 \leq L +\end{equation} +$$ +或者等价地, +$$ +\begin{equation} +f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2}\|y - x\|_2^2 +\end{equation} +$$ +以上三种定义方式是等价的,且 $L$ 被称为光滑系数。 +由定义3,我们可以看出,在光滑函数的任意一点处都可以构造一个二次函数作为其上界。 + +接下来我们证明这些定义的等价性。首先,我们证明定义1可以推导出定义2。 + +考虑函数 $f$ 的梯度 $\nabla f(x)$ 的二阶泰勒展开: +$$ +\begin{equation} +\nabla f(y) = \nabla f(x) + \nabla^2 f(\xi)(y - x) +\end{equation} +$$ +其中 $\xi$ 是 $x$ 和 $y$ 之间的一点,$\nabla^2 f(\xi)$ 表示在点 $\xi$ 处的 Hessian 矩阵。 + +根据 $L$-光滑性的定义1,我们有: +$$ +\begin{equation} +\|\nabla f(y) - \nabla f(x)\|_2 \leq L \|y - x\|_2 +\end{equation} +$$ + +将二阶泰勒展开的结果代入其中: +$$ +\begin{equation} +\|\nabla^2 f(\xi)(y - x)\|_2 \leq L \|y - x\|_2 +\end{equation} +$$ + +对于任意的非零向量 $v = y - x$,定义: +$$ +\begin{equation} +v' = \frac{v}{\|v\|_2} +\end{equation} +$$ +我们得到: +$$ +\begin{equation} +\|\nabla^2 f(\xi) v'\|_2 \leq L +\end{equation} +$$ + +由于 $v'$ 是一个单位向量,这意味着 Hessian 矩阵 $\nabla^2 f(\xi)$ 作用在任意单位向量上时的范数不超过 $L$,因此 Hessian 矩阵的谱范数(即最大特征值的绝对值)满足: +$$ +\begin{equation} +\|\nabla^2 f(\xi)\|_2 \leq L +\end{equation} +$$ +其中,由于 $\xi$ 是 $x$ 和 $y$ 之间的一点,因此我们可以将上述结论推广到整个定义域。 + +接下来我们证明定义2可以推导出定义3。由定义2,给定 $f$ 是 $L$-光滑的,对任意的 $x, y \in \mathbb{R}^n$,我们有: +$$ +\begin{equation} +f(y) \leq f(x) + \langle \nabla f(x), y - x \rangle + \frac{L}{2} \|y - x\|_2^2 +\end{equation} +$$ + +将定义中的 $x$ 和 $y$ 互换,得到: +$$ +\begin{equation} +f(x) \leq f(y) + \langle \nabla f(y), x - y \rangle + \frac{L}{2} \|x - y\|_2^2 +\end{equation} +$$ + +将两个不等式相加可得: +$$ +\begin{equation} +\langle \nabla f(x) - \nabla f(y), x - y \rangle \leq L \|x - y\|_2^2 +\end{equation} +$$ + +注意到不等式左侧的内积无论如何取值,该不等式均成立。 +根据 Cauchy-Schwarz 不等式,当 $y - x$ 与 $\nabla f(x) - \nabla f(y)$ 平行时左侧内积取到最大值,即 $\|\nabla f(x) - \nabla f(y)\|_2 \|x - y\|_2$,代入可得: +$$ +\begin{equation} +\|\nabla f(x) - \nabla f(y)\|_2 \|x - y\|_2 \leq L \|x - y\|_2^2 +\end{equation} +$$ +化简后即得证。 + +这里对光滑性和 $Lipschitz$ 连续性进行一些比较: +- $Lipschitz$ 连续性关注的是函数值变化的速度,即函数值的“陡峭程度”,而光滑性关注的是梯度变化的速度,即函数的“曲率”或二阶变化。 +- $Lipschitz$ 连续性表示函数变化不会太快,确保函数的整体平滑性,而光滑性表示梯度变化不会太快,确保函数曲面没有急剧的弯曲。 + + + +## 次梯度 + +次梯度(subgradient)是凸函数导数的推广形式。某些凸函数在特定区域内可能不存在导数,但我们依旧可以用次梯度来表示该区域内函数变化率的下界。形式上,对于凸函数 $f(x)$,在任意点 $x_0$ 处的次梯度 $c$ 必须满足以下不等式: +$$ +\begin{equation} +f(x) - f(x_0) \geq c(x - x_0) +\end{equation} +$$ +根据微分中值定理的逆命题,$c$ 通常在 $[a,b]$ 之间取值,其中 $a,b$ 是函数 $f(x)$ 在 $x_0$ 处的左右导数,即: +$$ +\begin{equation} +a = \lim_{x \rightarrow x_0^-}\frac{f(x) - f(x_0)}{x - x_0},\ b = \lim_{x \rightarrow x_0^+}\frac{f(x) - f(x_0)}{x - x_0} +\end{equation} +$$ +此时,次梯度 $c$ 的集合 $[a,b]$ 被称为次微分,即 $\partial f(x_0)$。当 $a = b$ 时,次梯度 $c$ 退化为导数。 + +次梯度在机器学习领域广泛应用,特别是在训练支持向量机(SVM)和其他具有非可微损失函数的模型中。它们还构成了随机次梯度方法的基础,这些方法在处理大规模机器学习问题时非常有效。 + + + +## 对偶空间 + +线性泛函(linear functional)是指从向量空间 $V$ 到对应标量域 $k$ 的线性映射,满足加法和数乘的性质,即对于任意向量 $x,y \in V$ 和标量 $\alpha \in k$,有: +$$ +\begin{equation} +\begin{align*} +&f(x+y) = f(x) + f(y) \\ +&f(\alpha x) = \alpha f(x) +\end{align*} +\end{equation} +$$ +所有从 $V$ 到 $k$ 的线性泛函构成的集合称为 $V$ 的对偶空间(dual space),记为 $V^* = \text{Hom}_k(V,k)$,对偶空间中的元素称为对偶向量。 + + + +## Legendre变换 + +将函数转换为另一种函数,常用于改变其定义域和属性,使问题更简单或更易分析。Legendre 变换(Legendre transform)常用于将一组独立变量转换为另一组独立变量,特别是在经典力学和热力学中。以下是 Legendre 变换的基本概念和步骤: + +1. **定义函数**:假设有一个凸函数 $f(x)$,其自变量为 $x$。 +2. **定义共轭变量**:定义新的变量 $p$,它是原函数 $f(x)$ 的导数,即 $p = \frac{d f(x)}{dx}$。 +3. **定义共轭函数**:定义新的函数 $g(p)$,其形式为:$g(p) = x \cdot p - f(x)$。这里,$x$ 是 $f(x)$ 的自变量,同时也是 $g(p)$ 的隐含变量。 +4. **变换关系**:通过 Legendre 变换,从原来的函数 $f(x)$ 得到新的函数 $g(p)$,这个新的函数 $g(p)$ 依赖于共轭变量 $p$。 + + + +## 共轭函数 + +凸共轭(convex conjugate)是 Legendre 变换的一种推广,因此也被称为 Legendre-Fenchel 变换(Legendre-Fenchel transform)。通过凸共轭变换,原函数可以转换为凸函数,从而利用凸函数的性质来解决原问题。 + +形式上,对于函数 $f(x)$,其共轭函数 $f^*(y)$ 定义为: +$$ +\begin{equation} +f^*(y) = \sup_{x \in \text{dom}(f)}(y^T x - f(x)) +\end{equation} +$$ +其中,$\text{dom}(f)$ 是函数 $f(x)$ 的定义域。 + +共轭函数具有以下一些有用的性质: + +1. **凸性**:函数 $f(x)$ 的共轭函数 $f^*(y)$ 一定是凸函数。证明如下: +$$ +\begin{equation} +\begin{align*} +f^*(\lambda y_1+(1-\lambda)y_2) &= \sup_{x\in \text{dom}(f)}\{x^T(\lambda y_1+(1-\lambda)y_2)-f(x)\}\\ +&\leq \lambda \sup_{x\in \text{dom}(f)}\{x^T y_1 - f(x)\} + (1-\lambda)\sup_{x\in \text{dom}(f)}\{x^T y_2 - f(x)\}\\ +&= \lambda f^*(y_1) + (1-\lambda)f^*(y_2) +\end{align*} +\end{equation} +$$ +其中的不等式利用了凸性的性质。 + +2. **逆序性**:对于定义域中所有元素 $x$,若 $f(x) \leq g(x)$,则 $f^*(y) \geq g^*(y)$。证明如下: + +由于 $f(x) \leq g(x)$,因此 $x^T y - f(x) \geq x^T y - g(x)$。两边同时取上确界,根据定义有: +$$ +\begin{equation} +f^*(y) = \sup_{x\in \text{dom}(f)}\{x^T y - f(x)\} \geq \sup_{x\in \text{dom}(f)}\{x^T y - g(x)\} = g^*(y) +\end{equation} +$$ + +3. **极值变换**:若 $f$ 可微,则对于 $\forall y$,有: +$$ +\begin{equation} +f^*(y) \leq f^*(\nabla f(x)) = \nabla f^*(x)^T x - f(x) = -[f(x) + \nabla f(x)^T(0 - x)] +\end{equation} +$$ +此性质即书中的(1.10),完整证明如下: + +为了在 $f^*$ 的定义中找到上确界,对右侧的 $x$ 求导,并将其设置为零以找到极大值点: +$$ +\begin{equation} +\frac{d}{dx}(x^T y − f(x)) = y − \nabla f(x) = 0 +\end{equation} +$$ +此时有 $y = \nabla f(x)$,得证。 + + + +## σ-代数 + +σ-代数(或 σ-域)是测度论和概率论中的一个重要概念。σ-代数是一个满足特定封闭性质的集合族,使我们能够对这些集合定义一致的测度(如概率)。具体来说,σ-代数是一个集合族,满足以下三个性质: + +1. **包含全集**:如果 $\mathcal{F}$ 是定义在集合 $X$ 上的一个 σ-代数,那么 $X$ 本身属于 $\mathcal{F}$,即 $X \in \mathcal{F}$。 +2. **对补集封闭**:如果 $A$ 是 $\mathcal{F}$ 中的一个集合,那么它的补集 $X \setminus A$ 也属于 $\mathcal{F}$,即 $A \in \mathcal{F} \implies X \setminus A \in \mathcal{F}$。 +3. **对可数并封闭**:如果 $A_1, A_2, A_3, \ldots$ 是 $\mathcal{F}$ 中的集合,那么它们的可数并集 $\bigcup_{i=1}^{\infty} A_i$ 也属于 $\mathcal{F}$,即 $A_i \in \mathcal{F}$ 对所有 $i \in \mathbb{N}$,则 $\bigcup_{i=1}^{\infty} A_i \in \mathcal{F}$。 + +σ-代数在测度论中尤为重要,因为它为定义测度提供了必要的框架。测度是定义在 σ-代数上的集合函数,用于度量集合的“大小”。在概率论中,σ-代数用于定义事件空间,从而定义概率测度。 + +### 过滤 + +σ-代数 $\mathcal{F}$ 是一个固定的集合族,满足特定的封闭性质,表示我们在某一时刻可以知道的所有信息。过滤(filtration)是关于随着时间推移而观察信息的概念,通常与随机过程(stochastic processes)相关。具体来说,过滤是一个按时间参数索引的 σ-代数序列 $\{\mathcal{F}_t\}_{t \in T}$,表示随时间变化的可观测事件的集合,满足以下性质: + +1. **每个 $\mathcal{F}_t$ 是一个 σ-代数**:对于每个时刻 $t$,$\mathcal{F}_t$ 是定义在某个固定集合 $X$ 上的一个 σ-代数。 +2. **单调性**:对于任意的 $t_1 \leq t_2$,有 $\mathcal{F}_{t_1} \subseteq \mathcal{F}_{t_2}$。这意味着随着时间的推移,所包含的信息只会增加,不会减少。 + + + +## 鞅 + +鞅(Martingale)是概率论中的一个重要概念,用于描述某些类型的随机过程。鞅过程的特点是,其未来期望值在已知当前信息的条件下等于当前值。 + +### 形式化定义 + +设 $\{X_t\}$ 是一个随机过程,$\{\mathcal{F}_t\}$ 是一个随时间 $t$ 变化的过滤(即包含随时间增加的所有信息的 σ-代数的序列)。当这个随机过程 $\{X_t\}$ 是鞅时,必须满足以下条件: + +1. **适应性(Adaptedness)**:对于每一个 $t$,$X_t$ 是 $\mathcal{F}_t$-可测的(即 $X_t$ 的值在时间 $t$ 时刻是已知信息的函数)。 +2. **积分性(Integrability)**:对于所有 $t$,$\mathbb{E}[|X_t|] \lt \infty$。 +3. **鞅性质(Martingale Property)**:对于所有 $t$ 和 $s \geq t$,有 $\mathbb{E}[X_s \mid \mathcal{F}_t] = X_t$。这意味着在已知当前时刻 $t$ 的信息 $\mathcal{F}_t$ 条件下,未来某个时刻 $s$ 的期望值等于当前时刻 $t$ 的值。 + +### 直观解释 + +鞅的定义保证了在已知当前信息的条件下,未来值的期望等于当前值,这反映了一种“无偏性”。因此,鞅过程可以被看作是一种“公平游戏”。设想一个赌徒在赌场中进行赌博,如果这个赌徒的资金变化形成一个鞅过程,那么在任何时刻,给定当前的资金情况,未来资金的期望值都是当前的资金,表示没有系统性的赢或输的趋势。 + +### 举例说明 + +考虑一个简单的随机游走过程,其中 $X_{t+1} = X_t + Z_{t+1}$,其中 $Z_{t+1}$ 是一个独立同分布的随机变量,取值为 $+1$ 或 $-1$,且概率各为 $50\%$。在这种情况下,如果设 $X_0 = 0$,那么 $\{X_t\}$ 是一个鞅,因为每一步的期望值都是零。 + +### 鞅的类型 + +除了标准的鞅,还有两个相关的概念: + +1. **超鞅(Submartingale)**:若对于所有 $t$ 和 $s \geq t$,有 $\mathbb{E}[X_s \mid \mathcal{F}_t] \geq X_t$,则称 $\{X_t\}$ 为超鞅(或上鞅)。 +2. **亚鞅(Supermartingale)**:若对于所有 $t$ 和 $s \geq t$,有 $\mathbb{E}[X_s \mid \mathcal{F}_t] \leq X_t$,则称 $\{X_t\}$ 为亚鞅(或下鞅)。 + +一个区分超鞅和亚鞅的记忆方法是:“生活是一个超鞅:随着时间的推进,期望降低。” + +### 鞅差序列 + +鞅差 $D_t$ 定义为 $D_t = X_t - X_{t-1}$,鞅差序列(Martingale Difference Sequence)$\{D_t\}$ 则满足以下条件: + +1. **适应性(Adaptedness)**:对于每一个 $t$,$D_t$ 是 $\mathcal{F}_t$-可测的。 +2. **零条件期望(Zero Conditional Expectation)**:对于所有 $t$,有 $\mathbb{E}[D_t \mid \mathcal{F}_{t-1}] = 0$,即在已知过去信息 $\mathcal{F}_{t-1}$ 的条件下,$D_t$ 的条件期望为零。这意味着当前的观察值不提供对未来观察值的系统性偏差,即每一步的变化是纯随机的。 + +虽然鞅差序列中的每个元素的条件期望为零,但这并不意味着这些元素是独立的。相反,它们可以有复杂的依赖关系。鞅差序列的关键性质是每个元素在条件期望下为零,这使得它在分析鞅和集中不等式(如 Bernstein 不等式)中非常有用。 + + + +## KL 散度 + +KL 散度(Kullback-Leibler 散度),也称为相对熵,是一种用于衡量两个概率分布之间差异的非对称度量,在信息论和统计学中广泛应用。KL 散度衡量的是在使用近似分布时,相比于使用真实分布,所增加的“信息损失”或“不确定性”。 + +### 定义 + +假设有两个概率分布 $P$ 和 $Q$,它们定义在同一个概率空间上。$P$ 通常被认为是“真实”分布,而 $Q$ 是近似分布。KL 散度 $D_{KL}(P \| Q)$ 表示为: +$$ +\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)} +\end{equation} +$$ +对于连续分布: +$$ +\begin{equation} +D_{KL}(P \| Q) = \int_{-\infty}^{+\infty} p(x) \ln \frac{p(x)}{q(x)} \, dx +\end{equation} +$$ +其中,$P(x)$ 和 $Q(x)$ 分别是分布 $P$ 和 $Q$ 在 $x$ 处的概率密度函数(或概率质量函数)。 + +### 性质 + +1. **非负性**:KL 散度总是非负的,即 $D_{KL}(P \| Q) \geq 0$,只有当 $P$ 和 $Q$ 完全相同时,KL 散度才为零。 + +### 非负性的证明 + +KL 散度的非负性可以通过 Jensen 不等式来证明。首先,考虑离散情况下的 KL 散度定义: +$$ +\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln \frac{P(x)}{Q(x)} +\end{equation} +$$ +由于对数函数是一个凹函数,可以应用 Jensen 不等式。对于凹函数 $f$ 和随机变量 $X$,有: +$$ +\begin{equation} +f(\mathbb{E}[X]) \geq \mathbb{E}[f(X)] +\end{equation} +$$ + +将 $f(x) = \ln(x)$,并令 $X = \frac{Q(x)}{P(x)}$。则有: +$$ +\begin{equation} +\ln(\mathbb{E}[\frac{Q(x)}{P(x)}]) \geq \mathbb{E}[\ln(\frac{Q(x)}{P(x)})] +\end{equation} +$$ + +因为 $\sum_{x} P(x) = 1$ 且 $Q(x) \geq 0$,所以: +$$ +\begin{equation} +\mathbb{E}[\frac{Q(x)}{P(x)}] = \sum_{x} P(x) \frac{Q(x)}{P(x)} = \sum_{x} Q(x) = 1 +\end{equation} +$$ + +于是,有: +$$ +\begin{equation} +0 = \ln(1) \geq \sum_{x} P(x) \ln(\frac{Q(x)}{P(x)}) +\end{equation} +$$ +即: +$$ +\begin{equation} +D_{KL}(P \| Q) = \sum_{x} P(x) \ln(\frac{P(x)}{Q(x)}) \geq 0 +\end{equation} +$$ + +2. **非对称性**:$D_{KL}(P \| Q) \neq D_{KL}(Q \| P)$,即 KL 散度不是对称的,交换 $P$ 和 $Q$ 一般会导致不同的结果。 + +### 应用 + +- **机器学习**:在训练过程中,KL 散度常用于优化目标函数,例如变分自编码器(VAE)和生成对抗网络(GAN)。通过最小化 KL 散度,可以使近似分布 $Q$ 尽可能接近真实分布 $P$,从而提高模型的准确性和效率。 +- **信息论**:用于测量编码方案的效率,评估数据压缩方案等。 +- **统计学**:用于假设检验和模型选择。 + + + +## 先验和后验 + +先验(Prior)和后验(Posterior)是贝叶斯统计中的两个核心概念,用于描述不确定性和信息更新的过程。 + +### 先验概率(Prior Probability) + +**定义**:先验概率是指在获得新数据之前,根据已有的知识或经验对某一事件或参数的初始估计。先验概率反映了在观察到新数据之前,我们对某一事件或参数的不确定性。 + +**表示方法**:用 $P(\theta)$ 表示,其中 $\theta$ 代表参数或事件。 + +**作用**:先验概率提供了一个起点,在进行贝叶斯推断时,它与新的数据结合,更新我们的认知。 + +### 后验概率(Posterior Probability) + +**定义**:后验概率是指在获得新数据之后,根据贝叶斯定理更新的某一事件或参数的概率分布。后验概率反映了在观察到新数据之后,我们对某一事件或参数的不确定性。 + +**表示方法**:用 $P(\theta \mid D)$ 表示,其中 $\theta$ 代表参数或事件, $D$ 代表新观察到的数据。 + +**计算方法**:根据贝叶斯定理,后验概率可以通过先验概率、似然函数和边际似然计算得到: +$$ +\begin{equation} +P(\theta \mid D) = \frac{P(D \mid \theta) P(\theta)}{P(D)} +\end{equation} +$$ +其中: +- $P(\theta \mid D)$ 是后验概率。 +- $P(D \mid \theta)$ 是似然函数,表示在给定参数 $\theta$ 时观察到数据 $D$ 的概率。 +- $P(\theta)$ 是先验概率。 +- $P(D)$ 是边际似然,表示观察到数据 $D$ 的总体概率。 + + + +## 拓扑向量空间 + +拓扑向量空间(Topological Vector Space,简称 TVS)是一个定义在拓扑域 $\mathbb{K}$(通常是带有标准拓扑的实数或复数)上的向量空间,该空间被赋予了一个拓扑结构,使得向量加法 $\cdot\, + \,\cdot\; : X \times X \to X$ 和标量乘法 $\cdot : \mathbb{K} \times X \to X$ 是连续函数(这些函数的定义域赋予了乘积拓扑)。这样的拓扑被称为 $X$ 上的**向量拓扑**或**TVS 拓扑**。 + +拓扑向量空间是数学分析和函数空间理论中的重要概念,它们将向量空间的代数结构与拓扑空间的结构相结合,从而使我们能够更好地理解向量空间中的连续性和收敛性。 + + + +## 超平面 + +超平面(Hyperplane)是指一个比所在拓扑向量空间少一维的平滑仿射子空间。 +半空间(Half Space)是指拓扑向量空间被超平面划分出的两个区域之一。 + +假设有一个超平面,其由以下方程定义: +$$ +\begin{equation} +\mathbf{n} \cdot \mathbf{x} = c +\end{equation} +$$ +其中,$\mathbf{n}$ 是垂直于超平面的法向量,$\mathbf{x}$ 是空间中的一个点,$c$ 是一个常数。 + +两个半空间分别由以下不等式定义: +$$ +\begin{equation} +\mathbf{n} \cdot \mathbf{x} \geq c +\end{equation} +$$ +和 +$$ +\begin{equation} +\mathbf{n} \cdot \mathbf{x} \leq c +\end{equation} +$$ +这些不等式中的每一个代表了超平面两侧的一个半空间,满足其中一个不等式的点位于相应的半空间中。 + + + +## 紧空间 + +紧空间(Compact Space)在数学中是一种具有特殊性质的空间,即它在某种意义上表现得像“有限的”,即使它可能看起来非常大,甚至是无限的。 + +一个空间被称为紧致的,如果可以用有限数量的小而重叠的片段完全覆盖整个空间。换句话说,即使这个空间本身可能非常大或无限大,但紧致性意味着总能用有限数量的部分来描述它的全貌。 + +紧空间可以理解为一种“有限”或“被包含”的空间。这种空间不会让你“无限延伸”,而是会将你限制在某个范围内。想象你在一个小岛上,无论你走到哪里,总会遇到岛的边缘——你不能无限制地前进,总有一个尽头。这类似于紧空间。 + +相反地,如果你在一片无边无际的沙漠中,可以一直走下去而永远不会到达尽头,这类似于非紧空间。在紧空间中,总有一种“有限”的感觉,而在非紧空间中,感觉像是没有尽头的延伸。 + + + +## Taylor展开 + +**Taylor展开**(Taylor Expansion)是用多项式来近似一个函数的工具。它表示一个函数在某一点附近的值为该函数在该点的导数信息的线性组合,从而通过简单的多项式来逼近复杂的函数。 + +### 定义: +给定一个在某点 $a$ 处可导多次的函数 $f(x)$,它的 **Taylor 展开** 在点 $a$ 处的表达式为: + +$$ +\begin{equation} +f(x) = f(a) + f'(a)(x - a) + \frac{f''(a)}{2!}(x - a)^2 + \frac{f^{(3)}(a)}{3!}(x - a)^3 + \dots + \frac{f^{(n)}(a)}{n!}(x - a)^n + R_n(x) +\end{equation} +$$ + +其中: +- $f^{(n)}(a)$ 表示函数 $f(x)$ 在点 $a$ 处的第 $n$ 阶导数, +- $R_n(x)$ 是剩余项(余项),它表示截断后,未被包含的误差部分。 + +当 $x$ 足够接近 $a$ 时,截取足够多项的 Taylor 展开可以非常准确地逼近函数值。 + +### 特殊情况:麦克劳林(Maclaurin)展开 +当 $a = 0$ 时,Taylor 展开被称为 **麦克劳林展开**,形式为: + +$$ +\begin{equation} +f(x) = f(0) + f'(0)x + \frac{f''(0)}{2!}x^2 + \frac{f^{(3)}(0)}{3!}x^3 + \dots +\end{equation} +$$ + +### 例子: +1. **指数函数的 Taylor 展开**(以 $a = 0$ 为例,即 麦克劳林展开): + $$ + \begin{equation} + e^x = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots + \end{equation} + $$ + +2. **正弦函数的 Taylor 展开**(在 $a = 0$ 处): + $$ + \begin{equation} + \sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \dots + \end{equation} + $$ + +通过 Taylor 展开,我们可以在某个点附近用有限项多项式来近似复杂的函数。这在数值计算和分析中非常有用。 + +# 参考文献 + +> Abernethy, Jacob, et al. "Optimal strategies and minimax lower bounds for online convex games." Proceedings of the 21st annual conference on learning theory. 2008. + +> Auer, Peter. "Using confidence bounds for exploitation-exploration trade-offs." Journal of Machine Learning Research 3.Nov (2002): 397-422. + +> Bouneffouf, Djallel. "Finite-time analysis of the multi-armed bandit problem with known trend." 2016 IEEE Congress on Evolutionary Computation (CEC). IEEE, 2016. + +> Bubeck, Sébastien, Ronen Eldan, and Yin Tat Lee. "Kernel-based methods for bandit convex optimization." Journal of the ACM (JACM) 68.4 (2021): 1-35. + +> Boyd, Stephen, and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004. + +> Devroye, Luc, László Györfi, and Gábor Lugosi. A probabilistic theory of pattern recognition. Vol. 31. Springer Science & Business Media, 2013. + +> Feller, William. "An introduction to probability theory and its applications." (1971). + +> Flaxman, Abraham D., Adam Tauman Kalai, and H. Brendan McMahan. "Online convex optimization in the bandit setting: gradient descent without a gradient." arXiv preprint cs/0408007 (2004). + +> Hazan, Elad, Amit Agarwal, and Satyen Kale. "Logarithmic regret algorithms for online convex optimization." Machine Learning 69.2 (2007): 169-192. + +> Kearns, Michael J., and Umesh Vazirani. An introduction to computational learning theory. MIT press, 1994. + +> Lai, Tze Leung, and Herbert Robbins. "Asymptotically efficient adaptive allocation rules." Advances in applied mathematics 6.1 (1985): 4-22. + +> McAllester, David A. "PAC-Bayesian stochastic model selection." Machine Learning 51.1 (2003): 5-21. + +> Mohri, Mehryar. "Foundations of machine learning." (2018). + +> Nakkiran, Preetum, et al. "Deep double descent: Where bigger models and more data hurt." Journal of Statistical Mechanics: Theory and Experiment 2021.12 (2021): 124003. + +> Penot, Jean-Paul. "On regularity conditions in mathematical programming." Optimality and Stability in Mathematical Programming (1982): 167-199. + +> Robbins, Herbert. "Some aspects of the sequential design of experiments." (1952): 527-535. + +> Thompson, William R. "On the likelihood that one unknown probability exceeds another in view of the evidence of two samples." Biometrika 25.3-4 (1933): 285-294. + +> Wainwright, Martin J. High-dimensional statistics: A non-asymptotic viewpoint. Vol. 48. Cambridge university press, 2019. + +> Wang, Guanghui, Shiyin Lu, and Lijun Zhang. "Adaptivity and optimality: A universal algorithm for online convex optimization." Uncertainty in Artificial Intelligence. PMLR, 2020. + +> Zhang, Lijun, Shiyin Lu, and Zhi-Hua Zhou. "Adaptive online learning in dynamic environments." Advances in neural information processing systems 31 (2018) + +> Zhang, Lijun, Tie-Yan Liu, and Zhi-Hua Zhou. "Adaptive regret of convex and smooth functions." International Conference on Machine Learning. PMLR, 2019. + +> Zinkevich, Martin. "Online convex programming and generalized infinitesimal gradient ascent." Proceedings of the 20th international conference on machine learning (icml-03). 2003. + diff --git a/releases/preview.pdf b/releases/preview.pdf new file mode 100644 index 0000000000000000000000000000000000000000..d732a113eca6dee9c99ad8cb1c917586b96de7f8 GIT binary patch literal 2515005 zcmb@t1yEz*)-8zBxYIbn9Rk7K-5MHqcXxMp*T&r%Xx!bkfyUk4t+C<$Z{FN{YhJyY zH}_9Yr7Ai5t8eYS*GcNEl}({2D$c;n$O=y}cY3@H&kO(p>TR2;r0C>g4 z#KqafIK?@IfIxnDCJ{#y17|x&0JWT*r-ik(0TUY|5TH#hXJBMu>ul#_&I6FLbvCgE ze0~5>PzI<2n1OoCYU(**}&Am(c*tD5;HdY=Q$d9CPha(V;3WnPfW^I76we8 z2?1IOVgM|gi31X!K0;xWa&p0_d*Q zt?@q!1Nvuyj0^yb%$z`0cqU;v0F%6(qm6;}KLc6+Es*(t9mE3sXViBOdlLYYkgctq zGdz>Bi=p#>y_dDHwSs372mE6fJ4fTsEVcfz2B-tiq-0{`4A5d_1~GE7va+!P*jc$4 zS%F+204qBeBO4nlhz-Eb4rFBK1aYx{h6@4y(bWI3iIMYXRX%qCFsUd>!T;k0KyB{q zZ12R)#AIk^XT@l2=VEAJ%V=b0!{p>*X!*Gl6AL>Bkdv92i-!O6@juJK@~?#X|Caz8 zGczLy#LmI~&ji@mIT(Sg?ChZb)&xKxRuBh>llk8hVEKUug%dfUPM&$ZwZ}-mu zp-DXtDvOM3eZcE0V7Y#OwXU+l>o<=wB+}eMjnVPiCAQM@%_bz#)ssA{U!yL+@6++| zPlabaax~s#2=~|5(o(;d(qX-v_rK&JY|>nPH|?k0Z&%9CZ0@hyFT+m)0v}IzubrN+ zPn!xbM4?2;^N^qhfkWcFdjuZ;(W}{DWOy zo$|tPxkIcLsX4Dsx=S&5G&0c{-TY>_ z4zih8pgJTo)Prn^i1rkeh}i+C6BD3h(STXkyzaPiF17Ei^b+4Ph?04or{4gZ$Va^( z!h)WS4-iBNhLmLho@6Rir&Rnjk+y&{)&U+m9FI$ zviJXnE=`b7It)c-*9BDtyI}X8!Y>X%jf%1! z2eMya9a1sT7f8G@;(3IM|0z&RRmBvpCjxcLVeVjoiEUE*cU>|jquUceqLiCs^2fh7 zRt31r3x$D>NXMaqH{7;p_PpxdiX>xppaq;`5>J0Aoq$QM{0J zbKYbi3`-=|#El%IQGE9(f^evXE(jU-^{-ZVLQ7J`Db3V7lK^*w$i6Of`0J2&j$duR zg2(b}11GLJ_(q?++OKWR@8vSONoeQ`+tMw7)e?vys@n`GeEOP>*PuAY<#m`G6R4&Y zzv4kcLbnKaqq{j&W2nlp_pm`4n-UCd0iMcTn~z;R;?2D_p_R#5FgrC-$<4N7ueUhTksT~&({ z{3zTMz%Q>|+?aM$(KPcW-cb#x%z{-Pb@(ZWmOsKiI%!x#R)?ouDx0(H81EVd(>;Us zj&<}Ptu8aR8-pOD|2+g6Q!=AfUS)9Rl1s@eUi!5CM!1l0u8)q?=JoF|k}*R)0b_T| z2>*|f_hRY_3})_cc$QRtzQzH#cgD-jfnE_%e8TK~L8-ptfg7DO@H1aHt;(e=to3kg z#Awm!tL$&?A~w2Y+OT5&eDBDg3$-Ljwr#i+Ei@|G*A`E?AMg>Q#Py^0YBG+)C0U(YJUI*EC4XCIwp27~o2YQ=4hY+ei>nF(=d>p6LfCko= zKA^Rj6&(pt)8R z8ey>TsboZBfCfvI0WdxsRoK%CVz+oQFz=EK59cX3(Ad$a{lzLh(I~~h^gQqv7PMu? z{fcph0fLbg(#wzPjRSN_ggq!znjb>bL!Nb^R$7xRp?=Ut=JkCAnf+cH)U;Dp)2g$* zcC$KuL^Ih-a7%>Ka7=29b9GZZ_3>6%em3P)lMVIrV<*uMOl2h9Xfo9b)b^w59P~tI zadi*w{8fMLMl0wjk-tmBfesi6*1{pNFkmnA&(Sqy0=3x@o226v;Hs-(<==v}LvWi@ zQfm4KI=}tu!>aqSATRcj2uD}*mYNiM-8k(#^SjF~aQU#xc;X>%p= zIl|@)4Y3!F1MY!8Bwf1>zR%gw>-(WqiW*`4;%Ed`nkC7`vj|-5qHDi8WN9p5t;{^m zYbv4vMYa~$$1aP5U8pLr1LTOr<9p&S~K#r+q`?;?-}buWV1~SN!jX#vHff}Bu#-y zrW7_0r9xDbq+L{FccO%dWOk-%MRj6}V<)r-Hl0qtZSL-*f7UE4yD&b813Kn5Rv{K* zB;R}d6H^>L#v46f#o)E{M(=)L95zW zi)$J#OJhHxQNv6I6omxCVOM{lD|d9ie~u?2IU4#zwe2wHoHf?BUR{kCJ z<2slq48(}A*$+m%m6x*2G?>!NG<3u*DQx8LY+(*VE_I7GUp=jlMd~FA2?|bKzx?T( zh$#vARpD;zd4h?SOxqZbQINcvwAWUf;V6H=Us&?)B`Apr@Pxv6UHx`Yu4O!MR99ex z=8|hy#7x_jrdI0O1LmBo$x5r7_5160B)DE=eU}lc+(wC9I)28Of^9gL->3%0nYza} zw@2TfMW6(S0LZV~)<=d;PUo6#%I!o9v`1BY0g^WOfEGM8oIvQ)m%fdRNw1rIV|xdd zSjx+ay!=Sy#_cntRpST6Skvp_4N^oYU31xz-^N?{`y;<_nKC@ZzDz+GgZg?3du3Le z)aPn|<|xGBibNxngSMH}sFy7s}PbpZROkRqEl zHqC;9AI;mIa`Bu2D$;{XZaDHvqvDx57V3GZlDz{;!WI%tL$)oCYrH@@E-jL4|KCGucI!z4hUE=fNl63^b$Hyr}*d0~?2)~pb%PU~eP;xeE zM%4{)fxqAM9-k_A5L$1xOow+gj$~QNw(cP9H`}dIGTG@J$ONYiJI^B$g3QdFb~gM5 zvWTw_)EFeQO}M-KPdMd}2^XIg6c5sA6iF%FRh9OF>kW&dlsmPv8=!qySBL#g9jAC^ z%v%Gxko1SkaHT3Tqfl&a^KJMWCQloYFpkZo44vhujx+0dhxQa72}%q)?g?dMjNUBN zFm$bm8&9RykT?lrm{wHYXq++VPWH`|+rzO#%*C%-V=B-POv+fbTEJPG6K7 z-hg^_-%Zj1`hJYn&?asV@?jC*WL3hero8Z`TwWv!dpMS;uiT2z)zY{SfB9vcto_)C z>`trMF=Fn9#~$9Nge85SHGNGneMiJF+skKAi{9fh;4GdRz~z|<6KkWf7|R4PPDd#9 zeQ(ra_-QaT0R?Oa6{?h1$Ti}PPm`9H!@h}} zk6M~`W-iOc5?6RJ#o2&!I_(XYrYCqMxvDZ4xqR3BbNE#dNZ(W@ZHMS89)k^mM62TewbBk z^qHWJb;>0fRX{oyUI3!1SJo3~TmLqJn1F_cKYLjuXs6s;YqY0} znp@exJ+)g>^l4oC!(0Q}K7iU}Ad2nZ5k3_yYe#M*dNi|B2$*b$OWH~ik9+bxFGXSs z__Ney08KHc2{Gela+Bx0BVI4q83G00R=1pCfYSAxTSep&cIi$yUZs<(24^OwBU(v6 zouRp7Bik61W<{Fow#$m(H4`}Pwe%st@g-=so|^RvJLTfG6~`JRbq~E791XMu!xP^d znM4#wK&wiCZm(MuBgR!cf;5F0upK##W+N9dNhhHbh$l?%&5z#qm`?^sYWd}IEuG!0 zC4?ohE$&(A^-62XULGLa<%jXRQagok@Q|^Cd?sK`k%y}k6U$D$^bRAqhTu5_-F%dB z(LBR%C*+%c2i3!FIO*8 z%y{cf>3$KAC`3Jbp6}eaZr#d`*slBK;99`60$ig%4xgKBLAD*90rIg(&uEbGae}U3 zh3(HK8Fq&3R<2-|3(#|{L+_GlxPJA$t`%t3w2*2kkn%ULhIc4k+XgYUyX2S7MQMNE zkYRQVvEsTK4H|vsn%QT(f;KGYeFZODA%Rlm-e8+8isuNC#oFD*1eAzqUWohsxXh%U z#{sMX*Ld28k^M;w&hNECYR)i=ywo`f%q5=zw|LAdH`_hFLYUDLj4GoG-I-n8eZ!Z>vC};wT zFJZ{>CY{jt=x``ac@0^ozaLd?F3;oXB~ZX)cvKCIcaIr3xXcb2=%O?EB>;g{+`RB+ zG}nJMN8c~QugA~2VD&A`G#O`IEBMz>`%$qd9)k&-Q3YE`2B1odrrZ-kxK>$HXmx+ zKgqDN_JR-|X;9L+@%m4A86(+N=0)8y&jcoSTiE9YJ+dJd`= zl?OOa>!jIJeCjzbl*+o*Lf(ly=5=netKrnHutxfQy==%8kjj)dO;@%KX)3>HYmp2@Qz>m*MCg-qQ#;!2+mDMc9rQjlRA_? zcyHw`H2s%UB@{NoyqAmmR?cG%XsKGfF|X+9irU(nz?|4t8~2KrGPbNkKE6tGHAR#rwAvyn{=2t5d*g>`Ijh7h>b%k6n?910KDv z*)VF=mFS4N>IKuVLz$n}}~Y85w^=!~tjv;R`W(B=|JjKX(X2c;p&N{yI-l$taW zXTJsxpV3TYd60E>o_v9H*$Q<~GY;FX9u4?9p)>!?-5UIGk<$6Y;IDlA3z6bB2~V+) z&Sk*g@7OJ=gstP~Ci5QUj)#s`vekGD?M|gbJ<;o|)zXurI2d4m`LQ`Y%&g?s_WnxO z0QZ%2HF%D($PW`_HC-qM5%xS~ECv;9i0ytm6{G{gH|I9g3L@Abfk+bes)#-UJiDC_Ty;jJukI+n&otOS$~5(tCzsTt|Cv*baSp>*ERWN-tQcNt`F|6&cZ}ksB?Wa3+^v)UqgkQ31Ab@ z5B21Ekn|pSa`a%T(Wzz1s$nG1Ak1e*1?OSoA8P4@uU@<%=69hqV=$J?zr~B0VW!uL zB!-hSk0($qkM_tz@pvr79IRgjqZTo;3>7jlmW&kahy{?Luyb9J?p^M2t$F8X4lvWR zdI-?7Y8Xm^B^-CJ`?bztTd&+0!XTi&ApZO=JyxYu_6_m&P)@@zK!_KN_uEGHBPqgZ zEqFHDQA&W0M!0K@`=7YTu&L-Q75T1>q9Zkkbz?~3kx4icJNuXYP20;Z>x0z*n?+BI z&>~13f!Vt|LF@i8Iqu4${J#m`Q%yK(SMvM*p1SfOW8P<(k`+R&u(yZ&jc77#^7d6{IeNJvWv}S%N;Mt@*#>f+=)09gu#SdbAn|P z-@Tk#5mzDG(QAvAV=?9uMcn0h+KIUGP+Pr&H4uttuPDsL)(4?@-EA9wX=Aufv}%yg zP7^$HuJC?`j6$i&s3=o6Lq17alxkC#H<|FGW<}1mVg(W=a{2Q5vh(5GZrwtrT<@od z&x8t2KF55xo01ndxsSP(cw`J}jJeirm?;4>EUkQc?*|VzOxjWLu1~jax-NaRvrwcc zOc1Akk!=~&d|e?Ne4q#rxu=W|p_9~sv=r?VcgEA3oYz3V6#M@2BT zXUb!ND(x94iGc(#*Q&^s#+)UtkVEEx1pg{g7Dki~EAT%=gzXjNsKG&)5NF&$=S@7$ z$y-a%ZJ3Jv3B4_35ikTIy}Y_nY|g@8NU`BekWL*&(q=xa8ta`J6V2PY%+_PjW{ot5 z$o>?61J5S1BkA`&CqMhsiEe@|BMHw(+z$^O=l=@dsz*nC{uLU@Xh1d2sdS_*StY*) z<%@JUPK@9oDe2UYATm%e8IGG2NhdH9Q6!@=N-vCjCq-aP!1GK(~fH0?l^5e z$u^?}OU7G(S(Tuzd<2ms!}OAmc`5uEjBo`}AZ2b3J~OO61ive*bi^bL-8`&*!&ADH z(wI%32Av;k?9`t2nwv59tmN!eGZ+AiGj!}VHGbG^d(CRXX$$(crSjR}7U3Jcej_Sf zy`ALD>X^BQ*cJCK$VSDXdT?X@cyfbZ9pSUa4HMUi0#I6I>P8yxA^rr3Y6pkF*|{<&oNKEAmyX2QA|-$sd~tLn<78U2zlOaeee z=b!xBZ!nj}d5@i0NS@_JT^g#t{R2~QRx!3(y#}0*TLSeC{0~U>&bpR(%RRu zUrFhx_pC+1fbd=#!E8t{_WG^8a~UXSc(B_I^ZS1u z8n2G=Ez*3;Vs@9>S!SkW78vSRQC+~vOG1wOp>m!TDp!W^r{%DJQXCJa0Fw%j^s9Zo z?YF#*XqdUf@7Pp9IYQ&Iw!(cS46{GJF!H{r;0Xj`zN68E`%=BoyOlnt-?W)s?e>#f zl97d=8?wOFAHE^SzKZFdd%1>ByR~3Dm%dP}^fn<*JQnWIL(ElhD*dJe8z_&))eKC{ zp6M z4!JTeubp7PSZ5!Fy>R$#f(YGQEVuBiO$?~bas z6jpo_zv{6s(##B6J*X`=OzzH_b&`hzgB1gUmEoEoH){l}Fd~z{3&`Q`-LeRjY|@~_ zdC7j`S*kl$fhf4?dt^!{09d+ra|)p-2Ze zp`IPnIp*`qrVJaAbw$`*yBR zX1c)E4r?UKKj6|DLs;h=`8D46ECURr2{>(&CQbT#PQ;m1|Hs~0?NU-#@tx3k6(*Dn zrksnVACoL@5Y2G0Cl$EGTJnc^lVNK4?3!9rJARwIvvn(-ZT_S-ltFnZzy>GEY(^NE z>}dPb#J#0&G}*l1(p_O0FIj!GM7TioOib`3J<2On-DsRXy9X2ex545w6YpM#3v;0# z8eEXD{a+clbT>+d1o}P2TCC7IDb$qMm-&-GZUE(0Ez@{&&M0X@OcX*D7H{02E@C+9 zx|s?VtjNh;4XYrq;=gh-X;D3hqOuh8CWM(H4itxq9g{TYrWC@%JH4Cz?O`pugxGgZX$dow2GJ0yCjBDB@gR@z(c{!Iq|n6@SKISZAk#XsHp zdhuAGR3t}kpR`r>q8*t%kb(b9L#`&#vo5|whah2~dnFVw)Vs#KLp*fPcw(z78|s)p z=YCegG6xg5K3}Rf8PKocOD}u?Wi*st?(q=dKh0e6z{7^-IQ0g5)Q$R*HT#3g6pu;J6hfOr}1cl2etM1o{D90znPwpGqj-iTW}wO$Y8}~1iqg9u0Io8d%sh$`qZJj zor0KU{yHR>^d;|Kv^dLP5McHa)r50DgvZViDuuB@i~UUQw$F0qDij64sTRC_rR5kI@)N-+xZqJB?Po+)vyzsAcD zG^s96Hj=qDd2DbxVLG0cand)>-N*KlpEW;l_=1JmM04cp;N;pj%>rmB>tbUojT9O_ zi(}kFo>mQjQKo-ed6|e51mp_QI+@2%e1rKWt`*Du)X^>rCLZjp|8UfJQUIQIZ3%>U z3JlCKUONts^C=q66oCmuBpcf)oRYN4TUUR@sAGImj4Id=kcV&QqRsS7*UcaWZ_KV- zMKn2pq|hn5N&Q_DIIIrIS8}NQT~azo`Sy1NO~+1Bl{GyTO1#LZc1R5Y&X<&cYHrzZ z>$DEIBe{v?66UC0Jkg@mSWlC-_Drdam+v0m^i;XN2WUD!YwFwuel#XdwQaalhl|G` z8+3I@Nl}IFj;OJfUi(`nC`0%x&AmW{2uD&z5rnaXOtI`_1)Xg)W*MP%T3WnGl1}11 zlP5eFJ%4FB9PE0rj>aQ(@2V8r7t*=X860|KLmb;tTu&8P8?757*}w>U`8M0=^w&Zp z&r9eMu1s%_WiknWP+U~E^6GEtFcG(do|7SmO#h}?v502P?>}VjnWtfjj${-%xsQB-<`+P0ab=~;@0_vTS<1WZZD*u0Kd`P2UOs*OHs#FO-D>WQ+tbp?-z z*G?A5gD@begrqDyT3-2BH}gL(p;8-Z+4MH%8CKT0PtI13HZ!=P?D%*_Q(!>;nNG`H z+WcRwPE+KYi=kWnri#|UnV-bAEPO8Sx&+F_dILrG$qlpk>PFKWiIy2wnM@x9N#j+> zyCxF8EXSm@4f2b9P5wOUP=x)*Af2vhJ|>aHtjc;mnXOHEl7MPl7RJ1l0lbp+z$9-71%eCfYnY!%jLlJ zqL6Kufct1Ojg88S*J*wOd&@}oe44|$?4J(FLrxwk$I8&`bZc6e>HeT5Nn*3{D_}7@nx4Ma>6tndTbmXO9tZJONfz^ z+@(3jVPWfEsvGK0xF2r&<2N0a%GSk0os~D_Tbx=&;Ay)fc3T2N&WxqmG7=mA7*H(I zo~|BsoB_3vW;^EI2cUP#O@1o#IvY&&gw7IcagZ+LWK&X32^G!I#n4WtWfV_v$Dnx} zIFK{nLuaBj9^Kbv#Bf`mB+GEdu4NG=R*gy^SbPCt~q*N@Sj-!nFOftPeIcP)Q%? z4g5$8Xmoo#?0KzZn0}&}2MDcB3`Q?kGx2RMEVZOD;ENb3Fm&VV)t^*LyEKzYv2cmC zbBpObhmw%N66qW>p@U;|C)ZX^_`=j+vL-RAf=HmDE1cSXCIh?+pdOVKxX(yUZ@Hk$ zuyrBl9fmI$#ln&NG;s=*b&3LOrEG7{%SAw=8mm$dzSWkb9 z;kcWCjk1E9&&pJ+`;wTGYfvX_``N>U?BtR>vV*+F7t{sgi%|a?e8pCV+ijJUY=?&8 zG9gCvuiQoBAS8nc{|3b0KfFc=X$GpU(jw(URh&R}@Mw@B+6#%xp*_&2-;cV4Vnq(f z&7AR#=2+UFU%Uc>8*z(gNp^$eZ~H%9lX#rqCH;RdW~I-+5+WVW9mTui2|*SnsU9R2 zR`(ac^7VBgCS{4dDTRQEkVeL1;OhBYG<3&#ptagJIfUy%67R+c}&CelM+?25)S95so*A}TYN54c+UeZmR_MKG{ixr%fxA0 z$upz)3=Mt7yAHuzk$l|W!8Gqj+Mo$l(cv#Z&M@1wLVqX8R&SNbDGlL(Mj|>lf=tc# zw5MXGMg{Kd+s^ZYoH+HDHKyDbQO(8itNQcemqD5l6c`M@W?e051Si(YGxKdirn1gA zE!YpoNx3LkucIX8!G9`Z{1l^QSr5QpoGh5ou9?Z+1Ul6i09}l=xnmJ~(Q4wU) zMUgBGO@LA6);L~lojz+Gur)x)`QVdcs;5pDj?=U;m4m+z?(ZWAYJ zXDmk0x8$sQC$BBC+Ctq3i8*_hkN--c9u-VvsdU}>ZP4mYXuI-t?5nzy#ow=b0naDn z_k#^iCInf&r8t}<0fFJz4f2Izlcpgrg{^LUV*MsuN3Hz}Ci;;@<{f#0j(v13VwnDH zVtvU^1pO^y(kkIfJ$HWBFfm$N>nG-1Fz3U@kq`x zta68WJ&83mq{wV0E$nxZJROo{8deYV9O8nx0G#`cQZ)NEBB;$Vm?R%*j6}YVivs)| zL9O-!N`^jLqh}N2vC91KU)e5Tb7!3YAP0HX6{fYm?#l?%P0b$$&Jk!@9RAvR3edrN z!BDZbxd{^D&A+L9}3j$kia|SFdd&3cKKd$cJI{Q2D*M>3%W8kgb)0L`X6KVuye6BGqrFsXJz>};B5a5 z7Tf=Hrv6!L5IZX)2Rl0_%YRyGQAZ0;Piqqf%}=Y%?B9X^i_P}G8^2)v9NPLWA9X0wsC-L$$rzi0Kp71^x*%S0->v}a;;QcL^$nWLpC5&wY4Z0VO z{o|)zHY7ViFBKy2?WOzug83tN)A#M^fyeXpuK+PJQ7V}L#0(_HPIr+28ak#Q{QDDC zX#B_V>Lq8swV${5OWN?^Ve_Wj$C|*_^_$nK8}a7Qm7wqI)A;bjDbrKBd63uZ)9Emk zy9GcR3^{N~!ak-yAHy0{`||np*1Qc zd#=jjjogg-Ls^YIZNBp>7p!>U$RaNb-)9Mxg@H?Odh5+_zLueYU zD9ai$^v(`D;R}g#I4RNt0Oti;JMJhDGWOL4dW>t>5QHD7>bx(;5v=2})ZUzOh^b1h zrb~w1YT>k<%lwRlA&!)CPpOFvKyiP4iW@Esamvn*<#8MuLbX;`Bn|WB9`qH(83@9F zMQU71yhtLkPdf$)A0#D3i~w-@F?D;qf~SzS@CDFrzW`#yPKKQ#cEkvN8K^ej+1Mtv zVX^wyLI*WykXwuxz$SewWM$yQRmSY;YTUvL80sU3PT)Djd%U8H8`w#(A^zIbYmiLT zdcCDH5U$$WHvGHKP@9$LOEqtmdT#uOVGn{hNzs0K0Op#sB)vn@buXEyE;EWvZbQjd zDfb4n?NyCv1G-yp`{OzErQ=k4^N`UMTxTwD4 zQ|Ve7hcrzIn23wOk23R|m=@<6WV@wy74#yqgWoId%+Pqo9Qqva&Kso23=QYC?{fK7 z?saDU0W`;x-#SQAb_OXfgc)Ij>w4jFG3_3Vja@kpZQX-avRegpB!P(%GT7SW=He8o znv%IcH3P7Tn9KEpFc-7BfW!ZHLo=8~*L%sbL#)2{GUksJafF4l&%*5?5Z zXC{g>!%*%4dS_jHTb1PlRq84QyT7l#dporUDZjx-Km50{tN%f;0YmYv>%*nU-e zd6A*VD>)M|r|Dv@NWW{$3gES`f$Ls{LP`J8+hM#%DaXW3@QTuB!*@Jn888q2%AI37 zQu}Nv2k|C6lNdk>=PuvIl!OZ(*96Z?Bu^QJ zf_p5Py^!e}PJgl}VIUisdv*;^NZ!s*w6CiX_GEYAJJk{sgU_DFj8CQ%x3n|FvCSD? z1nnc%VC0fj+2zt13C@>D5{DMR#dycQaZ1)r;8vB zeKWTq){m{}h~>W)hl+~tY(u2?)&9DT{l=r>M^f|!BiP;Mx`S2j&0o9%#d6 zTvGEHxQWLRryAV=WhP$YyQOU~fvGWO-#2d&pcv4mXS#MVzepp?$5WaP&YqL0+8&^L zJkP&(;ZyVLqVtwyw$Zmob>m^lD4XAUSAD8d%LBMv&~ZqV4luTjo)pb})?2c>G1YbG zovZeaM*(C8o35xKd38k9)aBTwyJn2a_Lk7q4F_f!)2zv13=J3oLp79asJ{Z1 z>&6crbZ_guIG(?XgwfFjG^<8hsUTg&i&t_W*>~qY zABP)D3ar4IzN`bE-Ja$*pR>aejvr zUhLEN!DG^yp9^wx%_%10HQddI6ift*B@?xd_Y}1Jee{Rk=S<5PIE6@cKpJ2c$2fVc z&K60%yyzS$I-b{vKUXe?^^y?M^uvol6j|$fNi(dPP$*GyJb;|t3#YC)W75>Qd?gH< zpk>336pMNfeVPFmvUPe2N$WP+hXhIXlnIV$7)>3v7JrvG$=q(>XI2Ji^ zucC+%79|Lsf$uPaN4u<)zo@qi$v<4vl9`kAl_KtELXkPm)A(pP zG{k!b50{$O_%_7{pvUlujlgtelr9$amd?MX(rZPJGiiEB`l3c>T@>^e=WcUutOrZ* z2MR@@TFAL_(1HCkuOKTi*>T0{H-L3jn4`plai-h}lkeCF ze3`}jzwL7s$fx`_TH-xX@8R_niLXPrNb4iW`xtXp%5V^m9+IzCroPTkyS|H>Z2eB6 z(eQ4}*@?)M=j|O%%oCOR^|3&uXs~)N^Qhx3CgfACY%f7zOx;JsU8CaZxTE=kS$%Vm z@(d2kOz$<8LBQ0x)H%$N zWIcg3gbCCR%Xi4P5a>v*DY}j^80;Kr&GbAbM+V=|E|_*~|Sa?@iG%##9Qn z+7uUbzXFYOSIUr}CdAPpl72iXe5u)4fY({X?G~$w7!&Coo^G==yN79$ zRCM6_T^WmfV(!lEf+TXo zQAxyNr9p3Or@T*ZxU?ih85@UJu3HMF|97(#>-K!^R&_2k^~@1XnQA8=`kEwunk;5Q4&gN@x87jPEhU}QP3K}lLLJU3 zdMe0P?XTmH?tciSOnu@j7bBLIOhvWbIK>HDh{*-oz(L4_k7=!$D}~Z&UY1vgBt(Th zE11Fnu*LQ$qp^o(>Y~Y!o$Nn+n0K-*kGyIAct~(OOm_sn$}or|D^IVdc4UJglB@=n z@=J&Q(?eor{eS4ftyZRL9m7Jkw|X4u@o*kw%PJ7TjWDNA4GnobF+G`vMnLg)2TZQ!` zqri_nJZfoZj9U^ff#t@)1%nUL=tjGO6O_@f3e0T2-3-a(*cAZRcZamxkotfUd_)|C zpRY&C$y?#bqpl(7g4}0s_3qRjhqu{5&CM4LxH+Yg0ozBS##hK&gPer|2ji^DG12;E zb)u4;wP-%JUIO0+Qt%srErvAr=4;*3|U#uNk!vII;83r(Tvu5Cd&bpBGI67G_(Ee8>x5m zQq-2lb@Y%!{DWGYOzUb%>&7qaKEKI!Qs-1mnI-kHQI=^IA+++Oh?60WUg1utA1M_u z9W!6lwFPJ!==Re&Ey~yHgVXY88OG=MV>-bXb-j=2z+GJn5L-IBbxWzNbJSorxA1!L zbse)Fm&Nxi9N#lst9kMV8Jy2%?(_R?R&O}WF?@t}lS01yc#1;zQk5HTr>Xzy#Q-e$@yF_wAzyi@-Z#uP%=b`rrO9ElRIVij;j+@3 zg`rzF)C%EIW|noJAAZ#X=wlRJ??+@Z3^Og8E&*?&!G z5z}R7#ZJqVH`^h{g4h~doqKu~2s5l9AY{F7Lf(#Hy=RF;su^SjSn;p);+*9SCENdN zJJgn!s@=tRTp?+~_d^rwlyW+j?Ry2Psu0VTCKgOLWjU^WBm6Rbe+t)r5PS;JL0i*Z z?9O7SBC=K%OF~A?6=DOonI^t4hq}03%;(RD_1_hvn{C9FCJkXxnN7f9TfLoNv;ylf z(y+ZF7Kc1v=%FPujw>_FV-r;|HSvL*@Z-f>;(^vHhVlJAM1##vs~c0=T{U!@#3BS! zuEmId-A(XZ8seJJ){0S6@OX_EqdkK`=wt+kzLrOi>OrVn%V3ieC6P&u>1unqm!yKV zn(h$$!k$Ebl}Q$97MrA9j}C>2JTXZg+5Q-6-%)Dp6jDfCF@;wv322TR*)NPmj7PPN4gS2q81!rl=Sn3lNZQA;1Brfll zyb5i|BpG9AIW*>XLS60nATKP0?hcj61 zE==<{Gt44?}_}_6tcJ}`Vx&3bd5IYC+f63q2)RB#)>#*LMsXcM_s}z+X zBL{}WOv@P&$AH*70Mf;cvHpR8R_y&gK7>>fWONo48`-=$xhuI@f5{Y3-R+B780u($ z>Fj`{=E~jc5ndi5`ntca%f3Y#heSF8rS^Q^9=d)zy`E2O>sHTut`dyfiJfSzIe43`a$#mM;enGBozNB`5 z+3vTm*{{ip+2M}6x2JI9z0j$IJLt(DmG72Uz}5t%)n^dsO@74HTfJ95u7OzWZAvpM zgGk2Vn^r49g8nRt80KAVdz50z7z8McKh+au)+*tH0TGWL1z0Wcj!dqdF=CGH`@kTp z=bvnLKYtBo-yi`~%xd9SV!1O013fOuE!Si<5x;X@U~mXVjLmbiPJa!a7)$`3os;)8 zoEaXab4C)%W3khLcaxi1h^1H_7f#?v%%D~W7mAxP?1ONn2um-d=Zn7XL9Rsn@{4|v zf1eC#@Xm64zh%(OP0LkP2Z*;@Q4_|KIayR~WH?UL!3e4N#JLo++Y1ySDB#ZpF)QV{ z8e%z*Y9T1BnSl#O`XhIAJ*c`}=&P`?zz!(c;2HEk3@JRQQ3RsFY+znWOTiyEVbeFm zir=Ds&)wV?TE!_bz>1xc>t(n*)An5l-X>=q)+28pLdWZW!NVsx^rCm!EA znAI@k41(W$fDo)|=Nes>?|bdftMvYCTkHEW^8N88==*W&`)&XF^?Lg%O$a3T6F>5r zkme2Pv5mIR+u)@iML3258o86quUp+qJ7V-hJPD*Gz5_!&yvAF-=#PU6Ey=BlXd~oE zT!5091ZoWu(CjCc+UT#wbjF6p=y=g<@Va?Cd_;R$6LCGxf7wX&8?U3^7zou+mn9Ew zaH|Gx^iS8~3a7vp4RovAb)dl&C3OplgSR{Knr@kg8oAIQwCdMoclkfTfs%& z@$IEB&C0_XAxUrk@tJfNgS?|bL{V|D05`P*ibe{7H~AGMH*OLK$9*SIP9NxZHu|o7 zXJbcF&1KkQ=j9d${Bu3ITh`@e(L?_QYyFSUj;T(IRlx~bSU)VN{0t3HC(g{#}Cm-P2;4c&hqHk0+Xs&81{PgMk zH%UIDI-dX9O$uB$3}HJ%iZ+GltPS?1-i`6qF56&^~+zfeT z5N7~({$Mc4(}hT|T@$(q?wHt*yVRnOr)vV=qz?}!>#FSC>$&5Oxh1eZSP7>P3P%G2 zpQ>c0Bhi*BQgev5L|GYJX!qFr?$?{}NvLU#t;&P=af=cB*~7ZTQZ;=wv>OO*ndPHw z)QJ-4B_M@3UPsnJh&Y5}ODgW!kp!A`=eaA<=#>}ot&5++&mK@?(gK^`0DUjfuQ|7- zQRfmm8;`lVt{(M>ihx?y*A-4rh?MxHnOumoV&Wh`e0(M#FE`DYY|_zMlgu8FPXv$Q zP1ji!=s8t6+^pd$cghcclJw_~M=i~gBr0yWKz~l|0Rt5U3Z408NbB>kq&Y5iH>eSO z<={VJ1cQw;J{*I#EtF@8m=;x)jCet3Qc`u&4*PAV{enPV*_Nt8m%gI|9odhXOm=Wn zo6s&A%3pJri#>q1h8lcCGG zn}&}A-FZKBoi+}UqP3>_V}um|eZm4;tq)hC?LH&Jb3UI{cv<~vUu1b@r6^{*xXqqZm~ghT=`NQN3bhlx-R-!lSM6^r3TS_y(V_ylX3C1FDtV)cBJspf7{wcnb>$@k4e=(&ur?p z%!T!oa<@{t{*!lr3aQ5m@z1@OW)vI1PMs_#97!_u<86_y^Z~KI=TSPNRP8p?8+>J4 z!zAXl)(iSv>E=5k;z+eaMB%ca$>;?F8d(~%kc4seQaNjHlbK{jHPjJMlGE0ys5z2& zfz%YwuNfJW_8n>{HzHR(Z)_bl4b%>Qt-#|J+8nhux5iSKWiAYM;xIh);Hc5VC>I0g6k0DPOTi9RjoB z>+#36;_LFIH{k2?r&s6e3Wf*pbp_G`ytWWpkm_lr;CVKTn1SJFZ{aBTdV=Bces17sP5bIHq>9wz3#YSWYLix!fR|A<`1{!?7oNWGv z_=eqA^fcM9jPmE1VCNcr7sjuH_Bt`~L=JROE#`Q*8wpk5m#LEiH>%WNmxu7l ztA}AWsm1j=MH>l6ljn8a_^-M4A`7Mgftbf0l7+wCB#RqHk%*$r&v%havGNEBF zF&WnkJMF95#6hJD7O4P!FAo$!j^3`Uda7b-^I~@2t7CFw^;BJ1;yFN_foT-1=y!LK_My^V++uA-_70(@jc`Cw2=uknuY+*F zCDi0NI=Ul~2h_YwOxvPrODH4S4dkEl-h7-%As?bS%_UsX>Jl%oIn8bAz1lC3!tk^i zN+u42qw)gPU(Jyc1KO7Ui@rjlNyQZwXf=d1-qK#?d`6M6T;xxor1w zp7U-{oah>VsB1AHC9Xr5>nt!m8DKGw_dt_R(%>qlc9F<{4s(){JxpEV?>zoWs@i!8 zI?;-OpD8-g3kdzw-Ezr7Z@MQ<*`^O*MzuP}MGkL5cN!!JB) zzDze2*zuMw5vLdAxzr9)-jzk`v|%h^m1JX0;FA?k*@LKbuV^Rl?!-QN>Zb}rAJf0E@ zh?uH2w!NCi>8M7}4qSq#3^=5rW7O7jKsuy@(bn-!)|iNs!e#`CC#dY5 z@3CL)7OOZ>zmmT6n|E$QbS_(JPUec4ru@5#yf;j@c*x(|HVz#y8`xvZ1lu0TccWkA zjt?SY{_a0zo^*{p?Y&B*kJ(6?4^y$)2jesm0c#r6s?kTA+u4&@L(H^%EvO8#okN8 z*nxbi^VM&~6r!zv8wAUoTXq-SI3UGw@)jVR3xdCO5-7la#pVoMk-iN(g)Y9IE0ERG zs=pc@CX$S#3c-6jIaAVn6B;uK6YZTqd>%)d7dC3w=5Ie*s7|O}`ZE=Q=IK6b(%N#| zsqfb!RMOsT?;+0ovVN)D8mkmO4INtz4*NmcE4zRVU9oD1d8+S3V3M!nY;_AIP6!1| zLt}x_KrY-@4GS$}nTo@)l(07_v$Ax2keO`8nw~jj@vz%D#Z!A6J!K)`Gj1(8GeJ*g z;Qr=3xS*AI_(*G)nw0gOY;yIFe)I8$If~``6E|F;A~cFcsY4dg+c>T6IIk;~I-hLW z1+S^OV_~}4W$BvR>^AtZ8QTB$;c)y!2KcJ)<`d3h?n=vpzTX~6*5XeO^cr>%$0hp^ zYdMr`?bF#l1^S=U)$WeyGXRoBi@gl8Vn2%{M>L69CbyW3I(H@17A7TIB}|{oQ69t5 z8dd|M313T?_mH-R8VOzq7Z}a6VZsAFEw__l(ZGVDPzpilVh9&K?@pt@nme6&m;_)Z z3`|K$VS4P>ICVjNt4PJY1F{-1HL64SvWNV6O&lE~x0p0}yH^DmHEiUxuUB{rk#-Bh>}L@CA$rGg zMbm|#+B_;UWtcRk&TPid7C?LQYg~Y##g5xp7q`{DkE1Xu`~)HwK-p6m)Z0G93G1z* zgJ$9g=_Xx^YpcAD3=uh7=o;N)02Gvpux_pb4omBEvPL86Mc)3>w6) z(vLTFAPZ=s!Nwel&Ay4f}Qr()Vw3Z>vOC=r*`@{}2t+w~t4tNA zrdD&-Ic*CiNJupg(TJ8Rteou3An89=eH>Bxlelc2Uo{kdG@#yZ6Uz_!A}U{5HK2+0^T;jH{-6_zp?*oFo(7hHpm#-{+6(^CZR{S_W)h-{Q-E zTe}CBH}9`qq(@6q<^i&}xx+NOvoNL*#LA-r9E|{gU?}C(gSF9^Ob|TGjW6nFR zotm zRpmW3l@i(tDe4-oQ>FIBd3MR(y50TpbodPvt}Vp)KY+%Z|DT{SD;xKJRt;YA>%@|^ zTVH?Do^kh@OUI*;>(}>AUqr=2g4#Fu@ugMQ*HWh#@x13GyR z)m>t5q8VYk?dZN=r(}+o#22zaB;>805ZZ3Kz%#OnJMiL|O@XvzgU{eY`Yw1~EG=Gw0+6xDfgs^UAVESkiEzf~@ZS<# z?&yfPHa=A) z$;&xr(WWUbFiI?tG!ri(xXvFFtjlm*478ufVGucYZ~q7^y}AeGz5sw5iJF8#EZN;> z-$K;Gy>1QCp!Z!mN9ZGKhg~36Jvm2}?=8tLiBoJ>pNwC1eUDUIaXqPkXf8LxL$QBYw#2f!}D z8!HQw!it8q^GX67Qy8>DFE-*t>Nn28M2vbSIDUg6-@=WvV0;0o6x=ZzUy0!`*$kyh zXXrku22;-5EkP{6$bruy&%K5M_~4V2o-xX7;qJ?y&2XvY$X~C--20{V`(r>)z~|%U zb$$Em9Z}HhbN~Cp`sL;A?hR)i^V|I8!F&`-(10c?6;hX$o*v@rlbRnX+E_;V`fA|Y zGqaCS>J{8QZa;o8uGr~DgGErk1@caCcF-J2m-OzQwM;^R(3)jiFyWQ>A9;H0Bymgj zLqp>0L7KPnpkcba4<*l7_%T>_%xiGP@s(8j z^KllrM!t`zF@}d7gw{g+m5no0Iagz>a9~%EEjnuhyfJ8v#LCdcO!3 z(RFo2jw0)qf5z|HUsHH)v53mDeGcPmg`}JPXB3epIeF5pvxb`}U5kN5kblV`a;zo& zK`qk>%7OyMw$-4Ye-mI&5c8yuE+3_hJ>!9s1rcELYR-Z3u~)zBCJ)q^D8?ToApPsj zh@b>{FYjr9!_qbYQYX#pwMlrWqHg;Qflj9cR`v&qAC4x5tg@RP!h_i$Y)5FnDeNb` z?wB3o%s{`iysF@a4sGlcDGeA;Ms-SdM?aI7lsh>T^*T^;q|ml`s8@e*XK@JZk9;Si zyeyn;pZ+dLp#2S?zDhy<4uh6AEkJ|yCZ+oCd&OLJ=%$01tvYa;c?Bh>7}3;mK1h#^ z#MN(E1)YaOs;uIamxDOY`4&alFzpS%x(AHd$}fyT=Dt~RU?BBKIlu+QetL5V9q_ZK zGohyX$Sn6}=-1|@>rWp%8RJEeZUh%y-Ga$!40G90dT1JzGO|A*20ye98p?$w+dh;7 zhXlDeq!``^Kx7LF8;E^PoR7D8wI#Hl#pA}!MH)u}4zcCjV-x!|9eauzaljOm6hc=2 zks{d@A!PsJVklg?FOU2iAJ`8LkA|%$maq;n_5xg{-bJ?V^y}n~?Y97G?;Te0)#oh!Mn};*nw1Y9K=%$08 zaUNzcA6OhKt^Z+nJ-VwY_t@6U1o79vOzRV~Eo}hezzpZi)*KQ!0>R*E-uUbM%Xcd- zg$tY61E>TJ+akX3P(NncD@b#Ul%^}`TiiF^_qU5E%znRL38P)W_p7SlpN04v!R@os z@qEGUFRx0^xBcjRpRatMn#{H@uCKkB*6Ru8ca;V&dfDYv!T7m3fR(^%klKOO+wPj1 zP$5VxiVT?vcLOpObF@h$Ln6DMQ4qzoqS2aA&)NY$Oxsj%QWPkp!@9JuI|~Bt+?dfh zJ;c`sMhc84r?nW#2@VZrys7j#B`E7+*^mxvndR6h7qgcqsCE5CVfY*p{y7=mQi-D- zsvA7n)l1$vZ_&wz(Hi}5ONPtrT@q{EqM^P~YeF;HU0_D%9g8`euh-A<`odc`9xPbdHN_-}NSQ(VixJ2M2b*rUm1nd`A!{f~r zcTSftz%W4GpwS|niQf3hG;{JOt)kXh*Tl3ZjZ*fsa}p!&EIS8teYKon>(srTKHa<3 zW1Oaiym8gYNC#?Z}+@puPNHE*mVB&=l5m@6myLjlu?;72rMSOq9W| zT2*)&d#Jx}Grpsj8qLrI*s2AFiUL#L03s!3dDAs(NP49TJ8CJnlthxj%JIpkR3-^_ zJ?m2~hL7R(L4dXKzAn9G)g1Alg|Fe)$iuySn;?dzxg!vsqj|TsArqi6i+4sJ&m9i_ zOA#WH$@?$i{&^{xDT9{b%2@|PE=rQw2tr`8hND>9_&PcS>xcuD#wk4n>pDzQRg(}O zz9me)Q86L>_OYNtqJr)~ChG( z=imAyG#TdrzcU+)EH+5`q88==^VfvIg7MH=poXS zk%dyCU5p&IPBNVi3%{y-ni3Q%t!*?>pvRhiTV75J)^ueldShy>sbPzQ2WB**D6w($r-9H{$g;z-{^7%*PoqVJ(uAX z?b2~%-B!ZOa-R0^0D0f-0iaU;##a*D^+mc5(^MqJ?kjSahY(PtdyS)qXhegoun&U& zKgViHD~dpk2+s=pLdXF^aPSD@_CEcTeYr?)Z3CwF%zXFL_2?#=2c$@bzr#>fmtoom zfukxkI){N-E3`MI6FTj~CJYY30JoqH$+3%kH>zUv4t^%fd+mO~O9Q^RIQ(^7MR;cV zyzL@}@RdHavA%&7tL2xcdTg-Yu1cu6cbL5U??^h#zU1Au|wLiV+ch_tKw4j!qxSqTXy$< zH&-gg$v?vF1r&EGg6aJQ$B$r^UA`{DN(YrbO4g6yzv4mTm8`$PRr<`!pX57!4b8Wc z)Pl==G%;3VVlJ7ud$%{(#a`$b^vGVghJPZauJq4>t(fQ2?^)s;cFv{kuEGoSJWz4^<9M7`O=yC-3Z03#j=83h&TL@PtYIeUtW;W?DB}5ZOS2x> zOV|8Q-!cL(YS$S_MbjM{vPCLP%=m?&sGMygw_@#U_;7_YiCPAO8Ph^BF<I){2#(gy>t=nH`Qi z)v2rC3YRO!Hs3~}4Vc-grLIAg%tKywBSZ<6n%}MN2iALyncY&|gT^zCs@;?=!1P{2 z0OEK^E0jT+6e#1?%OkhyTAeh88{GH>i_?2t`HeH)_YDuH=Rd8!Pw%jMAhv+k@0wxkeX6ngoy9DX&Dc*(>Y2h*rxam} zFM?|DVn$@zmU zIA&&_v|y`+`;*g;pTvzDr{%T5DvAH)wuy`X?sS;3&M#epsxl50Xy&-mf>U))#r;s* z=G1MMWLm$#1;d1UUKQ@vZxh7ow(XjUFpBQ0K$SWwY+VIE#|v2U9L41JZ_1#@d?j*m znVW<#ua8`QAqu5=K*2Qf)=eHV`7}8vI2y>Brr|!)8x6t>?C^w{a*+-wDXP8IpC)%T z3TG$WZ-&0J)aKht>Wu8okTBO4n6pclb9keopkslFwP~7Du zHgKh8nSSmykV#gMuc>hUspu(C_Mb(Khq3@1V=)dW_1z)N)nM=p z$}cUt=U)u!pv$;Y%V`nE%2NU5N3cr@Y2#j|jqJmxtSZ}uN*?!yl=mv_mS_oLjsAZH zT@p^vf>TbW2|JKJi$O7E8aHW2=*jd7+c9G@L9P%h-Me6TI;2YFvkP*`k1}(3$*qC? zWVMSAbcj#C7N}p93iwDXTjr7F`QapuOcmW+53YCSfAz2ic# z-cHfMTs_O@n72rVm$(k`!7HMy)sIdv%ssk?(-$*Nh_zRr>=@(FVI92s*}`#0%Q{*9 z4%QwGeRVdF&Z~nvCQ~h+?X_@!bs;&IDL3R>bsu?}(3&URW?u0Wwa~-%Yz)vOCXLvA zQcgr>u(-^`x3}z`hLy*uj~%3MakAC-4&1hh6&bSlM2kWyW%COsK9Z65n;}G@f5DLmlYF$HFU`v9yeKc9Q(nLSt%o=W8cfmNd zt0SwODSJNauIQG^R-8=~3ty7(=l6SEj7CQjPTf=ar1NXbX_~7;Ngs-Wv5PVKS@R8i zm6&~OfasNdv&f2|S3Y^%%yyU`cbLzY1lSu6Dz`5=h$yUZR`(DE+xgQxX3jl)!kK1H zPZY99By3hsbUx4d`F$%hn&mZqe4}$_y*IcH(P#!@^lF z&&*0ki2j|y+Jbb8?dX&Hv2<~z=1NoK>xB)Fa(g?-8F`PZ0Cs4^^pJsXmS!p%};ysx_o|rK90={L|<64wn?{ zgryt%6lF*-@+2JUgFMpr`ioR7+CRV@ic7pONHay*)bHJS9l$A>!7*$)4P7DDey4f! z(q8OQy=;kB``A=>nV3Md^aQtd$G8JqabOTDzw>85eK`t_jH%1uhdzzEAU12Z$kz%i zD@I?HRKMqL!$%1~5}rS0%KO^r9dZUW9jQ4!)?T&DdcY(uRjt|ZhlG({aL?eq+-rW; zI`QPhukT%@jo{Rb$J5qt=hyT3?OZA`LqG)S z<(;iyKD7Z63$A+aOYruGSNhjYte_zO_hhQz_x;$80orSVA0wCD*ZfO-#uH(2)I@BK zZ;Jod<@@}7EdwLtOpn+1&?88y?ea{%KHm^zB#AKYAQ3!;Z9L0K68S^-A)KAh~g3yoN_A7J(_GUC* zR1TR~_7$r%)-i7oEb4Hd6IamZYp?|ZTq=WGHRQI-tJr5CfQod{x0UOQS46+JjCr#` z_m&o9Ym=qJDV1%IOdS*CHH^v@#ui8T4#9KPR30iZTaVqAbSi5sZmR@!+7P*&?+ z`*5r3Ciwll{gYntvtr-!_V@X>&vVcA_sjS9-%c+dFCUr=pAN5g7wi-_U{tGu&R*Q^ z0B?$rWh&gYN=+6*k-h9e zR4G`;+RMFhN$86<&2Jy&kF+RsxbUydUi*z+qIE2DKr->gG;u{f;Ad)7LX%MH%dc@c zkr4XKl?^N{o&Dxg^!(TEi2Txq**wbACpmSZb1s7Sn7UMbZiF37sO0so+dN zzf?w^+6&?BPtyhi{>V5sODFO`fdT=YWwSIjR$MI;K~%Db37x{=AaA{*C+P~iJ~t|f zV`QOjUt(T0M)6W_apmEd?|U(!mS&GP?Ri(R>;k|w?gbPx%u0Rq0shp)j8#<9yP`Gk z*3eVjx+ek5Cu?r*7QcoAZh?7)0ZrHXBK9bk`w@0Sv|bKk1|lY49Vj5iOz|U|X#6Kj zXfma;wf1(0_<)A%zrphom7ckWfUG|;z!HdMBrz@)o1X>QPK#y@knEZ&fJHNz;d+j^ zB-O|0Kr+DCo{zVu7P(dwv8i8)bbAd89|W+0IembxCj~Rv-e~mLaRziynhLO?8Uhm* zi_+)Iqjxhq992eR{>YNOU?S!tX^{{$^jv<_FWzvAgPi$;quzNq=A4L2ud;f4p97dOeuv=QikH>v0@@Mw3?_=cWP#kqS(gFFFdt&X_3ic zN7W98OXBcRh}yPOBsJ?l9(sqwFj%C0~ zsYGRDHqERzh(h0cq;AK*PQB;>mYFPkLjRn23~LaQY1{`;YaxS%5-_du0%0J>Q{v`1 zg~(?qI3>A2+SYK9driaHrv=*zwq6xCV0ON=nw*pZLN>8NBV<3T`%K@#ky*^t-+j5D zmS71-)}mfQzDyy7*Kh}dzlM1*EV~z-`Qaycu~P_JOfpQwHtI1$>_T%Z;e^_&6?t_m zUq4|juq^kdf&oG^CZTR?MEVMk7*1#1*RR>+0qTp|Ll{;A0_aecV;G4!dT)^ds;>7o zd8H*RcpylSF6?zbC54}%((ueDsskdNnNaT8l9%N3Fpl6V^Mg71BXk{nmw*r26j@`ndC_qSS5 zv*Ta%6gsXAOQ1_g1w|ffr7#t%D&}Tg_duTgi#6T_L>(^CTzlIS>+7UE z@e2uUrX;imVsk5cmN?b{C~3!yVRV74!2nC+-b_cq1dy=knDy(C-8Q5Gek9Lzd&98V z@Jm(o1dOWt@#|^*DXfxd1L=#6Mv&m7U6+|HeU-337P={(E<9Z*!B(eBwq2{gum?zU zxBsQez~Gl_X=R8qHfU*32vZ0>1~nvrUw*D-udy8+t)Tc4asLWE=5=09%)+VXOyeGj zkn~S5>~O;-9r$K(Oxb!m$;Fk|6j2w{is#4b zvB~Xb{Vd!57d<2RR(^lHpjKe6a_s>y^o%$! z@7X2-9~7T6X_wcQ6FT`Q8VuHa#X|Uz|D%G|S=BzMqdCJ|R0VFyR!Xo1NM`uvr;$ZG zJL)^FfVwr+@B6-po>3@RR)QHQ)>{*a8^7_U=;r`j`^Gm%rCHuAXB`xRQ4ku(!OB;V?ExL3{=kwWn(!)J{x3#$~ z+jN#P6`?i9*IKSqa>5O`N{#o>ni}KOrpWN99vM!RS~x=VQi+NoU< zJlOQYvb{10deeO-)QW&>8b3$U3pK(d16n@FtG8y_ZtYPUqQ zmlSlWuJ}{Q=}LFfm%OEbv7+rso0k&;{%+k>(?88EBtBvZT-=qZmNF*ug4_Et{}*IurMw+8?XEWo$LVWpEbm(WANS=tE`%&}KwFEX=Tsex#cAzma?aOIfVN@!6{v7F=sM>rYP+KW@ zUBy_R`=CQB!JR@RwDDEYCSapW-P4DHM8JOOf-TUny)`=5k7o z%ENR<_gHv}bZ^~y?UWyj_<>fhtBHEi@;_y`Xtf;r(pMO8xG)Q8* zi#&w~(@JQ2-9N^R6FYqY4}OMGbeZ&2*W8=-$G@9*U98rixLD&$sRz2HSPZJ;3OYT$ z&noh`=;y6B=&2eq)_yjs*T~OUc5!C}mpG29u?O`|{Wot1M>H0m(~uNQqixw^h;py` zlIMhX^=lO~gOVX$<3;Ck7r~jBU48u^Bc6fcb~cX?4sD$3QV;08QbEcz8gg~}R+(zZ zWzH|8CDaTty3%or!m%-d?*;+&EqTnl!t&U9acbanYOZ>KG8MD(eLGl@j}{9~GaZ7Ot4Of4b`_S_}gdR=YQ?)vPBA%j<9T7lt+yRRu~hP%+d zRV-0SdH$@HJ2)`fb~QGcX=|64pVm0(s@x@>4I|~FZ8D^73n@QZout()$k5u*EYd~Z zb{xhI>$4Zuy!QAOc8D*qAkMQfUYuDOZINhIjA9$D%x0h!6SL_ zm5-Gj+i^{ffLh>ZQIv|u()}GDu)cbdEK21(w3nE-&4Du<%S#Xa-mcK1wL!t)-z85+ z75h6O)U3&r#a-x|^9q+mE4F*G3Nix@(1Kbo3g1(T9miQGc9+N*oUK0UC1j#k^}A{s z+DN4+YITA$hUe4%=El{rye0;m_;k`iiaf<(OaL1~B@W~e^!iquxtkKZs(aY6&mA*- z%~K3l3{n=F;Jo#AOxzglxJ@k&P8PiL#tYWW8SRZ*7kf^ota+}-R@>Go0Wbr1M`zh< zdSN*pd|I2auE)^y2`Nic?%Ef{YhByZO+zo$T0MEN4JKm&Le-O)gEk1R4cxFy-G=JKhbJ>E!>(4enoxiaf@T3KC(Q3;tuKpL znZnVAQzDV{p2srHx=>fOUfZc7s|xfkA%TC`{8ox>`3b~9{d5}Vv#A=C3r0PKnv`>u z86S4|i8NE}{+T;4#Fhixeu+`n3Ig1wym++Hy7x;5jPF~Vd7QRdr%DHk#dQ6a>Rbla zY?L&oUmoXcbHCuLBqPB8hw1-6t*-OGPXFxO9REcsrK43z$7|!G*He%Sx-Q#5rWG<2 z(oJy36erCwdC$ZNl}_vkeQ*q^mdtp0<1!yyBLrsmGI71-^C%xG*!B53g>xOIY*$eI{Qw_Gg8hWX-TUzT z{WkySE4Sxk_wtjH=VQ0l76D-k1Rw3hFaGwrG`BPLt@JsUOTg>x_UVf;G&c5GFYEi& z!EfOCx^&|8@>9a2&h6#)z11Ci`v%Efzjq*3u-lvUBz@NYV}h`U-)rabeRrg%2VAs& z8kSy=@biH+Qz)-5ByO=OmyJC&BFwmRz*JXg@hj zI7RX$fuQdJ3I{?~?k}H#y9Zb`Fd@<`eGhHZMi(&!<+yq7T~NEB@tw3l+bJ@$nGRC_ zdoJzPC90ZDGYLdk_Pl4dwy(WU$Cuef_-anKAz)B{1spb=T#x@wdWXy>yM1c%(eI;o zBO!89aEA(GP*;erKRxCgj+zw?KZJxreaUKd>&x9coXVoJAlah03Pi0NC=@|{jBk}- z7S~;!>UY}9A1)Sc;AQvrZkVx-!LotD=fxH#;f%#$A0gYdxlEowxR~)fimrA${8lG* zy*pChV*5bSs@kl$UqG1jKCO4D7?Ky6(n0VdJFBXcw{8s#G=&5Io_+*?MjLhC065|Z z`?JHGcTP}UCJH>9-R;P-(vLB>$9Y1GtJWWT-DuI9lF-dG@yLPW)eG17k~eYQZ5Xh- zk(Nz%mkJ9(frmgLXHQKlIxu2H#|BzwZ&4F%?oq>y?a$Igg5F-8gueH!-*1n;A1|A} z-{2LtAT#TX~t7U8&Hh}wV>$`qsR}@cG^x@ z-h%qYT$QymIX7R<;PAUtsfEG;|BCU>Z=U;F5?mh7pXx}MOr))!{i<-_Q(Q*94bnFk zp5;kcyDT96gJM4e&U=@}^Jm^a@KI5O+cMz*B(?pl1WXiEbTMcqWNtA-QqYV9w# zd?O-fVAc!Wh3zx#nQE1VJj_~dmFybWd}Fn6`&Jj?t-R-)v``F(W5{_3mM{Js+&~Yd z!u=d}ljX zV%z8jP+jFje*p(u;ET~E#sJKWrXQz&Oji|9T8ve*2%s!gSe%|HuE>VsklWhN2De9G zAVZ#Va+&Y@H(!r;shyBT@IJw#)26v}soXbF8o*1`fnxQkzE*eCkQdJ9>T0);ck?hTnhofUAW%Z^!^+YEItr7zv3fn!i=xU-e-QZ ziZw^8&MQeqQ&!40n^XU!@1=kI)tVvRs1c{kPuBW?_&KCMs&ylTSkcR_GFq&Y#~ITV zAukW-gmdc;T~Qx2+3s;xW^(uf;{;q=X|~$B4|BzG zx2>2_s%xLi&G2|wU-w)gGfY?c4XDlem{I1X-(E?wNvWwK`?wk5GD}ui^E8|W2=VDZ z7(1un%(`F=$JWHQ?POxx<`>(xZEIppl8J5Gwr$%d|K+JV7w2ZJs#U#vUF@!1wHxmv z(z>m#rk|eXTK9<`j!_QIn9nOj!06EZodt#n@^>EeDLjML5cb=iqBb(!G1`pWP+^v- zDA>cRZyzCy0jm*Q=6(0Ko0fmdp9O4DO3G`5r)UpV{v^t|z^qO;bJ6!pw5#W}#kJzq zWE@#t+t0sVdrM8W{9ZTbggb+(14z_p4XuH#PT7;Nia||)5heLmFw{J_J;w}qtnzLC z8JBF|P#G=Z8nN?4e%0)JbUe4UsHEW53Lk-<{p28$9X`e51BRQvIhNrR+>b?yZ$Ep; zcwb01Dik`*V{iLLP?_Vx``KRAzjD-BoA3j8^NP6gV4I#j>i%aylWB81@BW#99dlkN zo!z5%id*}Rg^)w)lE~RZ$Kd%8y$zyN?64b|U&*z79e)wZl^QRUA$2t>lPjMyr4d9; zxdslF5TA-%vGW8cK~$117TXh_aZ;0>eTq0QC9YLM#ZN5*wVKkiPx~lZxL^UaIlvUd zZ!no|=sJ;z2q&;qTPmJb$_;HZyPLgr@)|6(cwIVap!paZ1YF+Sy=+g+q)kfT3|Gji zYyVp7gQimE_Yp?4g7i%enk2b^{!pbuUvxdp9jia%5q|cxxm-!|Cp*4b_FsFK;rI?~ zoysxT|7PjCTrw$0Ls9khTCkLsZw|p>Z90uzbaCk9@Z};*n|LM-*h)t@k-GS;bNv0<2+!_AbP(k=7a;XS z<<*+{tC{j!8*Oh^DimSA=dSZWu|)J(=BL@a%VaQ^AI9Ol(JHW#V*Z~rgqyXhvLnNQ z&8jvy!4AIqCz<=yFEW9iSaqu@xhrc2;8}i1H*r_vOFXa8XbLQjAVtDLgFi6z1O1$+ z23#VRvOI92HjGa5UBvkC+Jsffd5Vqu|Tr zNB<%rlE{S%>%Y7q!L3f_jbx|GbX_cT31|%-GMzR}fE145V&}HH=^YD7iAPg1 z*fuE5i&MjAOZI1(3~knqctBAb8{n=;ws_VktMFWq;!F1`D-4_7!B=6^;sa;Oj}hWI z!$uZYPrXnijcbDl$~Z=Mv(_BI>4nz2Ua7x_PE<>5emAL#@%ms!xxN`!N;d0u7Gve4 z_nCu7DF3@UZZ9`_)220D`s!b|Y_jK&*0_2ec_4T{*nCM{rzWE;JZ#RL*w&O8p(nV8?=TS3`gW(0?&1SAxXpbk>RbX3A_D}ND_1Zj)!lo1+ z9WI-*d6h(QP%vw*BMHRqiWkn{K^%OaOdR)V?|EHGFr3g^9FgFOcbc%w4i&-l3fEOrz<0 z{iNRrV1oNh{komn-Kf}jOR)UUhI>zvul}{(ua*5{y<+AFDMWaF= zWCEmH-*kX?y5)8bI=k1qgi1PVf((p<0? zY!~lieJR9{H_6~?1uwQ3<1ZKz(fE#otEw0^RqXXxrwm$h>?O)F+Clnxg!3d; zxsJ^rY2%}T;&vfoY$6{neJ=^dU~jFLwLD4`9)!}|7J%#xDg-yVJMN4bxqIXV9tuy) zf6L`rv-}M!uB*(AwYp%&jz!UR`i=#s^`9LJb2pirhPQ3L-ubHUC<^zt-bcs4;rxn{ za&;7*5cgp)d7>@8UgiI+Q1^Zug}C2?#RSXLt4gA~*b9)4x zBh+RTSmOA28J7Gnv;t2lHWQI*F>=bN3{SM&?zRVfxIqu`^+=s1ERMpV)Ys#+y8u7; zt`X5Lgk6}Z6Bsvr<0uE)HfY`T4~#+M`RuGIc)j1eAPTwm`oq=+UAj_U7uRg%1m(dy zehM7Bc!1)^(1szxufp|fXR4;~;#A&fm>K%k@?X3<^U!nRE!YVCDcP*M1+MRfDcLOS z=5DuWDcM2tzuPEZ#>q2+`=Oq74UBM)!7nRbSrVBHx2}3!j*q60r?QHn0j4Kt- zLAq%6a0yWM!U+~l_`^AY=2Y#x1#Q=VlWxf}aJC@D1&OAi=#tx}v>?3P^%xNOGW)mw z6_y(|)Xgr@C?U^MHqP)^-Ab$kapqntgXza!!!psDk!viNO|=HszH>u!?M)SmX%;*K z(Wc(Rt0`8v_NQB{YVJ=J>Hux3uz9<$A*;Dgi&d{7v+qJ*L(m2Zo9;;^_Tsj-5YZE} z^M$px;JomsyL|e2;)9vBK{@jzQP+-Ds{qx@SrHQtHwP9}YSCGwZB6rBFseVLSrP1=% z4Wv~um-NT;@M%_*Do;MZ%ckf$X~BIQ0zG|Iv&>LYovpAMJVsOmUF5MEdZ!fCBni4! zddh;E3dH5FMQS!Sn{dU(2@~j(s1er*e0nXaeB@o3xax7QLsFj~o7dxro21XSO}gFZ zId}8cdF!2u@inFB5j4+AC*2hL(KA;*V^PX_Q*g%1N8`=*KX zRzF&CEflxe`i^(&kNj(~9*%cWb)~^{WK2PW)2u#`W+Hv#txSdyE;yo}c7?;zmd)*p z7kyKMTMfszDOSO(+pPf=Zd%`tCBi}AW;}3xSH*NJ`Gg6rxM;=`zG5}#jpr`HfNPz1 z2N!lt`}Tl~XuB@{8%?whZ#x`s6Z~@2mGAvr?Mg|3PsI{;+cc^!M z@GrQCE|#e;WMT9(UQEZhi$EfpGd#>XIPA-w_);s51rp4k9TdrpyUKGQ;~;!yT@xB4{rg(${rZI{V@=dhBKY-{5#%6zk_VA!n3p!Ko6 z#4f-Tk#_1h%j@>uZKU&8luFkuqT_}=0nWEc;b~5B?MRxx#CcTXv%W<6pz-6Ln3Z|Q z4WPrt>m5p%Y3+zl5*u5;pJu$Q}JZwb_1% z0i6FUcf>nhMcZog{uK#;tf8k$@C3pDeV8BV6Tk;GwvqV|(8sCW2g>M1)F3NcP$g?r zDS=!asK4nv##cfXy_HR!BbWK+?#G(yRvOgPojK0^@_sv){1Rp9U&Zvl-}ZHTYxd*( zK73gI(a^@;$D&xdv+JINNJtT;z|?9-|ug|L&rD2?Z0-z>S^!s z2)rlTUlE?)!L1qXJuDfAmYz@7CZw?!8fqhg7~Ue?d_X;s;_Wul?VKDVQeIQC@g_=q z3*_?hSOeITM~oOhVTSZ>Vc3Ki`M!oswlbA-ve2Za`MW0h$`P`aphVz^tm*B1E12iwkwf-HZhSMCZQY3ob1alv2N9S1Xhh)*L5}$4 z?!`&EV!7ILKyd0PW|rJcEMv56L07*4$C;NcBF%#83xYZO(I#&c|Meqj8kLbk*W~XB z#hFV9!0Qp^)^`u@8!Y#2k`HUvc4#}lSImmVM|de<+Q6+7h5HI1;@RS9bXz0WY$ot} z)g%0H%R6SP9VCrAU}qQt0S85g3xx&Y-F)zRu|}EKwOuwGKKQJgNxxdSb~a-LrIKk< zh%?xp`D5Jp=g?P(=P#_Yuz{_E-9pdf8Q<4J$ZJXWdX(-vLQD{A^4$|5cH!}iF!8^n z5ewR!!3WDvP)zLDTw6|JGOj-0fM8+lm+cWL2&H*s zl!!2INxU`rS`iyz{#M!j2rKM;(skBy7Uzc3ba|tJN=q1=Kh&Jh0QX;;j+&%T#ksyhW?U$I=ApPxcrfH zTRxJRnP#)P_8~JOd;RdRq`gAgmEJOWrh;S3uwd6aPr;|Xs2tRBkU3wewurX992kdr zy7@7n{BE`}LQ%CCR53MPs*DI~ z1U40bv?st|vYp6jFkv9@_II13F?ccYewrKWR%@Enh|I4X`bzWFqs>g9N#kE)+n*db zRL0PsbJzv%#Y)%DF9G3U$HlBmmEEvuL>){6pP!bI0(Nd3pE5$rCtL(Bku6;4pHw>qd{V{p6yE# zPyX0;0PSk1SmkgW$zr;zKl#liyEs}9ktq)0N8O3g$DQsZKZTX$Y3n>ydgYQ{c;}3e}?7m;Ki@Uz?>kh!tdIZ zUF9IAzLJ8RrzxMvlsB1Oww+6mEDn@na zR`HG1x{B=x-ese4kOCgoDh6v4i0)5*Ti!+m5rSerTa@ckOZ#Pcm3g(*(rd-C7~Y%Y z5w`piD9t(IeVkP~2F{P3N9VC-YiMnLf@*pUU>Xw6a+#5%sYM*_%=#EFVw~t5rw$gg zL*kfX%Z{ULQey6tC112OvE9p#d{uy>$>wd;YzTk5`SoGp5^3cg;S z4{m5uo7nmI(=D+|`1`7%L-GkzFp$(^U}zonye-q%#-cJxC;*k$1DRYwC6y;)BFiu2 zx^{rjfB8rBhUuB%C<7MCe3=b)+;ku?Gx4k11WHb^CZ|rP_4W^t+%I{9nVjdwQjFym zZdS?#qY2JIG8F#nF@zD4nsBbR!Ff$^Aph0;mbQn?w%RlfS5tiy(6Rcmg`Nj;ZB(Y1 z0ab63yfFO~7f#8!a8H@BAM{>pkT=QS?my_cLZBuQV$HuVGmHOaW|JUdB6sDt$>^h5 zM|e)HhDux2S2|X}_Yqy0mr^ZNsI6NQT4E*QCnh*Vk8AxsfOt+F#czhVN@Z&8Aj!udWFYDyGnxVeY*vFTo2@9<}S)uXLQ49Vd9R_)Jj}=NLhE_L= z@*@Qz+7%r2q5;$6Y#9^u-|a}`&QbwL;GmpdoyM#=;v4%FfT{k1SG{?%9<_AabH^v6 zS4k8+9s(`_s1iaxwkVMQAky7Yqzpsw$)1t@_FIF5sm1SzXHzxR)d9Adm?{PgY?>uD zn54`el>w7sCUW=9t^ah{Fd8ygxJwzTYyt=ytcH>Q{UQsRiKi~Grf?*m2nrdP zL88Igz}f7%8CZAv_weHAv*oO+G)#CUbKi!9jUI@!S`=nQ)ovz{_C)eGj3JUKz~wZD z_fxmvI*bLer%g2$0UoxP6Uh?aAX98bTD#EwE(Q5YvCCp)itf(ACwL}4fg3hjC+BL zPblshG5-yeRt)Kn7oI>h*a*_KkRue^c8wJ}XHEPC>gfp^gSf~Ia;j+OGR%I(GNP?= zfVYuq%8IyB?#dasz_H4W@rUR0!xXfjH5$=nAs#c1^L{T5YouFKH15O#gL~3UOVLhd zq((D~f#8@n#)tY(8rcVA9ag7BQ9iUSd)%|P{Yt`mzG(L-Pr=Psf$VGcsWG%$Sl2ov?BzA|(6mE}|($K8i_ZI~F?89G|f zffEYrM2-F>CF^tuRB2iK37U6&)dg;y(w!8dA^MdZRwZjv0Ys zQ0| z(o}dGrN1)M1h+n35v;vd#>3Yb+L*b&RsQ^Fjvf<^ost2PMRBA)o(_)ww+raX2d9Ay#A~Fw93L(D()rjb9HB-3>^~@Rur&zPJu!tRDxEC? zC4cIlrMV}9HI|+_t++Wt4nD_g?R-82=Pc0dYWp%EUxT7qms2OjUA|Vf*XRSyj$0*Y zvaF)`eX3-e*C@A>Tw9?xmG`{PI&2Ng83E5An^e*jkb_RYQB_SOFNLh_#jE-v?5{MO zzFXM+=bXAufogH*5S%G$vl_c+*6p`^E^S);$8NBD3)86aw^;OJsPP>IPr}OTY}9dm zGy&%uFnX<5L0(=q=T;Y${|2$h>F6t3^xb_RAfH2*$oOooD~DuH?2ql^0QUnle>zs> zbIUW2RDA_tm2rNk;r!IRGkdIf=E%Ce>I33JBo>YA)o_k2-_rEIPcX3ySw~MKc!}LF1OHgVtC-2I`Pm+Ow z_>yFAC`}-5!w?RtK@NUR4Um7y-B@7sQsD^c^FUUUCB4s6x#N7#W}XrRafj&_QG%7^ zj^%`Gnw+h?%HPHzyT2wqP@Oi!brNtQE4AEDQ$U^`%K=VhNL|hB9#=tfgOW_rV+IaC zG7?faAQTV=PQ3;9ewPZ4$Kq1+<_pUD@-1d?ifoi-%jwf*I+zxa9d7YqXa|T*}TSd7Xdw=Fet~XEr;2#OnOr z9&ZbVC)Opf3+rqlx<6;*ZgW^Y|NZSOM5UL)&3Mnh1NVJT^$FdX3H9Gj;t(|sa=N{UGZ?yh)%=L9RUAt8MJz{g{vq^FaQKomV$BBnD3@0W87K^R?b1b zbD@q)(|B;K8Ie-))Gu6W#ByGtK*xxPkgYyDyJEc z>Jo7}-AEK!20YaRnqW>H!JL7Irp$~%2O0f<-v`wXkmgZ$vDIqrs(Qsl;PvVF9nU z8J7ySqblj-wWD}|afKvcoZx)|0){GnVVpE3jJee7n5AmEZe@;=;N2PNmNxlVu(fZI zwjYhOT6mOVaq+Q6lq4Xuo_PsOp08TEx#Gl_Wx1Z2WC79^rzA$7?aSgF`c+i*@e*5G zf!xgUHO^5ZT|>{unn7%Yq@G#xw}0af8sWQfqVN3c-wnl!H5AWg4=P&KYyZcu7Qf?N za2Mzya&}2_(f}9JJX-vH)7qr`^9x9a`}ZV~gJwBjm>G!FsoehxUf?b3gN}XM;y5a^ z3*=M6FrrtyeFwAfqVL%gNm;-h`~yo{@h{2?TbX!lV^rQcKd=HcXY?H=D0#x3OMh#b z_=^=PdR*e1U1N`g`Djy$ZG#YvLUd(}F9pzn8vl2C#E zj4is;YyU5COx6`+`DIb_#dgwr=H^2qQOeXVQgE_-EH#{S20?=~0`JFNHL5+yO0pAi z7=@*JWihnMq=ok*l};w?5f*ufgZRnY7w{(%Ly5XQ9Rx!xW5jNq8<6cueD+r6t-Vra z2X;ru{T*dtLNqI9J{j4C7U9?g>}*}IY(a(vKxIa-sRn6CIFN0GQT*yNVhc+hhwA2l z8|%ch(nJH_k@y1Qo3RXj;WvVNiBt+q*`)H@NCxYPwG2MjB440pvDP4;hL#w~^SPEt zWFgG>^SbV9a1n9ikiq6%AYHT+!Yi(h2B_OuEOAmQq`Lp@yT zl|{_dhdS-XX*_09xd8gkmVPtprD#}D*QMn{Am<<*tl@Ljgh#Afw&a;0hD=|r@8siJ zDd$|x*WSN#2%XLrw)}H8DtZ$#^qs3fTE}&orCexB%tx+tiy9$KYFfjeB575BLd3F# zq}RIPKXM0mFZv65*V_=(TbH3KLFq|TRDIv)Casy?f27=2jl;S)6jkL(S|VU~d4+#= zD(?cItD6TqUv2 HPSoXZI*Iw;6Ud_EfzI?~HUCECRO^$6gD#!~wUWU<8Mq9yXF z_`-J3?ed1sd^(H^9plPP@K_%EY0u)f7m{1E(KR^;dmv@IWzOi$XMMXB7_PErpmY-V zXTUzSNH#-{qlpJ>cJ-8m&8_qN;9aL$P%V{j3*c)jBRrcA`47VOn%^cMkkwf~B!9V$ zjFG9XW3^v^?S|GK7W+xcvn+iu!%waJxoHeriuaoa&I(-9PHMC7X{~&2Z?^uOx}!gR zaJ@#sj(rL;1&ff$-VV>-oxS~HSy%VkP~@g(QTlX)XX5JQ-XK@JsiM{IT!p=&m$FA8 zjS^5U9XlotN{v^ms%Se6NXUFQ2izx8jpG^z-bxqyqgwgn;stsqIIC7D_EM-enf}FW z84FPjU_xU=>seP<15VY7NmJ#JuW0%gOD>lFWkLC&{10PEPk|v?PnE&rmE`Qu6a~;Zn1{{K;RTARXy~;HGtI1fxJ3jb-*>QPEhEgl;rrsx&on+9n|HceAu=b z-W1j4t#az*>zW(~A-E3H*}0lF(4*X%F(Rz^#`72NItxVFRVtsafL!3%u}Em(I{#_B z*XVX~6d^K!t1DEiBjHGLPoWGil|QSMoGsjS49%1W#{@hmsAIOVpfHcvq1)KWDawzu zr2Fa`X$)7LN1#Ol4}mg_xD$jKsA||#)NiaO0%OiwiF+tR00wXSAb%&rQHuGd&~KU+ z+`i8hFHhB##==568vKe53kLO&OC6hqh4M{^3!@j1GH3CF9|mcN_;pdJ-ZNFsi*OP8 zOvHX?Q+10n$&b+2x07GVYgI|uv7ykPR#BYOM+}4mKi8-R9a+f_?(B!fB`LzHn1`w%--CZJtn-*`QBOsUtJNy8HuI%|QW7Rvpi zz5@8I?{daOgK>oloT~Ix0dzI>S}R!=YNZX^J+a+t>K#UKY#G3Kp@kY&`oqiil)adZQn)|gv+Fp_}S0BDXP@;wX3laG$-1$oSU}%vLpM( zQoJ&oLCvm-L9dgy7BHEXDj+im*p9T(=$-R1hjmZ-2&-CWvV&=LP7KBSleq6Ftof3W zw!N`U7yJd%qg7!1Pi<)?@~A ztvWWh*o8gE&kG;rL~7~F4f(0z8}^f5G#IvV>Y&KgG%J~$m-(bF{LCN;s47^D6Fa*U z%*-J`9WDbsOBn6{h`c)-u`CV$43~YF@sRdE6Mjo}`$c=k+~;~95x+G+zQ#3_>7U@U zCfp;^fDzoDjAU3};2R1!X2I12!AWeXX|yyGd;JkGUucO zT%SX3jC(E>Niv-udYwDcnJ|2&`!`%rS9f!?TH#gaZgDkhUlZSQ)w<&^HPeli%J9u_ zN#fNn1U;bJOUsH+tkBJD9&QgA_nQX*nDCZSepwW$2r^%Me9f@52(LM$cM2lu3Co{KbJuVURI=X@hv0qB`sW(@4*g{%s^ z#jA=+yu3rBnfq=RWtpyLvtL74LUX`yz7tR{)5hOm7Sy^>uFCd88<7%p$)MvbFZ7<<^we+7&vL*K=4xw{;V#nI)L z!u`_VvQE9pHKqrOVRRim@INkwxbVuW*Bhky_{oz)2@<&-{6Jg8 zC`&JHs!rJu>+!iwfc8p_U^PUdghxdX_OgK7c~Q);OFT=fw3QB|q|x46fv0M`k&NJ) z1KL4wx4z2(0E@&Zeu?7B_B#mAWTw4lxu%h&O&D3h`?EEdgVHZ$Ew(8;wDoPV6UYq` z7)igaz`|xLu7~a7x8kycgVuDnuicD+>n8dRppvH0ZLcdT#p_wtNpRotbm}>nm3zF} z>bZ;ZwQG*X__={7lN-yN*XW(MX8chTmeGeej%3LY_19pASZMyr#8;wodUWC^hr**2 z+fc%5K#hUZlD{&*75IuCf7bIVfdS)+4u6&$!!|yd=3OR^M1XXJ>vXMJ=!Ok>(G1%xeyvF-u63k2N#EO=Q zIfC_HnF7WW+YZ?Q&Xbus9$tY{ZuVp9Z+{lgg9OQ&=FJgWF}do z$V4l5!`Orc?c}!Vaku9#WrY3i-vYefIY;I{9}lmBR5L&O&Y-JnO7oO(My~w<+DEtZ zMXz;YAzNrogOe-SWTK_|;`Y9o&HPd(aIdYbf}COws=fN7qOCKxA<~e{EN4!PtfXvb zb5zMG2!f(`xZR8r<<3Hd#lsXt9x?6Lo@YKs6Q0#sa*jH7oLJX|Gt%Q?!%B@t4hdAw zRb$r$w)nu%ba)!{s~ofF__u5-M4F50dhsy^Pj5Nm^Q<`PrK_s?Wh$vgpy#yJOpPIR z+AK+Oepr#O3vPZYqFgmu;s8tC;m05#@_cK{wCxLa35Jl+@`A&D0h$#&L9I+NJQ8VE zMEDo;!WuR%G)M+*9HtZ6w+rh7d3-vEO_ggpx5afTT6hFWH)Y;JwRM>hklZuqMwptv zA+2Xvjca4%;2Re1$<7I}G^nHQTvauwR;Mk1B5AIw6~&U*08Gc1&|wlrdi84Bo=z4b z#-i#fJPl23BBPu1utGT{RIEbEeHs)Y&k!D57vk*xB_3R7;v~Lv4WQ?ttP!wAK1aI+ zNpdSOilG0j*LRoOza$nU`Al%@CA=xm229`N0Qz~tL=>+e(#b+R_)f&93eoD!_|63a zlEZW}-160b0rgM^w>2oja$)!OE0Pn1<}!|zo<+b}x|iVYUT16W&~lF}9V{FXMe`BB zZ~bzHMWnh&jt1UlD-lHUV|fbq+~>lol-oV-E0TN>*%kXc{P?bhc1mRvLaF%?FiLEDB+G(13%#w{ITT zAIo@za$B$CX3yq!NkvpMC2Auo`tQvhh-N*RXL*9lOGH1<*Xy(g92yV~V*mBr@0Yu2 zKezYkv~S(_ z4*9_MAKzgAp3mv7&(L|j?oapEC&cFeO4v`I*Zj8j?~lvPanEUXxu~}2cKlzDhl0Zl z?%FpH9iK1r;|vhIC|q*gAGZw6*Y4ksPy5??1w;nNA$M_lpLa&=34|gz&3<^anoaEA zD|>hQKTgKij0x+C6_7ya{2ae8-^V|PLtQHx-l0#U$p<7*VTQQ7176~o0PF6^6ycy) zcHp#Ck|z5F^+c%zNz<9elp`xICzPDI-v|4^5lb3Y*)3zTRCyW#vz!PrfVs)r5%35dP`}^o^f&vx{V=zVpRcz8-#2OBpPxUI2K(QihfkmPU$3KX{(5%Z zU!Ky^-jHAB*6#=(ub~7V5N>9@QG?IM27y2F2_W0s!>nN}7Xsw_zl>5kusHTGSwxu; zh(n^H#W0;bkLvfVh+gumau zmJX192Llj-{G*-+)R2z-uLJk4F!%8|r^0;=nR!;iM%|xX14VQ6Z+8O*Z@F)dd1twM z+3V3TWx{LhnT>coq*$zK#raq)YK97 zy^PsIW)XT7IQNLbY*dbn;X%;gv zXUXFT@WE(4%#(pLAS|Of%A>{XA?)+TNm3OG6kJD1G-6=?1zswa%0^1FvGUccqMvo9 zQNT9!dLrcv<^4Qj2V%E}5g{+;Zs~kE06}K~!^j6l*dg`;ca3#fPv~Rln9iP}eg5G1*TKjneOb(6O1b%2_^U zSU0|Xw3^D&TmP(K9$`mT>7*~17e0{P%o+)7c-*J8!j4*{)c;wiiRNaz^?Hp_!k zT@qy-Q=jlMQXn%U|FK@UBG|=AngzKbB2OzW=0d(pl2gn%#TnNt-S0zhm@hft5$uC8 zTs#5K&(9FHvEE=ObjJF)nH1^&Mi@q3H84ba_ftKmrOgr9AbtBAf$_V?{YRX$l}h`b z1*Err!#T{00s#ai^@f&UbC(Zg@t%~RSU-m1uYCqtQt$)NtAPpu-ws<>_tYn*yvnD3 zzD*xsQ!)kvDcYoFpaKCH5Vfo!j(tDk9|Jm#zQ2|M){jdUn$1uKmY9DqYJM!k^|mA^ z^GH_v)!UErZ@}2_5&<)M3FivW^;&_kKs0pPBYf;ivnxnHBN-Y|orbNZfk{lA?s6no zlYroSvv!fVD~P07qtWdddJnKG3n)?3Wz6W-nsM5I>ed34u_{QBEEu0Qyzlsp%GFS^ z&Bvs+s(oIzE|r=-D6&9#W%u@|(w#H-_UcR<;D9U@4_m!79jE(8z3;SD8(IuR&>$}g zrKq%MDFIqYX*Aoig9nxZ+UbXt;6PED6Ox3rn6V;gx?2Q>LO>-l=rg4{Mw`Xc(}hT3 zHt3rn>JPaxErPU1v5PH!KT}X{4V`r2823RL$Y~vyEa&eY?B5vqj zfE5iNC(u0B`LAg|hl)b@$?$1$dT~THupfW1jD16dO?f|JtcvBz>28laWRm1UeDP77 zsFjAWJY-NdGGDyBkazaCW6~ZWFpdF+kXuLGT64WL_t2=>7-NpaRQQ_Zy;e>_C~D?6XFAtq>DW^$&YK(RJNpnXuZK}*VKZXTp0*BLrb%ToHfv#i{rU{r9%i7XzSe?xf8}0= zOfmnOp&c>ItnpBnsDLXgxI%ah#G?eWCmi=>I{AU2p~6F~WXx27x|{0Zo7<*!pg)8_ zKsd*H{d?ueztW9B;(0+KX9S~ZO$&k`9@l;a`P#TZhfNLABVKiZM~JEq$1 z*7tzi+J`(GQiE8z8WDPFq#m0DoekB`1mOTthr4u$hgyg{vHOwt28Rj3OSi`$g zGjKI85MVu{YM9C=u)rpK{SdyL52!T;l*n?MYf%o&C+Kwc;B{uj;{o&>suYg+$>I(< z%jR}`&|wox6O+4{6uF=%rsMzwAQdS^B(s*aI$?m$0|R~8h;Se8AS}X=r#fzv8Rw~i zbvPpIxEa}J zFp^X$x^>L}b$5N7ilyNK2SnKIco=G`yIS{=&0S6sBCb>|Q1`c}<1M6>88NWMoCPf- z$O$h5nXJzjjqNbS;2kxH#tXEFR@Ci!b(~JHt#z!&v01e1RsU^1mmY*lDmPH-n>aldXW1@|#m_ zFpD+yY%VQi&F)gJ=EWx`OsxzTL=|@}51J#tXkj}3#Dkc)<7M>dL4y4Q!QESu&h zFW^+P(OMN7+rw+Pca9NQ-}!-a@L_Wr-3_;@ZN7Ux+Q2Z;&v9wHVBA({8(~O$wFs7P zYW;c7CR8k>6P$o zEMi>Fb2tVP4yrA}C4J|R)WObr1GbQAzp;c>@)@uSV0;FV7H#~>h%7Z4LDsMe%;nR_ zQqh-!(p-`6<8a*KM4Exm;h`NB<7_Q1naIs@Sh681Il7x-H=?Nsgp-mJEg&mx(>Vs8 zW~iQ;IGI#BR#)A-QnM8s7V8_ ze(g5L9y@p#lZJ8IH$JWC++MpDp$p=SHEf3yuoOf{@te|uCA|dP4M>A7t>XkB2kRMR zEYNSKTO=`pL{+XgHP07!o^ZYy)JKG}04cOV&&K$yLTOOb4Chz_MKzKv`!B{;)C(~^ zfRdg%ana^eo6vEVYA_lf@TSLaOC2B9F|bXr@3^s`JzoS8Y^Q^4y?0p*5q7 zy=;eABvqL^cfrp4hv{P4=#{z{a78A!cA$+E#&7lu-sE32Hc8%IB|s4_32N(P=_9sH zLDPE@OPdrmiu?T4u#>EdyJWI{uib~XJpbu9vBuLhLA3&x?b@HcRpEZ4r^l&B)9zQV zS^Od6m{j2tD>N<7i||~m81AcE(*~|~IXl`Ki9;+Y7E+tIUdrT~q^M-xI@7LYh7aIx?u3kQ2 zF4#cAwPJJ#;LuR$VlpjT#nFJB(FfAR%+P_4oiTZ23O~VvT#iWpVddZPfAT~GWj{Un zRoae>S$_0zb2hR3rW3aAsGyBfn1bZWtspIrT$*&p`hMS@7;d#8qXYB!Lw0}$Q1WNa3M%ekx3CH(7s1mo{2V=0tGOl%>5c`p_C=6$p) z9l)24ddf&BxXpd=MDFZGJlz)%p$LS%ta1YR$^w5TxKEi!sDtqq1shlwxke(%O^AvZ zOcunw7MQ3&Qt}t@but@EAWi$OMhP3WMWqk1Mjz; z@>4;l>{db2=_*_STLt4JmFiPtS`|yxh1%TUGVu(kl>;)`U_{+Mjg}auGE1hTbU_(e zGQ$$hN(DJGI{5ZmW6w`LVr`@B3qXI9>Z?o9Y2z#oEP-XKt>f-j74Cr@)9zN&!@M}4 z8jvLetb!%3F1#=-`kFU&%%}!p`m~5HuTWqb5K7t(%ajX~{B_3)r>|K_Thf#U7S;)rDMXeb0zkip$ z4@{?-%>3;Aq?wA#N*MP-xm(1FeP*{XT;-Vx@A39zw~LS(KSR^83RCLP+rzdcDpM++ zbK-f_p>9~p_6PyACkIR7G>at|oGR-Z5+*|9zUo$2;TjzOKomnSQ>a{+Xour=j#Z1AvvX zOO3b{w;WVK&SgT3aF2`cnU0aEZ4^qcp%oi!Z((?&hj)c@z2^a(Ww+n8@|n zRRPh<9(VIW4TJUoQvS)c&`M&fGI@v#VCs^~s+S>;-!^XZ<9?!NCU$O@pbW1Mv(&0u z`gF^zgR_*QSnmOEDc1-Z9+44f+AA#4lsZK|o(~mOGM6mM!ga$g+@Vip%fC!?oHsjbCE3Z&%1W}bpYQW| za1UPo4D<|nUdRWz`uz%uKny-D*YOHBBO;0>d_*Lu7ggIGDtBYCM||%YLF!58zTuVg zu5pPe54ZzL#q^A0F2p!runLH=lKEL|L*uSKV+Np^aa@Cc@%oDX6{S9kt>hzO=V>~j zU>Vc7u)Xpc=Is(vyzJ6O$uP0Brl>m&qbO*HUPG<+IsZW>&a?gxbH({APr5>fi~R`c zxymfdZciAyfo_xNz9recv59N{hf-b_pHZG_5yNq2eZp2oTY(+@LCxoFZ|lAL)6`Vy z!(^fV&&yw`<#w{)H@jqTh>I6Rv$2cIZW1Van%CKCd!%g-jaI$oVZF7Ae>y&*$a!Q* zVQNX8gZ18~d@tNvErbm3yGClPc70|($DbKntMYz2?AA-QMI#(IXtBc9(v%h0T2QN@ zlNnpo2JGD(%VWl1ZZBLUqZJ#se|EJo!HLP4G&QhEX6vqa8If+iw1Ob$tSGX%{b{s9sx=B3FtTl${z}G{~ zq}qK$R{NS_d%QOjUo0F+DC&G)e_pshk}QENqWitb%Uc?zwk@#1DeWqYwy|TB@th1i ze0zgK5`uOT*tIUs_L}Y1mfzanpb*Ee!gg8&dvw1#aqv;g$LSL zXYJQd{q*5vi^R)yA){^lTJdibOCyx6@a!|=lkgO-8N0T>SY2^Q|9c4`xakDV?y>Aj z!7CjXLLm`v38SfbQAW`1$uPAn<%X#F71(H3t>N+Qt$Nt$%r&W(>wkmdL%7nL4tx6K zRBHcnf7u+r()}drHQ{Ca9|Q!h|6R%)J2TsVx4-E~RR3&s=vuBWsShv^W5m(+7X@$R z>xBj-YzNH_X%Y?0L*=bQcs>G5NYb~)VUAXHNrcUMRnr7&Rp>!zNGhd$x`lq*(i9h~ z>5uQ4_2jyp z-*>M3_`F?VH zLG<-D-0k}@|Mju={<3#-v!njTaKxZDoHmor z*tw!$x7m^J7R&=g9SQPLZ*li8e+mB~s}!4G+c+Qoi1wPFft?S9G+**vbUzuQm$fwk zdE((aM28%gbcaNe_A;&Zw(*8MFd$2FjXzSDpIdk`4}JRbL$;O$uQOMm_lXT%^>`Mq z=8l5j)ty*52t}62ehgr?I`@7wZc_xGK7sKsM_zN)R;!v9EY*e?IqYz39+js&o}QK9 zA%v}_OC+fgptA3gv4NuTQaanHd|hmh_nv#!a4U-27D$O1egN(0V@>`6B- z#xa}K2-w%CzLn$0PE8CBsr|Joyim>f#id;=;AJ9R(r{_8g#Pn);%Skbd3`p~-y_mX zj_x^z>Jc$QQR0+vW`((o+eJc!oUud>3%)h=M%w6M8d;09oDVwe9ik1 zJCoT|`*sj;H`ApX?l%^mhRc{r(@4t*BCK-qIs(_r$0~dhV4o;$qrv$%k?m9_iIS-t)0ERd^c{UkXu%vwYQO?h-P6$ z(u_}_VyY4mFUu0>v2wiMZQ2P1O84d9vPl}qvjO}E9F&Ge1V`>ug-YbtLSYZZo#ZwR zx2qy3#G)GK0cPcZ+Z0rk;+SVr5#m8Svh?w~10wht#>(_eKF3!^B7;(c;#zPWa@4 z4|llts*`uOrsG_+HmdVj6yZPi8%4wzkH=R@tGp#8=$M&c?@V6WjdwMIre6DJNuo50 zhRLD7nK)?)I>!~`7R&%Rp}j{74tIW6#%P6{gTDL7yz*R_Do#Gbje?TcR(b^-KVIK~ zL$@qMNlDkNnR7(*8qwVe)gv4>cx+AudUuV)`62H!YJW4AuI&*9h>E+-rOPuG<};x? zcYV35e*eXwq@F*v`6Pn8&M_P^u{VmG)MdR7CJxU~l;Fc8;|sQ_yQ#|nf|6Kre&L@0 zps|lBa5!nonY5no(y%f!$R-$@d~K^*IsG`Yn!KH72T8G=!+^D+Jnt-oxYB6$H<_ZA_{I_~&nkczL^9t}cw=^7Si+A4ag`ql&2y{xE$W^zxvXQFfI$9yC{Ck|vFH9~^tKnV``4HB^nrDX zX1n6&J>KBl7~)UC2=OrcLl*AxaF|_SUUb{*MKJysQFQJnr1$%Z)6kZzAD0ZQSjKze z)+KdON5MOe-}CrMs>hYzFGKV>&>@?2Aqp5Z15a%Gy-X;-?h^agaEi0#psq&wW971iAzTtBfM|2u2^I%&1ed^bU zLBy>ZiKUa#iTFgD6HQOeJl}I z{jn@-KNh(uu`6=f)z^OtW{t1~TNvO6Ot{q43Xs51{~>$sFRwkQVQ$<^yIZnkEMaW` zRul@@fhluaI0MB?*%hN|mWqiNMIy}14@E{6q%f_oa52qm|CyfD$x!m>rhK5p*j&V% zR}I@L@+d_)$Lr)7Dy__Ceuqhk((k(nd(n(y(;z{XpVQKLc^XYta2#(aI%L$@NkFQP zcR4dO&POCvPA<%KE&wm0=rDZ=qBIpF$cQQ&S;y(md2(ak%`+lcy4sBJHKJiCkr+Me_o%r%F8xt(|X9crFLkIe1{?n7>e(nZ?e+l4Apg7h;U= zB$i(C{|)m~0)yEVSL^+Gju?{pB6aOQCu?Dokk9T?$8y-J3i!iJrt4JB!gW1$mom_1 zE?@|u#RH2?0PD#zg>F0bg36C2S29aDB6HTM?; z@`Qy)I`RCl{v}zv-Atlq=i&68_G4vY+uR>F0#XC1J6Zz|!CO`V3t=FJsH3m*0bXPf zr?&8~S?@O8$RC69KH3=*H{?8TRhsttE)F5@scy8$i5PrVX0I0C6CVblF``R>9?;|u3a2-Lr3 zw;AnyxYI(EH?uk|H0&kU4M*{wef3Bp3R!iFY>|zDj#h3=x#y->eS6V8%5C@!hC+R7 zhUYhHD48}o4WP0Lm&Q7^E$|1K_+@4q29p7etdCln&8&8k7` z0dp=Mwd+$vG*9-6TE)iw_-u5`^v6bT0(>6b;$5}9CXnA+*)&a?YBWhdlatGg@&OCy z<$Px=M^LRUW4ETxHyZ@yhz~Iuw(??vH0ASSjEQr-$8qh}$VvHz{lcz3D_FrxF@{5A z!fi($f_PbSJF7Ftx&k|80eKp47)WjqwKB35IX;u{j&w=_nRiCPQ9dKJR1<@8!GTEP z#kOo@=H=wmN@im9w$R$-%9SG_1XPj=t~HjY|M;<5YdCN(^lH`1#pk!4|5El6_7XUA zrUdO?Y@dx3)1mZI@o}&Q+ppAUFhbVDh0$dW$^#2wzL(KsjAm{-H3s#@EI^%+!Ia6N zlp?Z=r_9C@1Fm(%FuKU!*;c;2Z}~%mcq7L*Bgd#c61av=&O%dK(B#8TKyKTI=q$DH zFjX!)zGAn(ok&cXEWryu-kV~6QwL&1KY-wi)he8oW^(Ev)xL-qjzTC51(i!2yIB)? zRR1iuGOYwnpwXg}wR}bVyGD|l;RDV-yi?hElIOwC75xBFAi;2iRlye4j)4&cxko{L zce!U0i>r)-uJ=e*tamjtPdeyDC4L}7u^q{))r_Lp)t!>t>?{#jHRWdffs}EEZRCoe zAw0wSvtiS(uQe+QhHju*#+Iwt6VrpAFgj5I=@VZZ>yiu(2ln2u*rd-b1-}5U8dmAZ z0zw{{x+7*2;SD`4cAomN7jFt1^gu}8+Dx~tDX%7lxBgR|}=w3d-yFMM-AK#k~w`BIi1 zxZVk>oxUec2fPipqu9v%dnYPxJ5w?l8i`67{d+;Um@4nL?jmPj*WcKbeX3^jC6;x! zc{*c<*bw{;7G1h#6{PdUQ5o~}uE!?Fk=d>G=0ycCve0Ii)DTXgD}A?C^w!--#dQNi z7Kgt0@f^Da^RLfr68cM0k>6J1^94eeEt^RQXd6)cP0^B@7i_|_)4o+x3sY6JuQZ%DMyl67(6$@APS zcaMb(jI!#2Yw&!UT*nK$7Y*yWRok@SBI|c4MoiB?oRk1>HlkU=VHIK_gb?+ZN_|_% zl96Ru33eBBJjEGu3MI<`4FuP~V9_T-N^uW`S+`$$`;y&gU&6FzMXt zu=GxX8XZHk10X;pSkfc(tP%$#PYZa7oh*jk+TvQypJ19(=8nIN_N)-9 zpuK;@hy5sgACmS?_S}}o!!P)-BRBR_D%nEcUX#=uN->r46Wt;1aygS?RiV3}yRq3e z3>!*mnl=FJvcD2ePNhdGz%8xDVzh{9!z{34gTc3U#Hfc*hG<7AegnX=BqRTGVUqw0RH3QFLkiZcNDr)*{RTCmMVWEW{NEG(AkEp zJ+|hse_=#YcebeaD_-t$H}zbz^W*@OQuLVyfv09N=T<*Ge$^bso?-0y`v3%Bd>*e??w?E=%(HSNxb3%r~!o>J?V zUhsGSc!BM@c@~%hn;oMr!N*E}80b6ijepEt9wS!NF93F%vAXM%(1=(hm@mAxh-Ph7 z>9B|3pnW_dSCUoFF84FGlNJrkJPhrr`SUZA9slYiDXe1F;$+ofF>}k045Brsz23l! zF0~@q$5wQZKWTZNtXkOOXIEa|jIMCzQo9bVH657~gwSg&$XckyEGR$Pfs~fsc4H|T z#r|Mh%mO-S@w!$Qw=DLBD}+nv39G_GdxtTUDK&lWuW?gWwBPRzCyzI-3e(93mS{KF#%_ASa)M^s0Tqp;(m0w*-|z>bVV921YtYz8 zfcoz_ff2cau!Ta`Ee_jdg}W^dX|J8^V$}4T|EAqYVgX?%GP^?aJ)usK^A7WjE?yzg zH11)<^?T>J!w{{#Lhp;%t^Zs%cn93-Csgr*4|_?EcK0*g*g_WoTE6F|KqT-NaCE|m zyXh?|!MSnNS_|q(0HJLphqQ@aZ0uC+ixzSW0ZZvZFC(MtJ85+A2ZrNKWdhDeF`A^; zZNhb@&HB$BFU;|#KDU!QYn5kUooD|Re%#hlZC>$@i)K1UiQdEJr9p+F@kM8V_8VC- za9KC4j&0|Cu!EC+38H;GY) zLm)+tCrun-w1%>5WiK}gaMZeK0 z2F~}U0TCHMh$k^BJ=Pb+_~ zPG*GfPvbVII{ew8i>{|Acu($ED|kVE>*vS+;r;5T`7$s4|0@?9|4VQmI|uXsV}1C) z;J!Odvvi1Wa$mxKk^9bYG;qQbLF?G@*9B4jgYJ8I7hEh9Q%hc`XgkR6tl=}uNcwdn z6JbI-cp{K{4V&A|I4SUIF5vez94p{g@So6!M40V6hVHlLC%@PC`QcoFiklcp7}=T& zfsa6#3O3p##-97DuZPs!>94y~0dMa&GQZCqKmIBKKkv8H>HpXqP9LYAr)`EAKz&kEXv~Zk`t}_HORL(6OW)f=4~k z>7e7jyT1tVcY{ADtno`im}L!b7ykPU0cF4miNhEv^}D6pH}<}UiD$9=Y$Nsck%9Mq zYySG2%>6G4--X`S6UW!X-PPw+b?#O-p`PBSWBcd*%e-8!Mc&m2Nz#Y+Fpu8O4y}8w zJNWrk(o;MrXtY?=2pqL|E?mmYirT_fK#)J@$q(m`Nn7HLenemYRcMi64HAU#nt_g8 z@BmP@-59?7Wj%l}5t9MqtRalpXuwMGFw`yC?>HEejU6<*)B%QL$Q>}OKAWC>PL#*! z-)>A?NXFUOY(k_Vn5lY@RSpe%0ou0uCJXi4NCR^kcHtIuDfIl?y>8o_ecA_!7Zjd9 zXk=`9_kuC^LUx$uq}7e<@tc(<)s) zBvbmc{{G0nx#<)9436~N(N}mJUa(V&^&r4;eywzWwhDE=4|*+t7U|Xe`PoO`_1T)^ z@)ATMGFY2ET@W$F_#=o$^&764_%l2Vnis0c^Kbmxw?mNRh<5j^DOGczKS35|h*^F2 z9lejOcAi_}TsOS4;97<`M8Thw{_DJ_eo%VZJ-a&Nr8GFl&-dCf$QUL^xY{ICOMSzF z5d#hBJC*{RZBubWlNmLQy^6K;G!MKV+5fcX8x9xkf4hvivDvrydmuA6Y37_f=M+~4 z>R=~v?*h>YwFe-X$FXWmV_Q+=` zPW2eOw?^qWO?Cd{F9;1=}Kqzd7+IjuE39C<&A^&L;Z-BXX^@Ed!KMdNOuBkJ`hJs%0 ztc5E&8dN<7&XW9#>_PURxkszC3+5kF>z{oB^bdNrgaSkx%q`FW*X%uzKf>Gn+riex zjn+Q)9wCuiF~b<4kkRZyz;;6IJN1Ni*}kBz9y8d#(@;eD=bWL1a;6kCZ&3;D<6Ab6 z5=7!6WtuAAd5|~>?qZ&P)k}P|*ynx@?NH$@srhi{`r=@%3TZD~ro>UeE;8m_p$n1% zkh0#VCBq6ft9C%af*65FS!IY71l5mMa3;mVxX)$)WwGE!Lk|V=N*MCb+yla{5oASD zyE>sIQ@PCqf??eIDX!Xp9PM<3=ZeE^haKZ1lyjQ|PG3eC{vI-yk*AX+vl0B@8+*V}T4j;eGOZJU0{i;?A@B2^7 z$FY+uvSS`J65@GmZIT!_yhJ}GS3Ck%7_>wfcwSyi3ZG-lIKSL2;y|uq8@>_Bl0r)a zzL;8601^I6$cFdZtqZ`K(Or;sHL#c{)Ep$;D%|xCZWDb528@{MK|5vHAL7~PU$Y6n z)Hl9}X+EaZQ)NuV3X#Pe9{SQcvsqw_4GsLcceIqZFrBk-e9JFOVdR?r7hw zSG*@1|A3$2vfM4O_P~H_9Y@CCAMGr)8_k!9lWmHw@I^^B41W-|CKr4S zR!1;`)Wz3a*-n3ldGQo#y}2wsW_bCi5jmoL&(JNao^t@r-ppm7R zlwM-Xpg8oJuB^{DMh}H1osURzZrr+7)YFp}Arrr|n=@v&HL5xAD4B3?nc~@;=q6Uv`8cmsrm?4I9?sAV53s}z6ei^@*#r5>k zQ76F+X~7*hN<9{@{sb7pU}3qOFOuttYmFt*c?CFN{pl!rKgVEqJCui?4gXDjx^4IY zc=R)~^KtEPa&R>7+U)UdI)1!&Y6)2VWmRuW1;}nUg@S=b?ZextqAwRxw-d=~o9r{J zo?c2+)`?p$cu%1CS`vH?VBS)Pb%5^u5KM=cyd?MJgA@>LCs0=BV7w%KDalAv?6NXE z!vFTx0Cb>QphqXLHv(M0F}V&o9XAG((^p!F9i%SUzmh5?y23YN8^}Y$L*LQ_T+pmQDEl7I1Bwc8*7^a&((@y-Y*v7rLRVaSq|ICu@?udB9EHqVPfrGl&N zGi^t8d9{hMXb`~fugYLqURy+3`UOE?2mCXCnGAK*+qn>jS#8jyF5U?`1P9=1?_J(k zRl!+u@ms)I&Ld0moyxY-V`&eddF1Mtd2MmCU!r=Q^m)DXUUvac3R1P>PZdQhpHnqq zv@!HIuw_-U*2z>{OKfI6?RfeG11jAN6W4c)W*X=R0`R`MQQ3&%s7HCK;dYjj!97l^ zue-ysIJ=pz4x)|29m4@f{!0J>w>#5~H)lb7PGqf>X69M zK@*cuu7#IhULsfRTEB59>k#|G%&iRuxujSf8@to^XVXVO{24}mWF(1t`zV17*wob^ z+sqb4H~du{vX~iN)9|-4x>)g{zqaKQ3}k~W&MrJh1?lPYYNQ9CN6{Y!1>EY>7djUO z>OWb}H}T8>_a~>P=-jKdxkT@jp^BAU_LwGh%g_@3$Su12mszjUwve4tj_ub;+U6<1 z(ph6on}SF{)1XA5H*epr%eWZ|X;ylV>A&(;h9IEOm%s^mP{eQ`$sr$Px0vgD@` z?O~wffUr!nsMfW|Vz>R7WB)@otGD=GQxLDbql-RQ>kfnq{jjP50(7$8%2`tYciaPB zjQ|WxEy0ojCM9q!k+shF(5x?#fHEXnoLQ=iRQ;Ph7!dB^=?D*@*+f2E$o?9*UA54c zWO%?O^%f{t;Rub2uv%%Q9Dxmv*X#g7hRrxMmwPWMEZ{X*YOl!SCPe?*&m^_9KkS|~ z7}I)Ja$RS4_2JL$f*)m_Ej`M~{;U{P(pT*Yo?rPER)NtNL#)6GUzx9y#tF$^Kj4CW zsat%v`qCsX9y->zDm98H5|$j3p$0!B%ZJQR!ttDU=Bi#+RzfIq5)3Ed%7bU#xZb-u z!q#)tLV#8tN;p^ORVRaB+1wwm;TWlcMppP9j*VT1An^8ywBP)A(VL9D+XLwSp5y*C z7b04k@~y@>EFE%M$~5Y)4C0JMLJAfSNX`zB`O!OP+soMpZN||f&^S8t3W6jii(c00 zarsvvPm(=o^;Y8HTYcF=4!dCOeE?^loQMg`ch285NBEK^XIEb|kd6H1q|tqRzf{#$ zBG9b;#0V^0O{Y#+X8;weT(Nsuo#D2{kI2U5zp&a1U4DWM&Se0f*YbW~Vw0&lMEmvg z=z!ejng6-XL93YiDwbEIN4!rU+-%IpXtG`6?>A*^+nr?xtQ)X!<8(O(8%TvHP~WGr z6AaX}q1m(&u=u0(t#Feb$G$@D`kP1xBHfSa(fn%AeB6~GbdX0FTLcOb4 z5Iop7U3rP&Fx35CaoS*rh4R~;YTkbMRHDuC4bjDks2WXOFzhBR2kx({XK_Tm+3+i< z5Ib~Fnq?Zb!&P#;TmV0OGq1ECaqv{b&|5}Vv#4skgJ)qY@-%8y5!Sph^KjA$VoiN2 zJL}k$3c<={$dV5S!D*Bz+ln<_lgcDKDOfev9!3Qpt4oFj@f%?X*LGo6vS(lQq!;GNQ|QJ?6e5w`;nj`%Ize`sr^CRK6J}u#BVj*CQ?$w7OVqo} z&Te>W1vd*@l~4RMU&40f5}HoC`yd34l>Ymu;32&>AMBjw_`?g`zhcx!z5_bdd2;|Tyn?887=KeC<3H=Z)0#q7#N>b{Rcr=i!@rVJ{h)E?xL1o%2fRKFYN2sB2m{n)iu94_?0n^mSRBi$L#bd*UT3!=!&>>5K z`kofK>r*r>?A;Mmm!Su{r_NwSirTirj@z!M@Xobqz{BHI9dGj|emIMlnM)t^+rBW! zSA0`6pkQZY>dz#KM#Kn2suS(v2R5@KYdI!o8*Ifi!v0mYXOmnLqMRc*(~wQZ_DydC zotF(S35{y5dgp81CMHS(wT8xRXi8ZDkWppMVt~07GDh)24&$q=~M1vsQ##aV18XKtnOgN71RvrLcHbXy%hXOtQWE@a#odPbTa@ibB*KE4>;4FR z6pe?4R`CfDVDNgwn!h%$U6s2W;Es%L@Mo)@&-+l+B0T^{^>2Gn3L zr%~~8Td;j!ppn^f(nxep^`hv=K`VKhp;h`rcUEZL|3_IyH@a3^drV=>T4rP;RjaWV zYq~k-;?UX5C{FR(62?omo&3o0rdG-f(3}*-e+8IiqB4FYd*;``SW$2gLQ*7ic^o2x zdVoMmk&keIrbKUPIiOH7b(%PprJzh{Q~omV7j4}@yllVd3>prnYkqW=?#?>mXsGto zk6LLg$$pd$*%7O_VTZDjRLXdj3IUcxJm_gFKQyJTlZDbHme6$<#LQy~lon?W;8C)P zimle1Iz%3?jfw$>5Hat#-;V8>;>Qwoh{Og5ga`_w;I3@v z;De(>S|JhIc79n^;2H`%xr@kjt2XIjCH`v}A%c(w)Wo`L<_xV%$N|#6+K_V_A;pC& z`#Dx9yd?@+OBf(0FYWvh)V>1^YoT%xwmz$m1_tN~ud-*fa?}@Gt!Z);M+m1|6g*kO zMqn%VJ}`7pEyZ6#dhe`C`g#9YoawX_oFmNo`+V=qIR6j)q9AI(yrjyR-oL#?3hA28o1yRxw(Vkawxq3S}jfAV1~Jgmln_W^LT&t+DKX8#1ZSqM|Zb$tRj zgqaY_hN!0At#!UJ!~NcJ{_QdGYh{Z;HNYo|#uYPHbnF>rj>AeB-2`9$M&R}c_2Gws z_N%-N7Js+fPxW;H)rX<@&sxzlUV;^uuQbOBt95~;a|;9THmbL#3A8ejxuSDetD)|| za;3+U2S=n%>K0dS{IR?5**xt{=YyZvQr{m%^s<>{w^vNf>>1>|du|RZD=qMzeO;33vvVP6<`if35G)s+Tq&Jyu6pKAxh}ZsV;{+P2IbS!*`a{dGg)#(rt$*u zlQZ*0%z6I8u%m3+o<+NpyroAY0`4MTeZ?apI`+Sqg{&SZiZ522V9DB=aF0 zl{*D%qr}@1Q8HdPW_h9>*j9VJFlvSfI)^ZnO;p}PZ6;3(yW589)aHn4&oSGqRvVEQ0pq}P39D6|c|2Wy;r!`X%@{M^sqb`_R09@wn->Ro*e=jbSd7+uiKzH+dL|K>Vg(JVcEHCLqIJD_!xV zx2i`|PE0+*ZpB*r>jwNOZZcaJq=t$=iYDI@yiH2Q3 zpOR|c24>9YI|7NkQJc3>5xkOq_L;e;GJwDM7kKiyeF-RS)#qhdTfc^8?` zG5K34O`RCj^f0~#DJyuU7{}LIvJ7^o3^>~mLo%{|4QDc_;UGE4pl*bG$)KucdfX8@ zddn$t+O$h*?QH|m#Em!$sPMn*_c>iU&~(Ur+n+;!pSu(Z=b)oWDN1ftfz?tUgH^dD z))r|1t{<`{klg2C7W6v(oJ$A0;kxn$Un{v^OmrayiV;WemZl!>vu*Nc^sFg6BM?oN z$10Y~mCWMU-}L@CGoGWf(iy5RANK)SNs}cd@}%QoZ4{n=7ovQGOL}O0#YuYf{*C6s zOLnw|P7oXISQYGkq<#6b>>vD5XXyb`qwa_6?F^6KBrRpPBybQP(!$JG`@6IF;1n`Q z$I3><|4ud=eI?-QRyCVrTWrAtzDo7zTZiJx8;Qcqk!OAGq`s zC0Vj7-_yudjxDmkEru9>Mkb^ZdTjC`5_$~T54z?0^ohRARxD8C*DGJyllM_<2d@Ib zGr7V#$0|0;Fm5%e{;e>de#+Gv(s#;@@vDB1{^Ss|e`_KF_9G56@uT%^DMIBMTxe9^ zMMi$kp9og+d#n@cafo%7EJojB#Rix}Hh8k6P^>n;37{p3f90zZm`}F`&j?l{Dolq8 zH|EWGwKLY_sn>_RaVeJY3Jdhb_bE4Sx8kRF**DeJ^WnEf3ty=hI+nj9%3>92Rs~V4 zi{=@-p;mCM(YL$hb&hYT@e$Lajk)zB!HnO3vS^-J?V}ckUzS zb-=VEEL2?O+L7`BfnvWELu@5`d!bT~97;>^mrj@T6&iNU>24uS@^<|dDWbT8fIY6o zud$7*d21QI(4R7HqerKMMVsI55$wo}aZVE$7$e_8=Qzr0oZG_%5kUw?5f88RQxf74 zryW1R`CfA@3w0Z}o?JpTldIOia_~>?t4^-gChYhQhQoY=KMdLSO8WJRDW}x|Vs7F! zN@*!S3KJoDI*}NTxcUYdU>ne+~If(@wQV6Dj-q zm(01LX^`c>7U>l3=r(g4JZty8$Y!Qaa$=ee8se<|kv~Zp=qu_VWa*)wsQ~-K(s z5&0Bl=^w=LAJ_Z5zN!AQfBBCb)!?{$>-}~$NQ7(0Q+OE6vWA6hjmBFlsnt%_>&$#zXPM2zLX&H%Q6Wf0yxjN!vzI}GL4AgoBXwRv%WsO z_hyOZ%@k>XV;0cMf2!`>ho-4MQ}TBdycJ%%>udc09WN=JTh>@nU*1XdBM595XXWon zkIaM0)i(Q>M;HpFVV3}3+)?}zn z*N)$p=ZiOgj$Bvo-SBvNp8!!|8#4r$7a+d)WYdR{iH7JSHOC(Bzot~wnkwa8_ zmCLYZB;qdTpCRVVTx4d>irQG0$8?LcA=s9Mzlt{tv|55-VGuXLR5ikYHE6Z~n}&0UbLLRdR8lnF-jGMon+eL+LEe01x7I&A(DsAPC@|L)kOg*SHwp zQ1EmouGDD+g+@w$Qq%O88>p7;-$L#kwuUg{;ym9`%f`b|ab|AOmOv;!5gg*4k0lhZ zh6l29nVm_{Tb*q0M_r93&vpnVSK2TEVr`B7NfzE?VA{}fs(j|*470EgE>h*Kft>pY z%bbh(GZW&VyolE?cUJc6dNskNH--~}NfIKoA5gCD_-QL)?p21U+jNOMOyAk>Xo_kQM+$cNqJoQ;IHU(`_LQNS4 zk!0nU`J_2FZqf^3Nu-Oqkr>qGIr@t34Sh!HmHolYU&?Z<;Ama9wyY^_T*825GsFLlD#mTNWo@uX(;?A6D_jZ{>wSIw$b?(jet8UyFkdE(Ulx zgNNbnl?|pyA$@5DjL0J=O+C%fNKhGFP<$W}+DMyD8RzIZpGa=~_9le!+!xEAVaUR` ze~NF$!=5ZBWKTUN00WT-c;md(e7A5^aR{C;OLx5D);G6_#5KBJ4R}tX4keYM++!h zm|WteQH6|P@kO;YXv3g0>vsgo5jk~V1ZhgLhQV&GzsBnq(S=E{hn^?pSp zP>qS%h;NVc;j;vQ?jUHyu{{{G8S8V4sFTb`Df<+I3`d zS}PvTp9I5H9->u9`^S8XSeEKg>x{~Qg$a%uqgEkogM>vKLxBK4i97WDF>lWTwRp5- z@4WUxt#jh!N`Eui-PQG#ldA!ZdP($d>(YVF?;2;>I}ejec=pyHwPr^H3DBCO8vg9e z2S+J*G-FSGzwaolljd2V32ESon(2a~DVZ(+$vj+CRE0;G(@eSiZRHm*qN#a=16ITc z?|fTS(FK}|aOQerq!@4JBskX)jzh7OXXL4_L=Ow-3Kj%lyCs0j=IU7u75%5bh<2Bx ziChx@Hy&drG`H@zz6iz?N?l6RHK?P0}_xxx0BK&~nkgkzt~>OW0s)FcWd6 z#C=t@*R9SxfTH^oDpUBpWvx{nKFDZbnDI4Vjb|K@cUzVa`VRlg+XXKSbp7)Wwi!De zrJx2B>LMwv&Evz0DrSpz((Js!MSN`NoM9YsRMd1DGMt`>%>{9_+oQLNom5d+z|&*v zpOsq_xPd3HSv-j4uyrfo>dl*T^A`4u%6nJE$kyT0s_9?Lg`_WQl*NrV)0Q@&uGKea zUeQdt&~yH6^SMjbzYdiWnE_{}b0U^&P1^itiwhjiDOz-?c9Guwm4X)?l+Y&!l7aZo z8d-5dEJ(Z^ztC1NqaEG7f_GW(vmxgF(4<$)@&lf7A(kzL>PYIlMV0GE%S|GiMxJE* zUa~m&ptqs>=aILo^XPtpr-t{{FSt5!lb`H<6gJT=xR#1Td+RSdRxKn%zR7?qjbcrwKEx>F)KpW~o%9MXhoHh@{?^B{9P5ZP)u zn7|Xg`-HWd9A-(;+b5S4Z8uD8V7-vjX6HA2I)_@Nw_F5^F*j71>=f`D7L)foMOkXJ z(A`=p?lqLNzh2?^S9|hS#qJ<2MTZ$jL0@tB_p0yk^JWozeU@#eW>2RkaaiA_r#w6u z5J(aChRH}M4Rr*VNU%W2i~DN0#|s&1rm~u>XsD;KiU_h%kJsJ*2wGcnkx&ZtP?$-I zml0Bea)ZlY#z$EFE#!nh0V$(#QujCAS6+F7x#(ZpcUI@PeR{_~O^)h+lxNA~bdvt* zY`<$6S!zpYQVq2by-wFlzH3Vi+=sdx-8rdDXsI(vMjDo6Dmqr5h~?D>p~FnF-a~NcuJEt zb!)1xKTHP_6122(Du=EfAoD}d*#roKSa##-U5mnOD)hpf^8yE2^c7m$Hma)L;{vod z_-&c{faF3lRSvCWbLAD>*_)50WscX?R3!pfI-mSV9q91%m5IGo>?b#zM2E?S2D_g| z%_FfGLf${nX%M|e*BOpKGZ5_<8g{zQ2jCC9}O6x zB@zi|TGd`cB2s`PclJ~3G;P)s*A(6M|HIff23Znx+fI8L(>ABOr)|4?TGO^|+qP}n zwr$(CdD_N1U%VUf?u++++#jcM=ZRB0E9zuqW$m^1T8?{@(){rLjK0xYo1@2FmBCM{ zviybUY&XN(n=Oe;6Bj?Ez!25<=0&Oezm+5|0u|fx-z*ZB11!`G{Uv8E!bdTTy63zD z_K`>ghVR~Tb9AJ+_ijALNkUhUW}~krgWSf1!!Uo? zZ{52!l{`&?!UwlrGL%XYwYS#PTO)swQ1zvcq^)^G7bP{@mN7RyHRyFQTc70VD%<>3 z#l7KhXODluVU9j{3ftZP6_YUjR1y8y_%+97b)OsOvw8QoW45Li8$JA2#hL$T@JKev zEEK#!!o^u3$0lIq&fb|BHuU+&K$gBt)Fy*v${9&_<;o%z>|F7N-Naj$)mpk*@xxB;OnIIb%Ny45M z2O;gIT!x9{obF$!Wvv}8V-hRM{acGfwK`X$+~P75e_n&7yC6t+n5`S?#1l0h# zJIzm+VGPw(SlH^0Ho;)8KrhsPbCupr8|7N6)2n4waI*7RQ=OJed-9uYxq1FP{)Y5e zK}_A%6A_WgXZ>>@DF+n|faCvhQB%Mg2Sw+M+@p}WrPy4R0(WdMtRRTDIf=IEJ72aC z-qKwfnzmzn-S-P2Oev_Ic^D{jmoRY^Dy|BLvv~@M8;JN$B;TokMFBrl0g@pW(s!8z z5RD-z7JjwH)kpz|LUmE>LnjGkTx{DD`B(9fEyOX>VeMScKY1y#l{>we*nEA>*=sTic;hEwE+>hV+~k}>D>WW_mO(Fk`mNn4Il;+9Drc01XuIxu8UeI-z^wMR>*$6opN z`UhwnSvuw!M8|Z@n!a9d#53kBpl`Qkq6J=_TE@?3!!Tjky5#l9hIADpTaL2a7~8Wm zEX1pCXk>FJ>?|(rUofjxPg;X~W16$&e}B{t=7Ld#gRj4G0N*wP#Acg8t$K@G1{j&) zBu>{iAt@fSOio{m25K0FQzxG!SKxKZsfcCqReoBpw$Zy?TR~&*;Jb6wblx*#ATv2e zs^~~lhud~pE@vq~)tFj;Ql>U%spDsZ|4@B4wm)9Q4fo6IZi5z>9KvkO4GecX%jy?e zFB(~Z(NmY3VL9F3pSAxw1(LP+{Tkw@WJnb`fx#_n8mv02nVK$)SW0P_;VGfx_zlSR zGWxWCq=cSHJ8EFzN-xa-@k@O9sR5$S)VmCx3Rf~PpvZTJW=h0jWGrs`)U`{^e?Qp+ zSMAZ)C4E)=xOO4&TqdCC3pl-nX??kxuIb&$A5|NG*Pu%G%xU*R-NKoGd{XULI$;5_ zJp#!|l*_`ONqUW)m|z=NbTyR9Sx$3{UHrvQANwn2N6S`t1&JT)r}Eq>Vt<+DXa!Kq zeZYssBQDj*0p2Cire8iZ4eO{p`xk**-%>i&_T6s%v+*+-taju+XfBna?uqH71c2#l zc$&W>F2+qly?r=K`sVph&nuVQRW%5?U$m-Ro&45S!Ha1*ST2JlP3kt}8+V^gc5pW& z2dTX?SR-)Wx8jTK&TC?aMH2q=E4j)MI8uTLr z$S=i0cHMyr3{dkvKxuSVZ6jDGr-xNe*POX~k6m0gmV2Hc^)<#Udln7!lHd)629zmR zUH#PY27s%ugojEzT%L_ak;NxZ@UBwcy@?M;SpAFxA}@g3=;U)Q5!H?5$~pUs2bv<} z%-47^gi$^^fxS|BB`XES-Ba8NO4!C*{4UKnWvGjTa=w!Jvbtbpj>sVXTHD64gqQ+f zj2rSI=;3WonF?>YzkJ6&einn9lbA+-1;ov!VrTz+Tq5rM(j%f_Vw;kw#6gA&#`)^t);XHWbtnvFs_b2bA(o3<{RR-4pbnYNb9ez&TDyHwb4Q*#iGI@Mb6sXUadOt<^yl)&UAdb_7}Rc&F60PAG!6@Kl`7I>i#Mw zfZHpWUrzlkRECYm8*S2+K{hJ0i)N`=IK=!TM=MuP{fAnoYfZBfr$=FY6lUy97QlRFt!db&jrGZ3U>OSEwV|A*sWBiE$^LHzBt%4ej5HZ zOl>@a4m8u%{s~gq{b5BZvu4+x|Li)AtV56TcAI#sE(_s<3gg$BB1?#Wi$cZbD!Ej* zpAHw=vKgGl_*yb{fU8dYZKhlyH9O?~%pm$*!HKD$l^*h#|2B~Q;C~F-&2@}LVkZ9x z3;szcBg?hmBErS7)3dpFtx85lpYq_MPF2sUwWj^sRfL>>zM0JuU^chn z*p^D+%+z=Bhe@u9jr8|)6N;EJ;kbV~O>RoIDNU}R0EBGzM_!}TuXZajuEqYGU>Rv3 zbpnY0MkvLBX<0x*2=%)@ssCZ6(uDA@Cy%0&%$hN`6%;%EJUZz?h@jV+A&9JQH!KWP zW+&yyIIq`R!&aB{Enkjo-8(0-bsNb>?K6^7jq&gGj>ZnGM;%LYL)UP;JKpMtnp}eICEaMVp!DrX$N^o9XRxrkO5*ZI4LA6D?odA6#Ir*acaHh8ened9ooang#}J~HQCfn} z#Sr54Qd3M-pc6%X><&_BOHBE)nU#*TTmc--LD-YC8SOq(DItlt)3c^;QnNdp(fW$6!m59%UxyGpU?!|%lXb9z0h$jue0X0tfYy1h|j z$fPD87qrJ#KuD-8uc}Y8rl`0IOs~PM0HRAQ&WSOH`>U6N($$eBTpf2?xpfNAT6@s#?8z3Do`#QKG}UP`v>BgNg1b#v6&H8X3>Zk*N2Tu;5*DJ&puxZ8b)Ix>ko3615A0ofB(ZS5<*r z_i9?b&+D4djh>r+$ow@?grhXD6KD_4$rcIR0}!Aa8RD#ET%KZoU5fD%gw?Ed=|FH7 zqrsm})?_fM(LG#>ZHpXOcnnUXlcl;pj1)#f9K7CX>zpeQa#A-s1RNBPovWJ-?6C~3 z0krHZ8Tn9I=>t`L;j~rTYl4w!+n}v%h?EEt{@2}AC0^%r6SIJ}TwhBAiYIvFC_^7jF z;ZRuZ>fEP`C`Pxrxn)er%XfVMwZ0;Nn2n+XlNv8UG2CbJ?hLkg771@|bpRR0jWJt8D%yKwbexRIqzRLt%MLzxmS-p2 zmY0*P_QEJNU#s;zr!g|4ZHq&>*4u9zuZnZ;Eq}A3%FUg5x+q>PI&#({U*?A8F&_=N z)hoHw%u}_zQ)enk*^@x^H$yM35iPFB1! zYb=E>;D3}i-mIf=PEq}siyPlHX{U#wVBZrpIxQ!5x*Akxmxqw*ibi#4FTJ30+fF7< z%D7~7v;i4ujkR8X8*s|J4WOHd$#>~s|1;MANVbH4`Qb^`oZ7K47iTE#xp_WVu2y20 zTeDnKeqr1)aC_}!(?jY#xL|jGp|o^We(|a69N4G>0A`is)EFIIr0aBdv*x_&-)*m^ zJxPlKUh9`HFIV0?mu!&HO}K`LwpjboE~ICeg;nk%aKhviz;sbQ5+7pR!i4s*pW{PzsZ9Ou;ik;24+(b4CX;`yiX={3Bd z*?Q{M7w6IAd{S1(@a!sz==GfA`fg9~R;9g~XN4@=$!`$*bDJ~GC?oP|cRPA?d)Oc7(DYq~>Yg8%)BArz_0aDx?;lh(7 z{@0BOF-kEco`6ps3eQV>pRHVN8LqUl2d&!Lmizv6N5Ps+-xIEBG(qnAtFEeU5nWjT zZp3x2D9nXeYik`18j#@0>Z@N865!n>=?*w)bOGru08sA2)z#$w*pYj9gkoncbg9{V zJH5o%QJ_i@Ia&71VCh2LKH7SGKud5!FQt_L30G(**k9H_JG>gGNV{DKsGl)6_Xg z>P#uco|sgftHmog;_?s2wf-k#Yt>ucUH>AuV4bNPLVl!j~2Kh(wTeNj_ez|kzFQd9!+tJ%(}83fjTl4&h4089ZBX8 z*~6oS>X~N5p&>~A^bmb{E$cQ}I==YnLEGEBUFp%eN8PcemzaVHPH_|Fz1wR>^%h9D z)0tBPX!|p>dI~K9#%z~#YrtZc;$Hyn$hbpTwgIFs{Uef7kD8I7`&P>jfRuJCz0*8K zAe{;C)s}*GqRrAWPB>)2+Hma>6SJ4}agbi;32P<1-R-W-Y{sdi73WfQUg>2aw{%4Ra3lk&re}`;`v?OBwa99Jm4@VpP}l1{{&+)^zq$iOG}MyLr(7#UR0k=3gG+p=}7160>S6& z?Q!Cr&gVUc@8jf|?+dU)tHTG#$(h~;T07lZLgy;XmdQFmTE?d*wCfdw)&ab2HL~+h z4<-^x1sD+p7-latV7pS~DfFS9rZ{HXk5I0Sxjz!IE3PcIrF4KZ3X`{ zYLdHZ*wWcTF$l3IBw^!F<$n|Y2ci1+$GG!@2()qq|LUJJde#SRz`qN0A}V@ySUHUo z)-r0Jx{4q4cP7M4yTX(DPPX0!YH@%pqGs0BsM9{WkN*Hvs5o%VFPreYlSJ{J_2AcNsNXlbY!rRmzYuN+h%1f8UD zG)IXM$yDLVLYsSc(Yb1lAT*@dK~i43u9k1rb%&8bk39@frAHbAbYqDOd2EpQEejdv6rI=C z+X2-&PqxX+KQA)Q-ys+TMec{BtkvbfE_!+MyTL|(w$hwP<)UmVOQx8lq*J(nNBWP; zU|SLsWla<*p3%QYMtaRXu(Znq>L{#|-91}T{x)$z=lef{Q8N@;6cN1pHm46bkiD(C$b2&f#O_o7lsUCYPJr|McYl8wesMh!jB> zZZO5D5&pdPeVki-^*gc7hs5#JDdzbraGCfI(3(mTYx2^HFXjkEUX$W#UhhqDWsgbNbBn*0Ni71LI2hf#X$orb)2p_)A9+ir!VvvRcZLO&a+y6Z5SFHN8d!3-j|6Z&KBa&Z4u5^Ptd-BkdvM+bD<6b<&G4#N| z1a=tczEcQe=gz$6(SLQOFBa=j&-Z^-wFETS@DXh z*X5O0_F$v~FLqm?S*)6JwLPlQ>C^sNwwr@M1SHp1qq~y8qg$r3kDk(32rQQV zcFnk0zm4@UapXU5E~BTaZp=pW}@M;S=zqa$}L#2yESf1lQ`LeX%rq zE8>zj622b4dhX~B;dDgDO>?oG0)7oWFt&$QjM5jXTL)7InKQOhB&OQQ7TrXq!Ti@h z0?~txt?pAM?00u)#Y8>05o8`b+ebHy*sky`aJjc4P`$e%U#0+c)-u+)u*rO~I0Twrg7MeXB7nN&CTjC#_er>M}>})ajB-ZVu4hBevB- zazXb@3T`3=@qqNeN7o+{I)@%0lUL^k^w!LD4DaF}y>cbGZ6{fQ<67Uw3%DcqY5@+$ z=D~3L*DX^_R6PD1gT#jF|HBY?7l=vcNe2C6K3zX^#KC#~bQ;u>2G9FP?)3n4sxoc& z;1i6uT5B&a?KXfD5@$ce36At!{1mo|CXY!@M?fd^HoE&Kf`GNespMkHEQUVtt5GRv zue>IbhoDszMs$0PG1V}RX=E0XhYwic#_9O*QSE4Kg}>R_aTN2M;f3Q}l%N~fpjKR`)6yzD5vm}F-7a3DUDVv({l*8MlXwmdF_)YS={kwr%*s|CQP0B>t z6c{_Q6qvS&A|cL=*0S6hzDjOkm!e3k#^yx1$x8dBZhvi>=5Hc00eMK2DdpKSJqltN526%&-0V|^->btUvfHmenkS1?yu8}|@!u(Yui?+e zM^4=C5d4{5A7@_#l|IMX0-?rSGbVNwdv-2eW^eP55@DC$soyk#wRzi-czas3$?s7a zCanulofj3VSGu)eigiq>OioZodz_Pgr@Kq*1-F&)@bll%H_~Ek9-bhF+cqoxfKioa zHXeGc(77LKlPNOw7?s82rb$lZl%!$}6WPArdpU-*yvikAx)$LFrBE9^HD zTThAi`wYRd0BjAR=Ow)A_m9Wos;>Wa>rG7%Yh$3cOxC&H+3x(WB!)VNi9FwLVJpDWGn~ztldgGkPdY58k3$8+!WChQOhuF1}r_>OhRoiDRk!oxm zOi{|JBkZ}|B4a~;jeYYU?d==J=1hyL-dyS$^A)`ZQ^9G6Z3w?04zTlTatB|BdrDF9 zw!oR$+-<621Ppdh3_5@1M7&>k}zVE8%GY<93+{iSF&9bQCr4a#}Sk_%^f9TJ{AtW38;`FXn zIOg=u`@`Ly?bpn;{Q)Zh-#lP}aIpA?t!1}fFBFfucU7OsTtH^bw{(RGSHXJS*_u0A zv)5yZnIQFq?)avpVDlrRhIb&sTsmS(VTMJ)dM@uz%M-*x6Hc> z1QELdZH`N0B@sIW!ND?=YY%;?K+s`3Cpdz&sB23`-IdrIYhxR*c@Pi(=(LV8H15fh zQibYKs+}?Bf+UY4-3HPjMF)=@2ozQaF6;}dA1zhkOfr*yUtcbFlh!*C<~z)H1EOd`)Dl0>S^d zG6XbDw@^>dr5G}!8|8;Q7v3HNF>GZI&H6?JF}QURwC&cFJmqmn*y*@mpl!8X`+jCF z6fS~hVmO$yKK%3#+;>gW&X6oX053R%mL1@Y;9gG7u+lMnT9YM>Qe5Oo0s?HgaTX`e z*IXcaIT@Yy#RfLd54LB#<3CG}kGceQmwZ)dSA0wBI)tLfN4>Ew-3OI4tC0 zT9R`(r=fGVfH983Os?s;;l_~+=t;^{N!1zLU*DI>q-Rmv`kEC1@356Ze)DNmRHsfO zM2*lN_+fnPn0XRvCw?e!C@D|GOwt6Ah17^HX*@VtsTBFA#vf+^aT)^#1tVtxa!T;|`px-@GdVo#fw5VAuL;lrghFtsX%Pidsw;oo%;1OQVz1w5gqljOp)n!v++CN1 zFe{BFsb_vR!{%MC&FHrF`{nf71|dY!Zyr{OgzbfMbmjMsA1XKrue0Zjj^3R`19Q24 znu|%E_}4)@gGl5%5cFXDXc^-|^w-=Q+gyOsHiXci#fssPKH^0mNpJGe)X~GMJ)=(~ zbD>od;7(yh863lbTISrUVI?YNDsqOFMMY2Vx=&C}&4Q3T5hIY-%az^ttfMK!ZgwQQ z3Qn-&U7V*}{KZ@5VNXlQQ&T4)I;fY1CZRK-se2shp~;>>_Gf4aH>u5!l&yTj{3=aJ z1`NzbABtp*ZDkr1i~w1A;_}MqHI?TjG>P%q@qw06d=FH{FmaM+k~~4KW|Dj;Q#)Rc zy9Abvpr3ydyBO?Xp-3lI`>XS0qm^4y+%R#?aXU0sT3nLinuW;tAbT%%U)#6Ag=~00 zS;8tfr%D%dhEiDv|I{usjUsCa8;M|rLm?6En@oy-m>hO4{f(NJo>$8yv!&mDb$RaB zKZ6)B_K{w@((aPE46#!hnQK&DRs5A}DO+p;ThWkPvS(-w`E~ma8RJ_&So4*xbuUI< z7_O`ZOH4&C1o=*>AFcHL%-y;f`CBLf8sctsn4Zhdq7*C;%skzy+eYuZv=J9lcpvP7 zuRq9cAq1mU(>&01=!d;qC%JynV+xkTxck^5Fm?xsnQ_+1fWfie$qA_-e8KgSd+tK} z#riO6_jbY8VCTauHcGe6w25ZAb6rOQ}T%~jd67n2fxh(He~Iwt1g$mb3= zSw_~Khak8#k`T&*+~Q5IEcQ!4H-SGeo?KNOA5Wm zR{bV=E5SM?P?LQyLd6m-`B}L1TbgSqUnwSt;K7!#;zkRRw}bNrbOB^Ge#23(S7kPAmaJZ!17bT6Q$=W_`K0nvSlT7P&rY>xVmIflPx5W8Mha5LU@u|_+?~=F0x{nwGGp>39BW~F-@h8JP*^y zSU2NUQj&fmmod`!Mt8hE>2y}CoKrISmHW&((`HX`*tX|Hk~{67^j$PhYjboG^DOU| zI1a?v?ql0;{V&+WTi*=G+)G!+1{P4nzqV(hP{>zb zl&kQ3nq~Pp(a1HB7Cx=jE?7b)@A!5U)X@H zR|KTsce}p&i*VJAwWJN7EB>ZXWZD9f@bL=V*RQ16?=@-RCO2@}>Et9%aXmU}mslL# zexh2(Ki6mwqZv$-G~CzG9?eej=)BKSIHope;oPMY_wP)0fn`7{5oEP^deCS4;@_#Y z{%Xs`Us^!824&YCqhAm3WbqEG=OLk3mEk4{qv3*heo%=2V6ME`L6H%Yef|TW<9dZr;C%Rd(QsLJ2WmbYVy?O%P$+BE7lxYqN?S&D<4YxZF+rxJ`TiO_H;D=*V6F7rHnVU%EoOsV zqb_|ZYBP4GbEB)$>SX3@?&aTU(*lX|vt_LpuQ);9WPJAYVAC%*2R`dY&F?Bg_0R6F zwtn2=3u^eV)*=Tb$~$^*vSX==Y5Upy7Wi_SPq^Va1t(&3@c_jp{qvK;*Z4XtOThbe zvY@0|(bZ82wV~Vj`jBzrQla$;Wv%2UTJFh>FUJe`R49~+Suhb@4Kz^?Nyfe}rgxLf z7s)~5T$h_;nujZnDJD$;ub3-AC{FCImW55-#%P|`t@}#B6+ha+@Gab`^MZfNwxYyG zMJ|4i|FQ7dbxZed>wkEI8qvQNOcG`&M+I(zV>D{wn%-v8(%Q&sHIk=)x`tzDd!|n9 zAOj_rB~z64J~9Ictm|l49I1lu(>J;xi>cVQ8rvcR=e1am5Ls*^Bffb;Bxs=>$K#sId^zackzb zx!AjsWG1#rUXB*^M}v&Df+U9xEu&+rg*n^9-m?9;whc@6>p!t2PZ=0;clply1J*Yj~i@--CR8})PdX@#%**Fp3!y*&etq;2Ss|T(BKs3JG!c=Hv7!h<`+NX;fE+#SC*&Z;Vozo&gs-~>e3TD{&|HdN|S z*6DIsk?odJOp-WP7_TxQ_wn>5a5PI%F-5 zWw{zRe{Nh|oP6FdbanT5`MiIg_Wity+1j9{Xg01H#__asDKks`v{11aZH50w=;G25iBL53BGh^+KER0k61 z6$g()wJa zkGz8w218hHqnBKZ)xpX3xt`wRLiW0{=1f~9plz)7q;POb>kX8KfxKKRckM(f%KexRje=cgo zw8L>hVE9n!%55==Lgt6QnVM&5)W+A9a}xgu|E3U%X3@)A0Oi!h%xnhnUv z&Ef|c4rE5Wn6l6e$(0Hq9IQ*TkCru;<>^>L7<7ftw~*8a68~kGWSOBGj8%;qpeQD_ zRr*H}TR^i-7!CAEeOV7-vj)O1Ri}&wz><=`KelVpN5`6g2l3Nl!iTr?i(tU%38^t{O34LH!qH_M z_=7arYh2}1Xfzfm+xmm6}1VM39`PQ@xSJuW&!Mwe zOWSYj$UU%-)NsCdw1s2)u-9=(;zdp9lT&vPM{%2BaJV#k$9R_5?eR;G`gF=Ap}0Sy z(S$raI3!O`j%C-&lrWxbN~qo8yFJS~&=nv(uixe4d|3F(d~eUd*phkqk^k$jv_r2X zYiV;JMTq@A-=OXah`JBE&Ele5Ue1}OI< zH?i&PaJ_Jvt>bkwH7mM{ssAR%soPGS$26>Xbk3m97;c7UYRYzoZZNaWq0b1;+Nabj zW-T@vUFU40|8et*07q z{FyB7)9Sax-Xfh`bYCR__Pl_-<6Uv!kx+4)9v2=Ncmb?>=ui{r1DtxS-*zPAwGydS z#v0JN`IaOlW*}5)!2yA4L#az*Ku49wPv<}OY4wzy=@m6PWm3a<#YIaWt?BhhujK?N z2)T0T8)nm1Vrcyjl=D_Es|N$uGQ2KyD8e6;bo6xg{B)51t?gFT6&ikm9RQkHG5S_h zpBuvb2pUzjpwJ_hyqXni3t1_}JCP`xiIM*ny2K5u(B`NTVZ~U}9N;&mZqRu1nR-_k|bhyYiPd@Cf0<}a|eYW0T z_BvdX93=URZ#!JCGK}2gt29xmvw_C9Z080_eMRNzjx;O zYuCP&@0;jNR>639pJ3%x22AcCzhtuu`SocwSomD|unVlm>G0Z`AwE=eHd9$85u69V7oe=R8XMSh^ z6tKG;RCb&18K#rWbx+xv_N6NP7eWw?W~rg5wmeozSO@k|DOH)S0p<)wqI|c8z9t-n zidTiuXbqWjoqKwtBU<_Zvs_2GL=MdjzCAn1Q}c_IGpb*_ zz8k#6P8S1M;Q643lR3PnWlMQ@cO1U~4ivVtxE;kbmjkYnL$nIY5+?aQ=!fQIO|vG= zizCELwY*|ME01{-8~X@Pbc#5gF;ZIxwbH3j1`5yY}U?5QP(?)RpK>X5v4W&f+3>*6N|RKcbId&{l`It%!Fxkf+2&+;L`e??`jT%{K7-WTi(yx41?7`>3DG9_6q#TgWUtIpHDP zZ`fU7+Mo*m9$X;PHw3E+qy-{Fp><-gbn48#qoCHV&xaHfsYnv&qBEg&>3&dSX;#Wm zWAK`MsQ8H`pn%5bprFD$0$!<%&{$VW6_mN$DC@0l;huCN!2f~sSGDHmJyK_^IWwT_T^ z*LbN)>O+$g@eA^eh1>;!`YDAxd`h2FHouLG-L78@TfEK>2POsT$X|o`) zfi8quFy@VYj$%?jJpq`mlcHF$e9THf2D%zNTyu@%+gT#`N--Im%rWUg4{~MkhKi zUYRo_^KZF&IBq{hE{_fiS{v}*72mwNH~T7{`Q z!A7RUuBM9WJUE(!t|iycdUuLm z4T2)Ga05F9&iz}ZlmrKjNd{Hn*IfNS6&#Qj5dsd@kSOR-HGgeb3{W`P8{!K1v&5&< ztQuZwIb&+f|0rC^(~+=0gCj+gP6M9w>H1aXI`l)|$O_FOaj~>N_Q(i!fSO_IgDjSK z?YMNUxmCcBoIplUY~r!jR8q%{-HC$3hbHzO?>Geb0nmh(-?{M%OG#TC~R#T%SC zCLb}cyh@j*fB5OWh^5#33XE7qw(5wczb`(kU;*KwLc6jax+ZUF)`YnqCcyImqVpoNLNmsJ1!C)?i#U3}{>_ zn`Nv-@nBj*Sr|vA07h|zB>pl}Y)7it(n8t02CduxiT)z8&FVgpEk(s~=m5|zXT_Rr ziQgv??YaXHf`W*5ND(!Y$6Oh6o9NJsKe4NAJ4T0(BDTyy3bKo-?6q@SmaDR6e{wX) z=7#Vf+P;#shTqAxOxkyMlg}1_j!hQRUkTX7>Ng`(f%m-qDig31ZwK9Ay;x4)N{&ef zug}wdSyM!x(Uc?lPL*Mx<8V3;W@>FQ_!dek3=@JEI;y z;;7tfEP;@;Q~t$sDzl#YCkJc;=8fa4aH>cFTSuPAWnD3;e(%HfEOo;_Iwjhy9Y&oPlNL{*5&|G_ zmYSl-seEhG>PT&CFJW=bSL6ssu~qfJro2uD3NJnAN;EO76p&fHN>YE;-U_;7ekDDo z-Yr(z%a&x8wdQulsUg*^3}%%)c2133(zlLJcf1^h?cT^4sX4wy-g@6;L`c$1b$Ywb zNE1AiRZ4T9CW>nC{h{lXS}Xtw!J$Qf-tjztolS=@0i6W%_O~9JV*X)X$q%mvej-j0 zf=4s|L?7%h9|mUPvX*$EoMS+dBv-Z_DR_X(r1`|K^|5{7I@45l)Ag+D&G zA*Kd(0(@mJ6dN&bcT0}vLq2*_sGJ|ZlxTj!$BVEZ{*pziHb_U~(Unet-1(p1C zzyp$|smPkFZ8u)g{!Wl{V*0y`waA&xr6`wp)SduWxW21;j@44Myn++(7s0$c(fQ3u zI5=h^Wx2qU7aekJ{)gSDGxjI zYMjVQ91I!&^CqAxyOyJ@y9-&T?8h&>V7iZE`5AwI{kzeNJttxL$#H^PjlN@KPR3Cx zbge%cUpHTNQlP=4d&_Qb;nRqR4em~o3UI+alPLoMqvCq(aKSJ2dg|qL!x6D`ye@hp z_UdoYx+mtktO4;rVHdd+`zXrqRlYYSN6A$chC>6_$iS@S+5GbFxj%XCC*7|7&+@Vy zdDW=b;twL7pBx=t5CeW-3%39G<^2Rg=&t;qKR89DzDyyIHv)zb2UEaVq&Nm`Z3A&K@>QQ2>nKtPobAh?rN^|+Dv0C~SfyfS_LRE0a>7w57f;sV#O*T{ zGsfIJiGmnxawO$*`kk-RXRO7Bx=l`3DH?K^4@sVe&d)lV@U9=h@*UqB_!-ts$Liei zPJa%S0?3N^%p&xelPHqMkv3%+(gg@<%bf-y=E4d0^dFYV(T$L)2*K2PFURrO3utH# z?nqFNO0tIEw|(m)gh&{1uh+m*y52!~x9>toK&Vyr= zBL^*dORD`1Yu@&c+dfwsAJ#X&%m&(o7(R4DH6hpsQ?+&{=MIvB_(4^3sc8x1jeVvj zk}?&0hI*~3&cdDXy;7nAeQb`7RSl+v|Q9?DmSlrq5yKKjgnx{vOE`DcVkmzzzR$zexxoL)w z)Ss4fxC0oXwOt$j(U;Fsw4<6?^g9&PtKMcCl4?c-b1YF=C9{>27k}LkdE3ZFnxDLY zO58cKkq2{y_*#(GJej?i=~MW3?hP@eml${@Yi^UH=g3py><`y$c$^0`tbF{P+$cv0 zpK1KZu*rj{<0r-H9i`uf6V56Iq6u9V+yPrj$9k3?2`wgw0>=r~-%L>$fJSh83sB^i zrAXLoWjwx0!Jf{SlMxb0>@w$91x)?b#pJ_j$-D>kp2eR9MG#X#JJnMOPsT{4YQEJV zmQLAQ!S=M$MqX#(OIHFRQtu{LOzbzU66lPiR$pLcEdb-~$x-g(9U>LW6-Ri8WZml2 z!=NZ&fz+YW=S81qRRKHU)*V{vn<(N;uF9nwtcPgFnuwlP9I8i?!l1-oP$AAvT;hJi z99SD^-aiRoxj=QvtY{a_37Bsvcp7&gL7%|uP`@g|-arc_JW+1!T&6!wl#IDEGWBv_ z=61#_!J}Txa;W3jLDe!usxwTo%NAAuyVFNz1BZK#B0lsqBivp2&JS!#@_b6&v7qBL z{N%51R)aCUA6Fsw{>*;$Z4;>I_$aP!QDiJe3zma5Z!;`hY~D;`Z7p1Zp*%e~JZCm! ztIFjy5UfH!`D-;WXK}y8-)w-UBchWU<}@W{R?oF~+674wYk3Xxa&slv=_vEm;~TTh zi&&U`T5rwmpvNb{#5|vI1tUlKngJUxDe$U)?f>UQ26V~)0}jCt_ZT+L!XMYBKc1z^N}!lN;kyj|Dwpmm;F*=rc@i0%_qn;*EF1l0123#1l38 zK~xNm?`XJ)t=!Cklce{0^b?o+r0z3}&Vrmo6aigpR#v@9H)ln5Ja3S@geB4ZY}hqF zc;5AMVNq6&4bP&KG%Xoe?r(+SMe~UMnjz4>ur38*4>IC*Ros8pbz1CvF;0 zcV0SAP|_2J)Iz@%lcPe2oda@C5to;#1mQ(!qV(EXmAQ2BdzsQiX-+ZZA>{k(a{{3A zgA$yt!Zf$YOL_mGA49f<#k4WtI`8{Y%{Y==2J=!xHRYA!NLyNag(4>aC}b2uyV@xG z|BJD63eKd9_I{j9jEU`JV%s(+w)MoeCbpeSGO=yjw#_FtPu}{jPSv^iu6FhA>h9|9 z)zxb+{C`;BzaDVVLVr-rDmU*5YKFc2-T@j(=}r(boaYt{jVCDB&sI~wzZ6`dx#mMk zXp(MH2LGc!y*0kmFlbXzFFa6^x>06Jg~m#SoifHUhg>ckDai9aO{F2DvrhlwtTfd< zIStKbQiaN1byjhKQu}i@Q6s&DZSxeJZK)2R)iGFF>(ear#k6(N4{NE{E7hLy^Lu$X z1ip=@`n7p~ydFL+`+0Zw9IiJvKb?=K;`Tuv-hM2ndJ#QCGQcpVH_*-rx(6 z`L=t1#iqt?>+AD(Rl6G=ik-$`LZ(WRJpVs6Gn(sx`*AwlanWIUZ&@XiPfXE$%hA^# zVD#}&gyRhfSb86z)=j?g;+TA%hliLz=48^Mcswz(ZH=!zB6r!G*}e@zYU6S5N^@`H zmg>Ro_hrJb+lTYiWkSENT!GK;a{Q00Z3cZi!e;F##}C(+M_>ZwOT>>1K5t0EEg?H- zjQrniEg15YfVwTfbLsn~bW|&5Tk_x)Q21^z9?@tx?;KiXVo`U!E444r@ z2w}!cSt@Djo*KiF#^hIw`qtR|JK*n`q2~xYAHOs;L$#jNTi7c5%e&bt%@Mkb&aDw8 zp;7NBw-T|gwwz9WQ02DtO+dX6{3F+BI31QXrV?j#;%`-i7BcSlte0&@3RJ(^MbPgp zhfcOeqi(~VCH?kpc3vo=u+6wm&C!G>7? zHI6+hu9f@VNk2AiY4Y1w-Z=Bt2}d_M_o-G#Le^A<2xc6$;Uh@x?OWDZ`m8uBvXnxz zyd~njlKH&5e$ifzv~tNh!}_;j^}ZT^)8Y;=UrKjD44XT;a%@JhhhAD|a%2jQ{(QzV zNrQgejwm%rU0;U&x(+@YihQ(i9*;|0lRB-*^n|tTm&l!lwt`m5-zP%)sK6yt3xUPH z8MD6_N1QTUj2pM%aB#UUwb#L#=5V>CYr5{s9f%I*oyyI5>&!`r=P5dtkbx!@B2of0 z>#+6Euu5EM92x?`Jug3#Jv759a1V+sKKMoLb2L_zXB4>&WCkt?9%=5JTK!|W5qLJ1 zBcQ7t;cJw9LL*dbM8s4k-QPHouZT7ku7m#to;&v(5y?H-$Ol;SkInF>C>LJyx6(^+ zd5(L7*Z7%fTHTN}#~KrjeI_0nb{05RSh1Hx`yHLcDfYZ=Ijmu!4EyNe;H;U z;^f~npL-2oJigBMzxBty{=-KVJ=HTp-o6c$V>~JTNuUo75wCFYT5*5VMfJueH{yqs zP-^1}QB;dgrZU=jB9`ccgEmbgnIaKHkDTslFK8LRa*I`3g{(=SOH#*MCvM_l6FG8w zf)g)ij1XU{4}fj(o9Xo*D*=b!OoCKb9p%1e8s9cdy5!+uRbiX^o0H#yNZ^8V>948_ zw?&`6K&}f`#~V_XN}juuUttbE<)j5#$15!hCs>q^E0{9O?oW$E528t+0ba-31Zm>o zj4-0wKwn((2ze=R0T5}10j^=hxoUBPvq9qdEugNl<|+XSh5g(G(rgQVjZ&w<=miq@5+wgt+>UFi2Z|{oo5x2q-s@<^uWxr94>#*J zqT3eq!Viw(QG3*by#qv#-LJuGprUjY+GRwnUh$a|fS*0jveg53_Y^RAkV2}h;hvv} z5BeFaBokTyvuX$0qupm&=-TBMNB(1{(rlE0V-}9SJ8)qWx2Jd78cO@rF5&Bs3>b)v zr*vrml|rz5=jN?W^!<uM0w?Om0lULL}|vA`+|ZJzL1$jQt~zQ%6KyaOXe zfB)Z%LgHVE2nyCc?)vN?LATQ<`6|8`vqZ(+U>VMvuH933)j8gk(7T(z&}7` za^k3xWcKVd4PB9($)4HrLkqJ?wSU>0e_w*gAK9yhSAJd^+goc% zJN+awSv%{qBF?isf`@W{ME?SLsip$9<|>k0MDls|3uO> zn@OUQxE|ZHn&w&7t^Nb~YGF3K=%+QE@{qvsS>yC7xG1yM5BLMl&E;Bx*R_g)unccU z;!Qva!9J6UlWfdU5`VrgqnGE9>lyW}&?lY zJ$h3ZZNvQTia8Oc!stivo|qwp!ly|cS~R^ZE+JpzA|DI?Ay<~G6K-Pmz|Pp|U*{#Y z_Xde2l~3ogyI^!Nm$ni^p-ajgVbDg{j=*P_RmT$z+50<1t>CAYpekv7|zVH2}jk5AK? z3A0%_a*^{q;isq85Df4B!+@|yEcNs}o~ zBk`Agn_smK87<2Q74*S0Z7pM?<6H)~BVG=RWC8oJKVGPZn2j80>nnqc@%Md!Q2Up} zYt^@ua8lz~hZqiu5a(W`v#FH=-Ko$;@BHN`Y-TSS5be#>7mXnIb5Xd5l>!t5b; zAK=>eVlj&k4XNrJY-vfezH}rXLXdy25oOW)$|Xct1JX0`8UG8V53e_6Z+G%B06TE% z_jN{4WBiaJdmlIyf2OO6l({^ovOG(GB^%JOv67 zE#u1JeFj{IwzE!^F}-jfRKR||GU~@!M?t4K$6>`q6vyNJOaecf16+o=kqm@s;9;m+ z-}5jT2~J-)%XOlWi7#-I7ova2r(w;=0O=q4>^hwUFCEICj zx&F+>jb9L+<{uXzJwc5~3tHD}!HlOT_BVQA89^?$2n5!|S@nJTX@LEv8rCED8AshD zHqZ;2#KabwA%okG~xu9E2)IxvHMKUs8G_*tiw}| z{uRB}A(f4En-nL^gurX0GxJT{DeTOV;z2aDD{!bRUTlA4CY84Yj8XUn@|!q_Jb%2|w9)W8DtTJ*`ZqGVhD!E}IfI-e2uSTMHLNHL`goAtarRiU_=J4rmR6=^I6yLsjtIU>F;QAFO?2Bq;lwCb0psZ>w zCLGuruOU+2*m9^E6H>vM2B%YfC_f(2KaJTsUk*Z3G$b6L!q<48XI13%odN`^_?vCb zGXMgHm$pQ_U`{l|`cV@CgRtLVvMbmBtbf`UG+jkCrpOksFURpOP%V}KwT-prTj3EG z2msMHIR{6TOe?cm>LSXB&tRvb2&dyIF(BFKlviQXJFQC9G9$z_q&Xb?Q<<^Honnmp zT&1bc1dN1Nh3tFNnF{oJ)+Ss4e*S-aqm^`FSgs9AyO0S1FHyZ*YArLgJuwrlSuz(T zljSGHD%)`VY$A>ozx4~6=naur+fLp}g{)2uyf~>ChqTp8 z^;RbF#GhCRHh01mg;$LC9FnXM;BIo9B1tVPrwI}naz76FUMAegVelpq>W|O$Eg$>$ zt8tsYh*K~ks*f8cfPQ^iU2IlPZ{68)S0$6cuZt0<@kpg)GPe>aF&I9s<)f@Ju>c@)zL*nt4TCZAVBJ&T?@c8~A+c>=XTt^Y-j zO<=YdmxcCnx2_-R#jRT2-q}%HOm>yrbWDdaOq1~KF?*m`?fR~ndSiH_wO@D%bRayd zrQW=Fh;Ox&quX0qGiJNtR2x$6tm|J1Lf`$!yVFbD{-lzin(~Scyp*!N&v^G8Rj z&O3P~l@59SDd1m3#!pyioMQNq-F-Cv;5-_*_1>0i0I2_UL3$+thY3hczyHe;P;nO| zH*UuwaG6TzoQ?0*+mjUxV)f+uJ*pBruO;7AznQ}P<~EYS*C5|vcL;hMhs0zb|DQAM_F*y#%;tFv#%)hE?_SRd%wSdf8#F9UV++<-&pg8uPI==D~}~k z`c;Y65pd<~#?(T_8W`qX-g+;JnhS}NWkuPjv@Rt2sdVjdUAHr{>%EXN;k!rNnDYvH zF2Iiz1w!SN2fr~4jrkT{D(E@)+E3ul!QaclJAMzB9^B_706mKePyH1 zx!J17HquSKxJQ*0s^5igdSTPE)_x0Mpk4qkHT3FsO%oayKYD59GphgE-AIvi-GY6S zTq+5Tzj*K_J2&whgOZ(DJv8DGc03Aq{=udy>b_G-HrD;=&@=~AzyrSz<#&F`ZdJa` z+(Ze3)3|6?jJa?;BvH`xbb{MsyKrZk6i)B5V^)Clk z$G00jnsiYgZFXLuz-%fMOxj+b(QnGEFhBBK(RuGTta1tEKOV#->jWIHT;6n6YJ1F> z1Czd^jZocDKsJ|Mk~Bg=PPC$S%6T={NpVvXRYKErQ4lVE5D=_l5m4|w@$;NP=%l2QOFjI2 z%ek1X`~b`=L7Rh{?80KQV|I6aUOf8%P#`jI5^S?|qG&PPFEW?NMWGK#tv-d@*edaN z;WG5kEKArv$9A%-!8&PWM9eFw|8_|z$k%)3Ri~_aCePCq@8WiaiK{t8Dd1Kd;9?&9 zqNPRJ_{yxzg_ISWF>$E$Y5?Q&FcP#Uph5O{;^xB5hL+O?rVBv8c=I`S$ zccCVEEa0m-aifhm%|hbv2%$IW?9-0YLu7saTw(Qb{_%3(9^b4XPQ0CDza3_jjvD9{ zu$FA)P=mlfv|58nLD0L3{{YU}u7u?9__D1wJHDXe=k52>KTfFkiL@&ti2Z*AusQxe zi}=~t{uhg4kZ(MOwjJ>H5}`){T7^g*?+FqFckev?9~(Uz+yubc6hOpoGz@zC63|vo zwJ2g$Ca*g{v&}DpAr}8rKR?Rl^rjn5XXiGt^pl0m>*XVN`|~yBYmm8rkn6t)_VuIP zm-EZ`y8d>>kFC~`XaCBtb4uxptQ#g$|6zfzNA=X>ub1`Qt*(zT-Ou}NI|6zv&=b^N zT}IN+{q<&jrO)En|LXA%Z$CeQ%gugW`a8FG(}Yj!>&*<93>e>liRZ`nBL(+SNnz>7 z+mC5G0c`k#8I{lFt1n-V;pyD}2o!YK!w2B)r^nXr@3ItJVWUM4`V!}~nmivi`}@as z`t*~8ZXx-Rv!SO7J#sKUx9k)z9hpQw%q5vmz%i6<31bC>7-z*Bct7y$rgJL;;*e*i zv94Ie)0o7K@lhw^Sii&!(Q&}eM+Q$7`h4p19^AlesLVzDr$W=|5IO#7fYS>fr2kd- ztpbZKmZYCx-OA~P78#Wg*804VgZ~LOr6Wto!oaIxkd}HQWsS4yPkMDMP}3l>Yn0u5 zyyg4(`uO^>)lwh|1JH6~T+7>*8(^=6uaTj3Zv*x5ajjWHTslFZ zcYn(<{XUJlvpO_k+>UR-ap+v}2oH2{X1go@*_zIp@6S~P`_h7J;^hrTX>wb-cgd9fo6a zWQ9%Dj6*XVsrc!O0hoek-3b$7>kV^s!uyPvLGZXL(T(d@j5v_lVWAaIJVK{Oo_oLh zFoZDvRLtYkKSm9qRTont@og}91_~1I19vX4LvbkY{E=NQz>28K*c0D==7*zGL**$< zQB;}9==ace7)57xyWHvbd`3Lk96oQMHp6ms8O;XsAfBW*0{*2Gcv!6lyI)w;R!v4C zoIQ+!Mlyt~3)2p*gGI;V@Clscqa0q0oA=h;%1wMJFy?*Zz0(=q#p+$qM9N%sC5G3!F% za^An>#ORm6GO{1cMUNuhrjR=z9|`y`B$lBdrsD5xz-RRSDz?c0hV@sKBd0EzjR0k2 z31U2?kj8|dH}90Fqa^Zvs0doYWGHtoh#I7j(|s}22IPrxy;3U-0$wmC4lzDOoa{LH zCQP<{8pJc$sX-Ra;l?ztAfzmlOj~qSvKp+@f;#&-?J+FPhwYOny7G<_X#&p?DWu+H z5PotWXe*r!HUznd1OwKA)$ZdY%e}|?yKrdy?=|{qGmi=mn0lJgKepp=9y^L5LI{qN z@(6f_b(bU8h`zq~N3$QvkbXX;??zyA0m&%cJrWe|JHEnJz5Lor%I+m75wl?;@_1oO z_r>V#qw)SM)GlFp$G20SG5sxyky;b_9RK0Mf7KSs;leD)90T~NYnsv;8$LNX8bM*c>chjJ5@U__c!t9!5AH$imQ0uv5EO#<4b~j$a z$Yg59Kq6wWJS?h1xHvRWsJ<>ZxDt|sG zgLjTtO`1sYJE{XKv9A=3Ix%f(SrjCMsC=QmRT9a%Ff#!b7AO5$6a4RMxzmH`7dN4D z=n8>>I*9qdY9an_MFDY8UM^-2->b<$g3vh=z2j(aGv2$`}D@&Fk`~WM{F@@SmmTLK~^*8vpjb zbQRAl4ad4(z+S7~Y7i_8A|T|qP%^VT#Fr)9{srvHG_yim=zw*XkOYw8YiIufxIkVu zPc}dO=^fG$%au|nAarvu-!1u5WPn$BnAV*%!<5#Dv)MGh6)NX?JYFn`)=MBG{x7^{ z3srM%$rX4-B~(RepaY~j;S^y9TAXra-B{%4QigKXM;dmX%AJ4=+0kBoh>WWXv#jT0 zsAsaLhD9g8T3KCK;_~visqAQA1C%c`z1gOCgd(<|6LrsbArKXM}YEX#br;sa{EdI=pBMVW@ zSP?_8F9|f(3s!eVQZ%@rqQ|J{McRwKl)$LVsz)*oN9->k?;fS5M;fCNs>0XN*|nrq zf+-kEo79M@-~Q-X25tIBmfj9|+gQe`V6d|nwhWW9?z!+CoPQ7NJxVhS#@uiNB3GX92Qw03~IqJ{esw}&72 z4%lM!$v0){wz0a_8?6$zOZB&A{@MI_ZS0!J-HHo&6XQ2xtNf1A9!}4GL9u2(Vw?Ym zuqHF?ZERkx(?W_F`1`rKL1s4KKos`AA$~Saf!dQPU8O7k;qAP-mcg}XrVQRHUZvDP zs++f^{Bj?wLUaLAE3>EfSKP0eVlsR0OULw-hRo@6I%1K9$Gg-liA-Tn3awq^n5HSv-gI#PRBH~a8a_)XlZRVLT9|fVS z>cxiM_IBUV4Ms7T2f0qMyP}ls4jyVHPFHhjwn zA75DBU~f~!EMoc6}!tX0N^0nj?b5tap21uosAj2o4C! zjnp$TVmwqR#M*7A6ZtdNgcdFgM$*bK#XILJJZCB9D59yUSR2K*cC?O-uzqFyi7c)W z6tHK+K1D>W!H2g?d_t8235P_h$q^yWL$|2YRR_I`bjS;TvzRfQdr;wNnJRq#q(E@< z9D>J&=Q^3V+j%X`EsMt;uxj4y1luopq(EgZf;BE)`%}2j#(?iuz)4Mf3gP7EzLwB% z@suVrNfo`O!5pg%t&Zzam$2tGO1&aX>E$5tlnlS3U}7~HCUf8=Ql?lFSTRJAa2yC* zuQ}>(PF-djuH8~K6EfPcJ%iS#Xn$VNTX!W*c~6zT@j;ktpd;#`QVp|a6j-m2SN`5* zeJUgPNAySQb!vh8${qS4?Abk)42;iA)f=6Nj>)3lWXr1_y85@>m%nFcNI{o*PK`R* z$px)u9_rNNQ_ZHnmG$ubgsi45fA)OrFoeyYUCE{iZq{(~?IxGXe1uDtLl-w&Q`R1l zG7QEIfUR-DyE3S{I;}43;$MM|#|?A+Bqw*^fW?3@o?XL}h5vhm)2k8P!tMYgFsc`V z<9w0v#>TpUS+*mTtT7#Yz)Myck6W;#xmJ{iZY}eOwU8@U+CjVUaa3SN%f)j=y*Bmu z@wB}=1*FOXq!@vZft|!4DH1v<1TDLF4OKn$lY_0LzjZnPJHY*I+q!v^h~{(0Llk?v zBqAdm6lSR$h#cW`JwDd!tk`>J8(eY3RahJu#7lE+&i>*o1BfzR@@8VC4BLP2kgzpl zGPuuO0SQY%fu1L>m2L@R6-z~(4M9KQTFw_Zaa!Htw5uqchKx3Z_>yAR2Jr1%dyo2+bxQrYc&IUZteSjkN z#GtqV?b5F5NrbgMOLPl>)|zI@!1`#!9+mX?I+K`#ja!orKsbwLIe%DAvP;Z(+39_1 z3_1jV!T3cmNu|omo|O|#s7w_)%3p?RFb7=RA4GN=idDs-DVP;~e@b#t$%XoQC+EUw zhGKt&vcA!FeY_nZgp&^Rg<+2ZR#BhJ&l*dkN}9TakE@C%K$lqB?>+OCBwseoI@^uh6NU zEtFNoDyQ?bw2+551jUD@TyQhwQdThJZ5wY&8o~sT!92ypFT-4Pty$Z-LEH}B@vi?0 zF?h;uF8s}VwrXVA#5MF0rgyuhd+Fv$Tk7aIsXm8nm)MjP9i zJPy4!3w%G>z>WRu?)|w?&bRfuH&ei|mC|h>O!uzxlnIz!M$$}Syq3)nEY*&JlEIh@CLerMv=oRWrrqQ;i<-EsW3|J!rWTN~fSw+I5QZoQ4>1&28Rz z#A2kQNTP9yzIPKz3U|GmU1fcgtm2+$rk59LedOC=rZ?-!BLo|WpuBvY4M;oy^ilYSV+~a3dO}a2supm)qDjbN9zQI-3jgQmRFS`%M4Mf2q#HwL z7v78CN}Z6qtkYZO@7dh@>9RJX}1cfbkg&KsF_DAVI z=M=1lj|&e9VG)q2k(7`Gx(k4i9SGAD(1YeYAO96Oae)dcAx`5}VoW?Y@#h56x}9RI zZWzp-NcBbHTs#D!F}AY9J&R}`!2Z$rB+3N2_;IaVv% zzY(-8T)UgykXH1q9II4qu(~2ePJM$B3Xv(5STfo6m^%gYiHHnDnM|qqdk)i%wPZ)u zxPAmKDaOBZZIb+&AIkfy%-n|Hk%L7oZ`!Z|$xLQtg)f#5-gD?Ee{^ESVqL8=KCaFv zS^h|t;MFj;o}A;M_z3V12w(A*|pkw zp>A@lSpnqPXP-ub$mWN|^MOo@3KZ_)s+-dSTDy4V@&`MQAvzS`DwAgU9`;`HY8{Vl z$f=U=Hv`@y_WY&KdVk*KAktyQxAU%Ek-^oZAI20VkC$#7<*^Z!lT>0bQwGYD@|kR9 zd4`B8E>$(SMZ6Z#{f^k;iRgSd^t*#+X9%EH<+h)cq1o<$Ua7@VMF37&?Q-6UKsdNg zHFLc2YjR(ef>cKl$pg2vj(el6dd^}0*XF?z3l9+6mMT3zqI%6u8*t+c+wkZ@Cqp)R zbGANa%%hHe{LdNEXQ)S{P)aj{} z4j>$a`HQh532jaJaE`+-cAo$tKF`T%q>*p8;VBO`bS@o=GFCBNn;;hG*HwY#`lP=p zu8%;fX{0C+ZWc6vN`ql7Q$WxD?>S3pkE=5Bu`z|MKD<@R8q#m7#V)I8gK+%=_8n%u z)f2)!T!=?KSw>*=WoVzNXYDiWX2(iUdE33gyaBS_9B z`{2bPekmub%{9R?cLif;dqO11L?>`JLj{3A#dXB^bIOnSv;@9{%LBX!^ z+;L^t2Fg*l* zde6utDXSN#vLq?3THRb`rPq<~i8DNwY8rhhs3OgWicn^$#y~ZwFf8e1t-aw)AaquT z>s;UTt~s&XdA6oZ0tx-hSw&DeqJ9AXAVd8k3um~(m5~$jVcO;2D~QH0ayn(vy`+C3 zrmb+xe}i26P@PX+Osm8tjEuvLxw(lTC{sYkwmAfd{JPD@I65 zy^^T0SG|xFAt(YH$Xpv0jMlIULsVM+Hchi@)(8G3v_MqMI=3QSNVT^f`)(I!K+;2o z#N(g9+^IV}mphlEqro8ptKePI$qMyUr;tm>n?{10vRsj_R7ijJzh$@HK4=IH1ZsG? zSY?60Ia@@Ekaiz5(Jq=bJDQ_ZD*OQG@k)q}R$^3Mjkuwzs?O+hTTIoLa+s;oNXh=T z89h$<;Zre{BNBbTY8Q2mzqy*Y8{Uk98X%g`Ck=z&^D|^P&x+rLQV3Y;;OhJQGiSYZ5QiDusRN2mtk6UpJ4L&*zp zr!vNBc>gF|jbw$|s~XVyKp(hP-eB2|f~ z2dh$Eh1ybh;G=Y=3USaxvh2>kwaQ5}Q7Ne3Gixz4QOw!-f&9l-_FY-m7f2YqFaF*A&?#r>@-fYPTq(mxv!U)Ejq`rcl=pR2u{u$?1rIP2 zN!Zc2vyybu28d-X`L~lzcd5>3f#-}LPNQ+5ZFflcEKC!hs&S3r8u7UNtvXTZrp?tJ z%{^X+?Wbnjd{@r0@huiAbAWnz@wJDntUBaw-Ov{*r>6A9;QqCua2BOFAI zhkMZv?5=<^Z(O%9$@d1^E+G@M5IQ!uFeKg6LYf>`aa=Siqw&ru9<-ndh|N5+?8Nz) z2MT#s5c05UARJK5*P-^=AF)#YDAH&FTUG}bx&&3*Icr`oki{)SvU^wudiZ{NgC%X0 zwo!!DKIbtnN$I0i^o}qK@&RZ2K4L{$n|K& zYxQ|e-Mu?j_?D|bUjDvFx1X<1tB)rV`0e#!=sN3>8z&JJYJ=_b?L3erxESVY7m^dE zqs0yR31S+hmrrcRqMNYm{TK*rW@v6^*hl_){FbD@JD$$X>G}lv`F`!E3cO!!hxqOI z;dOoariu5r5YTIoVn{(niB=f$oq6aN$7d%01_-C{9f z2SFusd<7#z?XKYT{{s&5Mk{&X4Ruq!vjy({c>UUUPCd<8y7O<67n4&gH357iVubJC zB@`w18G*k6qOLL|fAH1jF?$6wt60em!H1mzG;#s@Rx)PF#i` zhe2jSTa#1xa;;)b#5NjjSYQn{$j~noCdVRt!*Y$GK+WkyUd|W4GJz`FMeKo@?G#$ zf#%TQT!V0@{z;90SG&Bko8d#;tx_z*EQ|t{bSB0(^IQ92Yu| zzSD70EM(%xoeW-%8O>N^#a=G0|8lpmnaQxPQ9yNHrMP%@fr$cprS!Qj z$eUBQ_y$jaQ>mfHC zE-&N)g@Yl+zs~Pq@4h>{tKj<0;$oko8lL}7S8y?hU`miZTBv~)M`=*^;!UhjDVFh9 z8P?hjQXsDe~K!;U(0fWL27H^7YWWG#146h`}jbLAUxwBP~w=I5~hmaeQFeJb7_+*tRLe1BPzL`eg6(q`kkYs9*;XYbYz8KH8v5IbnO zU|`&+cnXpaB^wWPPRU)z0?agxw~D^2|3l2(eSOEZPgckigDx_H0zf$5;4cN|$AoM< z#hu1b(7A4hS2V(xWaJ98!t5l$E>#>3vMv;7N0xy5{9`TPX^?w~M$U0Nt9iDUqdp4~ z1fw`?ub*;HfQ_e{USKRt@^HTN5}p8a7A@7Ohw!>JUp{l4%)u3#`F?*!O=o&5h68_+&T|wow5VG##-KfHj=4p+%*oP9lwwvZHa8FG(~uc# z2)om?SX;YsJqO;3JTtMln*`2RD_T&Z5@FTuYO!h|^4cm+An$_;WuE3A8X6J^vwEV( zQcO;);d97Sij3YF4GK+|{dMqz4N$wM?R12To^&=|KE6O^usgc-SW{;fHD0f+3d{^5 z5RmfM;QGbONmPqgmB31tmK1ai+inoLoe?PIuA0D0Jgp79VZ*65Q0Wkia8kVmEvqwx zHqv%fgjVW4VFrXzH#+%9N~rKwV;I%=d$tY)(iaqJLfqF`&Pv7HJ# z9;F@apAC1%C5{^dvO=9T{|2Du2c-S17gPZWGOV6)6+^~Ny?q;~tJV+B zMEr$IZEPN6aIz3htD42+=&r^=-vhZ01=yz2@T&n-y-H)r$!3i7vAKnhJ8JEWonJ1& zuJxqkhmeO{b^-%eziDH=NRm_-PCveo30UHLRo`of)SV$LDeTrpSVD$RU~u7U;GV** zLjfkP8qNE^*o@ezGL6Cwfmf_dqEuZ=sQvZl2z5pdFR>6iR5SU?vYdPUhk&z4?=6%( zaaB}f=@Y{SvSK#O6{APRwb$}kRi zn+6`8pm}-42LxtfCXB*RbzUTBkNrK7O~g=oxN{U;IZ`^rX0-FB*}Z}vVydU!8|tNN zV7?@mnd?Yq_7}-bkT)~Z1b73sjO%-MPWt})O9Choq`Ek(Ze}2X6PLyZiDsRMr@uPg zi2s$}i_?4;fj!9oaYnCXKw4E$RAgC!q6Cr3;V z^^`Rnb6-w8d(hGpn4+!RX=eedaqJ#A(IPuju5%?9r}jTltPiGgTD6vB zbHS_S@&JJ3ADyGGJJJc(0XxL2o@D!p-A+{X0Ek+5Ug%o~E{~W(NoP67MR!aH=<(%8 zn0|v96QntIU#aFpVo*$^BuZ2YW>jv#jl_$bSd)*5A}qn5)% ztD65#8z{?G@AC)Y+`EnUJ4e||1fSm6*nm#VUAVlrBlYf{b7(|1cQZy3GWh*FI>ik8 zM3@~m15IrJ2cjgS5Zlg=4TV@r)ze7097WU5X;0y7*!;)fUs^nq5n|eN^M{J6e!s$X z(of+(uoR4)E>E1{ZAD@N3kTSEyz=7B<}Y$v>K@v%Ij91@G-7#x9ly7>dEbpSaExY` zv~)Y-yrY^%){I;~^zg7Uoo~T}nsFtR!QLSQZ8^e@!*14o4zLx?oWpXnukW^h2r>*3 zwhV#j_T%3Y?n6!KZT!9GK#5Co?&&?#d87`cX6ZhF81lKfdID=KN@3!(qAGM7>1ZZL~($!0xw19|TLBNZ-hEHZ0nDG1W=*Hne-Z^7gIL z>fgZ7vhI}6)d)kc()6YU!d6e9G}=a?kyJx zP^4PPWKZ42PXb>1IqmTI27Ko5Dd`RKFw23S?J{o&La@C_Ntxk1he~kA4Mz!G%Mvx) zQ1o4AVz0usH@dae99;`mM!%px!O%<`3nA~;Akw{0F*HyuwqJ`l%~DEd6b(-hb~U}Y zDSSFbuNkX3+<0~O<6jNXLm~u2_|Z)(vzJE!<$X)?I3&&-?OHPA?Z?;(I5>Q4apj;a zeDwj7?)}Iq2hPN_2hMOHZF@Ap`2LgW_P@KxD5vZo`v6c-do)hoxOwJqLy1sou|S#PD{2Sm$~vg3Dr-oxHKP^kL};v_4% zi}&vz4d5F_E(A4KBwh}bz~Q^Teh_c-fpQl09$`%m zR;3GJzbXDU+`2$F5}mfy_{*JPCLCI%a zQpv?Z^Xo@aV9A}q`VQxD>~Il2Ur#y$Sb}2X7hF{no|AQ4_a5I@GV#7NdV>ok5$%zXT4PeU7Fv3C=ZafWO8#O1c39#%uU1R9r;SzF<|ml#Z9 z7EE{@W!b-&v|GTR%zHj3JO5$)ZZFU+#;^M0%$D6re+pY^%*;3U+h0LiJ>cAq{8w|! zKvCkde929kcR_ehoM=N}@k5Pp0UH!a}zrUmdm2 z9gk?aMd87ZMC#W3r`QUX{J;&v()pi7AM?}3e*dC|K;e{-tXiWks@7On zZ_W8UmY~^=$+z2!>x2lTdNSRV*UW@q`-%1Ka=C+x`*oD|dISRP3Wmo@A-SBL&3#3N zzzCQVt;yw*5>lzEGbw!Cbmg?qu z(Z<@2(rqGyQ;)QpA2f7BVbR&;ZmRj|<)zfeLHYHIvPFk*fk383_RjDaBG?L`8Q4f{_`Z4YD zpTO^ditOU%1NxpweMmqTICU4?i%TTpb8Q5k>8$#4j%~anq0UYar?7!VWwu% zcGCs$$I7i96{IDe?(QjZ75#b8O0D35i@?9CkLUcIy_Z-HM07n|Z3>@ac2=cO%N+kl ze+1>>A2#+lg9p0kD=l>zB366*#-H$k-4?jk?@#B^v(yY9a(1%#gDQARjJ4>3zG00v zqDA)o#s$Rr&wGH3=(c}CJ8OSdQ8r0T#`HbdV}Z^Jo~sI&qq`%KI`k2@eH8}PdN82U z9UbTzV7E*xe1=*f^O2~d7IplZ-3zuT_cWX}Sy&qyU27=Ay9$BR7BAIPGz<8aKPP86 z@rREVMay@ctiqOF#b4F^Z+`1Pygn40eVp}7yt@&POmE+wJ)Dc&L91*;bn}#eonUx`k9csAPkY*x0ON)jlElH@cgDOJ3 zQA2`|^7O^+eNWB;j&rH)Zb|2jXi4hF*cEA~^S)<%b!3&cEm698Yhw(qR? zx5*FZAJpF-)km`$TG;#V9@RxY3HN9p)ni+r^m$*ppfqZlsyjQN({)FZcr0sDbw?bI z&7IVz3iAsHk&8Jiodi;C78f@#II$E4G5=Mmwccz8m!|(URtV7kD4Ia2D(;JlojhkP zjv?Wh`B9Lj&pFy?=-kMEFR7^8yZ6&)Jgp@cOU@}NuECv3)SsDm$N@&6WW~BxVy1qW zRAyO-?~{+ezqCs0UUe-sN$g%aqhaFuud;w@M=;v(Jz-QiyD67wF&QO!-dRfM-vY}i z9)%j)^o!x{z^eQ6N_i(F$0u-pjf-KnoUr#cw>1W?8`1Apk~mUNoQJAc5P>M@%)lkD zK~(YE_k6YHQln2#6+kHEod`h!;)11pJ$KS=ugaAQGE!{kp@`lXB})fbQqtpdu1v>a z5OtX?1@Y4Ok))nFgrg;5S`=ZRHYmygG_dKF_MpeW4oAzzFjx3!b)=Kb1j#iCUbU^) zI(GJz2Uvcr|D`6`n`~Y63HtMS%nbUnq{d8R#&2V-VUPE1zM}1IJeEu3 zo;2uVghRRYwuybc_HBK=wh zuTv4QUiLxsP2$NlOw7l7$%EPSEz;)CG;Pz;nVroF???5{tdA%bFgU`J@p{35LwOz&o+o3E@NLGYs$K-jMzaf zc4yaySifY-`Y&_t+uws&Su*VX00h58M~0OL(wVJa-3>2VQ0Lw$&u!#L+G4{l)&#PH zCzT{Zi7l^0r+iA=3=-2j4sg$r2e4=&^5PuCRMf(_d%0(A@?5Lx}gdJ$?chkVrmp zDY?))txU`7SXeNW9qC2b@?!%5I7@Ao=|@TPZLw{&u!NQgo6Okn1Vl|&M*Dv8m81I{ zHW%$5vT8;^iO!N$QKF5c*;SidFs#_tuElQP2#z-qAFcN!vb}nMtC!4iN^}WEZ@(n2 zx!`pfB_;fM6ZDQI^ZoyS!f^k$@?iG=S01c4W71~R{ZzxX0;w(=Q7GWw2li;idm`>% zOqjdU$Ci=1ikQv@+5Xi%dovd{!<|sXnr*=VRs;C)BOc==F8_DY*vwakVc;pW+Iz`^ z=j-kHsa?r6qc#L3ng1!!kLTk}P~MOK6-}woi2zATHoeK*N$N>OR8fkmpZrljIJsU6g2R(8*-;ce;`gJQXecUe` zy*j+!DA>+(`Fy_Ir;Z|X@#FCF`+Pp!2Z>AshYs}ke#V}nZ~LYTd;!L2(Kyu2UtX;N zHR8Ba--t*9tJEHes^H2W;c^1UHGZ9mu|bK(Rb#(?!?1mgT|N<)Yyg%HndP^ekEiny zU^@mA?4n-#dpRS$QCt5)2Jog`f)YCHzgl3cL*oDQuRTX@V^namo;$vh8Za5ta~ z7-jg@2IlP%Ev!B44vqK%xbaa?n6AE=K-IBFVarBk1|l#n%j@y;+gxs{Vt-w5FPXl( z?iWQ_iJ9@OFJwiOZ!t4q+87e)flX3zFb#K(V8c7R!y1M=c&tF(WpwQyIvV7Ek;9H= z5ID`b=-C*(b80iR0zgIlZ0jtoXA_c}k)f&h!Ca%K0u@LHLM!k>PUu-JEy>E7^cQ0M{s7;;k3 zt?%jZ#0>U)y9EP3dOp56QLm>9u>i)e=WkBb?Tg~qTkPq=hilIr;%>=lNlr0SxMJ^0 z=bIqt4r6o~r+44wMsjXe1)euW5MHx2*u%Rvep3?faHmA}6T! z0MO=6&hB@|x@#j_d5iVCk)m08UJaRsT6Qb8zs$P=wPH=N{thkfeY~0hjs?^A*s+Gw z-GoBU1Lsre4yD9%2l*Szdp8A*OA}pOoc$MK*1>y(zh&is;MZ`3;Kblq`t0HSd~Irr;S3UtG{mq9lRH zJTt`}UV||A#K+XQ8B?oG$|Vf)s^>$z=jAk4sKT@ zGIlYud$w~{Y26zqWy!zCWE4gez<2Bnr$?%Y8P|g^k=(qpFQe>;4Nt)|;2bn}1I-|w zrSeW^u~^N%$zHT_EtNTIv>0<0nXccl9Lo&ve*YAW<9c39G0~8VWY%YY9lLQp@=B*U z>TEbgc*a`_yS7!hN0N*Fxo6z5g!N#ovMN|%ua1f1%l=wlq&UhKstmR}<(=_BxAQR( z(cAVoZfC1x{*5lKhlNmJ3mOzoM*b&0^nk$Bh zd!4=A@38=hF4O~ByT)tR`->8THgef?_E!K|y2^S-E%g3M^yO#`joQQ@igX@kM(Q8G z!|BpffsT}7BZnB;w<0kJHX!{EIL&{#>-|NgKRl0|QF5L zSuhj+zM)t58&dNiK?m}MaYRTUXeZ9QwDT;<4Sy2Zs9;W2&>mIA2E zKV|uxsyRri_I70}VV$YW`Q12}O`);P#_}6H%u|$-Secgi+AF3V`gEP$Upj~|P~g@` z=EJw_tt=3iCLa{-%^oW{ZPOi}#@c2Y(cmpvV-~}PB%p_Q1opR9)6EB)dFutKJBZb>C z-OZDn%01fvXFAX0wqnNvS)DV1q``#6u1(orjV`BdDX`JE2q0c&XN|jXtqd?E32AU? zP2-*iJ>we zSE#oNHlbY)h!a$ntN{H)lPODnTfp>hv>%<$7!+scMTy!{Hr59l7AaLKvHs3t4Hu6o z>lM0>`Er}t1IAcPa6~Uw16<{c+Q7=UjWMlN>KF$b&1tgy-BRkvyobm0yRKo_xOE!|!n zPS?VmMIS~QEBijah}z#=he)h*JQy`hq^yKFB(o$@puxIr&iK{5xrnL)2*@(@)9tDj znI<$grZ%I@f{7ExVHOQ`(qZ@Q;pz4%Dhx(=iCLB|j|-VKh7Y_6`hhW=_w4GR#S#>K+bupb$j**ii;#hbA$gpxkW}lpyRiIS8xmuJ*OMHJD&Elt5lYv=e$d|5|< z4iEaZ73II%eY}<`Qe+BSWqWF@b#)i2>^+s-YlHFYc}%-NVfsS-i0ER_rrd z_wNPLxlhpg2(kzde$rh5R7mYjKT2Vdf0L2TgGdf z7dVW}Mj}Z=^V_Hmm6Vu~G0Tg3lXFe*6_RgGhRBj~BIdE8X1^9FvD;W&7>DPuFeD3b zhv+M-AJuKldGpweE-YxpmvLFB#6-C%80Q7D{>Ds1j?!u> z=wA{WHNPTATL4Debt+MbQDm{y zLu-rAY~3nR|M-8-mSMna+k{?iQE_YzY#?owp+~CQtap^A{ap^WXnxln)&mAV~ zwettMfgx~;l>8@fVeG3l-f3=v-S+TsQ-SX#RAM@2A^E*B{PREx8TULIpWEx7!;sgd zP#oN{C*m2(g0IkYw!FUiYH-D;Y&IzLasrJ)W`Tk6Cz^RK22En6!a9MVhdp|W z!3&Dw9RNvQHo-js1qO=GJxRa_GTLwhESvaLy2zUj*`a5#6}{4?IHc1EB`^3U1;M#Xf^Fa%yfcR)ImA4{Fg(2K=@mnr`j}q=h8?g7f=z6qqcPyh^@hy-q7H|#8 zWSa3_)e26;U61Q2@ewo#=Webu_f;M5+|+vbtk8^^(DqQ|p|@pBK_tkmpBtLLFJ=5a zW|o6w)zW_Up~oRS?It@6Ui(Qh)H55G@Dq)}rc|xsGPX zg*h6iY45k<>=K`xhNuR%J^8~3n$w{lD}thB8%!nwAF+Z0fm@OCZ?U)h+WmCG>92pZAykn2Knm3ogBvq27hW)=m) z&)uxk=rOg2TqYodO{2yVI;eavhbSJ*U=QyHMz|$ z4>OG~8;kcfhB0c*$*~^ze%<8g=uw7o zX9m822G8^i&KTi;I*RmO=Qlmse!gG;_&JyLM&jJK6?twEH~O8Ol71@ zWh=tQM;d}Wt=N+l*T2K9tvOX_{^J_n4?l$vO0>`7I8-cP{3NY+0~XbAIWZVhVUK?> z_u~4ZAiF!$nFQ=m8b7;pVZpBC*#fH`GTWCo+!Z~-b%Jj2rwvN#k?a9gXU}ml<4=4Z zFSEK;dmNrG)7g|PK}c3VZ%3jex!+xI{r7v5=EZP=3;90<8J*@rv#~bb9A77>@z!g8 zhCaXid*)tWx*K_6{B(TvSQEcS^o?iy7}UqEXCU9;s%Q8{`8455EFbA2lUUu`GHrUO zKEGqxxlJE0^eG8%!gq+6n|6@`1%||1SX=c;oAGQVJR37>OqXFZ;ui?_9gni&a3PmM zTd|pEVyy)dA4N=^%Q%nzc6;;0f1hpA+d1QJM09ghI`Wo3Ynk)kbZS+88v9(|%h5rw zg>+E>$Ncn2c0Ojfv1|-OZvViQWrtL7iovnEbtdw+V7VUwvWNwABXBi zZWbwA<}?^_5#eO}h%r7c6lvRS?s@s1{TX-?5jQJi;>qi&RhAt)#D-0@?VmqkyoUsK zjP*p4$Ud3xJdf=MyMvWY4us!m#!I0uWN)=Tgx}yECW}%$d%F>i?%z_AaTV->Fb-;D zn3cD(l8`Rp&$8gmj#jf&@cAvnJ@yo~4M_jpPe7%4W)NtUxkS`z%Wl1BjPeg*87?kz z!Iis=ov)TC#WC(F_A7$8o9Tr%w?86x)g!rauMD`zrjK3HHFqReaFsG*Z}b$)2=dE5 z5*I#I)mV0bHTyFUG~<^mOjO;IH{)L^6}NKOcIKHku@Mn7>oe!?Z;se#So1)B2sGoz zto*A6kS|-IG*?^#)0R{1-|?eYAl{@!Dsk*I+VvoIz)xL`UJFi}2^Cu++q#bkS%K(Q z`OCb29=hRUx?rRZV@OoVn$ko#g^r#njx6t8TsO`R{PmEw?*3)MRB<^|n*8>TFr6WI zeM5>~H=WIj!!+P#Yhu!dbZQQOyvd`|At+w-!S4%#oVJQQ4H#rQBYx+EN2S=tUP5@(A4s9+L#PEh$D&@iE zJ+6JNr6l_fi93{=OLwD`f@UPTGb76nZi-`hyHK>69cau>>N ze`OLKjY~0ma(e!u+1FdIFo=X1Xj-I7*wkB;mFpy+Ycw|q8tZ=|21y(uB7jV^C6L2% z@_|ovu49-Miw4p3+a9B**}X2z!-X==Bs!-4GaF4YfG82Zc=WvWYrYU#F}Au_B)Fdz zs!MAAC}Nj2>~rUO46`p8r#&DymdcPl5YQ1I;jTsL zskU{ZTB-4pAAZ=^;Q&?Cu4eSp0FjmCBa^s(SSd4)lyIxL)POviY?Md{FXSec3{fzK zEut;vOF`u`ez$8%o%@4x?SiH0^1GRQ-)XQUt(~_HriOZGoMJ=UsMFyPm$8=vOP@am zO?t$E{j9(Sc_W96u&cx77Ws>$0grsN(V$C=Bov^nb~A|4Run8#gQW{}cdR z>M7P7a@qE*lw5NQRY*r*{K%c_^-_C);--s}#~bySTU!&KZ5XxY5IWv~Zlqs3s@JVI zaQV!8VmjAQE2NGf^DCrkBF}mKa+wu=>YMsp6x&)cQ0U3Nz()(1_VT}~@#Fir+i~&Z z{_rF#>3gGEU6}rQB?-qRC}8&gJokGq!zcQDEm;`J@qQ}t6NEg0QCVaN1kU1odA~lR zZ)nsQC=h?;z1^Q40H^)@PIKShUmhF3)kbws}Fn>&sP(SC5qQrGxi>l zy-K^|*t>^&yMb{8_Zp&rxz!)O#x7Y>Z2l#Sy{$u?#_T<>{%fa(q1bO z7)A>nF$1ytI`Ync%w?%j!~`^62-Z8kFaNI4k;o_jAwdzug1&Q~CJq6qu;%Znp*N)5 zsIz}RAMaxA1ddu5{lJ3mFGS!lR6M?}nd=J<(Xm1GMUORy(Fw(}s2)1K%^dY%F<4@m z5Wt2|sbL0nwq-+W^9&eXm*^kJ>d-0wW_sMJ#T!8Ci=S_rZuG)@XD$cueQMR$5vco+ zyN-WmSI&#)VD$kK*v_`j3DZu0PWY$AIfBFla^hc~=17E+!mPS6}W)mq%}FiCH! zgefHF(A{;{!BgDgf~dwS=n%=i$hfd#Dd3$z0HA8l7D%$bI*++FtjDC>(NPXV1if$m zrv$bFygi`7&-L7S(nmb3+bsIhq=gOgXX!`QI`U*$TJi}kZA-I7 z|5iVDB$&MBROITapPr?FYkeEfQyJZ%wAT*^WV3>?`CvVIUM7BC9^k%Sgi!`$rJ)42 zucVez_DCDFat6~i4X}GSW&^hZy%jMPr#vtZWWU?J&gfQLQi$khgv~1J>-km&E+p=; zOh=mk{z)`4LGsqe+mq$#>6Hbh*N~7P8@~nZDvTPr>+RmDOxl-tBO8LnUsD;h+t%J7 z7hC-f>dv7z{P@~cjNeEq(R?ZaY8P*)@IsmwBQ1?}`EQSqN|a!S(tcaNuMI1GLC|wj zexVqM-z4`#S@{_9k)Lzn#aeGDwErgWi_hR8rdHs%CVRnF^+nYR>U%={CQVTC^inBT zvUhGZNT@wbdTA+|=ym^I*e41}P*OWt8p_4du(>MFGwLVy*u7B`J7F`*Df`GVn7bz# zpbc6+49s1D6I(}0pbl9}=q8&=alSUn{$=D3KirG5U(}o9GFNBQ&6SIexN2C9DhXj=m2$2EC*$Ur(c0VTWUtegOUDYe=!>Oothbwr)?(ti%>+n zyThS9ct4__u_k(vfS{--pnxMr$9+h~r{XXo#?#%$gyxAglmQN;w~F==?T=-omh+C( z^w|~)Dhwoi8(TtTfOq3I!L3DE(jjt8AC?JI zBdzxa1_o?a!EV5RNCoO|wRJK>{$yWK@4lI3IKFHi-jld4&A`NZo|6g6-EIW`l%!;| zI_Wpk`t`?Ssicy#I%VsMT>}KD`h}wrk@86Tn0WUc#opCcvd~!pIYE=+`($BY$oL}0 z^tl2Hk9y+NPTrh!b1gnO1TdxIIEoiUV)!TeOGHIke1*yk{4FM*4r%OI$Xm+}_&S_N z1Zzfa7t+WqD$VfF22f8gIy0-dmV`Lc=A&9EqDZs#c$8)tWeqmQpEaZ$U$+D+4vnRy z6hG5k$V|}+_i8VhMIBP4*USV{IJ0&f>J9Ph_a&AGE*8=hlD2#OkjSM z?+Q0H*Mz$H&nHO-$M>!9Na#)@ly^{oez4uNN~-eMT;Q24^qHtM3iyh@hk;p@o zcYyM_C^qo7Me`*&vTA)HIk|?tq-0g!5iaebY@Aj}jIXv8d)AU(A?Z-(a+kV^ezdmT ziG=EO3||QqpNDn1&s?Suy6J3kOB-;o@=S`4C#S(*q+56H!Ht!B(!VOMhnFvWg_?0+ zTYnM5P&vI|bh&(QQ*G1Ud}=CnKMA|IORETUY~Rdodq;cCFa_3iGbWc=uo3Kc-4{L* z?Qqky@Y;)XWU{74&GF0F&h}X@CZ9uLopt=9$#QTJ9eaF>S9M_#5>I^1;WzIAvJ8XV z%&ufv%_jPvFSU0C0Nv26W25W1;7Zr$E@HDX+bQ=OaSE&+ZR(a+pZGIVI*PkGcB3DO z=60z#RWBVqW&y+duNIrmi=%}geS!}y(y!-eR`(26TlZ8Xlz%8+4L9XV*ODNC=h}n8 zmdyj%n1)n5Qi<_?ww1YG>Id{Pga6D5Cpap1PYqv;B(mFRED^DRyvo=5i=^q_0j(^Qud0V&ohxksQfqtl)=W7o*48qJ#(WH`zlFeMS# zwLR3l;b^g+B1$WSlA^qtRuz6sLfx$j&t5IMQ_xVwb%*1-;iXZil8#02Ej6hL+3js> z17jcV0AVnChT_p$mx<29pexpvT*S1DX8noew%8;1@p*p^>m!DZCS4NR8^GswxHeR} zK6H|rZr;n*u8j8Wz{cQNyW_O}7=`(lp0%$yr+yMe+7C>8LXDKyC&J5Q9g6J~2A zagD^E-)~|@>Jb{u6PmiH^;0xDyXAmKnF(I z+htOY=MP%@r;Rb!4x0(DBoXB_L}a6PCb1pT=T#qmi&-Uly!mI@4EoEQ;Du+5#AG@I z_f!^id?F4S7R~J<-_!%^U!3dPD+@V_YqP%G-@UJPFWehTmnL74f;qlKD=2(l&W7Az ztD$Q@CA}dU6c;;~y~vT$OdiuJ75gsAAsHpN*8M8Ty@-WRk zt)dBK- zxTsasX-rx3svgaKHuYm$Za&yOA?gJAKlRWvGEz=R&@3I@lgaWfMZ^6cFUqV%tAGCj z5C*nmV9xa>?AgvprK}}`>Mzf~Yd1#3)dV)vHUQ zkcW`7d&8vkpKm_C0_$|y2dj2bF7ko-Xd(>Y-Wyo@KOpX z7dctS_I;Z(T!OZ*qzRdrNv{c+Wtp0NI<3TB&>VMIg$LmzcFbvR zJnWKdol#$wLj}$y2*3xTyo(xgn|~4xkEQ;_&R^MZ$H?qI`4r-tD^r7Sz9e< zY$K_CM>j2(%S@aDxzKj7Ml1&y*v6N`cWTvQ%9?mhdPRH9Qwd|Txg@di0A38j7%q7t zz1fXd0a%yc2;5WQ0mj^a?=heSPHlBM5q}OJT#@6B)};9rWyy{^K=(TX2e&bK21A&g z`3SVxoujH~SdkRr34sgkDf(y!bvtXr`xQTL38&R%3sXlowyI{RKfT+UnwK4d!5r$W z+b$hjpB}X(1eUR-7CoTqF>ng*P(;J>6=oS+&f^lvd2@b#F=gXkI3Iz^SSsc$z zE|Ug_}-fU1)xe+Z6A`}M%v~5xR z(E%ICDJ+tNlqvB6_g8=lx1wB9OeWjO+foA{i;M5a+Ch>Xmph3rVZYOM zZkmJnma%aW^={Dv#BS}jPsg@Z)vN2;KF%zyrV*?4Us|xm(hT((iqH6^hDEElGg#>F z8>@3AoP@y9@hN_xXvF3HA9haDr8*sCZ`Dtz_412V*mSF;BSX=mml^~RJ-5fp&931^ zQmm*o&SDzVJ16|i$XA1K_haaW%wPc=YEX0=RBCG7W?@cAsb$*%UeD?O91S3DhS?dz zVmD<4np($vO=$frg*lNLBDBwwSYP47+-7*+bpIYY;yh3{*g_N63llD6h_`tET)iyK z$bb%<23-9;w!yYY7Hv4Ls7!26uIppjJsS7yvs)X&x|M3r}8Q^NQLHct;k%P}^ z%B0+5^2!!>vZT1_PU5%Ra$6>EhJVn%09K9_tqLkKcD)f#N4TA(oT6xR#*Kb`ep8dgRu)C_PP<~vRzAzhHz_j z)i?n{qZ0l$5{9NQ{R0w)C9N!le1;Isv3kyRJ1`dnM*7Mf(LylrDFTKN%VUX%_C2V7 z2hoVFC}$HO?cKT5UUnj|YyJ%mjsrs+jX&eO!HLNDzG<7yP^Q|vp8)iy#z=#omfVc*FO+w&~ zJr@|s#o(SMOG5H6q#zD&kt@ueiomG6NF%<8R9VR1i|w+91Q{@{_!jcNag;ve+g;j> zN4EiM-p!(a{fh=ErMw2h^qkcG%-aQTjlT|i*G5t7O(y6Mu*&&_(jL8Z;kfc^Zo91+ z_cRSQ-Sf&3WG7}T@DEFd95|ArgkTyP@uG{NHTlHXA38ZxyuDFhkhKx?5Bx5_oShuYrbTgym#WJU3H(%RP*i+#K2-kPy1d>jQzBMlSdW>%e<+#fCh(cWH z)IB@+@08aJdUIYGzXNMzhsrJ<4`CRYHUqrvXI*JUZDl$Mot<9(nO8rPTUM+rh)Uzx zY6(K3LixX}BAeUw88H~17o&%Gt4z~y)nAxGNJf{jCn^Yg3UV1gs^DzJ#-tYTBE?*| zrs{rdBga@rTAzZfZ>(OBNDU{w<;6d2U;xxbC6+{~8k$Y>-d@MOHiPuW+_-4taW=Ci zd?Pk24ZI$VC9YqXwoql0b8V$J^}*)X>c2fl#!T-F>g+8bYp88tg-;pfg})wImaSbb zK+&%MBxUl<-+*j-dHP?iI=s$--xoli^wdF{BiW$~5N zjO2c__)v#QbF5$-me~k zUyC27j{y9(+{rl;WF5a(VQLue2TPpXuTKNNB}BjXBjgswp8YH2FCUeYzhq9>0laLJ zJ-{4h>cyGvcbN+SP;jgJUH0i)=xE^ge%BRrHA1`tByM3;j3G37S^(OClL{Jgk~D|) zZ2H>c1S<`7f1C=o*E~Phy`2i$jn!czW{-^6<@sG?CBT42$HKmjNKJdepx({Ez5xuf zGjGo>NMIc%1wo1Y_U{x2EtDgu6Z?S&j1a77&ZIP8rW8>gKD#h;B{v@Lso7z{{^_R) zQD`jVM~VXb5zdYY36cm-^Ta)$t^B^)OhiA2!^peI0~0ZP#wP;#z{Wem+=w6R7J~U* zsqk0T5Z^T1?;x_TcES6hdoE25VNH1YPr76&P`$z7e-r062eHd}^Z5$er6hTTkY;JW^$yP1FH#;F zqZ;F0e#82#ld=%<*UXN9iSOP>yRZB2EpM^&`wyZ1eF6CSRI{}LICw#@BL)h(3VyDx zr5h+2XPUpkO?nDhFdO9|1>MnJu?Ss2hMvmrfev%dr!U7k%mNH%?<1*%cs zBjCxz+_jQ#-uU`I^d8w5Vp`8gQxX2~niJpKg+FsrJ__oz27gg5AC1ao?t9bwGw+jz z!qROYo!UPZ9EY6Hf_IemT`QZ$*I3RHC;t@(Gm(EmQwHls`E}&yHj&+^9YQQ8=nP!!Zr?fj;ocr8(bbdN_5HHogjjlHhaXI5-$$I(1F($j*0-kB zU+C17lJnpeo&zaHqfk+o?-_fVquaijAj}v^RX~nR)|uI5P~^n>X@Xv2#ZB148>_8B zvT|GY>o0*!qZw*~grERAu)_|jQeElvnT=|VksrnKB&QBs!b<|L|8G2D8PaU;F>HD;C=shmi6%6gBLD;WL#Sr%X+i3^NC0s~4dB(eDlE{ObnHq0@3V>u<9 zl>AM2ET(Rx@Xj+Cz60m9zhb1|{JqlBpLz1VQvF@jQ_=OpxV_XvxM3%l{`vjtSdJ=n z?Kd48(})dT`s7Y%;uZAoH4M5_Y5c zpOJz);c@V?k%Bq-WOx>h4CZlg=8sD!q{Ie^3$jVrs)5X3s8sX=nLgYLaN1#QzGZ5u z6Jk>sj)mUE?Tx6%ER27ed(W9xoZK*v>k0NlJC%RTx}>7-9A7$)dD2W;WI*HF`$?w4 zn?26r99O$v1kD@COa3Y`c6kw`nq)ubG%2zkFF#%q;N`rIZkrVv0fceqlmdTSbv_lH z|4CK({>CM>)P>z&&bGCdG2q{C8w4*fJ&-8@jd9#9av4N7kU321QQZ|QQDTG&ScJKm z;3|<|nL5biuh`ElHqD$6EcLOHQ1#lYKRm2tHEoid;VsqkTeBjhV9_`;OlZ>x%jyU4 z2$_aoYumHHx}u(_t^_E2@XVI&lmixPz_ZquKa5*G!b}TQv@o1$&I1)pD{@t|Bzcm_ zl(i&y-W-du>tmcv%hIaH+H)t8W*Xhr59DSfZ6`1KYDD$+fRn@TJd38`MKXowzW}l2 zqzXuo5(enk{f$#f(G3AUteai;>z}1uYnnsK{XL4ccaleAP(Nhu>^Yr}G!0g8iuq&# zRuT2~-ON>4c5=%v`aC3mfBq4{< z9>l}ERCVb7ncp{S)E^ei8%u}IcLw~a#@hJ~KrXuhme>=?`-X0%Q%Qw3rSb*{Z1u)Oj+zp02#aAC7iLJoo7X>_d~rV`e-hxPw)5FrHsR|Kf&@_PlDt|(&aI0x^cv( zSHl-Wqy}@U<2+G5%`jki!&M)j_#rdYn!6b2?hpJY!2v3X7I*DnMq{Nmnb6>zXwK>2 zxJo%r7M@Iw4FTRoWw5Z2*)=oV4@=x7P zyYP1N?By>B5a5z~yg4Va-RAZltzJiF}P^d{`ONNlqp?HkBfB4s@^5KY5h_Np+> znLt*dNLt(AqyI0j}^2cFiR2i-nhVa+S)T_w*hNc#oEfC;8AInuXGF#X5SRqF8y8ZcWGx zXJFS%42D*#TFAN|qJ)3CU&HVOXYw5I)@jUWlN`5vx>xK!G=j+hG#q1D;0@&F>ywU}#fv;X) z(JaFHVAvX{DZxv@Rl7p(u>%(AlAee22)KY&hWDBCm!nj2hJkkcT`Y=gLsM$c-b4LKE%nETqN$gt zO79N>=Q&u1?)FFKmqb0XQfGls{e#lf4p^CU0IK#9M*iD|%?-)R`xwTPomPQg_s0!K z{V}%5$n(?83ostLq30D?Wx$nsymN2_vS9P|fr2A_if}w5ypfO&N|!-E{i4P~(em;^pBs)Xta%7_5Rp^6<~sV- zixdyriW4rHF1_Zr#3~HEwXkE|BVU4n9P20;AXQF7jywKV8P2x#l4qcH+M{IwA!56Z zxX&r9GJ$$1z-;xjlW$dC*E1?8^yRV=KvuIVvFA`E^wWLlPX|1qzk~#{LbB#iiS*Y6 z!8t(=!rtuH24JyI-FjWwurEq+uc3waS63OuA-q-_NgG$Ws)%c_#g$2cY{c&uB_y1x zE5%f=oh}I{Y+o+}AFx5U9YW7;wYTJ=l$ z8hvTA1C^{swfe5OM$D51>5Yw-!m9j-0_L#NhMLnM#>=&TLUnauTW5o2V>-8v%15&! z34&@9Ei|y@Gn^V`6E&BnI)X!HIR@Jqx3CIJl#`)Css$ku=J>yG54D6_ij&HjGp0Oc z8CRB3HVNw4vs7v2SI#*c<)$7Ebv_{5nX?e67@`M$1Guq3b+vCYbo4^HBy3=Ev48V- zqKXaBB8%GSz^?b)1im9!S@ENGB@WTTabOrC^B}ez8ecA7z}r}RA-&FN`)ZrfGnCq5 z65mp;Ro#jri{A;zM{zi@9D6;aq|358JCuPRlvTHagu@oI{=Sap{qcBYLnF?;z2PeM zq4Z?_!&EZ5Ts%8v95lxPt59qjup+|b`>KWWmO1gkKU=XSXOsJX7(1unPNH_}$F^si0A+ymfD5_ph+ zqO5>a5iJUcaX3THMvVbxg~A3#KG+eb~V&H$kdb7$n;&)Sn~h|4n!*zTAGF5$dI zJ2^UIugBd~46<{}1&L>zyI}R@)B$#*MYo>P8;We7(@>kYmTRDDCBGOR=bZvUX!{&; zRHeB@(`LJclgFg&pBrWj_3^Q^=0I$Qb5Sija|rs#>w;TpiF)@pvOKU5W6trp~48wJjI;fMK?^qAsX z4D!YXpQWoP1U_ju04pz9^`yDx+<;q;FqWvERMAt1<>^_z30EQv5ZP_Qqp zm#tE5mV-9|DN;(A=T!DB3WK|V#)gxog)GZdNw|dv6*kOD>h(DT0z3u&ij9+hLUlo7 z)3ycpdLiC4I z4y$wPB022^?>sqe{Rq#Wp{RjXLVZ`jgLg)w{+IO6#lP;gs|^U|Lft1v0aBMg_|^)K z(KLDUlivlzgk1xn2VB&@?c_Y2_DIDx#2xEN*3iQ*!+#yffgW2WmF9*!JZ{+n@Xhi9~Lf1BDW3gA7dEfqM!8;2)dCr~xa*3u_R|z6;N%6^dD^K;tTYjPo2RN(7HkP z)3g`#EGF_Q!YvRUaj)xY;9HrRo>}s26-_z`=|J{<^$Of`4rI_fbI^+{9S_{UIRpd!8-k%CJ zWuEO2Zb}kw>DFx8hYirO1{$x}CuR9G6`VO!1aJA)jjJ&2Xlm9Dol3IqK|NK)%7XUb zGwr_6PSR>_9s;+e%EVYLG_9+?>_wYLMtvF#^B6(tR0f)-0a~P@;me9jw-RWK+TMrkfd70oSc$olB3- zRAs-j9g2Us$;>JslmqWSgD(YIOvLe&LPT$4t4_RK^7mWO_}2OR2xURcW8hlGoT|y{ z8MY#+9AgRa7wfAapBfNhzSu(Q{F~t%r8!{*b~Ba;mL_1~`vJXRzjfZS$qs zaOvHEU2Vg6YkvRuJw~3;T^oFsPw#|->^){y2_5LE1b4IVgJi(BF0$QBF5RE$RPr75 zji2JEWW!ywjgPV^2e@aNur?#DE(y{j(X-Ss5dHZ~1Q{7@#K$AASP^(6k{9Oh@ZOB- zJ*BjdatE|WbhOOvZRpQw5xi6GC?N3}QfR&VgdHvx^{pNPBr2)M{uj0Q{|LZj=VE97 zZ?(AV|0N_J)4p-{T1!SQf@8tWuKXf^8yo}j=fK+#Lc*=v2YUSwS}Ky!NLs8+XI)F# z;y;ehrvgZo!L4z9x&)(U`ZG^`ze$z|ejM&Q5T0_9fl%52%Ljb#k6eG9KCHy`_{HB& zuM=_gHGe-xx%AqSw1xr~Z-1ZHlpF_qe9jOW_&1dZem_TqpfW=Qz!)l|GJT)!Pt;`k zyS;wh9va9S^!UF{J?1!2a{0Zxx9JIX^Yuf&K71+=&aemcsq`C>wl6&Q`1=0h@j+_O zYe491xv3=>L(z_MY-7%@0!0APcm{H^xQP|Y3~3PC;oTn+2qYwUaT4x^(jEM9Z~}lO z-Y*|M1qH5p+Wa?r7^wz5(8M#TY&FJd3(;?bwKA=PJ)_&s0d!j;%T5|qd_51^Mg-2Ov@O9ba|GiRU(3AOn6Zif4`JXK2@2~xb zN2dV3et3s%`R(p3l)DfTEf@0$yfstr0?lqEsFF`k_`VO6Q zsG8LSuL@)w@?m6F;3+|hRR3sGv0li@0Qry2 zje+4#p0pDp?HXkFl(Op^@vAQ-&-=q&30_lXEIttmcm~!vg;%83p1&cEcCo@I^LPW7 z!3klhj|Dx%Jr1H9Fk)Z|TVGzhKnSbbzpyr%WQj<+*V#EM)VRo+S+kj@A;H|jFscq*+vi_Lr(ux#yp zn2?3Ot+ej3{R57YVW8Jo>-%n<`bq;gAix?Y>~uEq3-0sG51--8c*fBkG{)VA)r`Qk zX){4Z)y;e3KT9jfh{WD*1!ytTgQ4;t6o4XtJu5U4B-C^a104f7?A37+lj@*^Amuzw z-=e=bF&gD@VdoBWs+S92<_iFc;)ogU#6U*5OL-yaH8ZaZ6xnvA4eo>QGD373qUk)i zOWqQZYz+6zqXG9tX?AKwaT+5a%(7GpF^~;^)wr>=PHq8`YR;u7?n| ztX%8Ouvfx0z(YgURHC?7&U%Rd1In^RjQ?4h6VC`rS3QoZl$FB3< z(dM9%&|2Lg))2P`ulh?}X&XvDW-xw@&!@QBcRB7T-@i}j$h*Dc-WHpbe2}GE??+ER zYNpF_Ba*kvm9-Ii2GSy8Q9Lt%&ycVs4E2(lpWWf{Dt03hw|@xcI#wY~9rx$i5rb#s zoSXhPrj3#^|M9SuMa7*a%3sGJ41`RsPFGQqC)XuCy@V<2W(V@iH3u-;b;dfKVBS>6)(NGxo&4Iz3RYqA?UEDVo5@t;2@ z1ruL>|4PFW$?YUj*q74ouG2##F!99NibV!|!p)90esO?L8GR^d|W*O*V~ zm|VHg@wb2IMByreJrz11G$XGMG)r615d8oxW z>v6aaz>zVkdp=idYes}v4I5fVJX}YP2{6Ofb<2e_%`W=Fcq8Vi$2OXNN65rTU>B%< zs^p_@W?F){AdY3eA8uZfMP1Y6)p*-hzN*R_V43d2=BC@ntLkftrfs9xnT&L-`VE_p z+!4B5o`RG?UV7I!SpRo`guxab58Vmb;-vO>6e;R5N%diB3cX9QsW#D1l5P~rPhxQp zrj3ccOl=hNfiXJJ+wRPE4aM}$S#&b*rBm9h25X|u-5DxHluJ!v*m5?Lmcu5BdRa7? zCcb=_|JtLHAcIq~S9m7(mCJtYeX3}P@a3={6P1}?NcL0vU2lS@Zm^A?*F(78YHu#P z`&gB+aP10ro@tkXz0i5?DCYzxl)m4h(d~`a5#l%`BpYgDul_UUnkTPTGK99BQr?Ly zY?WI8mD@IYdnR;44wtb)8IXX2QI`?e`$b$E*qygIS84?TeIpNsBLn3be66}TDAq_r zG=^o9HyE>e^2TyG<%pqSwJyi(x+75Vu5AWPBM+XChMUWC&>wKtiJ7Z?l=J8r>8=cm z{<%tWvjC=9nvXBTTsH`xkf2&#EK4iB3ss(3l_U@m^I3Soz8}_W^u0n*f%Q1&q}le8 z59<-%zpR zCy+v?YR9GYo@9UN{c1de{>({X_3v7M<#%u$nA|&}A{ClOKs2ba-Ha#IFQ%|eBZN&H zUHx2kk6^HE=G@;rICz15atzj9JHK5-w(p2&R$974`A0l=29J=8`-0sr zLMfntdhJTK$gv#zj}1eYAsQ z9#3)DAHb?79yyR}b~F~Nv&Hj%x)$DT&w*Gu-qt}^#4g~s5yUQHYOi8elak9~R&lij z3*y7@N*>l{609JN9bB1W#wG{sqM{vefE&Ry-MeZj`}sSc);@1)JUJ7cbp+z;qBqyF z>G4EHY~kp`?WRspXYvj!HWnvBEW{NTif;ctdSK>(Rr(#dE)f*W9L~V#AwmqetdzNa zXdj-Mz$stE|Jt4bc<+^ms|77*%fT1aTy3;Qr}dolBCd3YG`*Bf-`vT;=ged1l;LKgMNO>AR{v(Z>!>8?$?NSsKJ&pM_!Jk7XOmU% zjxK_?053Ga7GZ{K%Oe6?1kH5+PI6VSeL@_@^<-#1W1cr_1QVcL9$Q6hk`!&LxYbXJ zAl%2~^RzGyw%{-kbm&xAbV)d*8&h@>Y^k}fQdl8%^9w)U-7UATb<{ena}gJ-X&$cD zm$cfnRXVIK)t<~|jjDi?cs0+4;k>D%G)`iIpEz6_$zQ8x&oYOWlI6qH<9IuG`jqmT z=(*27@6 zOukQxIIx)49`U_wQ@kxo2GE`U(yQQ2Q~uFHQnz2WO%hD_qyULhD9YJnmX>Polr+GyVZ}Gl+V%zPw38j>AUaSS9LwCI zapvKNTfzGig}$KOO3^2Q5j-5aeHDv3X|5!re^&gGrkSNq@e7~Jo(P;Plgotyrimdn z)*sOy0qZk31FP`s2jM%AhPF3<}4L=_jvvQ2Syd2($+Ek{j8$ z=epsX)^A~aFRl?BLA=m*F1s{79)g4V+h>p`@_s|I%P3EQrzHR4UCtpuNVCn3xCoZq zx+&TmDD8FAi&TiT^)8l0_fTw~PfF^27vRov#Pq8}A%H+xo%r4Mvp8G*S-4{ErXae5 zD=0(ek{FEm#Xe1$l+t897+mD}u_v2lTRB)t?acnr{@M{oXzZeMT55ckckyCcpwsb} z;*TWoZMgk}MiFm7O2J?Ii`sSqis+Q>M7gEas0*b%W0GJoqrYPs!zA zQ8BGK`Gy}T*`plhlk}y5@2HUtxH>129%|(^#+~b>X^5FNu?Lb2avtNs*1o$HQwdmg z*Fhtqe9bw**g?7+;phPl@^;3UmBTPcnyzR?GYEN8uDbpf$b7f*&e^O{nEH&Zm(F}R zOcla}s9aillOQSGooz!qxJG1jPSUhuY08>Ei1$n(vHxrmyqoxd1WRa_WoKMp%6V`N zRwK-BX5JPJkVZ_uxkKM;^q{wD<|P|WSQG(^*7OR{n1c7!E&SqL>lUG0wGCHHpAhad zY72vHU#?LA&`??QDzA5QcoZW-(Z3owg5MJ|R`9L~{Hs4i56_IE$d|B1O12?cLr2fT4c?{7vEXB06z1 zi-#0@WDG$cOHeBgVoWK0=28ppg;gWwsF!bbGebg|Q0K{YC$NUS&ZjG$w&6sR=e6Gj z5&GDM0B0Y$j=MyGI1k%yznik~|W zSdpw;#hTUKj82j@Z=JVfhuF2 zfFx*iHzk-Nj78s)u#FrxiXOB2L~PCtu8ayM9H$euH0$>Uk&3LrhnRGW3jz)ZJiu&L z@OWl?m^^9Q3@c%?XK@u8lu#S>UdTm~TF}R!6u9~d^n8LgyZ1SK{*%<;>1DOS)?T37rQLP3Y$}Z%vYyOvawMnj)O%q|7 z4EGl+3_a0+Chx{8h|-P(EHSkQbF`oX9z zlKUz5=jWec;Ba#29F=p8_C-?u-lEc#%9=+5O-5sempke+`xEp_YZ~zSPl?Rp#D0j7$1Us8-81Gpa2wY~1Ce=8_qzNMj-ST;y-s6A&dmi# zBnXkW1QsI+OPGDcQF|QJf5=JUO-O35W$cuAh{JcWTWr-TSY!)Q!*8 zbMOW|CvJsv0dTF$y#wsP037E0Gw?Eyo1>U^|~?IeMkylnFg^q+sRG^G9Bxv!v>`BXe~ zRES9|Hu+APyJH?nW)X+Iks;!;x?&#nS5}_8*`z8AD|rZrkE+mYLyQNlx8i(@`_``;Uzr3MW4qn*S&^YVt+ z``g%EHiEWU>;2Ty6*3BgbcRa}2v+@^HWqqXK3l2h13B=G&X?{O#n@C_Ot30>9Sux* z_xDX4Jy~H^mP>%J5zVXq6^C?SYJ+77?`3_=9qm`4_fB@PnjLLqVTP6_)9?GY(}Zf= zs0zlr6$>B;-s`xiS=dZ}$U`Pgh%!gdu&P3N@GJ}3vlYA4U?;?7F7Rlalc$f=hdMU+u|5&`W^j#f%tu1CUzAit6S+ zuLax{)ITh^3nj6tpxR=r%t;aJPHkudn%^*;$M4pMKrjyk0%(}WPXbp7*%>pT*8=aS zM$-inf?X4BD0rXeJno|4oN$iUM_!fvDjjX)U3qJrH_*R$0hr^d55U0nV{`<`M6lhO zjaxt6a!y$9;Jl=zHqn!pJdpmGyYTQxhH9X7u8nIhV8@!!=h(>{jVRn`qlitz~hy2jWa zz{u+MAkX!Ds$ngMTp64?L1-MQ(VG1`Q#Zm!EzJlBa`x@ms4Yo}kaq3bt}U4;CU5;o ziM_bAUH#K}*95J=ZsNF614rO5D}$5cbO8Q%YBIvsK+Det>f>MxwLYBNi1nb6P~?55 zfs^>BnTcI{-B>XyMzNrbkL! z?}2b3`iSdWuiaW(_ZIn!*LyAu^k1g-b~6}@1lbyM2H{_m<5^pp;PjZ&U0O<99Yu}U z`JLZ0RO6Fd5WxI5tBVq~1AzjbaIfQfp!%;fyKU@T$W@aL0itav6d|p7koYvb?bnS@ zm~qYHiEw)nUxU`nGzBRdJ_`wX;YVFF%JAM@fMZTlh@H=hx;}L!EVohKoxkN&t~v*i z*};L^HZbYgBA{IzCAmdSPiWfO6V%^N`z?gukY5w8690=#{(l4sva@io{I^Vg`D3a+ z;BtQcfXRY~y6-lE)3~$Mt+4-W^I1eBEth;@+~f_kki}F@L+h-W3eiRBtmFe3^NA zz1~H%1a!kQ`F?tLb?J3?MgW_=JS`kDA0cuP1rtBWLn@2mb$>d)_64fIjgNxDZGV|~ z0)O%NzRyg2B08kJx1ih0w)#QZb4>Gw60sg}`h$D?GF`z6L6|aF-G8dqlhoe{J4;NzOnQH*VotM4qxXtkLO4uKERX$3N{YbSF`o_ z&-dFa%rZa&GV1uGmZhk!kk8?{(Ce@T)c*Ei1L?N>Nk z0br*~LEytT>;K|!fBS^LUG31Lws%895mo+3YG|}TK`3b zLtfYbjc9n1M-&R2q3dS#t8E2q$vb$uKt%#Ca$Eqhf4oeKjVXk8MnJ$fsXvHANm%hp z7?z=WLcT8lOCYTBT98y;zCW3Cr1gM%OXcM;YGhdeCxl?aQm>OgM(=9BHDON{gR*=} zHT=LDqv9QDc=#s}eZ?E$<;X#DfM0#WI1C{pPHVQxi7|0(vtQ%qx!ib!~ybqYLN ztWJm@H51;u5yX9}IW&F5F{}~S#aKsV7d}@5z2!(-QqYjl>7kYJZM07|G|8|R^(NiS zF~Wy6+DZBsT=WABck~}-B>hu#HYA8^Mf*_Bf0o87o-Q;3DE`kj*Sk;p?9nS z-%zSffHZOIdD9L$YyKXt?pm`RBNxJ`JO6qxM7ubQ2$?y|2FiSMt+@piTP|xmEB`YTV5If| z0e)dHhR#H+$R(UdqQY8`1R#;TjUtOJL))|`{`M_|>N*s%TnQ#1bll~W>+|eT0B>Dj zL;ixS2ZhRdZPHB!uL^&zl25Xd!zd+sm|9hLh3r(KC2ru}aR(XoB}7jbOps?JN>6Zd zw6QH0wwPXhK%vCnuNQ`xLQTQa@lUiwmtF1z}Qm?k z^1txr6SY3av(p(dm5Rr`fOLt)O_U@Ywvm6A-cw!9!}`rO`cYcwT)D(?gz+5+_|XkE z!l&r0!fd$mHAR);EW{23U-xhoVOf8yP;yApe`6VIF?Xa`<~N$iclb2TJi=(h@ zs#qYRDdToPOsWd1Rj<|eDHYM7zGjaoZv@ox3OP4*nyB&|s`BHweHCU}1BvQ@pBHJZ zvPyS}H5j&tTgf$)zZ*079(TenUH61ep`ZYKvN&*d#&XFmPapNv#XD+2da5B-$~VAG z+~8x@&))_|!%e${ag3NelL2D>UHD!^lB7@OqIUqIn8kF>Jv&4_kC*t6%7Kg6-C)XX zypDf)v!!7w;dfZZMLq)D>cNEq8HS%^-cJl(`XHtG4zE{ILn2Il;RUf^%sPwU;YCh7 zZG1+O0(YBtp>7slv$%v*Y1|H)M4BDr?HLRQ&fH=864#w;X}$l1Ey5B;iTLnDqdG0- zqS$i`v&v`2ChpB-vSdDyDJf5UpH53sD}w$x=#8&*&0N)i6(md*9b~Pz$3cqiqXQYL z9jORTa0X>%{YuSCBXF(=32%G81+@{e|EGS9C{8_Tto$!K*N0!j_Aojq+#q&KW>|AQ zmGl*C>s(;fX`1A2RcA%bC^#Zh+;iP=w*U;vSz#m=461KXG?W}s2TR3T$xO_R+c>II z(9w?@{bpz3gv|j2XdxW^eFug*Y2RHCA_9# zb>xFL33DCq)geUK8X%!WrX_}q@PzZUL?4?y%Ts_QBgX>&I)$}~OvT>Ew zbtXGGhd?sy#KNzdkmvZO?$q==^w{@~8ysbZBvo0ho9YMZaoyXWSIv0)6du7s z`K`hFsKuu-l(>KM$`%HxjHD7_T=~xn@lTrUs-|^kD~qejTHi({2pN0ynVvAc9$C0# zj^-k~ zDAYMh^3+OZ6p3Qx*nE3(G4~G zZ&`z1QVOiZNU#@UdWbRWJhN&Y9Yqy6KiqeBif8s*(Bl6n0uXRgsQ;>a`Qok&0#1l< zARy}^B9ut+_mX!45g_B(z&KTg3gAfl_$e4hWxW;LZ+>1wBQnoKp1>c&>HW6kZC@0Q zGnr2uhdBfg9yQKNqpx|*0&4JntEpgpg2~I_CKoFH>e>S>BIw4@{xhtOrf~A zSRBKbE_DD>*9hqPIu+7@L&_4Q@No%MYtIzQ=lx+#${)5KF=yF;Z@zE-Ipf=vmrnym zK{*`go&n%N*YVmkd!w^Oqd2!~CD3Q;{jnY1$2yqSdupPw9TmyEx@Y2-#hp~+$}C3j zW1RyJug(@byc;Kf4N7(V%zlEZ0TmKxNgr!)LU;Zm&OHK}p2_}3LvTVk((%oZil&V0 z&4L>b2^T~kzULk3u0t~1_=PK}vqnBuRI$Iz!}@uv&~wkf;Dk{y!%juR&d~M5@CUBZ z_w0Ft22Emng0DHyuZgTJUL5CTRfi?h7Lek_{!n>0lctme74rG7bK_4I62B;)S&Mk>)0#sw0x5w9?1(!! zmY8_c(>=4;A2C#>^sBPRaOlY?DzX}OOH6I*ur80=#-LAQly-E#VzfH0rmK@;oLR2O zJNf8hupoo><T_ z2mFQEDK2|NyLI1hs_HbMs+NKS(!Vm!hGEs)r*Fru$33r`o$0(V-!gW5Jd)JB0Mwdr z+gLY@<8p2SsfUZMjK(K4!&mH?V2~$UB&!yf`}^XByZ$m@a25Zs~A>FZ(1sC&XMOZ8eYU+si`P&7_SK2)l3M>g_8)Hp0nJt#A9KBlh z58Y-?lX5tdh|_ottQ~?gzvW3TbM9ay5n*OfwCix}@%w5<9Uw5@Np3T3DODG!@II@T{XvrV=9m?xO;D=u_l85CJ#S8P+CL4EJZw2Zs=u5@gU1f z->Y51izQQ2DKh%At7v@qoVu8!n^(ts!wViIZ8SeKwwB;U7pn{l;3gOWi*Y~QnA%@` z6!B4JnOnhm?29a>wSIdaTPh+D&Y6ZYiyC`NZHDV^pzRSl$rN;m=3BTv^xbg!6>+aO zeOWf`@#ii2UJv;y^xkeJuX=#ku9cpduIa@!YrrqqtIkWzqiy9}!Z_)Gb+YDKyEPGp zQOU!B87PI=rL7qt7v3sWM;o}c0XKOnd59wVEH3H_>{Gt&*Gt`OaarH$gS=eQev;5u z=~Up?+;H4_A?hqf*@ib0ahIL>(Ehi&mzVaWuXp2E{gO4v<3j2~Y$vNv0UUtc`Q2$Q z;CJBh54~=`aTGBNat{Nl%zZ&bL25dz;8`V+ybaE;l?;zpjNH<6MpGr>TuJHPl zQ&Its4CC90^R-3$i@d%?xc@yrSeAXrc7}w*A<7YGTo$Ay>;{TPvCgmRE}z%!1#A zubd6M*RFht5&Zy-h<|N*)f1BSc{R=3#EP$ztbt;g$NwyksZ|vUt_pq)hReB}+3e;@ zpE?%4BcXj&I>MFT2dHCU?Ml6@_0H7DsRyyG%~`6?6yn-GDUw#fc3{1T{&7r(Y7M+$IxpoV+CWiRy6pD}tM#c-X2?x=ARquLZl} z>;>M&Vb>)n9$_MANEd=9uR9sW!AsYVUM2g(=(DMmceq9;fL_~0-*12XIE`>cf1>Tr zQRtI)SU=**Vh!aXL+0?G#E#szxy1J-mqwC9hNE?#G$1sI;Cb@x97K)yyCZ$^4P0ZA z^HMh28vqn*c29rXmkME*G^(HOX=DDFw1pbY4)A>w1~!gQP1EnsKHQV94u3z4u4AVJ zp{a1(t!HTC(ecDw9~H&OmifuuncF(@RC-Du7oYlN+aV|)Mzn|cX1&NdUbVo;XBYy) z3}Ql|iPL+SHauzQGv zKE{yu(9Ph!9(k8_s4ao~&S9fu%oBA!9=m%>&~aQAzy@wUs;`~zWau;LU6~FZCZIDO zrztx*+bqpYIY_)ikWTkD`WQP~=pBKSkg*YG1C(Gy`pJ9eAhSx#f7^)5>h2bv`LtaC zM}xcsoZ-9NTSr0fmqzpoVXs$&u-+d$pjp@R&4xCgZjTvQi!&pCVQ#)Eo+>kJGQm9^ z+zVd4kApq8*5q_w6N|NThm&O3Zh7jcB5)DVx`NHqJO67{OReh61jEz zQC#>w_fhQ8n7N(k;y2A*%iYsdTC#pnm64ztHPZxlt6Zzaexu8_cd5(s8!LNDh-Tbn zV_*zAvUp&%0$L!C+wn?E%gBGast-#!)5HE$nwnEnp|+(gT*be(e|96iZ0~L(zi>%^ z{p3y((uv;svR1?oR6%9*xBJE()y{C)7?X2u$sEXhlr!DkF71jUrsLw2|^4>1R9kyI78FSrTO?PPT`2 zS4}-lCXRZhcEPyHW+slo1IDvuwi)+aej0Xb?+4lhwt-ttrZ|@yv%I8*@e1li*DDcV znzh98)@{oMIj-gG*TKF`Zb>lylCEv8zD^ngdQ_!qR<=@+*U| z9-Bv)B-U%RcwNFDgtC)urq$-CiTs(I{oU)k8a`cX|ufcbibmF+LW ze6wf4|6kQ)X8J#(xj0z3x&B+$?BdspBjdEc{-iy71+pPmLL)b<>z%xa{u=@6oC1FJ zT3hD_WlQ>`7x=ObS;?SuR<6vhwvphscA8E6OZo#vN@`d%`&-Vve!-*oRdP+iAfWB1 znBMjj;|12_{rnm@bO=cI@A`1R4JQ#2;T&kr=_Vx<<%mZ$slERJbA7sg?mp)*5OyOj zD13MF1+@9TJfH55AO`rqw#+1C3HW(`eK^0~BvW7(GYaZg|L$>7X-tRd%m*yy|LX&66!Tueci7J-j^Wh+fEvaioBz2(+yL;;|OfT3xAzGPDI*zL|h>4 zC0%5Wb{A{(MI*m!b{S4dXqs@WMVLC(FQj~D3ao>QNTwrZ?g6AAw3FgP z)j_$L8=2?12aXNT_{$BW9vH(-T>-&b@({t=kL{qeXA&NkN>JGzHg=k zTgqDt6ki#1P69 zm^IC*w$!I@{Xj!d#4qJ8AUWTI3h`*n$aK+gjgj9H_L7Jh>!`qVojF~~|D2TFIKH^b zo${Cs)=_`LEwtVKyJjMzB>q&WK^TymI<2)Ik1nAY=fx6`o54G}l5NXTvgY-CvE>(Y z@4*(!6`H;hmfzDe`4u~?lslA*2T2GS+x%-EBLP#AwFa{N7z7*9=n0TCyo{~%fRNoQ zuwg6MgIC&G0=l+}O%eBl1KfX_!|jDD%O^K6{|WbOa$5-yrWmSD0zS~kHrH|)5T zz-KXHKMFGVNQGZ;R^^9L@U}}oIJPwmHioTjtmyc~Q@O?Bgu)NW3iUiU6F+xgSfyw3 zdsrgcamX-tGUjoD1TcVPOI7R^)(1`wfeCNgAvzG%F$Ba92L$2ktOIvbSx6jsi{Z|+ zszDAvhl3d!HFrymGwy^ypfD{AA&Nwlg+rKiSs9cZ@UU3jck%)(D=+d1{H+H!m);q= z-GT+EM*t0F@=3!M{o}Z#42LDxs+|g<&FdqiC~E+!XMrfPv#psP7}I+#sO#S;gP5jy zFxM`?IZf8Myq-iK8)Hol3M!E&KFTHm1?&px;5hgM@wRW^;K2hUH(d~@{Yg!g>0Ig>Cj;~hC*fmJJ!Imwo z80#3SbqDB`>}DcEb02bcv37ts+cYakJ3_4${`wojAL-BzXZ#3*9+KW63E}bULS1CK zKBb^e?FX-tGPc?(lKcE>I9l|q%?AhI(pLC{@>m5kqg)+03yxjth{}T=w`aB#jqFvg zri+KgWyI;%B^qNh%hGT_79n^(lN=5wpPYo$_Y1f|gJ+n9=iFNq%@4~cJSZ0S490CV z#CWw!T^q)FkAelz?P?E1iD5x84af~sgBWBa6129cne+6Pm^2xhH?CzzE;t7f#LdYc69gA>$SY@6 z343fAZz@+K7}%EAyZ)F#clB7hoo^ix3G;2o<0#7}jEO|+WdGqJ7zQsE0z$ejrt%Sv zQzs1TE4Qg!G8=lkh611*bf+8Ccof1I)iW=lub6OX`euNABz9pXA$BlA1W5mxCWPC} zI1=(`|6!zUTvi2L+M>Mz3qU&Zl2gh-{!@KLK^13C9W)u4N)ZdH{d;cM34DW?xQhsZ zhR_OE6%f@XWE>WrMDaUBSRE&nvQ^mToPx?OWSo~}I@{rghG*5!)!|qGzmF4Y(F$E> z?>)~^iT8Vd&^R-4f0?*cAXa63P7Y7Q%1?4H@@^BAEhB4@v&(`sCH#)`VI;XK@Vf_G zx6cUuQN`4yzWBh^fm#DnH@;}qB}(`|Zsn^MECSTONNRCzTvB=%)KaS2%%y7+RBzu1 z7kQ8c$eaFuDO5{%Ch;IF&}2N&77F>h<|0Uy{&}Ug=wpHS7?CaFyyJ#Cv5^3cD>GV; z&WTu1KIX$zRX?%w=D=);NhGF}DN0DtbMCv$Ig`$wty@jR2%U3sSD=^HO+IpZ2WbMu zu3itCQcG6GfE6f3!z%OIzeu7CwbtI`MUUAd#kzzTnmKGcCM5n9Mjc`^KNCY!$%`n! zI-D%|)ZF<+*#h`W_Pgj%g}wz)GL)*JX}1#g(+;f~wme;DkY4R@sxRTMS6#r`>T1iW zOKYO5P0yb{ zy;W<4;7@A)hGWA4s7jI1**L-o{nu|f44BrU92Iwx+^?8|M{msgAl^WoF0wrgphB8a zs{f2=-*)0q)rldA#tfp8-t7#&79-%-h?o~f+^AH~J!b})PIkyl3eF*YRlnIsFphiw zX#HH>cZFg8L&}Gd$l!!`L)oKWVQn)v#IkYa-uzCrHQ$J&ceZgwz}>wL3cSs{-PPJJ zrK14eqj!?vf*+C;qmdYIX6kUD!n&jy%=CarG<{6wHXZ3rwQp#o#dh}Wl{pn*%1!AO z+iIAHBjz2!@rTR~=om`uoV?f<5~OXeeD@nHXf9bkm-G%{C(D&(i$v3*szbfcf-pdP`U2%yhr2>?L8v5KgPdf*M~Z`)Cj`3^6TLc z|K#FFJkt)60w=>7HG65G`M!%xMRxNC3J{*Xrjf$Tte`kljvXk8i%;XUyWmyWI4wR`dfL?xg8`_FNLCg3`LeP(YJ&i z^n_f7bw}3yL>9C|?&mAB^J8M7K6Dm(qzhWJJGR#uUG*5-)X-VfsHa?49IW%4&b87B z=>U}`k^;a~J$A*`i`7r9j=xM4k@3OSwnrP;ptKU}>Wn(7PMP7*O%FhG4!0ZK|k&MAp)MaLi2mD-yOM)vJP6fudkl5qX&O949+CGEoaL3DWJH4VUw z9sn8q^fl&3jTVv6XpsZ?Ox=$F$RNtFPQ3%G)v#FF$fheBbieZpld~%JEfojf+ZtQV zJC?=TOiC5IcdA;*I5!aMZ3!N9BHw4Xqh!kxL4?cs)r0k0ZDgR#)9oY{?=(FgW~OhM zY&xQf5GLfM%q+=3 zkA^o9Ge{)3oA2&8icE@7P?t^S+55zDP``KBNW?I2k8`y(&KB6t=>iQy3%3-MXqy$Z zc9(V~#GH`0L~V-Fc71UhjtF z$#SkG6Qv1IL3>UKiC=^X%`;7tT1s)IO`TO$<$rSJbOlJH52iDn!^V+=EKtw8wPQSl zW+1&IclkNH`c`n|)fe7>cQUoqB%uxP-powrh&{~Q5bAAxbb@~WXgpDM0u;45X;V!b zJWJ6*9CBlT?wb^{2et5Yg3M4VbnPsIU{$r2*s3W;rwE^2o!li~6YURa(H0JF8O?HG z__g&-TbL!BmAs`ktt&?ZUu|i7RttaoYDwmb78(K*y|C4d+-FpE3|h}*3UIqdXbzcc zeQ=Fq^S+|_tRK5{nO1GLG^1N?oMcM#Xz0ImMRW7EqN>71+|wmGtL}yR{*so_l`h&E;gYuGBSe-{6L__uZLw?{;(^ZM=K6Xmr>SpH`Jf~( zO#q|Zfui#%dM6E4paGq@@|CP7zI1z`1M?fSFw1c#d`pm2EgM}6@f*$EFma_`Qak#Dc3ZHyuHzg<8{tuCk8s4ly-n0^B;{Mqb#sC4gx1P|+K1e@B?B^? zu<$bmuovRB14}1|bcy=0&00$DZWql*0#DmeIzluZ?;Uo9WcO+L?K&3U6j=aLjUZ=# z*c zi-72_bwB=U$GSEvk4@8&okoOMyGfxkF zEccqBV7n8N1C;w!QhJZGLGFdwUp~M!`$x8iNx{w?u`H1xloE~3hQ$rJBpj1jkITCE z9KidYUrXIK`Njr$JsWZ8)b|2*2B$WRMl{iwk)-`=%&J(l z=rYxg@zR8o8$-d(x=PYxQ4*+q3(?&52H0c$*Rs{nKM3Z9A!N0p%|bn5YD+e~Nm(_g zgV)mC+B#1(R%-2NE9GPx4Td)2BCY<_ZGcGOdlRJctyHJNRa&<$nQ^+3j_ZCDWcP`X zTu6q^YDf!CM|W#-hirkMW}om<+c@>)5&^`6=6AY#_@{LyzX{PT?my3u4BA=#lZ zsve1tN=-iaq6X=UrCov@GML%#*}{ya!=hM+on5PH=}wug3|uHi*ikQaE6+;H4TB};qPI;*a3aD!nZVbVT=#$I~! zuA6HuamGF$KWQkU$EIIt}k12IavznXsE$S(SM!NCG81dV}54h%=)xFb7nLOMXYsnMFEqCCdbnl zDU|S!6iVTv!Ikuqs~_X}O~zd!I$u16sLqns;ayvKAYNQ_Q_*r;dC3!@BjSW|@8Nz< z?wZ`Gp|pbxos^rbcO4D&v#YoeT}QaSD$xBQdl7#>UawiVOAp&6FUciz0S;cbur`0q zHj#yWrb4MB(3_c8aRLc{P&>(LP3{q$aD`M?xCOzOWn)rdU~}H*d|}`zc5|1oPF<3s zSIk(+m1*+}5db);LEYTDbixH{GVJRFo4a@Dn*c|3iPAO|PWD#0AYF1?u4|ox|4tCI zhcWD`vzvowy=_cJK-FePHVa&~CZkIQ*8X)Ou8y6LFGv+Gmg~i^eXpt|t{wy2U!QuR z1L&2mdzZf!nH>3!`sDioVGr{h0-9bH2LWL#;zNKBoDMBq@0Hb6?6f+ z$Ca?bt)j>!We43iiB>j{b7GV_hWacI7N7PWGFFn4x!E~=`jhuh)LiD)*P)>D%`JN#@)dkAauty6sL$Yq@aZ?Mxd|HyEB?9A)2zWt1ImXP|Ug^A9P+4by9 ziT@P6`S3j{0-=HC$Oc&^%lYy7oLTb=nnNrUbBmmGgA{j>?ieh$6oyK$J6xn6ocaVn zsN<@7Kf&cKYP#)aWhj`K8c{|!8Ar221E#tz@AROw(c|6JTnG{bs?rd_$&n`F`12B? z={BYXYfdYWLR3iftg1C2rGWiIPW(3_^_^uz>d&v{b?#H=b6pyn;zO=>F3k_5miBxcAp@Y1v3|~I}VH(7vQUqdRO@r1-)(4yv%W=MUfD^IQGU^c_bT_7QRveB*C3fK+#~WZdsC*syE$W z?k$(x0(&b)wcDb}bNHO)RoN2|X)hTvDy>H+};E9vEB6r7gGE*w~~;zs^&C|F!IsFis{9lU)Ca@a7_CJuC(EJSBBGj(}<& zGhDt9JU0MsO)T(l@Do-PsjEXy8CD`?D=Fp?YYLc_wMI@-tERR^O@fnOdqLR1>*C6c zv=Y0Eo&$#u86n#uo6hGmq4ezGYca5tR5m_9w0tG5i(rKNcS^j#{B_cp?i$)5Wd$>>Tc%NPZ8g*WTd&pU2N8eky(Py*dr-4o_L1oC%Vj z^YV^xq}YlGUfD0~JP|Xv=+gK~7AX9m*@ML+8teN1mBAneKH=<(J)g zd;6(Fzacu1)o!ha3I`o@-zA>9iCWs=3Td_NdSDZFt14IkfsD%l%Z zK`}D05ik(^C&$A>FJ@`uV(LUdFJ@!tVk%;4Y;R%;MK5D&XYOJ_z{bYN@ZZspD_!j> zT6QPDf4xS$;MK~iN@qafz!z5c4Dph1QxCgq$U;0O*^q}P;I6Gp=cyf9+um=Kj2Jdo zB}x@^c~T{bS_yE2{OE0cN8qZTbNKlJ?PlltEmg9D*BMZF$#=rPIun43Vt>(58x zAzS@Pkm%B9_7W+5akL(u>8f5Sli z0M-)|4ea*$c{%_Oow11N2%UWK@Aer!Y5h%qAfy`W%ZP z!wYx<_zNy#1TexWD1sa~W>wCp1dA+#p^ka%M%sR5hJ>bf1Of>i#Af*2vz(E$e2GxQ z<_14Y3cj!+md#=PO%7|n&kR%E;h1EzjK#Oc5(|9|mO0>?Sfaipq3M=4B(UGUst>skLj{cM1KmxWM5mB9xx7 zgMP?o>0^VPdB&^{RD^*`-qPoR70ScTz`!@34$dIM^EK)J{q{SGe(m3nFF)T8{ysl% z{@;FY?_NE6d+)dZ=>GNS?vLr;jkiwis(bL%`tl9<@)b5Kk0_*;yTann2gK>VM|v(1 znVLiRzK8abv(nSd_K-~i2QvUCPup>3;c=a~JWo(pi?culK#z{Gv`BpFH|cGfcZUfk zm`xWx@$Es*Y~R8`uvvJ#0~|kz)F9f|p@aFMgpE541E|CG?S+kO9rOzGyL%5TTC4+S zmka>oeRFyX5H<1IwzAung|mX!w2VCtRXyCgpf$B@s(itzMlVX46-9?;>*%Ir==%L|y|4;DEJv3gEV~t`gX#7{;yxCw$>X+NxB*v`GxmumtSqcbX~g z_D5yJRE>lH*}VXI4zSg@PynGKOyNGYEMX-TgWuPqEWY2M5R*l>OI44UxTHm5zB1t?P`_%<>i~`4;7Hb>lVB(+HqNqWIKEn< zGm*I{sCgyb2~3Prw%CzVy-3D^(OgYpm?9RA7IlCb3Roe(BsmtS3ieD1ze6o+-0JJh z_{+Ts_$dPp9JLWK8j+J?#SX{OEH=1MqB|YX8u6nD{Oh4NYB$nMU%xI-&{Xc6BHV&_GJOwk4$KoOc=Fsv^ju4i&4Hg{>~d zP*1pN6;(uBK|{ESoi+jw!2ooAhvHXp**+P(RqPZ3YJ&!ms|6L}$}@KE44jmTM2OUH zO4uwt1B1GN;!Zzkg=Z0ICs9TUC0j&&;E3h`Nh68PrG_Obr31)9o>jnGW#@G{qMQS7 zg9dP;h{!e-;z|&-N<9hm=n*TQmjc-aa1Kv}=br`?2Fm+iFbnwK8tG4v)&X(;IvAi! z0KD+ce;Xq!LV4w~>1o(y9S!%BXwY&Q#%=bPH9MehG9P!b-=RW zfqX+^ouj>w^B2Dtt%O$QLI~k?`W0-n`{Tj2f72>MiWV;EUsGWh#X`q|xh3I=8Yilz zOQ2w_L8xF&rAWa>w`gvTttcM6SE%4Kc;Jz_U_dg8Fo~XY1j;|Fjee^k-E^-{6EC#L zyd5=OL81-dPc^h|)s#sJoghU^jo?^tMd8qzns{WrD=MkioN6-0<~app3*B$w-#8>= zZCuik6;_Dhy+*DlsE{yzIvXK%0u`8MhX3@E@tjJE=D3Z)L02?V(gOMqV=M*ZML+u^ zDpV+&fP_RKVW3dBvDN}{HUOca_GaM@5MkFI^qCo7idt0v61nmh5=dedVSM)eVH$>n zUcp|8*f{lI+lauu)!N@=GNFQ~VIyta=;0Mt8nn$73W%>bbmCO>Ief5QKyVGft;o5+B9oP_)6m~b( zV%6$FEQoQcg(eZ9eJZSITU8b`>@)!h9biI7XoyH_0+JalQaxb8J0u9?z)-;7GGt}w z=tC@s2NZO%8C8~4(-wy;n(feFS+84I-%z0fSOS!W(+C7xqnNa=Qe*)Nk_GK0QGyt3 z;c&AtT<~WIlzTNT9_}UY@bDcu&5>nGO0b(b9t#XEu&{5sl;KO<8QDRDC0F}~4T*4P z3?V-LtO$H*HEhGW9fBS?wb5YCNw<1ac0IZ}gc-eFKf4<45*FesF)PUUuxpogM5enD zOI8#th$v)B=!(}&w-nlb$mK&hz9?NbFH`IK)&ny;pUB>4RN{x!~SQmf%MuSxJQH!li zyPkJC@Z2-g{_Me+2k2?kAm|rGLq{A-WxeTn|v-JiCh?axZqdz8lhrro)Q48 z%;lGcd-hFt5v?MA?=Vqt_yvXD@^QyUQ#+C`WZLv)*27peET~%~V{k>lE$MS#T4Qmg z8?EoqgI7YsANU!S8(r7kg|NnY0QK3}Xl*`QSG+{0+$0i1B`hj@!2fmhI;`|k0ucqX zs7237U28iNa`EimN%M1ma^I>RhO%iS=`K}IE2*t)dsc0xKdw^v7!(rfL}_H6;6Q%~ z(>5*E`W5#XdbI@za7fvbkw{DtE;4PN%WWF^ivW`-h}soNebVw2F%;_XSFmftu5_+e zR)<5=4ncesf22WSSCr0dAiOXqNeHpB3u{Q*+o51glS`^L5+5-NRYA{Kg4Ez7#3+=h z2JB9XqJr(>1&-$SIIr*4L)yVHw<_GXSSOl5*>G?(kx~}B8_!izVMs2c0BygRQbN=M z^-6Y%Ll@e!1e@nt%s^pmei??#w{JK^w}`oT1Y0WO(Iw${!~vQj?O;78I}041cw9r? z>km6lj7ypkd28yJD8{vH4JTm7+|c7Wg_{39$e3hgbJTOa>zE{ERn#-$kZTYyvenVF zxd>5lHP%p7_VU&7uAQmA^Qw1!z4(Feo;BmQ;~{@1yQREbl-2n-?t~*}#T;*20n$|7 zN>l&xVA=EBFPd>Z+t7*R+CG_l~#veCbd zE>Vvof*8^q^<-njvuj}ldQdwy{U5Hg8l^)uWd4>ZFUs@ENPIwg`b!dA3(*r&q7Yr{ zi6_{t{P3xKA4KIfS-1oYBMf*fJFFS-5&9nuohlsWltDe~H7w4u@CX7tgnxOn+2P%L zs8bJg_=5Y=Y2xwl>SXzE33d@abk%>d>&cqn`L9t&<2$U59mCk)}-@f2az8yM4*^?j{>X; zeH6%*?yJfCU}S@nd8#7u1s4fKGa}BkHY5um999YR$Y-;sN8W1(6YdUutD^$T4FAFl zMf}L>f!T*(l9$&%im0B(R$8Of#TN;nvr2|EyQpH4*W+M5}dKh*}%r zMxnFCc&;E%2X_b=F1C^RDyUP?3|KFOyM%iCm5e5R*D(@pA=W%<^cPn}YJ~4AN+8F^ z$bPR6rmKYWGPwn;&43!)_nlY>4Y^IKtUUA79%&Q3ocIXdT81+q)VSV~qzNaMwFBzw z+wq%^z-&Yuo0_bGF62yRWLW(h!RA>3l&D`2?6&ePcW z;Qsqg05VF(^T8M~jJ3qMt4Zm;8W906Gq;eDze7v}a068FQL*pqjC>VLPQ^2`P~b<~ zDg4zK4}K@CCcA5ZqE1snBnKtlQL7lo=Oz$Kq?*D${1YkGab;`V;z+~5PmM(hWf^ae zi)@dJNWXxFI6-sD+nRJ8!oDW>&wn6lp~S&9_&p|4(tUt>V_F)(l#CSb5ar3uQ8#`B zEpD>1J|T_=xfry}yfk~5gOY_1$x4AALPJY}l%*X1Ug}IKl2i#Uj2vKQLX^t2w!;1> zt{5>SM#vh3hX}hr95-=b_B8|1jfnM5ipeMnF*X^YIs%^w;|wj#*{zM?Y*t!yE$_D> z7ZT#?8QAmDLn4lfRl@EPM>V>ExKhDxHxdN7T8A64AoEUvpx15=q7TmQ6Sq2 zKdv2lvh;>bma^EM_=Xk~2?;UKjJz>wu*O(O7<+8YYjGYVZa4-z7#&+(Cg8!It@aVa;) z4+WycG;wmE<$GHGAf~YBB5=@)&=-TTi^Uh_ZSU80PqK6R+^;gU33mx|hbkuTWx1USGzIld=r@0ofw{60jG@9I@ z99DRY)7Jn3&=3UceB20@ZB^|UWkXqdwTySNS@7+~tl583K8x40Sv$%$76J0E-kiS9 zL@iEhb$&@6-@LJt=_por5np6~vanm+4zo=e<;rk#|Ko+{ld40}Y5&RyIHk@z0!eq( zzrMF*OK>H`R5mdhmTMcVqolw%lT*G$wbw#9q%NPNNlQ@-GKvQZ9Pd^|4OLeXC?F?<)geC%)& z0upQGROxxBZT~NS0i5f2rX$JrnTj`B^)Zb76@-{dhJf;Is6~py?%f8>$}qm$YEL8R zlQN0TS*@GJ@}K1b86S4qQj%;(*hPzER{jY*u1$uEPqb}OtGe5AYuLG)KA7C3&%Af& zQqXaeJqPk?l}hIeg1QRZ_8EeWq24~5jn}4;(Xy2v{U?A2QOBK2>*>e&Fdj)&(|px6 zHSxb|xp=st7H|6~>&(CI;KMPyDf&G2J_J#i;5m9EyzCb9m|nv?ag}HJyoK0pc#G+*$PQ@27vlQ*=)@*ElQFe78j7%{fmj=Q3ZV#y4_{v* z0N7c%u`_(3-@~`>%jOYxVAm+wDO2uow)Ue2KuYZYiVIPVF+FwE*^)Ru6X7eJ! zy6l=ZXXcHl@Tq9dU7$k>k(hg@=VM8uonP8NY8HDG(4SMhUuvyR32c|5ce>*O@1D++ ze2@>f9mn120WN;Mqi&$!*u1gR)th;qtC+*)N2Ydr$KTwP0?iO|VoQ+Wn}#tzAG*Bn z1h|#FOete^Hb)Y{VS83B{ze92sF)Ua3r3i#{p$bLz*F{m2&uE3qEMc6uG>fX=~S1b z!+4PSl6*$G1{0g0RzH=};Tk;mczEt=kX${+VBMrj`v!Yz(_uR=(wPoUw%=j586z*u ztQ@$AA6b|!QE-QLXAA_Eqb@gG1jeJPq*o$AuXuyQ@!`9n8^45A-$k>G|G6*j6jpnr zJX4A3W_!B&sI@knj8oQi|?+xbbe# zyWB=T4x`Em(qS*QMU)uU&7DtnWK}N{@_;#ZFIfCve6F{8-@9Zv2wBaY+kAzr_{gQ?C2Sj*!okzD zqS}}Q1?E3+cQK|3uGY*J!ut{!rdoC%**LDXmCW+p*9q8jB6@V`s>I3Rpoc{faQDg) zr0lmL*VYAhxEW=g+d8;g*_?+s7j{=vAU*?FW(=7oX7UL)T!FgxJj?a-zzbCc%)y++O5DI*}(=Co03XF&6nR!!INZMU5 z;xhAsd^h$ymNm|=-p%cJ*azs$D6`)AfP)*We9^OAb~H}6QoXE90)9Mw z*V!{E-LH834U0GHcog(&v1yDIE5|Ad8u}(S=CBJ)NYbouW}ngm#-aK*wVnEk)Y{37 zp*Z=9W72%+$a<*N20E!7#ONHn9LSF^2_bx0M;lJoQ2z6twXB|I_ieG!!PpGVE~g#2 z7E#8wF$}ilMwn6BM{l7ocaV2jrES=hND*y>@3Lzuf*&j=N=0P<6d6o!6i3K+kc5!f|h5;*#i&jTP*U|C6u$ z7f-AAs5WrqiTAZAu&af#Kue-o&ee9P!=&Lv+t-D<+Ou{z6Z~cv*47zx%h7x84!OqA zHoDsZQyy4Ty=Co8lnZ3ItQ2Rq6U%JPJ5#=g@S1g1cdY+CN3E-i&ev@Ah?5p5HS~Qh z7K(`3gx`X*@fzz+12!q8Vcpl+B^UoO&-+CT=d`WOD#MF^$I;Z-RZx3w;&^Glrc0)P zx4Ci3GU*SYyKHH9xVFOB)YG*G>|uH5oF_RzJf!E1R*WuwzHM=ez)8`}`qsbw$h&C4 zGY2~|Uk2ng5=G-BG53WxkN54Q#o;1G?j&pd5W?FBr_s%doYZdfAD{xk;WYw{|6L_k>P(s zLvjSnQ2$qah>4T=zr#bm@!e8`04SloOFz*@Iuk z=Owt{ZWi)2JnLua!$tp$nEg0nAguOV+_WoqmKMX&5?{2Y)!z(@E>9)rC&hM(#2W9)JfRh z*1_J+)Xs(Ax3&Kp2FStwf6Q^s+_e3M8_wumFLhFj@bYzo>PC&lwi@lC+gZUzYNaxJ z^Fr}5Pf|cXS^Qu~lP(zPBV-T~9ufgUzNAf`0TMkN8Q~-{LZ6#odgLdSRQ5u0YMmZC zUvF#3)idVD#{dIQTXOz-u$1h%dF$+@YRUG&v%+&_;^1CiM|c@T=6Z!{5 zB^*rXx-~ZroFb2}@rqd^x?7*L7><-7c;E4x4Jun%neCgMGKSQ*>cjGQ!`}?Ekb<$y zy2cBZ?q>UDxsyqP?(r96DkJH5l8Qwnl2W1xKUw?xH>Xz0Z2oju8Zw71sT4u0;G6X| zRPGadXZ1_`Vm6QS>hXsln5hA?hOrkGP{|b=D5W0)%}cg=!0-b#n86ArjRI|Im#RL< z{R$q4x;{t;;2K7rdQTmiWs?>+Y>Y5%8Vpr1$c~Kstl*#=IdPtpT`(!MtSXu4wZzTx zCR(&9n-&F}h{b8GDqe~;TOdj~c6w3AKAV>O^7hRscB|+6qzv1?5-a>$PCa)-GG0E4-8=E?V1x~98p}CkKT;t%6)piB zI2^>4lPU+E5!p{-k6ys-utGz3qR!UYY!PwZe9CPj`P$dkV?i68?{zkqIyX^@y< z)$E0fXXCaA8r-RG%*Xh7zPcCglfKg(hh48EncSXeBwO@ES~YPdN3yd`TELuUJ5A?qqf$57Ky^DE}x!yG6o<}&Jw&V(AnmLOm ztLEcsPlz+16?YiFuh)qj^M9B@%s)fwUuQqN&OxA7&85AT`u95TX|w)o@;9FTLxXa& zQuVzRN)?c3ugc*w9B;87=bhjMH@y0v*FS@KTpc5Na2qY!9k#trBH1ukLOjcb5JlcLf6ur0-rU|hriNpws^ytjK@|BsZXJyFuQ$IKT!qc%?oT?Ad-=M4 z_%%hxM*pXE;=eJo{r_Ai=tWH3ER9XYoeVwyzb^=E|A#!v)j~fk00E4UqWk%GqhV7l z`Xqke*wZ$^nOuyFFu3-w4$=IYm^pL}Wgm(`9k^E@pCR}fyjys$&jN_!3uNd2&`-wy zm!X=ROzi&$1KkntdK4|E)6Em=$@*Le;s$71SR6ZNe3(*#;LX{W};BNJ(5!Bk^g`E637)l7ePJWzIuH=&w~AkV*{g=0Mht>_6}~o z_wVcQ{omsUG)ubrk2df1`P&I%k@yG%1CCz&AF?Lj@%_I?|Je5`rul#Vfrm!N6xbUM z?jR8SK6qy~wS8iyHT`0SU!L7M$@Be)EiJM8m1Ft1n0&eU_kI4I_UmHc_x<+V=I`VE z27NwB@BgVWdyA|G5!TwT=l7QO=f>a=xURoI4XxV0@1S-MQof5abOc)kO3)ivJ%0Bl z!eVeXP5=As;7$GI&k22}Dq{^+o9cWKgwn@v!*Ah}?h3vUzjA_FzqC^~%)5CY9Krn* zD!_kL@x@`+q&RL6g5u)0uhzqB%ARB8e!1+t3|7Meak2$&rZht|zz9)Kq41B*cG3RA z?@V9n>~To>;Qs|fP_lH*ln}xvhh0Ne`o!J4hUIw*HpEWn3Sc`Z7YrkHog3izb53KY zz%*77c#|O95PAry6ASX?6~qi6@2idW`P};R-Rb}J{k8e@^7E$O`zufWef#gn^X>cB zJKz|uE{~r7$EU!xcW`-Y@w-QV@C!;xGx@w3qRIddqn2b2qd|l`!Yxena{)JlAa68qGR%lns~yMlFXKzJwT7a~yFA_A%>tI@CnI!-|IM zJ06C10iaLZDhV+uR-d_tEYnKRy;hrSW417qF+EGbEH+GH0!j@inGD$Y800}QMa1og z)X84tD}+HE+UItX?393cHJEwKU#to2uO5vx_O2kmoxL{!k6qwL<$9X)L18nrVFP_n zVOi&wF>(j2)@>eKs}7ulS7#~{7yyy_@(7UBxzjp8z3-U-lQj=`r8+y1bVTF4#rqZL zZpd8J`(ok(Ocs^D)O>&GK~8Q+_%c{AB(QyC3`SYw=8cSC`j)5FT*i!}YJ1LWWHs;Tt=^X4ft_kN|V6!Z;ArztkT zZc}@Q0nAZsfnQOSFrHl?2Hxp+L*^S#bead6Z136yWP^Bb8)d58^uqgxY zi+jIbuSWCufS&m{<3(59x98nh-&dpZ`#eWl&K-3YBWIRYoy3wK0yWZ$7O z{(DbWIJN$WH)MmiLZG_U4W3MS1{h_e?-()6e|TYt=ZH0F1{ruR4J{Cp88^bN=ySc` zg&{$AKu`@Obn`&xu#2{z(O+CP;=cz#L5OmHpNli#RR$`nY^*~VBR9xd1fMd%6nX7- zsEJ?|%uy#{xB+*EgS+(>B3Zc(ir*YzlzA=|023dmxEbL5`wnxZ@7oN(3TG^J_&^|S zkMhl2CYp1HWFO6Ue7Gx;ct@lR6wB6QMq4mSPNInx;{>tRJgdqB2!&YvV@~KhKGntR z@~BsMGINSMQcd*|wh*(qm&sT`A|cqIZ@T83xxhfC3hYrrMR{kKEb?(1Jwft^w8NO) zS=92=gK3C?Ov9M@blRbM&_OOyjF6YkZ-JA9iA)3dHCxvT1GyT|hl+6^-2jYH)BPlV zV9fw_w_5{ThcTdDo#A%i!&1nrit~^*EM<8Sgs#L1*;UJv z-9rl2CysHckBHD;I5@pgvAFEG$z%KHU;-J4=d+L!1+No!~5WZN? zb$Po7jmn((B=ung%7IxCZ}L!N&Vx|U_MX(PSpuE5@JkX9+!_4K>DDC-2;O1}RZo4C zW->%UYqC%g*?hk+Uk&Pnzdx6RhzxE6K<{I7mYnK9jq}*fL3oEBW+qi|GMpZxv7LWJ z=a&yxo}tV*1{7E8tj&8zW55- zet`*^;c`dIfGGV2qqfy48qcRk0t{nta^(KGwl9MN+GL!TDBTeX$<3D_RWqY}YIL0vL;e)Q;^xp14=CVB*_ z@o1QRF6pJ8!4BBtsuQIrszv_&Mikwyo#)r<8DqqbCeDe77a3zk4T~u_yI;#dqZ9B` zTuba9q8>dT`e$3k{z26&cu^*rctW%(c|XtYQ}PGH=k;lLSP#4QQ~9#=Fh$CwLglr1 zdcfYCyoNjS7Dq2=Z4{De=>+N{$&rI=GV86>cLMg!7VM4Aves@T<%Osj(m)`hnAC@j zbDj_!aST=;HmDXH43F{fP!P@i^5X>LF4|{@T-Y7e!D%?cg%s^5j$m zJV>qCK*-^g&0q7nOzN!i0(G7SRU}7h2UO%(RI)7)kQsReg6fL8G{A6iQ)xmh?@lEV z4?WgMP`GEs!2z&M`4DRaOmuHQ}J4@c0jigCh=OG3?c=+_d1;u!B1Q8Zo@2WhA>E3BK7<&EyH6j($%&A zrPCUgBOE&tZCwq)x{LGLJr0*>ooxr>l!{~MaSKIYD%8KZL-0l7*mK&=dxs_2?lfUe za%0N`>@A$g1ES-g7k$wf?);GkY@GUn_GTK@FRu*pe8&-q(3_rPEfej|3|PP4T3Zf> zN(_QESEeP3g5D+kAgWv0cB%{8jm9vte-$=;ens!m|0S^8SbhEXy3bL}^>7rtb2%@| zfj?hiSQ9h=sPLkxKf61MgoG=+wKZHW+}>?)$-A8H(ltq(;(*CBmh`whgOOChvw*lP zTbR&TiY0$_K?>W0B9z_pNNw*u=UlaPiBug?7M1xgDLv9UoN73+I`lRGw<)gE@LVF4 zdMm?JJM~dz0rniZ_Gg>ZDcB>W(#d&&DFx1yvxgyf3iYY%amq%NF=fq1+{o`J0JmRm?oA9VGCF9)Cp|3GD%?V9>srT&x^5 z3uRi$+7S8S!ws&aC@1x5EW?r&Bomq#-Fk6DWnk&fo9BnWDY2CZ>gqz)R$Ev?;buF{meK7MilZ@1sIimzTPs?7CH?`k``v5M9V6c$|#-Y(Mq@eEqU>@T=cY z%QLvWo6>jTUapEECQmTb+03D6 zcuHG2JN{BcsbEg#5N}eAF{Lw#DTER0y{kGYz<0;Z-e-sw)GJBkdl<^|Idj(+oj?;P zWFpX?Pn_okUkAY~MTJf&YbbUoJ(k`d+2RZs2@L;BLhp*j+-(`q0J~88#JVrJhiB-= zJCDPsyFXJoX-;de14gp5vo79II-L3I6>`NfZIL(;8>b*t+oxF&MH-3tSWIh&8JrK; zjY`7ZM)>gQBHX$k*7Sv9$UWwzX(uAmt$P15%8NJ2nodo8s5Rh*HmMWs3ELfg1m{xQ z-WA4o1nJZ~ztr|EdTvaj1MKC@C#7QjUeP;rKbfCGO0t({u#1SCpx+d*dIo?4*Y>8) z3TGBpNuch3HRqR5*^YDx_PBEOHK7N1)9W<68~ZQ~i8Crzhut@Ar6o2A5#)aRn60xL zHBb?5SOo-`{O}LRDck8ls&5{=exn<5i-ys$8=v)25^+2wls$hIc4(i7X#uL4L#^y? zKtm7qblL#(?H&!!^o_igD9x!9D!#es{Lqt!`1iLggN-AO^x4t!TpM=MOI&CT7mI%} zJuZE&N(ve;`$$&W0HOqL9Bb2h0ka}e?TWPmnib`cqGa&S$qv^Vuw9PC-wUS3{Q~h8 zyLEcHnkikUDp8SP0|ZaSZdVV^ky3VGy->Q)NW`bu^V)~vgj5#3S#iM{2k-73%IIyO zRZ!Wp_7o(Sx!Ovo*7MmtC`j4Mr=gSBvT9<#bovW7u}eh5sZ4~~#>6ovy<%H0&$gSy zGP+#e+Q&{^CKc(GX?HzK&QaFa&wM`GETy`gsQ)e!ixI#LpQT?n%WOIfUVAxXTn#wM zqU<(&U*aA}-CZS^6{(1b!ErJpZD`o6v(O?r2lp55gnrqe41`vF#}0=ix_!t6KRZO2 zj-5*i#x9;nJ5#T(zh;gVo9NO(X#|+?Mc~6VS75`ma)VrZLEBd+m%Lr*aRrOHq$9CP zBy9$&H)F)|2W8IqP0&g81U8gQHWWaQYF3#+!kwoLT91Y$1BvcNb2oS-ocRbs0Ik4QwE+Ds;mgP&!YBIblC!$nhqT&eb zHB8qpk-SO|B9?o-Nuo&h*S-Bez*a0X(srF zYYu;^Ut8S^=oZ!7KEAJ4g)&N|nFZ{g3|7|Aic!OPZ4qzN{0+C09ka{zR6`xJZ8SLP z3oEOWs8itw{~a?*)*iT}-k&SD>fYVGU%16D3G zpw}*r(5CeM4CM@N@DG&H5ykcZBpTodBeE*)H-LTL+fJ_yobuOK!E=Q^YQG}6-AvWg zz|`Bfw1D}Ke~bCdZRbXYv}hY+P^2atM@n;yDS>s;3a`t%rof9TY2<8TQ|}aOmuDhIJR>O zH;$g^!JYau5L)q7Edg6Athp=y@N=_oJa$ddsv%Dm3O2AnLP0?<_n%BU>5|waK206q{Y(JReJ_wwfJa8 zhLMzOn*Qeg>rgSMPj2a{HK2g2zoY#6fsEoiuzNBXP-Qs#8ZouhiQ?SHN!CGZJxXbO zwzYx8FD*Wm&zJk)w}cLAmkc)O=&=DDLE zP0Ri#VFY zJWc+!#`7fF%rx0rJt`Efx#J_~Gec%smDi~~?@~zIs$27~z>y-Y7>?)4-955rNh4!4 z^=>z+bT4D`(*Co5p~US#9L`~55-HG)k_%PFRMBAY2TPD>%^>vQ@YS9cmHI&;It-d= zh}Zxp<)#&6cV({MQzD%8XA>=1Wk72RkgW1ezT?v|*xaKU6Z;EDs;c`lRw|DjfF)o%nT5&u|vUG_EcA|vD+9(p61nll( zV!le9#6`3aRWW*N4)LD-G#e+mlmHcv@75C$WD3*W2|`R*8EbKCVTet|w}qR7w^KMz zo1IjLf>h?cVguHxqP#%JS+f93q`DHOmM7nW&SL-trEf=gnv*~h3Hstl=TR3UjYsP& zD8F=4bYlg8X`L?{hIoiC1>B&Sww=(ov>7VKOHlZ;hcb>`d*P3ha!$Rvx9{yiM*Iaa z1$&GX)RB&YH(9Y$dx@OlKX`LLuezI(6!0Df-~rH;Bx}>uzf%3HZ|9aQWd_ugVMjVs(H)1D9&P4$XK^RWHDqePZmU*< z?PkQ)l&_ndO|Ss!Tyqc^EshKAj(9g{1Uk7_0tZ7+fBD*E2R$Kzngu?<#w zCO=+DV}4>XjhY{96wHxmvyIVQ+G}|MQv9~XJ(NHhLvtKL{E#B4EXC` zt6d1Ak2F$SpYVl*xnd^J$Ws(Hd7hCQh68Df2QMpdIicEC^UrBlVi?abmxb|8HJSO; z1k+TiM-imyK_qTi8iQYP*F(W(x1&&BA6nm&Az(dMxX&xgS+6B1wO z5{2L29kGi=o7$#^GUOg+nm2vzxPF1C{9aJ$R%aVtE$DiI75+A}g@(z>W1ZX>(X`oZjzXrl#l$mujL zR0@&|QVB_BnGSqb(6X5fXsd)cu~E;+^fDJ{u=JJA^0vHI|0wPC6^BHl!iw)Oa4w7!TB zu74P>o1d20nRk1_6l^RwX4ENd#}wf&T(N6RX6CbSsFaB0*Bi}2S#M!ZKnPP`qPBp9 zjcD=YW^g|KgX7Q>4C~42Nb|!f^tD-qLIL?3Jh;mC@03jGKzEdK{J}5XeKx1nMJ~UE zoj7y_T_^gLGdWDr>`qh|Ytdz0Zz~+b6McM=PQVww2!AUngG-Ic6eKQMIhr$30 zaGTdPsR7I5Txfn&6|Lr^{_*t=Dl?BqZ;05X?hxA50hjT@-uH3iVu@5z4BQrLe3}Bg zvVGJX2a?D=iF)^US>kQp@4Ql`MxYbKCD0JW8Zn}1)m<#BGB;6#Ax|%w87%yJDyhXS_`jSC;o$*f6ProWgZx|B5}wR zH@^OupNRVlHaO08Q$Rc!x0)292x4wM)6N`)v=zTL+(>VE>Mb2)e2&7_yPsNa{{XO9 zR`hvo_00pnDj;pXZ@RYxAxcAr-_BCb)oL-gg^KJs*f zxlOE__#?7pPD!S|1Z6}^`(Yl?cnRCk!f!Yx#+(-b7ReuOmwJu)^A8IWN*-?C0l9&N zy*A^a$JN^g9C1uhKmCTW3T|J?DLK&~Sa^Qtpsx}KY>$JegX05Dj;qW^ED(95^3LrS&#eKKk^P}%onq7ad{;>ciwBE z1tvoAIk)xh8tSRw(reu~(jT!_I+i`4OS=Uz*YZc^sRkkZOO09DyS%;BH@DXs;l>s%0EpD>dIV`s% z3H8aF{=R=jeb;n2(=%VCDD#P&-17iI;ze#FV4E|xHoHXO?Bz}f)fifWhTfTBNz6s1 zDW)?6O_WM)7AYYWP4MU}V}eU55CXx=O^n9YTjjqh>l*>tZ6^@E7~hUn@#-qO71oXz z_H~z?0Q?{zoZmJe3{&eFV3WxJiIXXG%ctt&)~FfQZS}al?B=^ch4h{QW${H*>raIFhvpC*Rq@-#fS81{qoi=r_o={ z?nhgwd1Tsj2j9Wtd{$KdmCaMzph`*PRX34%#&o8^$S95u%0`F@NzzhJ!8W+}wY9J` zw2)Ym!S{-=5%p zuXz>$5R@19)F0`>v6zZZ6>aP=Dz;9?y&-m?R7P;c1f+Vcbh>;??Pxulajc04!_Pk1 z3h_{y&Pc8}{>-(GQ>v(_rR}lpKkIVuAaysHVId_}YL?~jUTW4^npHJ*u1|83<}JE9 znjD{u;j#cBQ4~g)$pg~`Jh@8u}+i9Qvc6` zINPKL;3U}Zz9rgfBew$K6JyF@flGnm5$%{gmCWIxQM+4i<`7N!)R1MK`F=%gyF2 zQ{sckB5RDtj6QWm;r&iGl2-X_xXj;wF!=n#p;h==W$O3Pv3{7~fMdM{c3%b13@}b8 zwlju+7`M{v`EHzg*{?{y@vqD$#owe&rcZ}X+ZQ9BHDp+k5g`X8(oAa#HO?jGZSo_B zOq|@oq$?M+E2|LR35@FynT_2@0#f?JS>`*U=pI`B0pg4TIzs6e8p959ha&n_@no>1 z?Pl{P8f{(84Fl;m(&~x*H^)(X|WYHLg2&K~5lP4EJM~^Nj zn~w7fK|EqQybza^;8@@qK)jq$()rOKoiA?=zwRpXlt^)u!B5y>1>P$E{_)Mmk2Sf# zL=x=G=7nOQ9fqI!9V}5JOKhA#Xiw_vZs_fa1Tw zLhN-m{ZMpcvM6biMFvb&&o0@>hj=3uB~AkC-F1QX_DWU-t4{w@Hmpmqxzogyw+;9L zm!&7h&I$Hzwoc_qn)U2~-1$)brz#KdcFN8wj&8GfGJ`BaX4Iwuu6`Y@BoSpo&WSM& z*gnf>;pyvj4org534-XQK|1-?fOn3~qBxE`(7sf8i)^BT{Kdij%o2is5@#2J!4cgc z;Lnfbv9ZmRDz*>{^l&uUBNK*xUX-txem&`(6M%ESiDyNGN^Xg;y z7@X|9CAnOWn@XB9rf4P)t$k6(XZ70NyR1Ik+9C}R%dy$r_=&1S$}wmJ(dQ0yaSBp8 zh|f)u*=Mpc8R<%Q-ly_w+G|VYk%-ln4Co;V;fVi;9qVdeUg$v%4g3rVAyOMiKn(4e zz3ib&Rj$F7NVq{K<6qU96@%HH^EQ?PgHQSXRxiNp2P~3y{-U>j5%(>KZ%1pNuP-ZmmDQ?cCRG7K^~|;LTFgj=YrG|1TtT-uz@+osAIg)OGuV0# zT%GyW$b5AG*2I#!DgPj|uX)VVipo|@t|y$|KitHahH-zvU%zc3PG7<7x#V=ZKU>?t z;VQ57Xqp1zc?W;I8fVOAy=i>791y5K!sh#LLd2y?+G{cYqgLo|Sz!nm*wt}+2DlD+h8 zO}DizyI`>#=Rq3^i-T+VL=MIKCHG8N&+LaRbTV2avi?WaqOkem&%RsP9%vTYWe`&# zk6CcFLN|fbPh%|3Jm!W8M2z6{r9jA*QA7vRA?SVy6u~jwUw#Z=cqa@0Jo(h5g#uC*_=26>XVwXXq^I3w=*F2TVc; z=-!DZb~l0hn93d0gd^!F$4uQBuIU@J@Zbl86YPc5Ipqw|O#X@4(H_HN zk8Dh2Jp`xBk_yRMzY5sq$I&jd@nc3Jn z7?>GZ8yM04tkT-po6zamJDM3-8qqP((=yPrvC%QGGBeV!Fay}=^bDBvSeYq!ey0EE z?*HSGF);im1=fE(-~ZD}0RXg2j0}uS0K%UvWLj1h06QTA8#65vD-->H)RUQ(o{8cA zS~q<|^uDyZ6_B+N8h(8p0~Kz`vkQierNOR$BS$SkNT- z3E5-!fL=d*EdlBCn}!ZY+Su9y>Mt2g{ra_AbaybNnlCz#c#hkl7pnV)&!5xLI{06x zqi~rDK%3P*?jPg4jy~QWcQJjYh13Rr)4!i06DQPj6!1X;r@wEsn!j$&qoZZFORt8% zy-iQhunIX~%LEZ$Lxz7OXguLm-L=rkB1=<=>40x**yYPj+^&-=Yh@cnUnTl)P)_xqdx8su ziP!?RUr5YZAOOZR)sMQr1XFiYaJs64IGG~tI&=++Y!omfpG+jNM`&&i`GFHHmCA!z z6V25pj(p;M;|biaxPwgtVTuj#L+Inq1FtOR6DGF8CU~Dyn`PHS!UJS1B+8B{gez;r zv&9Hkhn47+t^ko6c=(HBy})nyQmIsgFG+|^vSagrXqhqKYw1Fy=!u-cV_o_htHZ-R z_N4hhD$Dt|;-9GR`8&)hGtLgjRKd zT3nj_T`kEw!o;;pP&8)`s9KS(;k;*!qbjtEkrZe-U^i{rzhd`2jB!J#{9{@i<7biS0`*jE=I-~4D6A!3X~2G z!Q_{U9Z@@yq^A%uHR(MKV@7#ojxH!zPH^qv+iRY)+DA{j>k=J&sYS06^}cVX3i>3> z+>x_=Lj3@+?3#s7fp5#wg#crk*xmSYNrN`t3nlEW2yj_9P56+Xwhq9>nwB6w$2R8l z7!|gKKzFm4U=0BtK@gm$y&)*U+>mk!B6|99y;KOCRr)L{8VvG<@FAjA=cK?(5%VJ| zKDsVRGlnN*XftZVOXSZ%1+dUtKrhka6VlUeZHMI3jrGujc{smK8I!o1`RXBXg=cq4 z-!EGE2V~Khat0~Jm9N0Kp{`N_<*Sqp_ABXL%0S8jCfD$mR{xwU3-Qo|+7X4{fVaAF zhODz1egq@0Q97H4`{r$F_@U^1*B20*QUTF0rJBr$x^ic`G#L8dYIgSmu1bCxh1Ay2 zY?SczQ5erzb5@0K+Xl@qO|(}8ZYbo=T=WOS)Ry;9F+79cI81n1d|4MHx032T%+2c9 zrPb|4qYFF?Un?{o#ZLFgDlK}E=)@e6Ow4xhB}gz=h7Oj&U85B0SJU}sD}*4$iD(=L zz^vjDFe}ZCN;G)Y=6d(X%}OfSF%&P(25S z;>+vIgk$LdkI-VAjhfg^wO8XpVL4KjusfrsxqrP;$ zI++D$YHm9l^=(EI`gS^F<;ks--n@Z+C8pI5gKR%;w2h22jrHyO71lMjg5G2Ewe*uV zeZ|4i;}Wr)@;A-qm9y|jp-g8yDKG!tEfOQbjv;up;Go| zrkgScM0_TU#%ih}mSOL$i4y1Ec7uOnSVq4(g#T2f1j6oghl#H|EG*-BK6EXYV8S!$ zoINPI=$0>{uftzRTTA2_A#(E5hAD(eRfYPmX!aidGpZ#I`uc5bpPGu3Y(vK>2WTm-h#*_P3&bDicSwhtw0hc)H?ynDHYxI9mUu73tQcZmx_U zt%{32@@*IBaN-(j-jrTkB^tV0vs3AiEj*M#V3q`8d|L@a&hLDuk0JWuJurs6-b#Nt za&9zpLJwj6{_DT7p`m|)RX7Wz)2}QDV+*lOiD$6#P2(?8qv#Xlbn7J~{dZvqcZ7=a z--M8cgFMTq@F+wSHAjN~ticz$OP{ojt3WGf7xJ0wMZ{aj`!C4125Z>y&*@Shlbuwn z(P-K6WA;>^ansYzGbbPu~T4rR1|AIG;(h zd}*1d@+&DFXc=5608idIJ?vZM=|)tgca;3ZHjnQ8E3BA zzhP8AS30h{%TwSycR<8)jVx_9dLjxm7nfB}zTtAMP;8w7)quZjAQ8YU4tDC#?Zj0y z6`L$-qv~a%blz5Ffv?&0%6ynUt!T;+JhRcz2RAhHd?g#?k&MI?2ZkROZBcXE$Y zz(xL8+|J&ck=|i8g;SKpMNiZVrbr&@)|+lC0pB9F_OD>!*aM9`f+&YK7jwXulj*D! zU+A3w$dzvB5G+;GF$^8k)LF-0`9SV2_b%PPjz;?qTs~mQa@+LeA3VeFKlW<63p42H zQ=MGSrkXH-VRQ)S5ID-$i+4VTq1xe{N1l#ONH5u#S_O7y7dN$o1Tc~cVaeeUx*-3q z_}mr$T&I=NoM^U@wlyU<<+)))H-tARcYb>3hx9;qt&c5r&>aRWSl(zP6Ue#krbo-9 z8fQ6o)JK@hGbZdU>eOKBi3N!b>=Z==K-M1|{+C{8NDY*wXiV`a*%QV7r|-qRI5HPv z>{v1tXq^l(vtm_PN15OE9qW$mE`k5RA$={|AXvtv&b$uY)0W%>3bBl@Y|1c+d6em% z#uh^`uYt(*SQW{4#TqM!B|fDohE?VU69FRGlI+eE?Yr$@dJeti+sEGU980zN^jUR@ zchO(Gtnm90s;DElT)#XmbaS|NIlY6sSZ)SaWdMpzQ`;yy>t(LwCRARK8tJKUaCXj_ z@Wh%iPFk)LeXTb)31n)P5A8x_g04AH^pen@zdr1mFvzmK?*aq-pV94V=f{jw zX3W=&{Q^cAnL#Ea;uW?S^$Dm8!JA-KTlW2$g7cz%&k`8tW485dS7RPYuCGu8_MDJ# z&=D>2SN`(CMNU1PvylLwh+C5$R%iXOuHyyC!(0T`#0tn9S#-+HwogrC&t{DbfxZB3 zo!W6HzOn^NMRhWJ@b1+&wWf zom@KxK5WD^Y_;p3rRfbCr8-6uyN{v4uH7XY>+p*VM-JQR;BB-uxK7XU37w}$3iJeD zP*qp@%|Dp+PPp+-SWwSgrq`w?S%Sj&P*RBOW)L^uMf_us$OJW-`MD;A=hiqp*#sx1 zv5&vXA%V!I;d#-An{v#eO?L4C_);1~zEqA|UX{36rfF3o=n!Z=s7ji$R@1fcv1^HP zx+_I~YiZGa^Sp_1Y4Q`VFr4e){LgIt>`77MoNefguL-fjWf{Y5n(RTdqEq_jir4y>Kn92wsVRcf&o_fFAv_b z#w51B!ec+migGP39W_yB+{cC*t(nezbGb^}Of#sXnRL;sWCe3%Nfxh{uZoXEGdR_G zxL3)NM-R0$t1KO9HRwCg!axJ&KM4wDs8DsNQV~2YoS&D=1kr(Ilbg7msAqkEY=2!a zV3g4!a<<_1VXWrYx!I@%yF8M#aD#Xit;fJDySH>Pb6A4f)V>@M)IeGff9rzS22Gj>(P?BT^jS6<4&%=SYDVBL++-O@WD0 zep5y`Ipk-ll57Ek*&ez1tW$nRUY3V=FE4Vy@mWMH!?v&>%=3}~T%8Ai0A^*4_A#+2FAQj z^Rf1&(tA{edOaMsoK)~Fi}Ntg%Jaq|HvmY<&HP68U;eXoijl z4kR(*81BQ<%BJhobfaU;QC1;vE$0ThUo{xfD?tlmf5a~Ox65{UJ0`7P z(RmX%6vl$#lMHAy$)e5CnYxUE4fGIQ-?09SOiXvlKx4xmzf@G+v&^j8rqS$`plIl~3|>%mRQ+XLGyiA;qFli(;Y`snNg_DLB}rS1d#>CTq! zq0|WzfT;1O5wd1A9&B9<=;Z6t!i!*ifHBSQ-dcO9b7my~XI#nd(dOL7upEc29E=HFSv@0WBm$OaQmU|%Erdzw_ z>Zf%3vg$jl;?fZR6Po6|`EM$~#CW-rStH=s|MyRk zk6gnYnyfM`Kk~i^6WAac)i|d~g{u?n7P6hz5JLuUv6U{Kf_hZ>q0PF9|7u~(Y`%2` zb1seSm-_F8&E>u>e)WFr|m zM8k58&Wcq?+(bgk*nqL*SNw%RMYqt|q|}wjU#XbwYE$k> za5kHB_}OAOmSTuf*NGc65psDH=vE#R+j|0J&RneUlX~~izh7lTPjgURMP_WzJhE3H*vtUW#xS}81pwJwwx4lV)5jC z?SV>GTn2(utWVO&-nOW^5s?NjGmd(}Wbsvax>vYB?GoSJqUa*saTa0TFC&d+4k*%H znb2kth5`x(ruFvOz1YG(V(({5bRV05t09kylwA%$ut!dutRzi!ykla3uvD~?QTcmy&V{*5U4r{1!0-@D5nqeKSlVEop;rokeW>FjJL7qqMONX@a-xG_!+&fgr zKEO=8a-HDk*n#!@qI%dsJ2OVJEiBVkWzCxO9Sv(&C&h>JM3T9C_6E-PHL8^p_jd}j zV`S`P7TalrYA!^`=H5Epw^#;=hrgOe?6*^=hIZ2o;Y5C&ZcfmONK}_~_0lF$3X50Q zkK4$M_LA{?MY*?R?A-*Vb6#nY;u;i@C^-ui9y%XmCq|m4+DA23qI0{w zJM$W;IjCN{3t#SRAt)X*w(N>Z=9(-`=%2CBemh@jkc}ANB+S7*UnsGnEWX70rHVO@ zq=s#WOT?a5AWz?h5dvRk0F;Wth!b3oOF2;4Pbh{yKLf)p|5I0sdka8G;#=Qma}MmQvYCZ%gg)s^|Uw}AF84cNcm+pm>&;}hBKk&vuE=;`o-V{iL+bsqc<3F z)o}zl>ndh7T7L{-^_5>1&--TkekoGxc|IWVAv*Qz;ilQ6PiMxGx8mFqC?9m=n&4c8 zmpez0f)oA55%~6cKh@j)<9$D*dk7S=k$Gh0rHu+CX{_@QKzdDCw+RoPxDcS^3!6p1 z&O7Llth=IRm3z<|UVJO;nGeCDLrIt?woK(1_7fsuqO)}R!mf`@5#s_|kG z6?>j%&fPkM_QpmgThXF%rI3ycEV(#)H>xG_+|a?j_SmnwgD{?*zv(hr;Zw+~cB>Aj zERIjd&m1yuy4Ns+YLC?YhW%xOG~)sKH~5H1{Qc5 zS^OXT6=nRtsbyfHXZi0kBP6RY*sQmft8X~?&f|U}v3rC;y#aMtgz=iXO94|4VEogB z+^ImXuYQIaDz8N4XBjeeC+%g5M)GLc1QesHX8Zfy5ICk?imTa6=SRccT;6VhI?PPW zLqN(hs!S5HwR*2Hqr+I^; zeNM~YTDEhZ@8kPabq#DdBHOYvQ5cc@SgU;_5ep18_3BBAqOAbjLkJuW&_^d5$*`M z9!uon(h`aFC#@n0ds@Z9Mii_3Oh+WFhbX-QX7R3srDqx(XFDlZ=fpj~X! zLTLfWCD_ZRTtp_)gwL4*k`O_C)!Scgl?D=8cq$C40#tEEdTdxN zli8m^<2XG?e!l$MzvCiSWaTyN?5+5MV$M}SR2-RutO;{w`C&onW#pZ*phfgfBtV>5 z&rlrYwM?kFCu!#d%L5wM2f*QR_&w0bbTh+6I2^&MTxOcVP~gi1nI?YGIe^9cYLi0o zoNb0~MK|AvEYAO;X}bO;7(xRF0h(F7t-dt7!lYeYcyL`HM32j2N>CDlK22*3Swoy0 z`K$RO&{k$U%OaPrKE?@&q*#25OWZiH7AxHpY(*b+hTga~tO&tlLB7L;Qlo;qZ0IZj zO2r9GHq5wzDVN>37i+Qv9KLGUR3$556&T8_hR+VU_!fz);Udq>%|y>}UxI87gBK&v zEqR-oT5a&zUe~L!0g1!qx41o-Y*?l4Am>sRb-Sgc3-k;QZ#lQ3TLO|a!VteG>IvE3 z0)R-zzMHSv0^}%!w6WzR0#9qo(DK4Dmwz#^dwH%wAi_sRBI7gE_%C;V;EV~5>IM-_^!RyJN*gF<{VjE!8;2H<4yNJMZqATRDS81WWWC!dC#6OV z7TLXcF<%q~5rF|==Rj9$Cu9tD<1NNvSO_WWBQpcsEu%ov#I~xz6G@HZ5#r4;q+Jc& z&Lbfa8SC5h4fF^=UQ{ztr0jw)%0w7{1Gf?)Genk6K=d+YQQ$F6?*%}G^{3=T;JCT` zMh{3rf01@JptaT~fUko0AQL*qlI=3c{_anqK@#U6WIZ-my-_7RXWuzC1??r|%-??6 z{$*d_`zyj2Qd;2(iB-s_d99lum*Zw<4H_~^9G;U~_&mrt!e3*9jB!o^&5#^MZ(tR) zuU-#MTB|1Sg(_0Xe%xQ?GE*j5;7IlP0wfw&NciDcvyG$}K0aK1BF6?S*y2?gJnRQowh*XfrzB-%NHp)N)ETPKo6H+iB+26@(HzP1>PjZwKm|zlakn9L7&Kk zNKY377?%&@4U0w)ZH?;3KKO=wCSTrlUgpX$Eo=+M;0!U8Z)$4|Vt@s4?WYl0A!>N; zcL|1vg;iN#m>fBHHT3=O)_PG*dq#x56=;?zGx%B{`S**p?iHxoA=Lx7ez;%)pVHZr zOWL2Es>k<c$e_aHW?(d2x_puOJ@ixF7KsTSsDhid@Zji0vZ2qF3DLR zfIn%;Nd_1UNPkgJIbV*Clot%(vRj&d{??}U*QFn`P!B(Ck^?&9{M#8PB)3*~YcZ#8 z+0K`0-pV3l=DRRL-nf6owrVlnmgLV| zO)gJLjSItPO&;gOO&8MO1|GiEo;<xH`K@jJA5GaTbY2 zy>l0-)hM|jLG6x!xQoCC;Yu`G)`ut|MKoc~5TtN=S^J^+qN4*o~H$W~)cWK{QBy z5SBwt2kll7I{;Y-GAQ%-h{0%o|vN=5JyMeS}W1rOS8t1`sy^@K7)gTTf;V+XNBZNx#grmE!?5&=*1|&)n!vv|>I6HV> z<qiTZuOm^22Szy}v`FH>WPe0z(qs&l-I!^r zL&5Ofk6})#y1!Qj#?rV>9+7dDL~Xsm(A6Ppo~+w$`M?rHfyGJW$H{~OH6x7gi518T zRu@lY!&PNG&*pQCF%gA3Hr9^>VxpPMZ;o$uXY&^kmp zgxTouwm?|2@& zmn4%_Fvjr4YSPWtz*IH{BV;Ad+8PGUd+Uwf9vtxvQ%d6MBih5@l%EofLoKD%(5R#o z#`qtrMSLx0ULL*lj`b(jgBMc}R|1Dn^EbCm!)^V8)!1X@?9H5Z@ehgM+BP!a*t=7ZQEqrOu zzvG#wN28z@FWUV+B2s~)X2_z@4xxdvD6onXheA0)!AZv1b$~j>o|F7p*%7h9nU>@U zg&LJ&IALbE73q`FGC*d@!c!>KW>nbm-U&Hj*i`Ct`&L(wu0X-nMGX!=4iY8vvxVr} z8_AuuLlqf-B!O*Z)&FLmVNzlq*?$%VEy65?zxnF-tL!W6ca^G%>%3!Gs3yUdxE4`7{p29)^1 z$M;^ihk?)((8LXl3J?!#Gzd)kWiW_TS*Hz@6ITcVBRy#ZM1Fnn>CO}0easHd*F)vu zF4TDM91RcOF?@x>o40%0-ikKC-wDX#7$SU}K&-N2y`Aq0y3&?Jd)?m$L|P971AD(h zT)yeyAOFS3<$C zgr@SAEU;_@>1GW!w=~VSV1+Y2MpNclB)3k+H1%hs zBGaQ**4UFxtuD$tj*lh+G#e+26T63uJT8|~NhN3>9n&fWTG_r!cfC+x- zDSzZV!k@D_XXT*PbVP6L+3djq%xAf`ft#T+*|)|H7k?#51-d$=9x7X8-XsNme2IXT z?y@ZkV^9)m`onrz_yGl0eINJ8*6OzimE4d9UYn@{qP&LcqM&A2YEVj%J?up@!XB9; zQZ=l1x7(#k-AtL!9FKZ1v}$^CGRS5l@B>D81sB{Hsg(O4XtkT8LM%WV3oHN|EA8D%YK=$6zgJr7{mA6qHgMhhQ45%#Y2r zQ9`d0vRuz~WrQnsCxo>;^46@{i7aK>SAIxRLT$ZFhq9N;1Z}GpAI4^cqp|zV3)F}5 z^DPrJ+kckqoGyXa;^GDUK@>q%PJLm!ogA0n4n{UxmM2HIl}txWz>*1u%}dlVTt`w*CFY8h}{ zYxM^NgXS@zfQRib0vY@6BX&;n?$)Vqt8HOGPs^(Hl1r?q+SJms)_@iHV5O6#*Y@Bl zSS_?7NR@SltCBN?chl~o7be8t>sF)w@^{*(>5bC1>piEnFD8s?;@-ur!YL&;C#dVT zZ=|J$odByBSdV05)DM8ieZJdwZvwgqH>cwJv@=#IKGN6M4m|m^Xq_auI z=(0YmUm2*IC(mE4(y>v;i+!yhSylx%!gt(Uy6tHpoO@l7S<_?Y01SG$c`cAA6Wb@? z-l5@Lr2Nt;^02ary02r+y!?>GqEV~z0ktYP=KW+b#uj?VKvgh{qQimZAhi!yRnR%y zb>Do1DafTN*s{#^*nC6=EZc>}kSvY0D%cR#U-yOxipSeutzJr9yYbUNM5UNw{nd zJ|8_gCf}-?U6@AHopUnImESqvd`?=1fgqconygh9j8mZ`?!pQ0T^(3E-EsZeEvpS* zD)~G(U)R1Odxowya&RyT7Pxl4?(qPwI=wlXZmk#<$u`V!C8{Z}PA-ocU(dHLRESOorTQ{`cFWXmW= zXM?gn?Uiu&rk}fBRe!(UKCRs(g$KZWqE+^?fu3*|`h%-A-ooFRq_cdbd6JT+(=5)6 zq?z(aLJtcmjHs}_pGPHF!;xw2MjR9LCHHSG4uMJuhFcS`IQn(C7>}|$sYOytmo87yIKl}@Oh>MC49K=u#Q6{~j&H=fd5G#;TQFYw z@&dRy0ReC1rCm(*{erDVC3lEz!de_tG8ejdg9d?HA7aaPX?uZj61~;QwGh zzE-E;aLW0Ji_Jn_q5Ba4Wi>at*q1{7-o5B4OK@x$T~Mc>NpuA~dRv}KeZ=0X2Px1O z=?G^Rm~kU~770vKEd1mxSc#oE1)+?ouVbRQv$OBJuiPk96^?>0Nr?BqZ6hjaptdjk zC106eG_`03s_hD8Aix{j{083Ocj)^ceFFSn2Z0%w8EAjRt<22KgscE&S~hw%R<<9D zH9ajm`wtXM$jS5M)tG@Hdg;F3Czeu$Irn)&-jDp z(lh^9u>t=b2+a7OK;ZuwGs_NO_-~n6FUe|ZcI%_BkAIrD1+*4aQP87jyu_LGNapRdz~ zkC)HoXdB+$)8+3M+qb|WH4gAdGTkYkua~FzLtd>Pb^H^r>~^=$`|$a9OXkDrFacfj z`Eau+mml}%$8mJwB*9LCYYI?tw$J+uznLr&G_dU3!+m#V*ESt*miN~-0l(kvtWb9x zu&Vvc61XfCw%2bT4?b(svK@X=xO3F6HlA1l+c6Y>ieFMkKtTbdmx8CUorh!-Z-J^M zhp5RO=Kv-rrxB zA3rIx+diM;(>`xL-)?VTExh;-Eql?$1U_7Lg4>TIDx2Pr_AXwCF4AudM*7$4u%u6< zDWmr9CZr5c`WRW(UAy9;jb*fnU==l-X{GB-c<34J89#%Ro~D(H`PhyY2>b-o0ZO_AFU{di9z| znD*^k&!d*eL6(93a*FO?LApa70{n)O5G1S{T(dpAh`+E8h+eTr7<>Pd@fcR~qFfF_ z8fKU(z=@$!yda^Obu$KzX3%OxbH4NYFB{i@vb(k&@gT?2Rhai*^w^O$wq&zF5q&FB zmp{&SR-(Nn1Fh;84yy;)x>jg{p4I|uES(}j^6mO(vWsw>=H9udefee{MzdY2U^MKw zG)KpJcrf^t9IC0!{@TZbXD9A4T~20t+p}xB=zlNe-ZXGArWLf_mTIkAhsmrr&RS}m zp2{xwx9nkK3F=Bt9@a&nC@=LUBw$_jQ8<35i*0Q7H00#NHq24)o??2hf}{3SDqX+u z&p~9!{!zg3GaGX2X8dEM`B!@>MI|IiqIf6Kh4igPL6csp{y@`_isoeG+8w-r#xM$b zlY$K$2}-JHu&1GLI7-JJMzhBI9;j58xOHrVF_Jn>S0X-Zo789~IV;m&d6wP8>at52 zKazh1VV)9~+h#40uR`EvCn6?Y8L2VMm`b<2LC`|348$XHHE&jjXRSLxas!;;ClyvY zTm<>8P3}7ziB?U;uu&yaf~MTgL#+6b_FjK&2&j(HQ3#gzxL&v33Sq#;7M> zGy}+J!l-3jSwUcJT#KryYgEM5(Ddl4UE>;vbgQmgneZ1jOg~jHY)}1Lj?u@bAzyO8 z&HJ@+B~Hfa$=41;5y23j#fFh`;fymz1F7q}=X>{sT&tsdzs)4rN zVk6r5?%d?EJr%XlT%Y;wT#^@H+)&aHR{8C`@?sOx`R&Yhw~gTO-T9HelpXo4?b%2V zd-3UFWo}@$@_xN>A9$KBL5#W5@3tD=THYt(=41`!<>DcE7d4}hj6AOyCzr+Qe+O0-tM@{nt%&>o-q01%rtEsoC2 zQ}jq1R$3{kuYUetwl~pI%$7<1?inIUgdAWdj~ECWz+%A%)?#+Qk4w9jr z8heU$TQo$@*3eehNi$I!C~I3ZxmL|>QfEK&PZ>tqfueApcn50#+fc-QY=LxqLYz=UmVPTV}8NtqA zw=G-|Bh{)14o+7=K@c?lUt8YHaSyR{9OzF%p{AC|-nOk+{Qe#AeJ-zg&TIk0^PCtL z{`OVc>MLtVoJ#XsQUocaJomMX(3ic<=0ic{%NUz>ERxI&AWrqj>U9Uqyg7sOG{(E< zk^lYyD}#E>3YL@q|6uQ%f^}({HJ5GMwr$(Cv6pRId+lZ0w!N2a+qOOH`_G9u|B0A5 zH*+;HbCH!*+1XVc@7tB#QT22_@y)yUjwqN(PXRJp1;nFVcL0X@ZD_di(9hp z(-EUt$?m&!o4RwcYt|RQ%hHyr*ALqJMT<4_T{p>wr|diI6RzdZ)0T4Rm|VQtM-p9E zixq>@%Qov}Gay(MvGeHQM+O7mAet=dEBO{gOP9CCLn?nO(Rpa%Ia*FQCPY~z)#}(Z z(ABD^(Nfu{*_`#yi}<*wTmDFytb2MXygai_Z9*;?&t$MIxgf`yqym06+28UhHlD1n z*18Bj9@_M^RLm!C$e$C9qOpOm`{$!((z8Hf{?11c{pg4r=Ov3C+kNZJBie+pS`Md@ zZTt3y5U*aJMn~XH+jLvEDUtb>io-(5aD(16@lnIh_IDP{xtyAmbQnlBkhrl??L=@- zhSmnwTOWiJ%c`jRe^gLa#C2fn!8-xnJeW4}Hn>CDlBmoFMfmsvozWh#MIK|qJxz8QfJ>X5e9#;G6J`qALv z9*N3z3$%ebF36Ia_&yXG$h2n-x6=7v=|Ry;S1l%wf)W0}A?cM)9^nl-ZX8Q~H_1+N zE?4{;bh+1rzvQuaXf=l}WE+s()Ns9?*E&Y!#+P_S7yA`{FHuC#9{X0l&H+%x z!)hq2pfOQ}O?hUB){)7?zWal#Vy+1Erf51XvCH1fq^!&Mp!#z#PdFSL8gtO9e~Oy+ zf@$BgKNdCtNx1q8!DOoT0EO7W&os~hhNba>(TwqL|61>VA_sq(rI^B#=dNoCxTY+* zx3xQ63gZ?B<4>4X)d$JS!LD^v6g3uZ!)4AwNO<|{-vmE~i4N&@1S%gOX?)uh;13%K z!NF@T`vF&>EDdIy4tUgUx~xG5oT##U#MVo(?w+y!#e<%1yE+YY9G!xhmasC;5fdLV z#T^HDaRutH#w8nkWYkLn`1X1jD2{OpAkVt|o$hqc?gl<~M_51HBLDGx;GRX$%rFw11s1Y~tO;u=UsIRYp^>lR8P08vBg?I zi->{qyl|CiG2IIdX|MncHOfu}J7sA7n>RCfI!p zLWD*lT2&+_QbokMOhSGjFE~?lpxgokJiS4*X?+HLe$C0_+9suEq>=AoaDnXawGaNT zxfc4X(H_~|APC5ExO<}C)B@YxA+K6YGvL?5aE#^ypzrL$(87|OjSN!9h&t}x(AfKn zFWRcvTJ+y{QE0>5DvE_w@b1j)i)umgWdv8CcjmA&DwUI#5$x{EEAJ}>UESBo9Uh?@ z)>43ihCHWI2ovg$Qn*D+VT~yTbGXIb+1WTn3r;FEfYzq_s;Y*BDq4`L6Lv8x;Se1@E60?UHee zA5$aBXw8hYqS8{AjLC|dQz>Vu%%HHaCRFec#+?mG(41#Y^q!@sK{zOg5h#SBRd-^D zP$8x3A4vSm9FrBut^VV`gf)xI85TNctRkscr6h`woMs{?~3! zhu7ln?eq@ckuz*DDtV$-cN()zNBJ>Rg?I6aTAhwoRgY8IrCAvK*f5l)^W+KL7>XZq z*?J8(Kf;QDZ}*2b$$cZIyjSrLRjaNjTsWUqDAAwUz;4fkU%y@u=D=3Ll;JES`IEgR z-DLgtRUc)<653>gStNUj_s)REB^~N$^a`+H5&|_Xt9+Z~{K}eqmfgH&*olePzg>mH<2dED6j6*_%uLAdWHZXqqGm}& z)tG|6Kn7wnTvI{W?=15QyxWIBt7izORaOR9WA1F? z1th395rfZav#q0~b!_3=cjzIX>5UId;8CW#eVN3yMVR~@(1sN;-cJ|Hdmm+AF-E4dQk`CpbUQ7Ah&A_f*7tlP$Z+Kn*5@v!sFJib-~D zLVr}=?@|8=&!S!E)vV(t_T+B%WT*yf(91=!FDh~nu{rGs4YrY`C}tJzJa9wa21>l- zy)vDUXFF+OtD!Y63=J-Z@$<#N*R$!^v1mYn?J3AEy9e<9TqzILj z>{k>exK{A$xO`)d+y@Tf7~myDR11QZ<4d}hajbE7CQ#yTHj0J9Mu(GFi+$FT005{i z>V$&`HoXU23kp)JR^m1HNjHK(N0XT=5MivN1TT5-P@uYC?>Zdh+eC75j3vEhzc3A0(n|xLuOX zEHg#p;RdDiCP5K55PAcMZ;ksB`cwn2%8i)3ts`qykk76w_6ek%psRhOb^I2}+Q2JJ zE4+DNj|>CAi6mozBJ@q9HQ77E__I16Y5FK%r8!?BOa@$vz8KWnd*a3)*RQSMqTelS z7wlU(Q^C~}9TOJjED1Xv{8;^u2ZK|Vbfu$hCIuP)3rluBbE z=~0kmuQEYPdTk|84R@h{oo~@~e@RppZt=z}u9`*D`n$a2PBz;qDo?qe9D$wMrds(R zS93#6^F~jlIQ{dcS+)zhV>p+lTY!F-`6-eqz+xqrjZ zbMPe`BP))>LqKH^1DC|**OOZHSUUJ-{|HPwW>71uJVhyTFTK!i)IYN-TAxWfN;bz;mj`YljLME88@ z*upCZL@zh_iNgq@fEVoettdgBbGE3>zXQ~!U~y|}4wASdz~yb)lZ{(V2A_ZJE!i9$ z4$%D75?6dbjD18e{k4GzP&Wvz<^D_A$(MOsljS^9o-p|RG0yw1AhbhH;~!H~k`{9; zCy7{jNx-e?R44i5aE5}x(s_|W^1+p-!yrf|K1J0h& z-E#Pa%Dl1CBlJQDgz~uxNL8gN*2nT+|MBSf&z=wz zS~ztgmJYkfeO7Hz1GWb6R(a zSm${ulSWzo%6Z7*hccEFXpwIn$m*7f9e=S(mENOD#9xIj&~*)U-!zdOB%IK2w^TdQHxlaO`OWB*ZN5dKZ(B>gUa%1IBe*TB4E8jZaZ~!}QPE z#;eG=JvuUbYZT-^$7BCvR27v-*|Ms`SnQ4yDVxz^wq`NhD=OY?4Lki`6=O!sxH<{k zJrFHHx}va#xz!X8oPoNxl+KJxl@S4iMb|Po(GDQqoqX_VuoLf zsb*?B1~cAKmX6IH-83oao0?Gx9C3L_!F1)jqAWF_TlyUD-a|gg9tOgF4Dq}J72}o4 zGlSXYw{x11z)^x}MMpw5f%zH76~L2w8^GCB5q&U!=V|tHk7MLGj|-69o|7xB^Uve* zCh|vvjs&;|Q$VEjm?n}v(t{JkCjgVcZfY@Mmg(E{Z4roz3R;d6wkPXB8^_t7%E!Rj z?`9M(6hQ~^R5>;api01Jaf)3_{|d%Z;Y2Hd3csPLa-1lJ1R<8&&lErvL#ph`L{a^$ zn&6H{A4IBW&_EksrRnhALmV(^4^yEZ(4e;2o1c!7c8_TW22>*ASWKZUvXurJ#Zpl` zlm`AKNbg^;K?Sa+S`C7_16C0121GsZQV{e7p=!-^f~FclkBPSv1pQV_7d0b*EoCE> zrFD}^H@RwK*XHIU=F^TyF2>_Kmt?tU+!NaigiX?HHfa==&omJ9=2F)vg0v+fiGK|dE6vyxBTe{r#q-A!H`pZq!%UBeMZaC5 z5l@JzDdbN$s1Q*z0@J7B8t4-O6Dw+7z@H-JIWni|qQ^Y|AvDdA(?6zUT)sSoX)$$KEUAb}#rIig)3V$3P1C2_S7f(>&*y zThKJQlrmw=(92r(S;y{LvP>VJFt=CD(Mh*=P_)jayYlH}J)j$=naA{Qj=@_|(yb~I zNK5@Lg3Vo_)8)xie)T%4(Ijy=YR1mVP#JeDf&2U;qJbU19~^SAV@x|OkU)+q=!e8nT3s3!aW1Y(Nwe@Nj3|@sk`W2B>6#G1 z-T_%YhGnekhqO&(A6S4RZOf%rTQm`$MoEczz!`^XMTgb51NPb7>Fsuc`wO>yO1kSXSm|jI;aDKT=x= z-`4g(Hus@Wz?On6W7t$#@obVlTMD@OEKWZTkrQml=85bo4+vmykwSUEnFQq&7eW9n zTff&<*&1<5ijdJ_FTeh5q*)q*uG+WUOgpLlP58JYwT~ZsIA|Bl4D?T4Ptjoum#-gU zr~NWihkXdK(%a(n&Y!>Le;ErXZM7Ge0o!>A3F7D{;XQsCa|z=3Y_uNFn3w-99S6G| z<;}2>p98wPQw@4q6>*$X5K1ux>rR)aqhh-d^{2Vmu*t%fa>u&R#OzUvz!k{~>QX68 zy2aOw+zgM0kRMuJGD=zAW^0*u#qx9wnpyJ>c|HrkVMv!_-*uN4zb(IJpJ8vE)a{yW zPzk|6^@9X9b(-hVDkupf;q9rhe>PLYFq}C`;r>8z^bj?1&92;dbksW6>(g8$M~n- zc3`*m&X}|D``4lN)0P8E*TX0DLyLo)^5-t(%U=k;=!Qv+S`S5r69)NB-@90S@h`Xm z$9ea!x8INMv#q|fcDei0_J;fEwB8{GxWg)NBQ7;|!CJ4C?sj)0C#gE&%8L!sG*^dYu5U+UTu*EFb8I#3G-kP}eSV(E?Q10=Ul3 z`%+*R9~--U>{kZx4=zJ(Qd+9+xQMQI>#0dULGP1vN(l;|UXmckbA;=wl5p{yMz$y1 zjVIpOb{fwouS>D*ix-5wd<3Sj9+QE{X()Ys@>x%|NPnwi?H#ONTrBTX$_|#rNh^%+ zjoM_zXE4%4#fD7He$Ef`|7^Yk_m;SO2bwo}k1=NAkRMnG|F(;uY5@uG{hlB0`RG6W zp@4l?SkuDp3iyMC{C%-P=;8Ht*aDxG{c)TlHy-=54gIt6&ina>kH180Y<+Og$}ncH z@{K~=f<>HVM8U!{=wFi9gb<`%X6V82rX2k`n#-9vP3kV!<6WEIc(m;|+SB$hug@nC zq|R67AQ3*~lxIBIMD=%6n@=5pZu5N{9Fa07or#BM9Grh`FyZhe`e{R0I>7HOfwUOZ zr~V`vzsFkxSuMTpLq#RkFZAK~VV=^j9$|?tuldTvg(EHX&HrF|7YjY+j=W!-9=eYP z1TS13zJ|Z*4(I&f`z`egF&uvJ74d6}^A5A|_}fXe5`p3-VZcwO3*6P8M&ba0|7L&0 z8&LlHQPI~ijt`=bnfCht7-*y8K6{@t~%@yPV8d`7rDtEF$WpA#hdBnC4wu{RqYS0?%ikWV75l+*R{c0Y*^H@OU zM)?)Zgx7iB9VFU269mwg@2@SA)f7bp0g2U2v-h{zPt?>%@k=_4Rh!J%wB^fdY#TeV zD;F;6?}-z3nyvWWX5<>nt)6yqARDC{OUtzwc1iFMeJs1M&%*iH3xMNSFOWuH&z#P% zuR&ZefTU^YsFv8sm6u=mkB|LFA*n>^Hs|00SSyC-;%=A%g==oHSB$+OIzd9e-*ZJv zYEK-s*fF1M4|>;-R5q_)k%cM0Qhv*Y9d^~W5N~@;7bv%X`Znp=rTHrcbdoCfON+Da zWN90lCslB^wn$i*Z!$&j(W*g@;KRZyNPXj{(5|-Y(&zBZNq~z7ulOO9XGC@w*B4te zKCN$U+uT|`oi89ajp2*bSZjZF-Z9~@-~5Sx{b;_Nwpu=!WH0R&kQn_=3S4--8{z|C z=6)#1W3^FTUMd*`Ivo$L!}IahquE0HRPPp#F@Je-IFBGJ2^?ee(UQWsnzY!%)w~ot zl^F>O)L+v__wF8iDDw6Rc074Xa@3%rJc>+-sq4hl#7;c*x%BTlZ{*b0Y`uK&wT+y5 zy2STcMN019qemOBtvs~~tedL#P_BszQSvUa`8rt-IA5oU>QBjlPD+S!J4CXk8GWpg z9=btYT{JRyzWgk(P#RYv(c?RFMpT&H+ZtF8n`Vre5}&EJ;aOo@E(kVTc-!HNkxyO5 z4NpwtTwz)DRv=vGYp)v=wHOaE{wx}TFd5&HxbYpu;_U9oM?R3rN8dyj;>)ZaCY)vpS8rVh zWE(g+;se8H8+?~`HZ+Rw_K`R#|7X~^d(@6%f-%F00{T%eJBbahlk+YdJwltp?!@uk zY_D$N_vGr%0Gvzje!0$w>!wIzT>K^kzHU9@FguO#7Q!6DZeq(ZO*~}eRd~RCfl+aE zis_@(b|Q|};~Tysh9T~)fwMc;HoFhj^Z6UkC#!Sh_$jVFU4u?5IEG)}(xGgfMW03j zL;jw2I+>4ugqt2i7jNxlC|1k&F6j}+Z_bvZc2gmWs)??E;y;6w$n8jQe5WlbI=EDRg|0jeP2NN6ff6J=qqg_GM z=6Lk}hWcoIvVj;+MABEBR~_cT5Pccy!DjAl9UWW8i+3~4p0_}%G^S)))wBjb1S|Wj zWExu7dY*vNhJiiLPtMVInj-pnTEO{vJB|Mn4|_0(I5eT{-&%U!U-iW*q0i zR$;Hfq~*onoHpb8+0UtllUrpChsgPTK^RIVu(Z*p+Q+kvi_kTtfriLv0ExgQu4hJ- z@QwPa@f|Tg{b!}AR^W#B~JC|&KJ=DGB=-&hb zoa*v@J{`yAxOedR@_s(W;`4tU>3==t_nWCs+0y1^?GITKol5b#w;hL=D*3%KVkd45-AATD8s_zDfx zrX#dku%_Yr2_O%&i;>eS-P=Nhe<8ub61G%*iKUCC1voXdlCe|_ z3FlGp$zUz_EX%1!L1vJvjo-EACB-nfen!^al}EdTS14-Nkkw=LIBX^+f@M`kJoQ_Ge0#dpyiJX=<9(G+JPVB1<$S^g}Irz?*bXIkB-Nw6!wU4Bf;~qU}11bwn~!Nq+YaZzo!toeNAjfd|4Nh17B(fJNO# zBhY5q4&NbXZpVPl;nURU)I*{N}xG452of9Yx7WT`cmR2xb z6VHu>(h-sJJs?WH)FQ_r;kSn;uFQxRJ`5xLnfrOEmco4ilmtrv9uSkUg^?JdwCo@x zD9T~~weJd~l+N=6SO#ZP&}>Ui(DZ6s*>^cm@V7rEV%CVzW!kcr(r6JP&XV)WRIzartvd|(6D`RK|P8~?S{{~3)3aEorw9rMI76yxJ8by?z# z2kP}$#{Oc^dWj-YGXN2m%RM~h+xuiRPece|>m=K3Cm3}X4y5I{0Crk@Tm%}qCQ?Jp zYN~sH-rh}rZ$2fk7?0PT$sIKD+mG+;MQL`VI`T-^zu}g$S}NKHvCCwZON3st0d7_r ztxEXeuC*int`)hfb2UP5>q3k^KG0)?gIbLPI!}j{7(JY!lO(dlqDjMWJrB#Rh2psxs^T~0HI1<1 z#b!C73iphf=Fl-L8}^W}wE>ilCQh|k=g^9L_2m2claQOa3U{rpNH~bQZLd~za<%|3 zGxyj6Q8iAr=RNv_M^rg9KeAn~RTmSZ?cK`zF%!1(Q7ole{&V)A`s7=qqdfk-$8s=d zkBydDV7p3FYl7zC%mK9=MONQU`v=9=2{&|*$N`?~e@o#4fg$t^J9 z&E=io7t3&-&r*X2DS=msMb*B;aeoxo9PugwUsmoWOoi9nCm5<86%&O_Rl&ls-m8%@ zRYO~L7LHw^t42~1fcW!v7H({;&U~eH&YjvkLYw|jFmj1#`ACOUp3mf-)`q-3%$Rj4 z=nRUw^%)6%TW7#9SlGoyv97yZHmOwcZbfw*b`~mnwl}*sSlGe!7)evgU|dU4(kTaF z;Mc?7VCbcnh;)=Eook7yv^Ib20O{D-9jp?Xpv?|p#9c{N=2FF__y34D95Tix58G{X0qR{4@$Me&pfX#KHK-mu%Y9X{)QJXto;8!=cRjo0e zu16~)V@rxS`_C=2es@B2eC+W6qO5Um;mXh}0O>wzYrB_6M(rou3KG9kEMdDKQy8URepqX(eS5~a$y%Bhi*usJOU;cMCP@|rnmqPs^_J$hvJcPkjOZImfE zQy-(5W&nC(mqmz-mD#n_Z0LA(g3KzF6?-1pYh(8bf~gO3aP%!`m5wcvkg6Qrsn6Y% zfS^%^{)UjO2YGqqdVm#*+acyJ9v{i1u}(oN@-oHM5NqVWRkFVx7p#;coj_ zw?;@AZ1Z`fOpnSXUAx$+jy076c68x-r!M>Al&$& znqyds>#zL-oq#kFT<$_z`UyTq8gOW&Uq{sf&Pfpjo3{6(8t!&X76y41oh_zp%zFth zJ<{v+{wH;E;%Wi0_CC1Lmn@w@FZ*(1Ux3bOikTs9=xE4l3k`}BhPomMQ;J{N3OT7Q zErx<8GK`n%WnDtgttHK!f^4T{Sf9xKrcm8jS59`wOus!lz)V-n1v+)SL7|_*dg()J z1CU%}Db|iM#{|H74VeJGjR3%AMtgoC6tG@I=d)h|*dTNOr&X%EjwEQ3urMz>2{%}; zPkDofg6jNEPYR0l(n8an5KR_yve=l{ZF|<9!LHbD%F)qLQ!0Cnt0`N@BBu_k7f}Mw zOwQn}imL}~&>+u%odhj0#fS9FIA-4DwrAcpb)fuR9DX_aMrhiDHwiE;tqniz)du5*CSSiLHBi=mM6zoCD)!bmq}$&RWR)* z>>y={R{>bDa)a8a^HG3w-bs@lMK(}{)iBj^*E_1FYP;*LdAe^A!~JKkt~Z_H7(cyY z|Hww~{oG9d&uZA;`?McACG_Hje-C1`3UC z@aSNj`?r7nS+0727&N;W2xvb;04=q<2F+-xCV@lauuwyHv#uGUpMtfp*|nhhXFkhW z-Ei}@GE*W-RXelmwQkv;D6DfCl>jl)PuC_@04@DgM1S7HxB-N*zybQXxq&d|T7eBD zoZu(C%*71!u*5%vw7`G#KjL-+ZFzMIeI1R|bb1^0cpNj8ir6FZ3ES(9y(VTj2{BRe zYJ1Te-Rph0JJfoC=RGSjpJp9IADNl+7v0uXfRC1QLVTjpa9gqVS;)Elix zL4R4cVmwnJ%Mj!*s9szc*AcLS9~bDoY3sM^A=L9Vd{-645RW@fdqC;EK?j^{euW_U ztd-65gpfuwu(1{Qw9t_CYaKI^<{_4Lid^qhU&zP7)S!t|V1X_JKEbAhWxG+nWcl?f z9m=KHmHt+a#EV~cDNPTVu$RZ~(7SgpXAp6ct=5zv7vG0bY#%fjGsrQ*FfSOs;fC>_ zp{^aAAAN)PW3b$SoDLvT45 zMV=*;lGO}r7{kMTrXqH+SCd)3ZG@5#-=dOIFWLk@MsN#kFzFDsPnPi@=a5$WvF!X< z3Qvvg;e0oA{tOv931U45I^F!VyCb+>2suh}nx<5+w0czhq>#^N8viayS{&NmFS;sd z7SI;oC}5`;wXh9PrB9it+D|$9Vr5#ozS}<1&UUr62qb_8ZD~^^_8j`31Q<>>^W@X6 zjG3tbex^*xOvP5sS*H-Mglx9k=!B6h6Li171$DnMY-pzfU9w0fY3$7GusNccSr^}+ zUg4$vH94V&j|yik7VPQnM!c93b+^P3GOx9T$(n0L<|^`l$m*NJ;QD#uIZHY9@Y37# zKXtNPSx-yfBk(F0L}vFrx$Ukak1?}rQF)&ECJoyetJLMmiiIHZI-ojYC8${cx=;aB zY0w+&BqKw`%@EK{@<10TQY6U!z2d3jge>sWvA>iPzCh4s8ytO%F+kE1p}*8V!hhLC zNiTQVKHl!dY+P;o&%YYk_Amt2N!X}BZc?=5AdT zWr}v`Z-J{G|M`9gnS6kfMPywl2*)(9l~ZpP?tAOo;0t0G(5hin8< z%XqZ46Wx8Cr(XEX{WSnb*lAh~8yGSAk!PwVzNE}qx+&WuO*V*Zb@pJUAg8f|vfDI9 z7x0m!2+R}4we?Pj&)`{~oJ9LEN!If#optg1I8e5I7m&CA!@w*|;pJYCc(|yyJsZFU zjNY}9yRbJdnH3~@Hhv^z1B%57dK{W${ftj{p>nF~JO)=IL6W$sN5bSG^8l3JpQV$_*S6_zL5?1QxQXNMM%&dtbu%2JS`UDhI5MER(oo zC7cLY(&Xdqc_O=XzJVioiK*!4I`ISWAF|g45XR`O19Bo0P>0!| zu)DoSJ-xz@eBH|BK7SeCzi%JGndl^rs3;=_L0C=N02B()_Q*BSGaJYin$U2wlk4e& z!vqq>S1TG}*>vvr=Wjbx_tbs~^Lp~~525QvBG;SF8Pv1egrTfu{9d8suROTG`iP4d zc8zO2Ekl;12MPpED|+}IGiia!2% z{)}7mf@dl@Kj~>S?+jq@HYZPx=hZ?R10sItOGby4SSl8Fe8BMUO;=YK|+X3xUdE~`0+7tb-n zot=n28hl$dqzGe#@wGWJ_X~j@W)X;_-XRF11hH1|K-Yume?$YFuaG=ZJabjU z-MYZd2j0n$q)~$aSd$hQJ{D{y!mCn83VTVeZ&A(ZT(?J`Kz%{%9!UGac33EGh3fXR zo@XuVqdiO!ac>Nfa6(ua9Vlczdc+*<`4NgJf7;#dvK`qT@C30=r3!zg=)a`!$gCYUo#1V3S}h9&(RWw_aC*AO>&7|no}8ArnF zcpmrmO0Wc}7`>6)_WHFL3!eTFtUtm%pB#qb7;jWCU+G9}*(;!8g}l8?eqm(DD^$nE z|0_0Rw4S#mTYa6zB?E;+H;`EusH*+9v{uJ5pDpQqXfI*~Y>s87wS9KkSjtl0tP(eO zO;8+mEnS|Y2aIXbZ!x!zbn2Snn{+X=JZp_J?l8CIge#Bf*xwDlg4aIUp0ZhUm8olL zJ)cNfD!}SkzH#Ytebz`pbOsac*?^l0t{`IozP3yNkhCeo!cTQahKH`pEnTux-d&W<76 z^i*aKX5i_CCj^%1`C)c1k(!U#)WfLroHb%!I?40jqQ$HsSPp6*WPom&OX&Gtd-i(Lxd%+gY>U|iNuezKqDst!+{C5)$I?_@5tMC8-sT1^Ha z+sD;-&p-oR4~Kx)=A^i4%bQEWNk}sK66UT-rcD}=@3yDSTEZ#Ln`YG8nxpWWnCYbD zB;{Age&sj|8^&dkgic_8Hh_c)-u^!5x9x2tp|IJJoKL+vEVETX04Y(~xn!!;#O3M` z3+6isx~h@z@SF|725z-Ue!WwV5NK#CWS|ia}Jx>RQ}`XVYp__sIrB(-Zt#>t6YOrnx#4oBLZN%-XSHTV;ch)E57 zw3=#p?O5&Y2Nq04yGq0ZwjDS?leWCDR3E9krF4NGqgA{=*GZXCWsO%RRlHY-mYFLS za>@y=m1w-Oa3I3S*%#>t|8vIGU|l5>40#ikQKjnxzmd=1X>|kL-4gH3rNMUEx=7Tk z)6QQkw=owBvg47-?*NlQA1%G3dKQlrA&4nn+US%j6mCjWG*Q=>lbQiQoX}|%uxxAe zRx^22anSy^q`CLu9IN#g@4%U+|VB3&E-d;F8KP{rYW~ECcj8j`x4yryN;LOKNFQh6qdx! zz2u=U`$TcqUA@o3ZTYm5p~?GG14|4?tBm}eRU{J#a&8d`4aY0-hRu?oC+)g3o@AZY zeGe{_os21$8;ELhQZwq_kXZoG;Je9PlHcjU0$7K)noYv!L44qat5Se|ox7ZhdB)~_ zSX=8o!FJGt3hJSBqlKAvr0OI!gB=Ls$aBX^r8YSg2OWWTZ^y!EGES)s@xMTHr-O9%Ky>t#_93d9Q>!zhr3UlMD zI7Itgi-%C=@D}Ugh=)ktbtUXx7W^d%gWfR@ktBrE-+8H4Df!MH%3#CY7kbgutj|3C z#yx6$mW^efXTKYB-p)d=)+eQY90I5HNcYdfm3qflx3gMW9Dceic(akUzB)P`$$6q( zs;jE^)#xZnp1K+I@8?OV=}SJdyS|SGV&m+YWIl8ES-~FQ<-|Wk&tOm+{U#e4PJT{sO_)Es^(gVc^NAH?nCHH=!3IX?}~>7v!Yt#lyo%;;#?hz{w# zwv*gqZ#vy9sa*RrNBn)HG`&;&`vQAyT-bD)y>U5}N@np{5kl3J4&-H}Vw z&1b=W4%FYqLkGY~0b16%sCeKVr{&ING4H(p2)HxY8sOS#BVSvs@Rb=S<>I&jrbGf7 zX74RKoGOP6gX|Gbs2}5()-r{TcrjnyM$;d%-HhE|pNS?l-`gNH?VxwyA$+6Azjp4; z-S<=;hsM$hJjb>!EMA}O&1yLAGP1c+BNH0iF!@sbFgGxJ6_@vAX^M2V+<3RxWj(PTs4BJJfhiep;h`W0#efhE+Wt?xV&)u&P?I!iGR0Zi6a4(1+V7qD?uodaD!^ zR)YAix;db}rDJcp$!%q+Z)I(aZy}NKi*2~7ie*@pQrWo8k`F3?Ur$ep1&MdY>+G>u zB%uswzqt9;8fgAWdhCD4nkcpb>Z<9ZiM-JSO{OuTSbC8q z7}I+lWEVuKUF_UiBF6ue`xc+1R`)jbUJh$_Rmkh|SqY2RZnndF%7cljf||G{D|aMn zrjRx7Ph;A*O6{mpdkj&B^(>imJXCoos{r~u}VIgE?mTCXW_ zj-tI28;?NjY5*!LQapOHm~}^2+?<4=9^KV5mK96-dv%Z3jdk@k>SE|lyFjt2zZFnl zPs*eN+czpuaRJqH!d(sjShwqx0QRmkw#Nrzt|3jLf=?oia5G&|&K}=HRJ7U^bU1a| ze%lPSTfa_~Rf9<9joPJ>89{Hx*z!-dYz-A8#0B*p+Sg_;7}B+sydQVtyji0Pw(q>J zD(mNE!#T5cGUSuv&8LLqGb4w#fY~Muh8!A(1W*~<@LrTwB)$rmb#04 zKJ__|iP5!)qfEn1t>tN7v@59Fby#!T3W@-1FH9uu3H~;Qc?3QZI1c)3ixeyWI>}Y# za3s}Ku+w&{wQHMf;KHlI2k#1ib}hNy>F&2bn7BTZ*Tn zmz+lyp^yTGZtfDBRWG{{-^7W4?iheC4_`@K1vUQ_PdP!J#I(sWal5Y32S~gR_cePq z9l7)eoTKMo)VW#w-i^1QC8F*soymMP31Kdy?|$+U$=hC6J;QLmnpgOjsXW65d|C~Q z^Sgu2?r~jw*CWnlxdD@&n`af>{?#-3>Lqt~87%s&$AfVuoS+*ZTC1roSnAL{(%OAw}GbZLzU^y zb$+*2Iu5?5X}!{aHG>FlIn>L_eyV{d0`YU@nE@k8}#Y3=;O@<}gdZRl(&Vrpz> z@&lfbF|{>!wjkhO|8FRWs+mcGXdv{@z;3*28ruO-vGuW*KwlBLxg;`5)EvczvAnv;45$9tsX|TLta#G=Dq_qg)RVh!g?bZ-2k4 zPdeT%^Yie1jIT~z()WT97Zcjf43uIq0W^F(}ILljmw;vlmZ(t930i0e`5K@fDc~Rn+XcSQNC&%v0bFW}^gfbbP9fI4e$R5C)!2RKN#G70hTa+Gn-K}zAb$XHFIv_f zrT5;3z};S4Ejz;ta*QH%x@DE3db9~L8tS@uudEsd4%44n0=9B zpFx7tXt>5&@q^{Wn0XkwwdbEp)6at%br4IJ_}?t6sVf@5aid3Z3Y1j6Cg`k%H7hmTPomtpz>o}=66@F30wry9ORBYR}Z9Dmbif!Ar?TYQ>=HA;l=O5#Y z(^-voynF1<+Ks*DT=QW-*Hpuef_<2z-)#*?0>u!8qQ@FE$iR#~>qt<5Cu3qd2-noz zeH*KjiFeL(o7TzXXha)I0jm%2z~E)*xIX1P$dLbBmA?#*H!J|K~aLC=P~ zzE(F;U>&J#Oci&lef4zJAU!wiOF*6feNctB@4N^|mg!i8hXn5xo$xts#Qj68e6!TP z2tVZ~azic#qlF7hY-*bfkcCw{a03_26&(5H3?qc2KvU8jfqmF}#y%03`% zL9%ug0ZX2-JRnA4)LU%@7oa4UgYpvT2?~F`E(9%9ha&V92S3PxikrWW8g4jne?lK| z6URdTTPbj!HGd>=f|dfaYKPcd+#(x4hY~XsK+B-YhKFA=GhYF6P%kMWuZi}ALpvne zq_SuK#VoFXbJY8*xjRofW^;)9%14lhi9ytN<3qYXWA)a!BeR)*9%e}WOnAu3+j`LQ zb15Nw^u7|VyG2We2;YmKZHGV#iPl-dMXJ;W*GM@N#v2*SJ&jr*qgv(ZJfOS)QL(!o z7}F(!2Wvi1+M5hvSvKGX4=Dl#tO7yEpz}VRv?dimmNV&==ZU@}5nTgB7Ls_wpfX7l zXu}n_VnK)8{IN1<767A{4RJjtH&mPGUeA07{=B|}%S&`4Ooy@g&0nOxXi4VgNY+QD z1`+>stl%$1N`5>}qfw^tIWacCs%$(PhGfPLsOJNX#c=zFtgYVbHR*M@@#}Ol~Uyn(D=zvOTq3q zX|SRjdh=s)pFOsl2RWNnBc~Yw3aTI5{iixAO@Sga-xOqeW!JP73?Q3^W?s(9r2z~_ z+`kI;!?EaNz8g4b@;t4cU~7&u;`~M{we`5wb_lOlyOfLb^9cgKL-6V&1-vV4%C)+*7uiR#}t<7uS|2Z6b`f!;{12kvacAD0Ig7=Q3a^a}SNn$DUY|EiO`epEP)e}y z{UbuTfmiOjR=}|~NyxICxTXBmXc|q%1`MN-BYM$#Lb+x8^GPk|1Kgw_!DtWJCq-4u&K0kawc|waK?hKQ6;hmDoER8off*Re(4V|+ z65wxzV-%S$H?rpBs41Ww(aH;$cnXo=N+Ak+Tb`ZjUT{P&sVni7I195{@uMZ$6TU&m{i70VzL zV)*X}r3Cywqs0P>Sx!Bi(C>{G=}y`(S9|deoF4bdT$!t~!2m>7k))OB)!le#+;gqe z9;_dtLs~RSwujsybOs@{cR#yIhJsfNTm2DXL78si8HvoLBk}X8Ry#z@SC7=1jL}rN zf#|V~R^A8j)3Yw1tLFOda~|ul&;SpGo;hUK-`Z4jHO+b`NwQ=J7bi-tLL;?ggM>PjIc&jorW z=c{4P&uchxP;-{Za$ZtvQMHByM@DBJ%R}(VBjGJ>)?va1zZ5jF_)==luDj5YOtpd{ zpIdD*D@VVg9mxh8?I@b_uO?%LLuZT)2(M!Vz1dfU4#nuATWSs58BG3k&ts+7G8pmL zXFdomk=;Gqa?Hn3?~<~%zN0U`%{n&&4RaqIVOnrj@W*tk@trTg!;{j(71@HwoVuR2 zk_ORQpH2?4By9r5q*Arwo?Y1J;=XV)1+?A9++RU+Ps6&ZbO3fsCGP{(5nj!sCxhut zO6M`ihT-5rJG)bC`+Gzc_Fky|8>9`m*_9CH@t0apq={tfCldXV_#}f1%VZ@Ht@H2B zQ5k}&Ny)O`i+3?n3z$;JK*2+7C&OXhd*U7jNZf{Q1*k9~&bSTH5l;eEIBNV}1h#f5 zTDxd@Zq{V@H3xhn(O70RbxTu9hI3v)95X}`#~O}kbL=Z_NXeFADvS6_Ifz6jYlgd4G&t z$(0x}Ns^M>R`)a@m5STc)hilQ&^r}Dx=M1EsFbtSv*E0n>zudd703(GB8{MA_$X0A z7D$`9j~phJJ7!0n~T`f#x&_H-wbr6@m?nID7Ei3Q_QrQD-_WZek7Hj zY;rtJlW4w&P-WS^Qe)vM{w~Fb-z<*#h+=4F2d7?QMGM!hn2j9{8A?TmQA?S})>P3V zJjUH;tMcl367LJWEe%3nm{8xt#jNPnVvtZHXjn$iLr1_PoQc>SbNaxatQ5SkflP^U zuln5NTuB)DUUsY}ZL2 zC<&jTj@m^t^Q`zSVR0uF@xj&Tf`z;%>L`3Zd;^Twh`lOF^o zuwwJ1aLGN}f&ye2?O}cEVE7bhVEBy(w{eOSTusG#FMqWclX~X@?UHtD-W)^)2P!^| z*yaT$&v28 zMy5mI0wi_EMhX;cm@u7A_kXf3(O1qlSzW0W8_e=sWWNtrDiNM(pBatQdv2)GfN}V= z?Mqiqx#v@FSA&PK4~O%+2P6Naa%at&xzxpkxZduar86Ra%O0H@EZEHz93gU6UTu4MT_o%YZ9~H{MW==QlRXe&oO59v zwFQSzQ+zef8dbvVW*wKbKwXizy6Jds2#y@{uG9F=AjjpReOKh*Ji`a^)@9IuANqT6 zO8ps6i@I3cKd~vJ{f*1rH*0Z)A$dNY>;OngHVp00h7^XR+cM|wFeP|Q^JvSTx-Y-UtZqb)MAHxw@@*RBT z4FO@cLuE(?nJqq3QF<|EGUh+<{P?M7y8)xp=>14_-?E+t<8@)(a~4upLUzLTotuv$ zbs#Um4*J+mt7&`|v4#N^v!7nBtY3S>v+8oWVAN)N_erVEnr zo1G<(LxOhYrRrBc-iXUAsHu5eWd^&O}5X%<7y9>Owfb*o21iqXyV*WWIC4dBLsuhf4G3uQ(=QF>rC!1V`UM=CrRS*^s z+g?CrptHad7Pyo1w(2^V(Gw}4KjUP>04Wr#&aPu*)BRPVt2jGYj{w_p?*|^Z=5&Fx zpfw|e!i{bS3#YiI*9AX+1RzuhIQovN?CIU9O{cD^wRBWL7&0jE* zGjQ*8Qad-|P8{K=T+}2+2EHl04Z!$JwnEZ)l)tER+AsK3QHGSa z>?`%X69W#qI4BNrlq~A=L4tIwj?>#ShnweVW z5&bWgE&8**uN;;<>CdavqSI8&9Yo;IbEQWrcFZo4#V5vtzV2E8AK zux>{i400DV5e~jUefvrU{wJ;Ezab0$x7i>Y2j_oMOL?`+Nn7o&j#aaUNoq2vO3O%k zYwY-B@Zs(2;!K%u)`GNAxe*VJp-bCIA3~iLyr&r$qkc_ndKOC+DVBEqu57ru@ipb> ze}VqZa&h~wMVVSuH&&gJ>lD}K6LFN3q zKRbnnOqs10bPTzZ`?CM6xZ=<8eVv})Z*ERhB3g=c+|Q+B`#ha@6q1JZ!}G-c0!;&b zESA{n&f@p|ykB4E-=4PnenmW)+FTGwde*cZD8gmP2`wp?$}_{RBehfEZ>IwUEj92n z?mAYx*>7NK2XBsB_og2%lBdSq?cLpt7nfJYFY**0vDS5wMbnmR@BHTQAbb$OkC_hz z0^l*L6`MSm3U|jp)Avo0U2uFoQSitCUvdXHZV*GG(L4nAna$fBEm8cOt5oO@4SXmE zzCdBFiS;Jr^i(01*%?BS8?!zI@31YqDo{WV0=^S85QkyA@1=kvJTfHsb!zKAr&D}` z&lCKL-_yhWk(l%5`Pu@$&Tt23Pjn9;@+t1436)~{5!UK6kTF)&ha#S2mFreajcqAF z2lJVb;-9&wH`@0hc2h`W8CPt1hUBMN$}f*O%zI%ig7yc5*NOmaKwCbOJV8_h$*q+@ zXM^>pAQE@4n2^nhz=6(j;KB<*Jc7~Cx=VkaUxwzb8+Egj_f$i=;Q}U3>?xU?UMoxd z5B{+;J6|ohPrt_=_?z>q%aG-saVRFSU9fayjHFFl2-lAO3n2o`Fa5!v&Dcq-x_~PD zT`*TYFS1IzL}-SF$#Lp&23*!vire5eP$Mbd}BnJYk=$S}q)$9h+7mKnjgigGUY;)dj85&yyhi zxKPs%pXY|d;baV>YA3MD0>9AsA|h}BlLGPfw2I&pCF$2(qxYYn>aGQ}Cry6}`Ma7? z!8N8hNZYzM{SEc~2u?6F=)kZPc-Y;68$sCFk{#&0{#HgK(hP~f9NjEAx&30}1_P+G z8Jda%vg}piT3V)PikT^YIgZhud9@au3q9dnR|XLU3)c3bh=oxAf*2>+t#=gRAp%Er zv2RQ)6v9TcrM0{}7_FqkFS>I(HRL}q8yh4`^i8y#>yL#MHSBlbV*d|n8*S}r*Jirj zbXU`;5=IwJg4K@)ea7W#hD#}zWOO=+Nd2>0Ch%&VkdQi3<>zuhKKkuQTQ7fha>)s8 zG&un}y(&_~FtyMX>my95?7zk%63$HRcv{tFk{_b+jOUYut2aKB9j!88PTJj`@w62>hY^4JiyX&pp<5QN4;oykvivEVjjL&`x_U`vJfbg2Q>D)W zZ1XmHNnMbw96}M95t^kuD`_Aa6|Ew7!<)(F%!yj!pl*T;NKWdT3Jf&d6G{YxdNxM+ z?xgr*TDl^f02Uj9HB?3z`C-KfqH=4Efy1e@^JodP+M#-Ng1Sp6)JR^Dd?HznrH8|S zQsU*1q&s9t*MUwpd6|PI!g$MrZ-gd_V#+sc&~G)sPtaG8#2v!ln&!miVo2Q>g_mw# zD6_;HuaQt5Tn>>bB5$e$;o!FzBKIPZjnu!zBhtL+_IY-S_Q_1 z=++3r#P7`scIJ!w-cWkznUTnkp0BegF3h$aPa!Ybe-k-_W48eoZV)&l%lSK4SGyoD zG1peZ-IqSJa4?vrQh0}&%3ULCKh_uxQRW8jy$TJ6*tj&0&B9|`%-AeA5KaUcgM;h^ z%_j&r5JxYdmO`*szIA6k8wyZsNx%hEJS~ikp5?|Xf|VJR(CDLl8O}FY4bsOhSA64* z4usv}7tV+(X5ML|9d-XNQkjC&dyO<*cUt1A>b(p5eJG*;?9JPT>{-+FLfj7}_Bi&- zeeBlfm(MLz#un#LRVOzE#Hhg}ADE)i9g|>QIlxS<3X~Pf$~LxTv(2l8b!B7STJ2?= zoj;d}3*BiP%0t%~aWsV<_)E&iiK|Qz5QYt-{_pm7LI^0PCA#@LNFp}f7u0Pm_uske zU3QF({WPimz~(6m2csC~vfW-=g6-q)6U}Xb&j(y3^95Ztm{N|v(Q7LGbx0w7QM82G zU6s~pk3To@kNeqdn1%|EOD?60Sc}6u7N=^&x~2=)m$YLxYLZ|_5Lh;@;c1fHbUdI` zuyX{%&(26OtoQfwm!#TPbmG}rUr!RH&YD4+>?7G#){?Vp5O69+%X?9A8Ltv0mv5U= zOZaU-w8rstzpW}C?J4wAJjQjgHzkJ=)pl1(pH(O#)%NtxUlI=vqrzmpeOgZ`L`rA8kOR!n43#2Rv7XtXn>QtdC?~b0UKJ(|lTP+0l)SH!2 z0dMjQG9x_4Y{66`2sw}=!Q))-3s-fM@gW$Rju6I6=QBpm!oiT!({f#d@o@h%V+OHb zq@o9Nc&p=I{9SD}RJI*Bm*8rzRQ0-mJv5PEv!Uo|wiGq2my>E{6S}NRW)yV~*aO@g z^Hhi$3Un&Q(Ga5S+Vimo?@i%u$*0UJNOdSp)KMjYbgzDWuUo?24ACXNsR>N z>i2u3MEHY(w!R)C;^@v;Fy6Rsi9&55i{WliWrm#GH7#Fk|`0szSX<%T7vcA;B zQ8AD%lMLzJo{Pk)7tI1xvT9fg z|3Uv&jf@j9e3q6R4Fs2~d{Dan6`Bdv`Y*01pV)B|r=vDzo6SWQ06l0oM4=$2UO?I0 z(MVdhOJyzpQ?oO?gA_${GZ z%13A^*u>hzWZI0EPQanhxBV_9j+Caa1sl3W9dmv({eN6GOnWh`nKW6I?O!2e^Q`7K zDzJI?bwV~TBv;O3ol_>v8b=VxUsy-zs4~Pm(Qlz7?V_a4h zhDLbcTp?nIaKCOb%u@E~?Mu<2L81GNW~&_b`p1tWfk5L2*3d@zR~a;f=0^!iV-cgh z%i%a2v4%^5O}&LklhOpw`V_-pN11FiL|jy_TwVG>aSB+&M!KZXU6}_fU8qqKlHdT* zc+ zFi+hKco|D9=V))@d0)ISLVc{(MYVuQpZN!=WRX2jqrAoJHnKqtbTGdOc@N~hNUO~6 z+>Bsr@?+R_n@VZi{tUGjN>*mWb2|tyT3Q-i2e?}3ygYDW^03rMOp2llqb`kL}d~OBHs2eJ$GZmp5-|; zexo&UC)F_b+3-yu(g9jLo&M*F$fTopycweKj4|PH&CD4peAKgtM$2_F8CcaMIl0{qt#z!!RB4>;Dz{E+gQ7|Kf0HvxPzR*D z1`B#<%oSSPqfHD)<%qKvijds|?Wu-a)Vxzu=ni7uGf^!VbEPO3=)>RW(jen=%@uP+ zlML4~SatL@0jhu1Y!_(ZPjshFJ(h=0sZ)z;Xwkvn+2%`mC@ok4nSY5vWXL(%S{6y4 z>#w3_!ZheMsTT={8vFK#P&w}DCb6;~2LE;b3}B*2z{IHz;O1pzN9$P-Z$o6QM4xsp z?l5yuZ$iC)ST$V`GRRO#nvT{8bf_k$O*y?ZN(UYN>&3pg>kjD;JTAy`CoXpc@(8r?^d)D)b$i1YF<52bw8X1l%`FuMnwZ$B8 za4ayCR*DAjGxzXBBe9@&Lv0Y-aT4HXRa^v}7&2dWi$2E6YFDjNY|iE0gYCerrqe#} zSJxDwV!Ax;%a-)^)kXRRnd->Gy+9oK8_^`>l2yXWU6?oK9dmFB&VDSf0`V`#YjE*s z%5pyYb^TsuR7vk-M=48M9aHS0S)-Yi)JOlvtOa96Hn6>5apx%3Mi6w{Q}xgz?+V$~jx$g~?h zsiks_`r|-ViAIf`bJhc_mgILo_|Fpv@=Ci~eAla!9Y#HQ+4+P@Lk3fkLk<>k+VYFh z8n(N)Uxl0el~ ztTBI&fN8G@9YokmBO?L#q*w|*Pu%px_n7mnOeUludCeWFS*T()Qp1y2Hn)uGsh*GC z5J?OQVc$r%zyvuJhFb2eo`Xc=lUQ+Fy5KH=rSCv*DTms53HRR2*y&-bmzy}Sj?E%* zuc3V(G4nkdoVzZ|BrvkETkrs7&CJf7?jv5@N2s!;yz`R(Z%dI{JNIqeLS%RDmsOO; zuMc(@o^Ni&44!jXhGHzBjsIU>W5zimm&ecHw+EGUj?0$A#sT{)3(>t6GH=@wxnOp2 ze&yUTn3#p)h(n}>V%QV#htk(I-iK0n?>xRgG~Xo|__SQibRPe@0NUp0T}JRG;9VA1 z|M7jJqnj^TKX#$`pU_f)iAv_BDsv}Qtvqw%Ja35!%}K2nNq)K15y7pRG2q}IwO+Fy zULkuKhX<^8kdh|&{bm~2((IHczD__^OTK=w&Qj830K{^rUGa&<-!wr6YWQVmTn$RS zbjoEG@tJa?MrTSd-MAS|;k!aTgTSiBWaVg_jKbpMGuO;vdARihL0dY4LhRz}3h%f- zZ?c@$KIgdb>q)JeGc)aQwd?sc%Dap5>+x%9UGqu|Ipj$1SV;YD$A#*#HwX;3p1%F-Mw|`GT zzPFYFcf)xR=$eXJ>p_h>7R`hs;8x z{paWqT{$Zu`MdES{xY~9k^F5OF`>vIc|s-J?>)!##W%yx;!%Nw`$%-3@z&=@krD?{ z6F`Xk=@GsOt>5p2@9lYTtGT|MwX?hW4Z5OXrbMI$;KSz{kkq%wie#P!Af*9&_ ziQ?EGU%=D-_^DiRt~f@&>T{UxE0u1p!hv;x+rp39dzIEbf;ozq z)@%P%D4NlX;5)bKfqP@OuVbBl7*mgDlV0}0iZ%>K6drP=YtC_3e9c7|o>zaG%<7-w z^WGBk99uN2vkeMVc)VX_cV_k(0Ig$l;&-@ui#O||WXZhSG(i(|oy$JbQY(ESSgylO zQ#K=NR~JdhD%DFqaE1dM#;SX7P3x2u?DrS=U2w;RN1yAIDQr#6E!kR)81SVi1$jAK zKuAR)UpSANnUpMtrJ*P0mBEd1fG`;sJnzV=`5`Ez{SicbOV8jrMD!OYfg>B?{6fQ? zJ{si9yXCte!7J^qD%Y2pwo~{>$g~023bV#9KZ)?LCoZpM(giT1=iPD2XOsS`Ed0+& zm_4JO$3rw<++{l^T3jE%vV$0)pp)OxD}4+L_3n&9|NdZ{(oI+&WMi<~5AMrqWjJ*{ zS5~mHh!){l=Ym!MjsNxw4$0!;m}b+|(r_u_q(b;YrGCWz$vyZS@?m@Pm>t)LwSb9_ zyLJZGGS{FTuE$S_FFjIJ&P1Hccs%xElECh>WB_H1w!GiT_AR~nrAV-*kSFq?s0-nN zmO&#k`_*LtL+Ik_J4`@mSEbUKhJ`jb^o_>bZQijzTtm%+g^uK;BfdFIXW(zIPijXu z(rEcGRC$`Y`DuI)bwThwxAX`0x~t~b!-H()WA9oa;fqC-LUWpQT31)1^%2vew6mQC zV8h08QhLn6a`&~WdEfpr5Q9OJGgl`^lH#f8eb^=^{4WcYqo1V#h4b{KsTQfuad2PF z6xFXScx|ZUDb%Y*7I3C_8}m|X8>NV7g!F|mYD$-kN95LDj9|+Rd@w*tizl?Ix}JBLo=<; ztMHU^1hi&mH2F<3+gy>D6wS&s@C^%S+ZbbR7`-6f=dOkaMgxVmevVuwK(%bdF!s-A zF9~G4Uanb{Ac_Z(iw?8L`u!`G2aT!jMCe2VcopCjflZ}F=mT&)5{HKVu9+^0{f&KC zLvJjB?+k;+4ZGb5o8}@*A3bBj9SP|o$Hj^dRxK7cdgsM{R!Q%!i>*Bg`oC@P=PNidJ4T{F` z;)}Sg143$9Z1t+zgTDoJPS~|rocxQwmaa5vYe+H!3>HTya&xnsjE9HEC9|1vfwyTd zd=wDklS>=jPbYEWvU-cPfh$~n_Pb~FAHCTLe%;8l3a%lEc>!C`leC63F`PBq(lD*! z^a^gTgA#WD2vxJgjW?hqyCD4)h2v`JJf7mLVa+W9M9?1&2^Ln(2<|1j3sqG zm}I1Ru#aWq9SSa#iDd*X{Iw=?GMncNAYOBd*$rc}w$0B8W1v*f-S}(l49`ksOA*xH zo9T$buZX9q5B{W`>%;7gouh=y%sF+f<85)DwCJ?^BmCpjyrd}#FvuBV%vM#E5WS|> zt%;Yorq!j3b38T68RFxe6=@8I-S)uv7ZVgi`h01aqX;#&)_>2nx(REwGTu3cIi}Vh z-nidIB1I~jPuNbPc$xus?o@_NnRKq5`4ueP`KVp$ zYmKUtF9#6^5PH~R?ajAY#LmZb|J*Y4Zx*4eu-Su4F~X2tSZuvKH?2ZS-w^hD1xLtE zqChr$24eF~5m%Gu_Sac+iw$MjCKr|IB`D?Ccf#4oVov!^cry<%;#;bmCh~ z>Kj&fh0ULiJwS_eg%wtRa%^Fjrabcjc(`s>*FUN(eZXpL-}p$XN8LQ{S&yZH77TB0 z-;973AaUj)K}I>kdx8%QzP^DEJwkba4RMALgYE}}fPa_p?=wRyivK8e$`DbG5aR#; zo?#{eFPlegB)E&mcOz8h7`iogPH~-ub<(kHfqG^GV^_}LJCmYwlm!IciP3imVOV_g zG@6F~b~kf-x9>tLZA}cFO;+==<*xmTakCoSgXU=hd-WSu3H#KEtxR3&Go&{2jvOB1 zo6HCq`fz1$VUR|G^?^KxB5geLu;u$_Lk2ItAydu&&t{6j$ra8qW^-zp=~niiRMAq}}vKc2l#^TK&q!B%NCIlXj|NdA0O6&bhNm z(X)#rP>wrWz1KX1yZ^DRF8>3*iv6_E+NT_tw^FH6If4D$*VFo%TrIeM-bZqMDF_Xo zCHw%f^<{9FRyxwI^VnKT!GgsRDKUoiE`V+uF0J`~+2Tt*?2Vy#mFj^Qvn+MpHkk7u z=zqN9LT=kgbUmpNSfT9tv`{-5ZN2qp@BVdz{*5BLfoBXPk z$Gp=!n=OZWMXYT9jOftB<2d6-v867ob?fEcSD@r8f1vz@&;KNuvHw?i>i;I0v9mI8 z{D+;MSACqeHTqjJTeuVOBGtSF`-NbNaEF|B*vAvft&U|ADoF-D|K%h9$GvorkMAMd z=61#$%z0Wh!B~CCM7^lt$Nm=-mfmwT)#qsde%FWF>zU+de!4ybl-~3DFWIjfxqe+) zUtaUW3dS7!Alk1790+SGc?>Z$hOTSdZoI#t-5;m-hs`F>^Iuss@I%1GKxpQ?ywCl6 z&6=k7i*Z{?oo+8)@0Zlw{r&N)sxL1bz31J~@e7aF+iUQ->xbCl@VM|=!4{&9nP8eJ9q3cilwQz zo0|(L$hKGjA4M^5LAF8wV^homN#PI@cC%W%V9lo(kT@{Kj+34Rb`@~nl7&T$h%H#H z^L5KWh-ipbD>xZG#g&{?;zUan{fE!ZmI6o;xGQZ3J>chtxJ->j)N&1AeS7uW7{x#+ z%pzOz)*?iQf6nWFXWlv^S?S`mEJzj~p@3pCG^0C~%i9TVaS;Sf&uIdpk?qz_=M!2*bnZ z8Gp=D6%hW0qmSbi714P*+tS9b!0YX(1C>AhGi zX`br?$JN~yx58u^^*#`6RDa@;D1-HDtKqpS^nV19x0{&6{NRu>2rW5DQ5w}tTFgSR z9lW+OEv5oX1lti>WrwzBq z%Ge6)I$ASKUxX^%p;?FEa9p93yY(zQW%As~vl0lnZx3Z9-HT#QjLx~6tZ+$G-GTgJ z^EWd2RL7kcpa=?(4&!)tejEegWfm3xGmri78trGfAnSfp_ft4$`dZc!R}7E_KNnD{ z0~8zKH@y`K=D|^!(5!ZJY<_7&_6UT{`WjHN!D_@i$gISbCl>6t$S_rhMK#F{1p+B# z`p5BSRV?Yw(lE_-wb3$?HRR?h~fxIxt93)eBQa7Oz8OZ@>60f0gxZ%xL$!If z)CY1q2AN+!rZZ16n6ERkaBhDiAebMIIoQqiRs;n=lAh5Z`pJ)9e1O*bX%n_#HhoQg4DwVWG^ z1AM#y?kqDm8qOauUWQJ|re!Xo6){62kq` z&+>~@dB!z|J%t?ewZ3H7CKp@FpOfITtrY4R#GZU5r?ejp$@;|wX(F?^aHF{h4e{uPuHGkOuSkm!@&Xo?;GbQc?KcPBr!KDE`m2V}~@)1Q^+8PSxa14{Rx#fc!6(ytYgN|*- zXCB|@$lb)A_5b@0@lShByi4<7mUm>pLOpHO5?ez;A?J-vKI|&*dsL!Ys6->0a1YoJamfd z@eY(I@i9n(=3v=)Sc!E2&h1)hPUWmJ&i?PL_rhFSjyWuLotBALKMFJH)$wEZxZ{_! zq~EFWyHY$%#f8` z+3F1+ZGqtIkSxEbko_F=N_jVW$OX_}In531b%o(DXyiqZ*}yNtJS+9!F?$O-J}bKZF`8PuT`wQWUTu7t#EOf9sD%Oln<;1J5QKnQ zUYwDKNevtoeC<7>EOT(jrS#q=pl*x{m{#+|=&YOAFVetigZ56A>U#H<8raHnCp&0ApXHf14zSf~! zA_YAfV4Ba?cK$AGb?V^H4WHBL%N$`kbYe& z!__jnePoQ$uNNxotXX|{Lhw-NU}j3PzI?m? zGKs330h@$uDT1|&DoMtnl8$n9yYV7RV-O?31UErG6NhYof4LAn_~v}2x%CtURf%JN zZo*c3iL5)Al|@m^{C)!`M-i##(Qki{uC!i4H+67DY*`-q(jBa2DkCfkeGxF{{qZlv z_YUr*3U?%j=P>M94H7le3`7(hY^A&zG6AFW-hr|jeFYP~$H+05VM!5qD`r{1(t|H6 zRW^^-r_=S31^0(_yspUyx?=GBO=XkrA>~-^sZ>3ATIzL;x%#V7ABcO;b~u6Pz+hK4 z!8;@f#;aqtT4hj8f|9?s4;Dk~kj1YlYO2plM{912aq`ADrZ zKr8|&&Ug$K6sCyvqr4~d5h8|YZaplpqDfYfy>3z1;pA8+hDu67@(RmUgBf2UuB(Tu zX|e06S?s)Lu~|4|S0mXF{@}aGw`io>AVN?*yBeKIE?Uz-Xc>eV8&5-w6JeO_{8_D| z5U2Lc{Hm`rj;53DFVAW`5Hme%QLMKz)p%uB3|frT#UQ>&8EMWxuVqP@?oRd7#f zcPKZak@IV^k)`rWA=zh9!t14voy`B!ldUq}IrFn)9hazVGGTaZ^4tBw`*C(!O>Ud* zkSCtH<;T=(?j(d%qYtLN0j83dy}-=D9YbK=xHF@UEk%;7*|XoMgMUT->9%)cbM%A? z1~={QaSxu4hfH#pPsn$DeZj&X<2wM_7>VTbPTVe7B^V=d?l%#LrU^fyFAz7l%g{w0 zb;RJsUpt#1^6Ha7VfHS1#KS9X=Obb$-mxt^FTX9vkhc^FIE5$P-9F;<=KpxPA5Jg2 z{!U|&UCuufl1)jLGr2J)B)8vX?^~k%hbBOpyK5|2Oi)H^(UnoS+z`2}{I6IQh)}Y# zKS0bf*EKX~dFZ;#iM>82rh;3(hD|(*m-Rr~c3GOgC^hZT;^%WuiPj)!?dPd&SsJp6 z*hx(A28$~o!yX$Wtw~Jj>b9m~X}r`E!WBxU?1M4++F(hSZjw6T5;7#~D#R^;a_Dc) zU0l(RKJIAto~mN~CYYu4{Eth5+SPJkWL%<;+dKbr0Yms_?H1Ac-4!X1syY9U;ib)_OblLr-v? z9M$~fj%d2sUI&g}w4;E#?4!JuE|8Bt1^S1P?#3^TsvzrKPjJx!;V~qdA15+*68Tiv zwM+12@Fc~LFeg)YHA*Ir^2;DMNjZX30{Di|RKGQo$WxKfSd`c&VYXju2&A z%NVy=ESyiAUQ)HGKK)mz)@A*@7xm+)=*RSVZ!6Z!tQ7m=zF_sAwbbfYUtB#d_&GuG zI#deJEXg@O7d+28IG)0atR`R`WZ8^=eZudVO`oXbyP%T2ic+hcoSqis0&stOLeOfc zp=?<}02XG0ixf3utbZ+iCYjS2r2~)W7NCh;tiUgP7~p|d@CS8EmTv52aix>`Kuf|$ zI>aaP<~EMiR&WIlyCeWOKX`|n@apa@D0;o$L^-r&qWS|PxRk_0@Cp~4B?Y*)*7co0MM6lSPP(z+_kBT!DpJiKWMaB3dS%E7K@pSCu zj^7FX9XVMA_1vF=UmZRSKmxMqj8LvplV+)+(AS> zV?qiZH(Z6+l7?+}y$TIXMUv5y#~Bw#osUB!0&B@i&tIuDKD41t?H)9VUG0=9GvZ!` zl; z25JbWqHE ztj$=R<|#I>FnU(nHuh`%m9c^HloDaJu7Q0PEL=)fW>@PGYeXs?2_>-{V^n@-#PZh= zTC-BLV!3$LNzvKwKFys=sQIasrcKtBwJQmk@#5|2 zEbXlYKG1PW~_yw)B<3G&ii4A0dQ{f@ z6ya>dsBQR}bJv|y)HpRf^a_o0O*>2*xaV9E6Gx9RQSNzf#CY}#yFuzt0ci7@7Z#Jj zP}c?dm86en09ppZN)bKIKeKm`{QlZx!ACNCO-s)jcV2O5IE8lJhzb>n1sEF+`dO z7HkLT)F6WGP4~NeiDT5vhHIecs`zX>g#%0uZ{J$}LV(Cz+D9XnewE?C(8F04lp}6E zu1R}gBizD^8&TlZMsr2ba9x?Bn^x2oUKY4Mq;1ZQHh| zC-X9sOeT};*SpWnP40QvJL_AR(z|RqHOqe|3&-S;q-!z_jSsGRK%9n6lnh-3ui5-H zK@hkbu9_Vu2`@H5ySts$3ARe3Vu_W`AE$S}l->EzesD9}5!OVfly|sJ&~6Ld7bo7s z>{C5pIN!4S^jn9LvO8=w*xkP2x8Jg8)VFvk_k8xR@aV!uV|#H~uV2+V95u4&3DI`D z@LNr3*s!{&sM36n-KxvaRS}&^Q*xp~yRp0Y>@7VTj&!g$&oL)7)Q6eGF~$$Q&E!@P zdg0k+C%;;?PjNnHMJ19LU802&?_AFCKeTk&dy^}|8*6UQQ*c^Fw5~(QrWvmSJ(-U* zr0j+F&9!@-+-gufS_%{Fl*a(&PF;Ll*(T=58~UsMhHZLZ$?%#QD6cTd&!VsI^^G1~ zEz0n?FsM)&AS1w`gdR^C1@4Xe8U+PS?DnyAW#>^f_)i3d7F{2f8SH307NwIDV9(dW zj@pNe=$P9{_o*l!hhrha7^gvM+Q(Nk2DEd)e==svsHSOn*Et2R2LjBTbJS}BC4}|> z-D{jP6^bSe?rFU(aaVquRFQy`y}PDH)vg+4iDG&_(s}xs1eoM>%x$8Xbuv#qqnk8y z<0Kw>#!m4(T2b<4ZeNicT5<$q)&aZ3;~d`GKP9q+^CVha)r{d zMYt4Zw|0qX_2rx@4{asdWdc$q(kx;lBJC6-zC9v1&uE^Pd~c08Mq~McMJ3Vo69n{J zPLEiZ(<||MiKq46qJ(pQ=wt2>Nwc^~wW1P|G&e5NqJ>;O;+eOr8M4`(D z!c{mHFX}UNh+AI6raPh@7>BYmTUVkUq+wxzcbt+C+K!yFdxtZ#WZMA0V%fM@e|k&a z0kGS-UP;(vtvk%E)91Nc9IQz-^=^ONn<=x8K-7xc`Vb`QOo6&pYgir9b!!zWh^$(* z+u+O?y?!LMm#+)e##c39-*AVKHQWgp!Kv8pn@KFs1*|oz?`vIy)2jA@%Yg7A(@U;) zHP zhi~3KY1KXRgX(+@C_=X%{Gexi7(xb|U^uv;gc^dQ%hY&>57ZQ2zGG)VT`nrPqx}Kf zSXioF=rZ)4Cn-4GOCtn45*xi|dmE9(!*(jH3;Haw2>iK+!$zOc9M>S05)zf^NG18T z=4S{tJj3a^F2@82DktejVmmBoa76SG^EMo#0Nh7!-rvxI@WpGltC1e(NirbVp0|dt zXCY$S4`yPlK}E)W<1W}MLy^8BvgTLrBdiK*1kLno+=hh|YiH}IGi|ILT4U&;tT-Ab z=OoL>>uf~J>w&quLY1iggh>f2ctjkwoUSMg*L?2I{q~6pdOnE!&F3FKqgb65|DA4g z@EPfHlB4@{&)HH+`PU_W&qL>kkVJX@D;JIb2nFm};6zeFmOl-$U0Z&f^e^7)^>i}! zzr;pf=M_4(do7|9Dk<}_W!S#4?ZseE#No1w1l(&TCRBUA{^U1gN;U|h&Q)C-L8 z3B}N*vnLs!h;ip8P@j4BNgQ~>(?Oks@psUzutY#^VX>7Z_1eV{cYw&IA#zvt1 zzCQc-i?&SC-$(e@a-a0d{~T`-+aMH2Y({t+Dec(eQ^5x9Y{OWhkW^plG%E?*h#;q0 z>0&gTg0aYEIc&g3?I`wB=i5p_PZNy6)Ln9DINSJ!mv1vb9~2q{@2H+`cJ8GgWDK&n zsg23TEnSQsCJ;+?zu+(u+8@zRBXApSP^ccPAxL)VcFeF-o@R(s_qy6sLW5y28-l&c zaW8AZA^vTQ@-sGD-JgWt7=shcDCTk=sFI2I$yl=Ff6fJ~>J7v~DdF&wN0;nxNi2&l z$dQmqjxQzuc8;E6VI}7zPF*s4y*n(?{K3=;MHC+1U9dNUE+RpM+b->;35y~eWbX)m z!#uhAMr_Om;etn=1ndK?Y1h#hi>qTvH2?xD(~gr2V~*iCZ~>n5@piu%*%?M|4uS`7 z{Jv$Q6Vv7X+|9}F{exrnxZg8Lh@X>srE`c`BtEJv+qJr<&xQ}DK7;f8FhM@}~v`T(HLj%_}+Qk>S5Sj`0?)b)mE*qKdqlD;)PCSMd(TW#(gqMA>v=C9exPQ%Xf}+cUq(LugLYI3|Gri_foloOlbt6;}O0w2OJ}1YE1i3Ly+EB

kbd|r25%&*N)DRjL7kx!o~CU(=LnuKFJbPwWv#Hjnn#Z%TW{tGU4XXm zu0IxMy92&6gVk-5!p4ldivfomV>Ot|cvmPDPrF-nd>g37-$s}BTu099msUCh_YITA zR56pt{m8o>kEQ(c>3${*cnjW@Y2a+9b!V;Q!S3Sk_o>&U7XB$WHZ;wY9*QAv)6<=& z@DF$x^En!I@DEL7p>z_0V4zBb5#Kzx$M&^#KdjULRsQlh`X1mA`=9+6mA>co^Y?8p z#>J*N`m^oj&u{(?@Qh9W+j92*>7r!kWd5JaS>26kVotm67v)#3-g3#vVv+*JfcR(~ zngm(!(WjyY2vFYWNiz_W9lnCU#YtC5Qf?jO-ggigl^Z>xe<-3pJrF1U#cTXr86tcT z$UMmtTzyZ>bm+UiV@$w$pZt3E{~Ea7`LX;--=gQX?&QG0Tv&bA=l@;n!4il9CBgr? zvU6F6;QzJok6YaQmjCHOS?xf~xddtDr8?s;y&(dx?D=@ana?NiU-x}a|N2KW`gy;f zJm5d`e|zxcyX99K#y9?)#dlZ|^6&D^HPL+J`)&J%fru9b@L&H!7PpRC%C?TmxTQ2G z3@;Pww?(9ZJPvJFEl14NBU?1xXyL`tDp4VTlg4DDB z7W&OBSzxdSNr&|PX#ex{(c|;|d3Jkb|MT!s!~eDC|I_^A)1^}r)Bo?VPsbV*AMnCZ z-u%5$h(_FXYUf~BVQMn5#)x3tgHe2)Z&tl^=>o>%-*t|HK5JmNMthh@6zy!T+XdHy za`mp9#5s4Hr6i&ATxDibFGZ;>_J+00d>$eF%+bu$iNLhLOXf%Q(2UjCV0e13jC!@q zMCf~*V&QQ6Bpi(IsF)fi+H41DHq#`T`P`ESMUmQBmU@BY2Q(ZmtRotr2nQbVa}A2EfXxS8hA{Yrf*dnieA+#<_e1PNTXn<0l32i;>~1doqEy0xfr7zCLWodFI= zu%Z{jW9A=Zrv+ZspGd9*A+fliL1mi;Z>;ndnoE#1JBI+tQ)J(OyKKIqSY3vF3FBgn zsvhwc0~TLCQ6^RYp=I>n*5p|)a^R}CJiT6~qHVZ~a1=SV6%S3;aF+jQu!7|nL(_m? z`x{sWqvZ}(xX>j~Ca$)ZI?zw%-`RWQ5(<-l3ksPBKf0F!FW}1&Vq|`%?bhd=o)%-1 zToep&k?A;sqvlK|)(LgKVBtnYqQ#`9K?x^cmzQ!7=dDrnPuL!KntvfFiZbIIPOMpC zulY90iiCEVxsA3RX>jDd>Zk|5SQCI{B5H!)XdLq-?(6X( z(iy4oEB?L#-gtr}{yMZtHpx9rsnl`X zq-xTa>94#;Q#2eRZio?_JQm0=x%S%D02)OrHaB{OBD6}*k;PbBoe6$CF2A`a^Ufb z$-DL74JHn9xb@(B=4h}OG##^6*7|KM+MgRsOsr@_(Yx=IizQIY(EEm1tRbEyhg?Kh z8wY)}@A$rr4Fm)G_91*sX-F0+Mv>6;_I8pW!)wj3OgML3oYCVxClvAa(J&ERr>2^{ zp*4xDyZ6uq>w!}FU^0^NISHmxPkT^U z|3X>(qDCRT6&m@b$%<1T0wy3ri7-?%rOQxW4M530LXKIa;j0UZ{@~}0GOA9b3ooCE zR0R~C#!fc)W(^gWel$f+jtPleM=^ipn&O!;7D9;Mjt8=@xc{B1&d8AK6vnjUEBOaAcoaQ_(Kht(c!_DN zG)Rd>5CD6EVu=hv!o{Iu>z*G%@49&I!>RT`f{KFLbqfSGjTyppS1f;vt88MO2Puas zaF{bp!Iw8M!QQuG>~PitG6#0rE;~a zgcY=(2~2{}<)ce3D_BiLS~s7pyTeDBCpJW{i>-eF{oIU5!h5&JQFM@Ce7owG3TNFQ&Obey5fWCR+soW0T!lYg;#+(9QCH+FX@KI)g zGdSSWhf0wxz9)pTM@BRYq%BedMIZ3Q``fBb*O*F$&ouJI0o zxzh}8^z1|l5suy{U&}#Z8NMA9KW_LX#}tyhLFXd?v9OHIjvVH~@)2S69(@&=YcHWA zR-i^~_N_HcM=i*h@`siM2>vDx5ng$+BIV;2i_S&N-NECrInF=OB8rXgG=@{&N6zcO zt1hcn<=28|Z)~j$=*UI*k#Lb-ayi@z4Kq*eTzm6U@1${Vq;pZ<>2xEGoI)Ntm@~&W zAM%&gm(RidFzAdFV?fWrA2PR#uB&^Ofi?;RjIS%CC!@qT*h|82daeeW!TSdqwN68L zTz^ye;qZ_E40Zk0Q%48l`~3VVAS@FXQZJ@Z5~V)dY_ChqBb;**@K5CIw_4MiMIJ|D zm_+wL+)PaBR@I6;yH!fN!Cj(B)}oC#!OK>5)<0tVm%=97#7sDeG#grR^tJ21oB2DIU%s<=_f$?3^(vfhuxBo4Q02#>W#th$j^o zvSky|RXNqptuXd}!fFH2dY-2?t7PpF54zJZ@`@ksTl=1Gg$mV_s~az92V{Pk_^@lf z6d^a|h-`_=jc{rWt;EoRffsCkt0H;}m2!Mh9^D7q_C|x27!eyw+~<%j<^rprQ46Rs z(-GC5#(W2v5TP>B;HO9AA0<>^^eP3`q0bu&)oNJiHAYygung=Gl%v~r`%2V>G z=aP@Sa&?^jvy`YCcKRCP+uznS8pMp?*vFIWO(DZXCYNnh#Kf3|<%uMN;eW7226h;S zkGuqo!pK`g+?KxKsDfcNXZu-?jhFJp?JxYeB0$g=UX&U!~11 zq7bG?NA0*x>=Pay3U&X$nrelx?v-O@E z0KO#mFENTO>D&tD?u1D^0?h>=|Jr(j3VcUP)n$AC@&dTqDVq*cKZ%eoHo{gw6?m9T~K4! zCV1OU#uJHCdI+AO40yerMtj%b*?sK;>3@dhfM8x=-O{4ewrqHb`cyxF^@3SPgjaod z*636oQjkqLGGdnhRDmsC)X>HCciM>}ef-+*q@#UMrP_xkkFWvUr(2)lQFESoD7kd| z2;n22H|ccR4kU$3R?}90tCLR2Puw~2W_R+8s!ZHuoOgLEo{bKyPQC%F$Uz%~Qd;K` zoQ^)4v9uhM0~vfd)j15M@(T1O{OA&Qc-xw3voA%4;k`IS3vZ~^QL@1`j?QkZu8iGx zSOhfKKSeJbnYgy3E^@nq_uz!~OP@to77n0SooTbt+k!Mls#!?#vC)`bDZbgk@hLYQ zs!y6L)>eo?cYn@Q3coIgAH5KGl>ApwtJWl|AOiZlht4S@vQpQx0xffpU>quUImf=2 z)$e*sx>ABY!*}oYst=zj#O!MZXu+Zh1yyK|otVKPM!&Z2Ei7Z*EROLZ;d7fMGu0h% z@d#k6kvMYgpd6wDhMB((J`ElG$bzj8ZkBfr^8)avMxJJl^fzE`4Khlz8aL2#z@b1# zqxR#1ImCJm|G4=?g28uXt_yUH0-L9!ThiC{axyLWKEV-MA^%SQP~GI~gM-oMDT3Ac zOS+{K*5W6kJz-psC6p~#CEP!1CM&^gu&xu}ta-A9EWj@jaCy!M^9T)=%Ult zY69^~t4VFR0w%jfPyS(V3Er+%F9e1Q&@>T;bBl03uE4j2Si%F!*nGCal1(NhJRszP zX|;g%7$7A7HwC6~<^vo=cGlhH88cY?NLb9p%lfg4d$WD^-rP(ug0rO9N~IfnQOO$o znnK^E*?1SdKk0^U%1Bt!mS>A%Gw;OM0GEv6EXB6DTpe4ETD|p2O51y8;o2E0n= z{P51Nv>Fu{{HM5SU z??08F-Jjt9VqF+kVU+*$Fd>t=Lw%ta{6ed8xw%*h0MBKBe06;q0;m5L%hXbNMk%h{ zQ^RRu2!upGGTX?itHWk&AwHU8s(w%iVx}_-{(S*nI3=t~H$+P-bI3>rE^T^k^;n>Y z06*^<<8Z<1Kqo)nABy|{;SzfT!Or7wB|P`n`{gf)DB}npq<)~9T8Gx;Y?Ko5z^jQ% zFSvG)MGNXSGJ(Vt)i`lCGGS|p0= zVY?d@6kwq?_<)BqfrK6Ok_VY^fUAAU@3oM$k#QXj-Y<4pV;PuJw!f~LjF2Z`I?UoS z6oyg`mtT970Y_dtY$k`AZ@(CY^8VH&`*dn3Ew@bjTzj<6`X(`*mi>lCATIu)ktA`Y zYZ0a&czkz#R#IED-I-jefEC?F zAX5p5C1ck&wY~hZ(Sk<1u8JY}HxDvY{M!P9DN{vE?^$<^!ooSqXndS~2kQ*4bKSnTXJEA@#DWXKR;Qaoh_%r<2uy11j3A9&-1%I- zL%aop>v7=`N#?W0KBbLo0RL^ewt-Q+5uDL<@Dtbdgt|<6Lz{hJOqYAX@43Jy{zpyy z*R<|l2sk|Yva7djcTU6b z6eF|SZ9!92d?Xtw8Qk0PvU&odRJS2&ELc7@X?h>P73Cd2x{`c+_eL9Z7ZTk@`Phf* zR#tkrtB9ezJ(tE5$JXxOy_p`3?#~)#sl_ZDN;i-th-lu1?EUeZ1fG1KLyt8P+Q#{l z#SIyv3ayRwQ6~&RU6unU-9f;H6mNatiI!+6dg4>#oQy?*Jv zsV~KbvmZo-4j5dh*i8&09-4GibSz=9VNsgQle+iD;>D#r4w(2j(q0Q=BPUM5?ukm4 zAIwb0G_@vJCnaao$J2T?WK8MjxCzDqb?>*((UaRdw8#+PP@A1?nKC&r^a;hqW|}oK zDM+%muoK=GmUr_{lx|w?3&_ZSua(z%mIUi!E)RBd z;=Pjj0ULpUn%7$$A?+rv1!RUA_1Ts8kk%U~#`=HlJt>((MQv41Z+mE}(^BYR#JA=Y znL+{hK!Qk2x#ImF8;zYlLq~keG3QCgEV)D1n+uzWq=xtGK5J1zAtj~XH}2e}s>b9R zpO1Tatbfl6GB({?Se1=s8}ebTO_H6^9*)nO{>w%U_|r*bOUjoKK0F{o6*+}Yz5#ej zo!&Ei1^7aSeI6ohl0QZn?S)Zq9~PTEKrdcg84)L=PhCm)Nx!A&(#=FY;knLr3zX@i zk?oEo^FmVq?wDbqW*K6g_zNay5RN?JW(I*oO*Y_Q#m` zg6yPHJxvdGM-Z(+<4m>N9Bl~A!}FZtJYpD3ki3VKmovu>eEJ9QbmEi5pBJq#1a7IA zTHupDnuvyYEW-xov` zdPIA0D6;A5Wm#V9RG61OJ&1hyw=>XR`e>rh1!|w>4BHO7V)OzHVrv1~MWYiAULnk} zdq((b-{`x6&Z7r*hHwSTt5g$DZtk^O)D&%-xz_eF-W;^)VfqHNrR-U}G5!edtXWLM zx+{<@MQr2agbw;XiK4fS4IMDse?Hv&5wS^{klnSCtXC9T(t?@Cb%yzj+Ltx-j7}zQ z#dTINrzg4wLy=%Ag`b&;@ll1s4XVX!G#n8w8mVzPe2>7b2)9&(?1(WZ_qedLz{-9C)LO<32b(Ff)xh-RZ{e4oDJS<4weOogm4 zp%I|DNGJjGm?1D44l$|``?a4LjgUq{+zAQEL=ubNR_mmg!AlP$-o9lZ({pi@$im(( z?}US(U61Zy93_RPoU(4wu&zqa;|qm6 z*YKPo^jQ-v!pgQ58@M+1n)GD9^h@h9ynI23d{?ic(Cp+y@lhV(-ZEwu|wE38MlAVCJ!L>1~ zv%1xu3f0&jSaG zg=IAas1@f^3Ivp7Srzs!q(vdg$C1$0wT`*`n>~k||IYOtIM9G66vB-#GQhG652u!(FAG@7_p!MuTu86>bq$3%(D|6d5yg6gLu>ksmr6vT zIvS*(?5gIGGX_5BOv&1`a>1o7E)Q`2d-HgwLF7v1Zg{iA7y3cX%&LQusRRm$`w|Il1s&Rux7~WMZLvgTN$Xo$SZRT(^VCuU0Wo;m-bQID#3Hqja&PdWX z-YPHG%7Wn+miUqcZ%m4}>rz(q)4v#FQmv-;UNs`HGStK2IkLhm9**_`TFPsewk3|V zAoJL?Z&a47?{fhxV#(T>-ix+~Y1zt*R*xe4^}G|Og6z^lmJJ%Q__ll;UFQv(EjCtW zIqvV>Ar1h_*Vh;OHfD^^`Zq@ak`nPYNnvMwQowdWr=pQo9FF?7Rv4={INg30>NM8& z4+tPX{P}-brL+7ujpF~sIdgI{G5vSWdCFJ1hLkgI`};epfo+ybsYp+tDB!`ygE3%( z&R{wC@ewxWI?$U3T<2%ofQLjhq?q_@u&Kk!nfW2fOEF*K97R~-sO*Q%A#j2~{x^qudKf6rX`e=qcWz1~eco%ny= z_`grs|9tv?AKV{2`E;E^-Ci86=+jqTLChX-e!V{syvozR{5nA6$%T-XPdNuWWZ^pv z8>d>lhG#bo8hmKcWoL9*SZR+OhNd6W-M!!N@A>?tx=b;FO&Z9sn;ISU^SjsTQLE5u zwrV^%YpyE972Q+Re5xGv2dbCnkVTsP4cKdI7aSko9oSaiW8ok4{^`ABI;Xd8qS@(3 zIw2%CkZe~T+n-(Mk-TzWP;T8{yxdRZWs^atn@1P>dsZ`7gNVWu(bsnseiuJH7W~L< zbs=Z_7W%Q#L0!F;-9#GHU3?Z@@Z*DJ1tEv_O3QpQ5l2ai(@-O0DSHlT~9&_ibrAPE&ZZbPlxB zP*z_9E)RJcZgWBGEN6ei4#V`J0Cw)`L&>A4L9d=KT7>^f-Gv%u4k%`wy?}Br>kAO_ zAF^z?!pOo6A`HrIK0uL(Mw0Nsyy}kPGkf&&5#@^0pP+`)0?~+>{u3&UYiLR=^DS-0gm& zuAfrH?j6?(Kq_#s6Hw&9B_A0)hu)un1~qF$ZYC~NL0iHHtA)T)b(dpTH9IKhxuD&d z3uKI6s@o6lY+swY`j+5{Tww*<*nr!ia(L}5{XPmt20I0^^9#x!uXSC?DYAYkGaYhO z*@l*VSj%5m7u6PlKU#H*H?MGhs0WaShPhFMN)%HKCD? zQm%kQF$u+1Jt<)s7CW)Yk^FHm@E)w_*%6fW@Hd61pD(h{!Gt1-=v=OPFd|6=UE4jT zw7_Xn(ekiOLHNxY-&n*Ml#-~KK2DLkbLE5|jwaSV2$xVlpXGBP=w*zaJ+AyWA!y6B5$YmP*O>p}gVOW=ZX1}ViJPRaE(caB*nR};~N)p*Ox=p3C zN=BRqQYdm4KwPjRW{H1edFtz3vii3w>-dTa2;ZIA6V2QHpXc{nSHtEqiEOsi3ADnU z@umoTsS|Y(Sn%)u6$g25`x~g9i~Dhk&k!{y)eb>&GQsEKuXgkWWS7{0H0DU`cX_lj z@gQ_AU2ZSrR)_%4KI|0v()$7&o>Zt&qwM}WMRV)fn>P~P5AIT~QmFePf^ zv#5=z+_kZecy|q~yb)t>k;?=eEJiZMfie{RWReR+f-tyAZrEe~m(mMit}chQR%s_U*#?K{0V@fLLR0|Pl~?g>!?NJ7_*!y>AWq>H>mQ8 z-)#<}Z(H_yj!R8_7%s{%C()8?_0r98W4KoAS*=S&;a?DnN3o&KC<+`5>M)kp=~&=9 z~>}Y9xNUZ^b=pO^7BNxLMROGp}O` zW0pc7V@t|=I`9H?D+v#B?A%L)&wYg0TFOpj=ROX+PKe9Gc#jPdon z2^adtVmj`=>gpq4a3nUf4SxERJA`DS%MrHSP(n3HDl#mV0ZkKcd@KM+BjcKgR>CT0A?BS1Hm3Pa&J1g0^{SIxr6|LkYeL>_>_=SyDAD@N z*?X(v;K#c9xshoe2AOiHoH4PsLt>UVl!3?0nb(SOUHtwTGqE<@s7uZz(=I9W-ZM0d zil3_adq0b?9*t2s^HH%Zm3uAt>jEa-Ja#|m@AM0#*Sin6DiGKS29@9J7Iz<-3>+bBOdY%c) z(bMJq*bheaiz!QBoYb~cM2A)P31`2cg4{fqm9G>O)v0}7`kgb@8(PzWI{iVFwzLdHzqREMU zVYeDz@0yRC@MKU>*7NH+U4V}L?}c_NtLux|#9RlhIE#2f_V>1ogj?lXm=?}W^ZvZp z$`{r0YwD@s?F1)UsyjXkYn17~FOAn4PewrB(*0}an3kndGt29`M<~7R-CF`kc0zcD z+d|F8DqCIM{!jdXh>c%Dh$<6>l_4Cz8@65n70Ok?SFON=k;w8d{>xuorHiGY3rS`N zIl5Kks#)uWP_QWHa&thL6>kfr~EI}ey|xw zfw-!Ke;wFEAmmt(6*toeenpYMIx|ks(jRyH-g>;J<1J7hYw=5LXHZQ0W$+=Vz*OQv z3sGlQEI19&Dux+J0Bt3WG-pb$vV!B|Nss#*|G+3&R`))g^hb#lE)e^ z!mmEgwh5-!vw=f!*c*e2>DPJHdeR(coM~ESl-AVM?4QpJ4rJY(h8n#yuHv)rv5wXn zAYXu1MX9(Hch~GX^+gE$643LO7yY$F0$+@kD@PL6RJ3=K-jJx_5|`6W==xZ{Zz^l& zP~+ogik-3ZP`3saa=KPKO>yJ2F=CJL1&>ypwPz0~X@yAag4$Y|{^*pE-sbG%Z!_}l z?onUrYm?TH`1vXvRZc`N&z@`v|5o{`*be?qLXZV6BGXV!bS9|_aRAE{I~(_13?3@_ zg8bQ5t_Sli7BzhTtrcoBmra1k`I@d^G!`W{1rr}(J;;qY;W$U2tlAXmPWfS7rNrR8Q2YB%LTa+~~1kkiX&%4;BU z#=!k~ISVe{74yoI7~3D2R(AuwJC_*tT#y53(ZT&eV;U19d+^6xj0y*Z*uv`V1FiJBW8)WG++&$zWZwe64eKUFox}HLVvHnd(19qOFQYMOW)a%al0wNx(tzr+9@}Swh385aIU}`_ODkSVtV0#5H&Mfx z`E_KmVFiE@E{_j$upI(EI!M&at8_9Nj{rQi91BFcKsFY+SVN~Y!enNcG;4d?Rj$fw zT_lR73AvFZ+Q}YsQZKLMgM1yk_dD4eZzLPPDh#YL>Ixg`!h#rCq*yqRyT~EQy^x*T zo{Src$pu?YMo@}Pq9wcV4PxPCsqb@G@)A!_S;XYO9^E-kX%WUF4rWQ}1ol0ui zJuR0^&`3Bx4pPE3-MBl$me@w1{(Bp*ltS_x`H#E@X&-wD2w)6_3ayd&^5=y&iyTBa z%$!e(D;w|I7|SLOyV1A=NxZb8rz|ON9_u%<>Fx0(dntgPz@VdXf8=1 zTFbwFB974gp=Ur!aX89o-`$LodyPn-;UKM!170#jqlj@WMD)O5%?c@Yya7mtk~OPF zLUv$FrVZ3n(PPgfEK;T7S|^DW)ygXj_cw%fLvK*Zk6AJAXo?!)#vHmd&)L zuMx>!U*&@$CVUXGy9|74s*aB5yAgb+AOYzna2FWG6_v zKyA@|L;2}#V+ESPCw_IbM5Vlpp1ypFZRYS?ig<2LNoTB!GG0{lWHfWY^3#saimQeJRN_V7pBb4K-Z_~SEe-AXK20;HPE(q`VS0!7sIxFGg z?6H3$%g^lx#=`!xe_dGWt!Qu2Acq~&Rp<_hj-MZ8_yxW8S!fppY>y0ldZENO4MQ@t zpI_k#LCJnYrgTpRjMlCf)h4B1aPTK;Fu@!Vm;c*WbiNlc!9c@b$rJ>7weU~S!xIel zVT5rq+s}xP7kU;aSR6vCCR1(mOss>y?E9%R)Wn9_;U}*3QUf{ockrce|{+cE=tE zYv?qjf-vs)%M9r%28cb zC8=7L$TFXKIi>+ztksl3MAXYTZk_bz@vQIsaJ1Evr!*9(b=Bz+XqxAz+Sn^V23WDq z!i%+oQ8ydDzbuN;!pH2l;>3o`70B(y2a2CV9oU-jV)f|hz}WzVGR?|R1ktkE&@;F1 z>;Olp(YjmZ5}-4mSq=>6g%I>e)TNvzGVz*1K>hJsS35`tdQD{qQ@##F7Sv* z7iOpg7lZmVFFq+?7F4;?^7d%ZjFnlh8WU3*Sg-rp&-ZF82Lr4(UZk4I;sw-KdVC)& z3+VmNGq9#~yR9@SaC9lAvZ_JW6JZn7sL#AXqnQ+h>zLojWiu7qBYa`bOwyQ$+_U2r zwTK>_imgirb(p+I6kFrr^-Nylk{hwV`AtQZ@u;MiRrr`}Hw&5a?Q10Do3@^L?S0cM zZHo&;&di{*mrzGz^q#l(wEbur^>5Th-G1#|vrFX%S;PAdr+6h)6%-=ry=aDY1B&o^B(|4wHv93By84M*{1T3IbD1R zPS7{pzBQPAA>IL&XIl$!u$!bur^^KE?^gEP4jmyhD z=v_dcszvv*m38l$R4RX;&hGC`JXVMkSxE8LGlRMz_u4r7(ai{Wi6WWn{6KlupYFSf z`7gC;dB_#_<1aP4-{^{G?9RbnqrGqgKZf3o*sX-f5DFY8Ttu`>{Qvy2JIr+orzVZy8Fa#*}&mDed3pFVCf{*QO~#EkJ5ag4)AD;URdW74=+|y(p;0g4E;X& zUV6!C+bfve7s^azlA(XTxT9R!{)4e^j`1bv+8o=qJ$G!|zGK|6tvj}D+qQAXwr$&< z-(ct6@7v98vVUw+>FPSC&PlqHs!ms)^E|xu+>dqX95z>3ZCh})&5xPdX_=WR+R&4G zT@*5;dK_66ZId+F3c+$G+}l9X@G{F5JAKQdC9G|nB%biqt|K}-Cgt|IzZ5P8EFs6x zil%n7Ghb*C$!)&z^q`_w5vwBGGe%2Ath&I|5>i&3Yk{ZRxOYV-wIaPIKhPeC>}y2% zO?}3vj_$>y72G9D%2wW?oS8vMmnHUK9-J?XB9g4Na_$pvR79pgCi?KTn6&GvWo^SV zO3Wzflec%SQ?!p=X)neh?wkU28<3r?ZA@jx;Kv@D8CyV3gin{=yyFyG~Myi`Z z7L-^40=gkvZ8qQATK6*yQ24k4V{i2nnX|5y$}Ya_I0^O5Jc1r?c<;IcTnKR#`P&;i z_7pZI@zEI^J(4+zjfKZ@L_>2;8B*(YYMZ!BHiq1Ff77d%EZ51F5=6MSI>L>ivWBZX zOAUHE$lt?!u~OLM(8xXb(f@V64)9F3!t|vQbg1&yG(X}2kB>X1UIXhBi}czS*SXn!7LD;~8c-RTd}P?R zFt3=Jl=lPEDz6WDsrMw8KaSqCGMk)v0SwiI1mB4P`>ie)Noc(94c``ur%V$h&5h;A zJ&A~Oc8@%?>MMok>DWyqu1}`_PF=YP^KDtaOnVk;TY)^`r_vFLkPkg?=$VcuTdG?L zrlf~&UWcA%9C)FHxjVagO@h|Vu^f2EAZP3gcZ&uyKji_(-2S<19MmuQ-l(N50u6Ta zmaE-wz&mEoa>Kr<-iZ%{>o4*He%^_$JLWrD88=OKSC663)!Co3-EY!gEC6<*(5sEx z)|sEk!0XP-4JypSWn#d#1y-G%2t^3<32s}xR^tf~WYMc9ITP$O5aWXK zqNSc*W4KwpY_<+|Dtv-qoIXz%twWDna2fBcn6Ly}%$3ZaVMnd!$0X=@MDmy1A|fi0 z^IW7?FOHqcrCqKY^?*VC4SXotg$F0 z8Wmk(^n^zH6%Acb#7}=oBL(2hq}WQj^}`K5At6e<6%Y|TT7-le-O`Cg06Vm!j3&)9 z{Vfj;%(l)Cwn@c{3EV#VWCm6Cre%o*%+|*UV)>hph$uAxS3>X$`ky|P_JJK(M5Ctz}skxDJbQlzbeVa#afji1i zyaNw}T~`qMtK`swFjGj-XfnVrIyD0~7#!@ELeW?-RW;NQI%^EoLWELCu5(qX28TGd z9m{`)7(}|VuAUYc31rqBvYLZ&eb?gD6Ke|I^rD*W%a2%nR0pa=NzX<}ci}v9(MlMG z><>C&`|c^BN>74|Dr3Lg;<}L7rq1_D@~{hkt&GA;&FV%)5UQ^7UY>oG3DazSDg|2^ zS?v|VWOlQcXdOtPLlqT~e4&qm)gfUOngcM=RYsj8&X)05e3gZ2!k>%omPdrf!>Wxh zPJBxyZ#+EFhO`9=10hNSeK{_V6{PA^8LB#roB6BKL;o$g9IVMn#LEe>$5kdEG&55> zONx;@&3(8~^W$G~5Lu`Kl~QfVZZ^~7VM)y>l+#YGbaqmo0qUNVy3@IV*^P7o)k<$v zE^e2UCe)1dz9`$o`rIPpRP1$9il6mnu3`LA(1i z$&6c>`}ho63*avowc5X^NWX;01(?f-r52xR&#}eR0a}uk= zX$5>;SdZ9P3FTazE|2+=QDL;GXhNqb(VAW%o-BkSGu~SQFy_DcQfy^mwFU_g(3&Je zR`g~`EZp<*f_1J#oH*S;90blbU6Ed_&NspU8+WltFReK5;efGy#GkwBpP><;6!qm| zVnKLw2f@y-tw+_K+utmJmgogYcA63KlY?10n-g?i=Lep<@v8Po0+1| zL>r#H&Div3wZ70IZ}i-=Ye~R-I`VwCbAH(2+K**BGB)8k`ImZ|m&AH(18LDG6`%0B z!a4!b6=mTy`IW>R^1M$H0r3^(7JqzGZj`xSQ*D2#hqxp_$s?$VuvmfeN@A(-Cr?Bf zLfkVc0z&+AF$3C|<^Jjkl0C(hE0KQ1tudIa6u<~7E#Vn}%=kYq!I-iiHj`vU#P9pG2J6D5X< zRl)_9B?XA`i%wcnF@OfPs`B8?Fk>m#eS;fsS~xe!tNK~B6sbb#E?RsL;%Lu3IsK;MyRR_dFEo3WGe-ra)&EYf0lUtIg?H= zCDPJlMX4-8TcDa<;-gt@YD&Yd6BgUTIS(U^>T0YK1*T}!>^Xpmrg-VaNJYBxW~3}h zZRbX!xar*|O4|JC6ARt^iPG?Ydt#NStGfvcQM5kCu#)G`M;QNCAYt!+2db}1m#(!f zSk07=n|*{-p8qa0*H+fsYcoW_IgMv!@^y8TQ?+Ab)ia>gVfT0$`9dqd&9dEadw^$O zQ}q3f&VS9`!96U#NcbLdAU`k)-vZAxuGUALN;EjR7<}*se=Nt}t%c2EcOT!#W4et) z;_W#3k4>YVBf#a}mP|2bjl;L<7vA^DI){L{8hoYR0hAr9mj|Yyv@3DM<>;TVf`-^N z#U~ATuS1e@54<53!irzvBbc(`uki)CNGoHiGG6+whxy5apZ9BL_4S!%h0)=vpd&}^QCZXq?gNH6gfiI3jTF3ql<>Xlns2kKzX3DaUZf4i4)*XPF)vpV}F- z5}0|uG7p$Smj(*#c4ud#^FFaqS4L)D0@jhobaEdi_+1h~lbxdhZ7mm=fe4!9p zzA}l)b8G?*GKn(x##`DMN$7p5H(SeE?rdq&70J^*Q8UZK7>GLo5(qrUc__WF9qrOJn`$%^$I;n3_^VOQ< zNkj;At;>>1PE8$F9dCWuV;W3k5geG(b9W-%QU}#`(k^+%%vqLGyH+IdR3dfugn-ZtIggF@^ znK`S+tXGFqOo;wI=8_i~o6eY6a-!){^cyTtt*tgp3+b0=3GS&)z{#aR?D#P?|7L`Y z%L`cZ*0L1Kyse%-bn9Q{{3!yFs$P^v@Ho4KAHMn6H7}3O3@R)ez_4gyBQ551$E?wOfc%s+i<->49Dz0XL}t?RpQb^tX?u@_mw}zj_obkFi(1&^PFz-` zSbTM+s2-R+XAgazEaS0mRHJh83q?Jd!}A5$Q_lBfXZ^pC zgZwqIWFs>npmckr*0JQqD~lJK{WyY7kdE$vr(}f{siy~UptAC(?e+Pqy{pmEF+ z(MljU`qXpAm|1Na>rpa(6G~8WrJ(2g{@xSgjF9#Jg2J)<|4Dvuu`;v$pHR3fZ|#X+ zTnVdy7ux$ZMoTd&VN6ce#lN=$0V}q*5A)k=LzBO9o^Uq5w}Y7fmQN;0r)`&(A@>B}wEjgDLVYXqX(t}Y!P5xNOSVtcY=VBvb3FmWT`H^^dq5q(fo zpbD$PC-4fTX`Wesl*!W0-Y55^*bU{K5B#dub#4eJU(06>sO@I6r$A3&IB7iB-R+Bq5&si#Zi#u^Yp7hW%yX& z@eP*7$V9b5{|$|}$s*wa9DT9!cM_f?_wX&Ckw zyMewPB-PN=%O9}Rbg^QqP~lSq$-4YL3J=W;!Y#b=%wh|pb4v@0rUdDF`eZt&2-?{irK(4A-Qokju@;u`OG4lXY-Zb)sne5 zM+*D07y+9W(5^a!$j;v|ST9npnoa7vt8e#ge@$8J$YgJ0XrVznTFLCkfs`|_u2aY1 zRF1g;c`9e7l7(o$btv7%^8F{qgI-YVUoB(QBhtavq-kPz_OuV=}x0m9L5b z8uRcxATpoCZH7_;fS}Za+CD>ljOi-=TBZ;-U%C70&7C58A z#uL!vw6mvi?!o_SdFH3x&3StAS-Q+|xI7RRB#-JeWa}x>Ypa@jS1JRW9{ZJ59=0P0q)h^!II88(_SH+EH z!MlZg31fN)s~s`{S({CMsWHsG_%%1k=$YvksWPU>vI;TwGbK;*XW#{Mifzu1?k}_W zwu*%t%R#4Ekd?XbFsWsfypIR}P_uH>{W{yS>FR{)TzedR05W0IIYVQhsi8Nux)&K5 zztBGSv?(GsP=SR{iCPYBoYpJT@ldp^I<``|9&AppE&H8LRY2mFSVx<=TiRZl-296`mIW3i? zGa8O#fNdB&+NZ5aj>>@J*n-FkMR4KG}7 z$F=7GQl5#2eNo4fWy-CmXmOi8ECe_laE!*l6Bfx+d*zMDoXe_MCFJ(10?}V#1Q)0C z=|uzRd|Jt(24c7P`uJj4aMUvf&x$yau$5g_Ho4qurt$Z+t^twto^uDHpBZb(WnT~Z zcCA#>gA(ZY`1+nywMWY-tTEh)?4;~E?QA`o7);a7{_Pms5Bc!9+0*VxYz-VuTm-UV)V8)u zp6->;tSWe(t{pJbRYR)sXcyauGuY@P$A?fB5hpW&@64Z=b6|@XLARIB9aZ^Em{~16 z$n!Mq#dy5g*Sg_?5|IF1)6AtrXT>SVsMzTk6qX2IO$VE$iA4yRhZBiKcb_b0c)RR~ zqEig*XqiQ@7|0*ta?!7C-n(vw>SC>+yCrqxaK3Ixyxk(1*Ru_6gX)~8ceVzdvXmv^CFDv8rvBZxeoxyOJa6B8h z#8hjkArWDam-?gN0h7;}q3WLfXMr$pz>f^o3) z_NMS6^6(=eCJzL%FOr|a9lLFgAu__GvCdpuRmBQ(KaGn)ASg%0zWra3AE@nO%U@XFB-6YZ;ObYML z*$mBLl?rmz$5@ zl#!?Jn;P8!Zr~yuJVC~Y&Y$51+gdgc6^6me-d(M$JkZGUrK; z^!;5`6OcH#Aj#!OGvaG6rd8uLxA5hdz?*T*qWgnlsn~a=Ipmg+W#$&{atG+V zh~)UP)V{Gik365!!;1_va?&Xln!QA%x>gkgf9T%J zR*$gYXkRA`$To(-9;k(Ly0;Z-0vZ#sWZliDz^a%uaUCLgHGlLdZBsRRgHm^uqEH29 zOj|iI>x=nNGqRX!*N7+I`yp`N0si9^zMzw5EzVFKi#Kyd9LLHLGSPMVZFM;a*vS%9f#w5+RwQcafMM?0I0nb(!^victZyJnIEU-#&@p$zV}`GhyFj^}b)9Rv2bc_#A-U9rHd&oc+

>oDXAQF^ID8Tvo+kA9Bsu(Wdc!QD zRy+KBP8Jxi4-n`1d=3s8m(BSM%1BNm`zibR23%l*{Wf(Zpu9D8B+iE7)HnqRqVFxn zj+QCin-fMlU}U$I&3q%&C-~k_e+SzZ8~lDw<|l{wyt>fqnNOEKWcU7Zde1_* zdoubM`hkjAwA;MDoDO5zB{;N&Y3uV**h72G2{!iPo2I2zbXD{Xd?Yw8%SV=d>y}fu za;5(@5oqoE)R5M+Svpl38;Y`Y$+@x;apXa?5MclksD#(NvyVxGsBYFoO%XKgTInln zjY?KrfP8|r@^r zjg|rpPe=l#NC!U>!P6H`mr^r1YRU5kmqgfmuzmF8K^G%}vn~{p_?*jDv+(wxn`5&lemT_5Q z*mzCCo>^f#q-JVDDFwI^sd=b^Yczqd>%-I=(+GHGcI2B{-;)T*TmiSu2k%&|mhIF2 z&q#qVT;2)RZo(!?zK#BgaV>#;9>ei3xe;fIFntjh+g`zp z6|~a7_`#8NiT|BPQYxY02GAkQI#HoCb_Cc5Kxrr=P(GLCVM^{=4`=gGrKG)2zs?yM zLSvfRKHnKN%$pm@dvd$Ws%@fy3!kKAOgomh$yRh6*e`0@=If7|_8m1eZW;zf4ou(U z5Z(2GqHg?QND15}JuQ@wA1;qLhVgTdV4^S~lWmK{|S9Z28 z%+}^tV8w`PMw~4*nl-A7SYqwiJ_bpbjFO#htS+paF<-j5?ZdBRNyCqMk3>V@A=hh1 zAVGPn7(~Y4qeMilJL4e4QT{Ltb*}R~dl-kz2@Cytu5aI#F)S&jU-J$UoOk`^p}`BV zy#xK>T^n=np%S5rwAm6{kw_+MntjIc2}X+!l+No|HkRn1xB-Pj<#cCRHhZJ3oNPQy z2t$aZM?_Al`VM`X)jC8CtQgnYz>V8&gnQlp)p|%7GOdnnW8BtgAU5wCnjQ5a8V4xdZE5#zzUCrgR!uur1ah1P_^|n3y}j^?@M|* z%F9xU!oNk$7DXth%9wJfakwk*2If(!lw6oVCT?xW?De$9D^+DY-L9V0v_PgbFbNmM z&n$=s%S1;EegpzeZ<*~Wp;m`UDMXX*cno?m2&gN7ZJTeokgzg0!1QSP5HCm979-oY zS7^}8p^}ewFVUj$pr_?gs2&nrz#wf#*cj`+LeE|YoIeb>eR2yNmhEV{-B6J7Q~z%K zGKyP}C6Twnj z31fgblr6xv82MS;PPE_t{DO8RT>=#DUME3U_hFaDJT;yMTDYhSabelg9dgFg>G2&& z1*A6%id6cL6WmmfILgC%?M&xT6*^uiwpt~vxPbJ=+w*?-Hcl_JJS2AbeHAi!lxnYA z^qq5XWQ|WDQ)LmNEpI~8RL+EP)~q<=7yLHGF#WcXl#lbY)bnXVZ&%Dca;(_fa-5Hb zrNFOd!j$!$VRD^vQc9ivWOV06a$YKQ%T)X3<+*jQaO+EFkLef4kR|`oD?s?o5lgw*_K{0VYh}~EMw?|j%fu9 zchmZL`P@x54AU0u;JDAIHJGakmFK^6EC$O(Z);wzsOv(f9)uthn<9&A&3p zqN-O7wCo8Y0!7GKGc~0NK9Nt-%7Q2G!Kyddw_RD|HBnrJE|fRhJc=Z(7{;PTjA`EI z#lOLO%hJ%?>xzWBL0-cigt-Y$;Xa~V=K(N+!MSsfuW>ey>Oe1ZFsfrnZhyW{vxy4L zMh-6~)de^k$qHWafd=G3q_%gq0A+T{@2b`%gf&I*M-~H^Kr;%bLX&YYBJv3sEJxyD z3>Vr>*i7{SLhzb3ca)DH6YYlwhyBIIEL|735vxi^%f|%WI4lEGUxe-=+C+${*qCnI zL7y}S)9^!anJ5@uaIqAlTe1_UNld zId^I86KaV$SE3AD*V7;h#6bI!bXNpJr{ehGl>)|T zwXKpyx*D3l{w~t;NS-FEx9DEz7tpUJl*4v72jDgTouhx2CE&iCW8)`}P$?8Rm}_o7 zE`abJj8r`5w1OJo|KlhY-7Jx)A77s4e&GURD5sbN!qm@lzF-1f700{rcNMR0D2-F+ z8Fk9vSQd{Sfc%#q7uEeSqqK=f;%u>^9LEOIyQ^M|vn{GdNM!bipNCn4I7k779cXb^ z0qGe=xT{y;kP!HkE9KtQeJT^x(GCQt=kJVUVk*~WyJgAp^uRI_-~L2QqFmS;r>P05 zl21voGB0Ftx^>#WMR_HnTz-FCn1Wh;W1r%JvWH{m|x2(eeA(U+394N2eU!sIH zK(^uyT6Ns4v7{6Y-f-{Z^p>MKa+?fPBlDI`NzR`91$~8Hl$<}DpMNK_)g{j2a*rpI zTKm2olc68j@8#_5!i3^6>zN`WlutC9%-Do^)Q1k{bWLpiz%xiVcubog8+cgV^(m|h z1UU}78)E~@&4~5M@WYyPjR;kTGMkp{;7-R<}csLP77hegr z@k4T$Hp$x@RqSaGwj_QE_gmZUHjL{Ym|98O%^N|Xv(*5An^LD`GRTP5Kg%J}(@f6g z9K6nEw7{edtb5`A1ZB} z6~?Qg{$YM-Q0Hlg?_T!9>PpChi97=Jg2HDXSXlmheX~2UIkjvs*#6;^lA|H%F{O*c z8Ce~z7|!Lj8l>D^E8mDUiu7~Kf#tz|=5069n2O#GFLT2p6UC`=&PsE~IZeb?Lg&Ww zv7XK-@}L(#+J+NGtmbg;f_M1X{K7HEjO|5#b((8h69OF?;k-(|!95|t<@H~7mg~IR z%855W5_D}E)>L+6Jcd*s*Dx@i_=phMI z+haG-uZH6Fhg}ok#GTV>48ArKB7ACFz84}ZFbj--Vrx`(U^y2;D~+-2Ne#rb( z>}0$-MUkcE>K^Y87W2vPHFTLcN73|`NHbS{YIUY8fhtykTWb$js7!{XUF&u6q(8k7 z9qfeaSD*xSeS(;ArVbs4^um3UAotjBOODY;^1=9V>G4yg8U|IuG1*^*5@)?&$9jHe^GFlDf%X6+0FPLWuj&8kNe z$jv{*0s4P_{)gOVHO=S(SEA~;R!u(hqwte=^On}cMn+;1atr!j%2wpGQq6)=pZf~$ zfLpjQt7Q4trNYP`ETeBZ5El`!Gc-F)%L;KDtRvV}mLKDnxlxd`;4UJ>V|2`E{}|6J zQGW4fG#{;6*LNM?Ox>@vS?-*>EveYRAAti3L8Lav#_VgwW2MQmcUr5(5hKZV`@JVx zB%TJyi)6`3Sg91rvMH-OaQHTXq)rI(i8MtXZtdTI-Xh}Uxf!w}pEBbfkjl<_tV$f? zrVzp{AI+8dT;6y$oH)w+QrZx`*~clHC8UhAMKAb+_7YU3fyLdxZJ)L70 zl9In??{~8gk|{xHaW!Yta1`D@?F}DUL3{$sBc~eQ(nZWWtdsomuS8r>`!%H1wBXdV z>k`-Tia{C)TuJ^3w};MOm>3Zti9>PR=`h)euPJh zr12z(sCloe@KYbptyvfwakzi5{e~Tia2XZv*d-`iu9Zz{9r^I0xRqxpiBVVVK!SHa zi4d0S0GXjsg74>}@Gt7?I!(jxmj}zNL2Ye_V}NthQRE@|gU2~X%F44RM~mECSHhmM zDQ>Ydsf-+rI6>Dm&6&znXTNp>qVc1LOzY0!Ic;JsfU#AAVT+dr5Aj}kUI)yMYkO`` zz&&NX#^Jf^WJCV&@tl<$B^ZC-EvjIQyE(`G(RtKB{+820kigOTX%P5rbHK?{@J1rk zaJ_}mXIaYMXNjG<8;7o-~y2s*S{C-So{Dswut%K-VrPD{+s9?-S z^4tLau-sjF>fFJNuUf+CEwOU4^ag*G3kiG0)DYHEx<=~y)4_%*YrB<(=e0{AXksDM zNc?a?7Nu1M(!{B`w$^sjniS6oR0|cMFLImeI zZ!13TOD8NXEl-Z8>XZ)gArAq59k?$i(CR7wf7iF(H*U%4ZdtSElcHK24Fof?c!zm^ zO${TtrzuL##VmSnpN@-DEOg&5bwON;fG3%q(Ks&bs77&??o)5Eiawn7qSDva# z!)=&^EF1lVtW-dz#}4&-qWdFr1$W0uGcrLQAVf257>-2|3x8CT5BE&@2Iw3|OXd|^ zHYkh2z1QL3Z7EtHwCzk;2eqBT&dufR!|V4jM>~+gC(@~>>$3ogXrb9P+j?4 z8~vafEhITqSZCucqI?F*eCqRhY!QrtCdF^bu446~G*IZP45{+%fOjiDyACO#^_x6!Y~H6}%#}AUZlBfch1Tx8rloT!U|lsnoU&n!k?nD@SM>xu zXn&Ws?H$U7F$6EXG5^Y&H(OCN17y{{7lp;{qfU9!h=Q zppp&GoHH)`-~r0e*)x)7Hzx(+N@jB+8DY}hhN2A$C!`ug`6yr`yF|yX&c?Clts%<+ zHk7IqhqJ3|D?DM?mGolm+BC@pi}9fYbt68cg1X{gE57cu_r`i{7ZJ^GM!S)i6nixa zZ7~~4*%s#ax-s_m7AcbkRV#cOXX?IT+y8CkvkjeOS~tlZgO0Er^SJK zhSVMLDKwzb(cH_!8YtNl)LXSWsolu8#*BskT|)h-ICp zYyU4~6x;tFGK!U*jq(3NM)AqjUbWc(0JPH`y{GYL)Zx8DKwo&y$axlovw!0#fFmf( z=h04Q7|66+ysRhqU$$4|%+zk)@Z-^j?0(~js4e&+y7eAVDt|1|^7(w9wDxol`4S_$ zX~5pTZV+yNJrNT4x&tn7v2Uv211xObT62-ayckh*z<|#nzdt67-UoKR9-pr;0j~?b zU0iOA5F@cb&;H1dgbN%bx1DzT#xGOIS3T}q-mqYuc9tSFkVAL{4F>(`B) zIebJb*8R(H>5cWGu;Tn13&L4rhG0q>mGAZZiCy7R)D{j!!}R(arT&6K$d0q!zzgNM zL;m(kn3-8GNPxCrL-3r3xpwS1_C`JAgjY-$jWr2IAc07k{e|Mjo8Z>a{^9b%yotTm2M1>3GV>sE^HEyJ zX@R~sO2gg;Cxb8lAgQ`hDB!&DkF98)Recb*P=1+2c^+|AHRu4-xUMOp@X_!_R}1Jk zpIvy!`T$Lz4j0O1eGqW6cH*Y{dH2LP2eps>x0c$`a&3Jc4IsG+fvQ0ZALVZ!c*7!=Ej%(?~C= zWT!7yFCGp$x@-+$1PZ3KttDp_^v?vhC3IhosIJl(Sw)uQ-yjB@G130y{*Zq!kMPFg z<+Y{TjlKUU4thV&y1z5R`nrA=XF>*%y8njLF&O^T%!N9ng_ktk#yFIeqDA_QO|r&W1Qq+wPCnh*{M z+IOo7fi=ol9sxpaG#2t9ONc!p0#%UT2)qcCv_{y=}E8GNC z3k{fsu^+7n;%EqNfnK*kmw5?Qd3S*AA7A(g$GFU!`hYrbp=(qozmOmCwY{{BB7LKu zQ(u2GEuLlzg*{&uT9<1yg6{IvKt)mWMMKz_pIiEjq^LNa$|PfCsdQjxcvxF8sCs}r zMM!T%NRt)-XBqax0h)~((6jjizP#kmyi8f5BZBA*CIb>4preQFO&$2vcpsMwAYwO_ znd74+e{rc$RbhpY!blzGy-r^rdA&rL+b>uD0$Qdga9$hqPnEMJD~@DSH>3?Ag@$d& zo;BqcS4rJVt=5P_sant*sQn>JWAjh2lQh8f?b`((jGn1i2Uo2|5d@xWN(Mi&pm)*9 ztz7+i1O?4aO}V=3u6Dy$1bdRY`t1vR*ddiE?Ip7PTK6ZbpBlSf+{zfxop97PwYOD# zKiJ`Q4af1gMj+K}MoiVC0aK9t4#G8AtelC4nVvGovfrt6KLjS$26W~lru_*_)P{wB zFf*aKD9iPoIo`yeLI$~fWB(XZabBeAtw`R!u*=B~OUIGxsb&S`%mM-ZD(-3nz;rC} z6RwnoV|7>YPeq1*$@+6AK6?0TT_+o|1iV~&o&P4)s4s@p#}-iauTc_axSEM~s0fP0 zh-}>z1{Eg2qlJ2Ew#DFVrs`dVCw*pPLe(AiKWwV%n9Zb(28YOI4!2wI(UPsNJIt4zdZ9HVeK#iv++gKRZo#E#bUm8t--E(K0g9E zdQV5016`f22%^(*!+fKvO!HP8<#oss&w#2li&kwljL8O5OII@?M}y}vAqoxLdS#KM zuRX5aaQA1N)=6D?cq0oTDFgu?K2c3tk2b9px#~M73~!Hfwsgm(RVPRhw$s<|loLV-g%`kaNFHXdB7Jl$a07ES^ z`ZRQ`cv&tChmhOi$BztzF=u1?h(5oV$h(Gd;$1$?x|b1ACC_zb0T%y!H`a z9<=44DUoWWHfDGk1y`3576q=N;81`3X5B7Nu%3Ztm2jK9~|T z?#7R(IZvXMt+xEhmalSZ$+%G=;>WJz@$s10rZNt({gCC_k>&dc}5Ur1xBwY~_ z*wQS#?EOEq!j5RAhJkPYgbf||(YemT$LW-g`gOsLbqvNR^5(IApq1EePmT`S6L@7Q zj9t)*s@*4pl8l{QQN*n{&GK^^olHN3rs2~3%>vz(m;}#<(8)r;$>4O;5OO&q@=8k@ z79y0GFnR;?v^B7QtU}6ctT?wUTXaOx66fG(;Ff)mYe!BSvzObta|<7P*mo=Q@7HTn ztBhRYp}}~`zeJEQy1~gNEk*+uvr2#v$zkP(_OO(Q3>7N4RfEyV|1Ck2ZkYYaX85k; zL!;v!|AwSdhQlPr6TB%6Qxr*YYi4|twoALign9`T)1O)3^YlxI5Rbrxs>!7iDi?ti zOTspH0RQHyVki5BVmfT3*~lrcP^S82IXc*0RosZ@$k4q8(4Lf~c!IKT(Y+~+y?Cy% zNS4^BT>^S<(Us%Yb21me4HSLS`kTZEm}q*T*$4RuW~Bya|MFy!CFW3U;0;>_u9}q^ zI$h#wVxeYM<8F&Qx>NHVl?PzO@G2bsWT|0k%9)RIvN?~r#%i>mXKC~Y=LC(z?}aT& zokf*J+-fdNxNV_!XLEjuK`NIz=x?{0j)owz--t)q!Q@;^kPEkF8Spr$iJ-7xv7)9NRV#sr}? z?+}0ZDh9dc@!Q-;+20^+X;{=dItU=0C-P%Ig^jW2 z@zkGM@cJ#G|MV$|G?2`5Z6%ZpVXT97-65=(lygh33?YXP`NwW~pea)^wR!k9{nqCp zG!GNd%6<^k&XP=-lZot7NDM3U3FGpP7Q=M4rWW5^C`LI$0o0O&%_aeapTyX`WcyWZ z&maEzP~;;AZ=LcfdSGO|_li_trop1z%n0VqKPdN+Jdy;NQq0W}$t$^I$Z*FlJL<+Vi9%TBJZs@c zAsB#e)(3e#Ck>=D-ga!?4H|E&RGD6)K^^60$yd!5%IC$_GRf5GAR7Pd;ISywV^U@lsZh_zvY z^ryJ4bb8p_aPW4`*NZVLQ}0+OQeux7^CWRlafKq`(Z}v21x9OjY}bNpi5RL1-LHpj zN(RB7W1)jT4E1zw%NpL2dSe0McG1R4F;RNL|C|W7ZM@ue&`P>nnf_Z|suhOIG%>t#84(UXLrY(dRE^`08dUM!gS69CG?IT1#A4ed4* z{(w&Y55~SJIJ01lHp#@AIDc$SY}=UFwry*oiEUedY}-yIwr%s~)_u9B>O7pP{m}cN zyLNT&-rw%^t#2&>B@DbDo70V%TyXh&LKe1OVrE!oO8w?a;J{g}=>;>e!-y!>F5QFE z+Tz&IF8+g`inl1JIm%Hu#c+#M;Ay;_@|}k|2Z~kezKLAm6r~qv+@_C%GL%g>8)4hR zmXmhvQ%V@897rEgHcDF&4ahdFF*@ z*h%zw-MnUthL5zqcv!QkQhd~4nsV&u;|aJVGSUU&U&2&cf}f;KkR7`pBmDhzq<*7o zh8iN~OntTV00IjveSwQHGZx&s!j(VNQBr=>ONUueS!+aFK9Ux10Y%s=d=l{dykw?M z6@DI4=Xe5#cN5ebKe7~}*;|^F=1b-5HadQQ>(TKk(14l44Tb}nVxQ;i?oi%kuroAuCNoSFNyZzS_- zoe{c4h5vJX54U-7$D!dG{%Lm(=-WVr5kb0X23MP zp%e=^|F0Ic&guPon=O}xm;gBJEWUiEON^{{qtU*KMd$whK8Ub}f_$`QMM-~8{a5!a z?fiLM*5XvepA6cN8lRBH$Ent_H~BZ6puYLT%8}k~vaI$b`q#3o1hR(ShsA1VRvMX!SsX92vUw(%}#7rJLdL>g0+UUe%fc-MX_n-d&=<`mJc_3jHwa&lrNq^pF!!0MhMBMGgAb*(K?(W;tPDoYL2%! zbI{j00tcEbpjnAe_o}~|Wj&eih627VD}|Fy$!@zpbRQVEacblGXn@slm<*jAs;Qcs zg0owAI4-!^h8u`~s&-(_`spX3=r83kc8tY&HsIoYTovvH%kbvkL*e@*cCF%g_pn`| z{^5A-f|-HF=27%udM#=-)zFpoqSCnW5KiStJ5;*h${2bT1SRTHF?*edK)>KR8=Ex+ z3FMB02DSL8sXj=8s#&_Y-^SSgIlt}?y)Dj`1_kDX@YyN^*ht5#_Z;%uF z{{}g+ax$>}2jrw9T}|3QCQdAmTTAj`7unuzpux_ydDYK z@^QjW@OA6f%XUq5H`Rx<3Imhqvb$Ga$;sl3lu=%R{BenPg z#!hI+-{Je_>v_PQ0ss<+|MPs}?r81F?+x(X3(!>^W=MK!C&7(|7lpPng{}Ssctxb; zF|fxFmJ`VCbv4M`S>yj2uKv7!dAayJjo<6$vW zXBP?Ki}Q{dB7E!-!sXfkbk(-%2K}vwZrt$26_b+czIlKRq-w?R_VwKCUo~+ zymfE#^(IoKGl}*KVj&Ju^zl>KM+P9IL#`@smf@|6abC$USQekRfrjAst`P1*V&f_f z&(!{Tv;X#o1eAt`n(1FKv{=}2cN9Ee;2%cs;P-6)aD9bgad+ndeT52m=zRARRy)>! zg~PL7fZMpm_Rugg*!trK@30l|3+LP!`t>vWM8huRcHmJ0ojiRtDjj6KMz5+vub27^ z&#WVmQFTD`->ZL&_?+i?_6lQQs88Ve&WDA8{!lcY>uTS%dtXn?O&Ib|`z6G->|Azu zH`AI=zDwk@E)Y&q@sQ3f2aUKOZ-1A5k0>NW59XM`?%~h z_-ZuxUOi|S`{?R;VP`fGoGU=$k)Iq@-4cm_BSuYl_4{(`E||co#!iogsA4QIi^aNQL!zR)qm4(PZC6o{!>#lQY|^bcP$O=a?La@3nStl&c~D7)+PDyow3c z#{Zj1jV(hg=pA))X3d&Bz>p)A3ykkRoaK2C&o64`T#?#}8QoZlo{2POyPyJZA~k{M33{Bie3E3qtMG3S=^b_A$M zRinjl(aAwG7Ak^xit(FAKo^a^GX&Qe$D01yVcgxARe{!f=`1?PpfwuTJ>M)}Xr9dA z`UR4mzk;1G4|*}Rt4rt!v;9B&!7Xlv@cV!UtIy5lx(2-bIYQ@npeD~}Rr{3T=2&D^ zK5v2)$~nC;8{lldgo0!n-JA{d{QYKwc4XFk?uNlCwHx^7Y1QasuNv<|_$LD}vBA)Y zWnaHu=wSw5PFW*51d78Z)-TfA;d9xNdSQ!5kBbGEK#CM86qB5+A%4_pJQ*FIhkjNw z{V#7ctJP7ANL>@?+)0(C!_BZ@>Fi*Og=J4BQc}sDhRT9N(E^icD%a+kgO*hg-LUeT z-0T(dseTTS$XW1q`m{Wi_4XN*rv)6O&X1i`Qwft=B*yGCmAA$f^BJix|E(G+L%Yoo zfR>Ooam#Y>RaZkIj+vyQ8oz7(U>Y?H3hgkcU`v$^BV4*WR!LMut93VKO$JY-#yO~E zS<;78{t}G0dd9GS*~X|_bFXd)`uAr!?9Pn^Q*e#X>bGKyilJ5cO9q~;i##HuK3w9y zlb8-$19f^ybTCLStEdv0o`!Cq9wj+C>{xqGaeLnY1_Y`6D_EF5~M>r`cNopV=GpkBmT)w+tYMqeRuTy*Y`-&sw@y=0li zZg_P+03B38^Ei!cqdh6vy9_C?Lc3#a8pNafXhHO=%o{L8E)?JfWmYp>2du5i0LCSN zm1vjpwC7ftY+%ni?n>n2JK`#};8{ zsXzPQZesYz>+44jyk%6ev5gfG^Z&Tu9|4P8lq^HR>|^yP`K{r<*G*!8U`F?v>9ghC zns1nuWEg(2yPW(($@msKhJ@R>XGxN37RJj)@vOfXx0daFb;!=nXUbaBRd_m7R?(H3 zigfO`-x{c!tfjU3wieyzRFLwWN_o=g!wLJq_&lfmk$jNd*Ka4#jNm5Lz+MiGe^V@#zNXd`nO9?zqj z{N|h8mW;$0DLa;h*zS>Q=n zBWK7TvBQE&0T9$I;b0kvfueE_W8{dvzPd~Me7e& z*XqFO=>@<})x9!ZdX!07!TVX>+=Nt=AXETfY5N$EG$`CpP^hTCPC9)$)CL+oqf^`$ zwdEnCXOnxIAq0Alw;G>XkYDKFa&0rwmw)KvOE-4yKo==UYQLcw%3OoU!Zpq_86-WQ zI6nNsDZI1;C!*ACBMNT zf0IBh9uhiKH}bGjaMR$Io5U6FzJAn7@5_SNMhfBr84aas#g&J5RIiDtK_%oOI6K^l zr)zfh2C)mH;q4K!!mK?~z=BY9?f7WxNgIf)tgrE5;Rn!Em&$bi?PQZcIO|kN1>SOYMkQFXAan%Ty|IF;HU85 zC)P#2n4F@3aa=K;Hs z`M|2lpMUE(;Iwo~OiD&XHm)gqymwTv>lf2pP9{e)YoiF$Fqkq4F_Pj{r(y$;WSEGt z*i+%+PPQLH5nM(V+6mp=a!bs4i;IctDL0Ng_T$w#34O;S#x~pa2ExFwj;C5j#td=Q z5QIRD%3|HzMwoFHF+oBbZzbG#oj)$DdGk^lG85-e177YtJxBo%FYge-(eqY+ zU_l5~xDp_~{~xDp?Kmol|iBC;J_QMa4Kz~`yH^#3a+8na8te~lviS%=4a#RfH4>JGh zmHX#dm2}I{9^1Y_5tU1BGa96!cnJ0pzO(2X`Yssl!ZN0)hNTY}C-F*Zz{6N_-aErw zRL|p`M1_av!(FaDx3w+nlHlOSbiN0fO_)Fc!h(ZThYZCk(8>IMytyG_sNdki$4fr- zW=mazgu*rR^+|=WUSiXXTRug7~a zH`i{4$vwBEF)JV;p(KoZELzptQ z+hK_}hfi2yzB$&n;shU7M%WNq+*gESc4XjV0y;AoS`29hGOHdVAnicK55Px(g`$Ei5GarkIOtp zcs5=Bo{^$gD|ZBI`?m)|NxF=0KYzTBB~;f%503pWVYVV`=NkVFVT|mDX6=^AQqUVl zi$kaeHx{-ObRox-gw+;J3I{fhLe4g{dWS5oO{qfz;5S>v>?Fg$4wzcK2|K>zqc5b~ zO8(UaG&xthe4y@QNGXqWX&0>V(Zj9S;vK#x$#0xHt70f7LIRxS1}*ugf?4A_QBgSf z$byU~T`q}~jfn5YrqV526&gKS@CXs_aRDBhIz8>Wm7-G9+d&H(K9-#Tgq&4ruM?Ua zThIb2ghcQ(&d(;Z4B-kLn|8~_kpa9!mL-UV6C$o+kvw#lQ~mr$Y`ZBENW5h6@w!o* z$xuPy`}?Jpi{md8Xrt<5DbHzk>&QH3hBF)`$Od|}Dv;IV7~P@fRg68x&E76@-K(TD zgn^7fX=r2w9n`DvJ_vzgg%vEsP9*hVI8gypp$U&d)`nME!-941#;>F=Rf#hJ&ag2* z&^azlhhbJ2PyR#ZW)y1{e0Vm)CQPu&SPY}kmGNg&kqnPKH85bBWm-fuO`%NijczqI9juv)ol14Z*^E4LV|gQ zA+Ywk?bh{85{Z&AT>C|N?Fb86czLxBuQa78`BRya(ghjKTk{RU4#szfp$wr*7S_y} zDY2FwmP5;mq;p_L%+fBPQ)VIg;78Iq8AB^f962|y7#wztrw9~U?TpKqqgK+451&6q zwBY#Ty_j%gAUs;OC&3+Pu{3XUaW5(Gs+f*lykl#JwpDI!;hr!Jd10t9sHF|8@Egcp zFo)TlXG~8-igwfYYW-M<1#EnR_${2xW!$9ahzOe5FslH!r_kE-$E_5*5e5V^xKpOq zSun4UL(PlwMGB@((iZpB+pTRhlZe92)aV*Nuwgv0+QinO|MvH>Vndkk{9waht-kt zS@vk2>=uJ7$2lP~W+GdarNqL5Z`B~T;-BJ&hFe~#EvSZPFDYPwz`Z#u*670J>ueOw z&8Suhdj6-!z{ar!Yo4W!j>HZskwjGMvcIk|1V;LY;;?eG?|>JD=2WFYguw!QFajLh zx#Po*zXz#_)5fzLZm#6(F}$d=s@i<0Ro>*5T6^*3E#sDF5tdf;cn(gi7JReIF%CyBL^h0`=P zIYL&b-P(nk;VTx-PQM3&8jg0X;foGX1})FE@+ocV`yGCle!t@1b3le12U+bU7_Kx9 zQ9C&SB&&)g6f8ah(g7HYkEf~s2zEOSrAuRS{nOg2L>w}t5z$i$1q)tOOlv^zeT{7V z7I|GxX)2Er((W!KzKC}75pZlSXMWFEJf&asc$LiqU$Cl^)Va~? zU5E0)>Qwv=hu>%6U_5(B!OgRz7n!YCcZoBgZxK6tHC_j7a>?IX1}&4{JN{8)to8`V zXr-FbJGt_E&T`V#$u^;H3dU;6rY>qUiv0`>s?!Kojx6(us^O6R04oJS-SQtK9G{rO zQDZOh@bzxx*sg)+nR(?%-x$Q*`dUiyRA+7*~qL2f_S*1Tpv*mOJZz})lmM<$! zB$0m&HMQ7exEgR=A=ue@#;OqyCstUDr` zI%DLtMVW8T`lHetPtwr7qMW{q)&UFm4Nij~R-p3xRrXEaDMXx+O zx3g2&BCQtxNzFzzZp=rp>bnOp^Fx zeS{WtDKxUWII!n%=&`n;QJakoaISyA)kD8$X=k6V9{* z1Y2Lga4=a~!uRL^id514m-W^Vgf0Hhn>_;lPbk8EtcL#vt#kfw&^kK<`+w@(>HMB1 zZI0@Csy=oCv67HnfMQ^nd6*r-2eYn&bVM|@fr8^!=ho1_yTVjXQa&w@mr}7a+X2Z| zl9P+brwk`1h{q;M`ssIRANr<7{8sUB`*~2ZHqHKtDGBaY1ajH!?e;c*b?Mjn;hoTj zU4&}@$oRUTPDIH<(N6;l^84Cje>&->=U?aZDY)c+zcAgdYMgz&6xfKP^5ge8Vma9I zc@?{xZnv|``TY2NxhvUv`eIw(`FvQ~nAzgv-N1YJSi7=ACD7a9or#5opzQE_o4;Uw z4Glp?>gDS_9bS5}`#NL$?COr%swy?iKaD9xfuV2w(boU5_SNABsX|UYZd}CF7pHca z^r{9%lSdI;9?*J`~_w)Va=HTk-GDA+_KM@;e~V5Unlcj+cZwu66smwX7T4WdRF7xG1oT|NdRjqSu>qG2>)Ab=E|n>O$W-pM>E4G_K_Zr#k2F!-h2vYy-lAmMX>k}rfjzhV-;V-oL}4^rZs8r z<#moxb@7UDCB36=;ZmxAJDdFY!k~v|;$Nz*&epV&=Xp%XeQ|j?rix>*5s9So%zf&u zJS>5+JwrTkd}cce$)feb-Zq;7+kZctm{1FRd;Ftgcp`uF`Ty9x(@dxb z)3EAshlnYOB==)Fnp06Nl>IAhiDrFUBdU%*e%^oqOJ<@P;Q>VAX7Ua1HfFL`9R(0Z z%v3hnW?lk zU#9ptuF~6(WADj@#uw?OtQYX8?qE#$o9|(GjjyBUra)UeDY;5QP!ndUrj5SDgPCH; z&eaZEvFSTmM@2o-roUo3cZ8T%x!i=en-Sq3#gCWQ! z*J={>wh9=n4NZg+ONzav>`_hbqYK_BUDbCnj%Sg@iH^thtf))O)N&D0nFt`IZ4f!a7^5Kh3g=uV+T6u7Tw2ku8RZLr$2%8!8gUJD zzQlaAgr05i;>jE4I}e-nX+eh;*Du(N!Clt~fpUMNrY;&wYHwDSq(|H<%5cj`2*+A8 z62SotpZlEwHR?hyyy7Ii=--#{bO^lBJgAaqjj<2qhYVio$>TXZ? ztTTTcP&D|0Zdq`RHs?-f&=lLtcj$sdOhABR*905Ye?8r@$;v~(nLA2 z1^Y{EmiWDJC}cJzH)h~tImGNZUf}^AFc)|&F_qB;<;z?S=Xk5!ZXjg3LPo-=Y6@Iu zpHJL3eQspGAvS^8A$$YzN>I^XH{udJ3@9ik=qIt})f*lbd>uBw*|}I#MCx^BoSO!? zQ{-eimKKw8WzGa4^OYuL-JE3(LDe7vehi=EA>j2L8%xxrQZPKB`)~?nj{f$jrSy+^ zSyN&d=R~FnzUKO*t$-D#jueSzQLPl}nR%%cK{L3kS9EnUV=8H2vh6>4+MFGHt@%{@Cu6X%7JPk&kx z;I~&VRMgkzG02*DdbRMmoRt$6K2eei&tG4>Qo4THN&K!3R zm;+4)MN7~O&@fF?ysqa_^M+84OcUL>hywbJO8a+}VURn}WaU7oWWJojuMib*%kwz2 z#?FW{o&q?O9m<=%)k#tjY*1~**znROl6Yu5?R{g@ggg`0psVfx4RTel3{X!8!gj{K z#~Vgl$^?!o59O^~B3^@!yn;cM!y+VzEOZg2MRulw`6?$E=w{Ah z+xOlyVjhC@|5cir!gp3EyUxZbStCsR6(Dr)0STHO@e8(wxSk%Zs?AA%6Yr8iWra!I z2~NA`>{(XMti#(~dq<8`*eOXTnY!b~ylf2h7-%DXtkDN>oh$2vX3cxBY!m&6El7uW zA9#AWH~1au@l!adZ<)V#-o=Oeo0+GkSO2tL@WY6F`tLh9^H6N(8&V5n+AiilAIxT= zMXwq8>Qn~t%_J9Q5tOXB2(aBSHEuCRMkHgp&;8wmnYPwJY#I!z4i%7iU7?7bQF!FvR%%k$#0G4

  • Ps)5OaAsmy>+h*TZ9!AK(KLl<<5ehdBeOQ65vu56 zZml8hZpoV_**mSS9tg*xEDbw~f1pp?uL@@Zl&jjP#81$iJVy6A`Wc_sm*)mvfN#ia z8vI8pOKvJ)PLVRUX|S~c9j<&9j(f>j3>`W;oGb`xWb}vSL%U5;pqUxDi1kyq&0qnhX2bzs&a8`v0b-l7w4tlz=e`i66qpn&lTDVmt0#>6ucXMl%W4T+H-LHm2B#*i~ zr~L3WMV<#}DD+j^<6Bq%P^C17e_cZlg2BuIwN%}ymn3)3=D)s{f*Ozb;Pk3{%?w=d zI71~+9Tn`#IZg%s8Y-_I6&YQXft967x%qpOc2#2fo3kTOy1oP=@dll8FpTNw{HWUrSgAubOIOA&$JkQNZQ1Kv(~d9@}7dbM*q`J)VUUhlOeDYSFOA8IkG63D$PrS z*(~^bF@kl)koTNOO!ES!DqJlbM7(w%c{$-ONERt)$+QwGZ?`=kTyUO_?B&GYTXmPp zR-C5)5hr{u`}ibK6Qf^PKAZDB{2C zeZL9^9V@E<{SccO8xJC4vC@Y|>$0n{0hGesr5OynQ>%DZxHi#{!|Ah`CT?UfMqR7 z^KkGTRr`#H4mP@xlQ(aRZo24jQ}RdSYEfh!c1C4ztQDt(UFtDR2vru@Il?eto6yb- zCKqfJ$e&&HXo^3=8KnmZpFyL>xsUv^^9}DK0WFCz`TrY)hHsr`h!TUs97AYy5MZAy{}MMiCd@^X(*vx z;CAh+AbXYg;}JW6MZPWwoX?gK0 z{2ut*+y{pn?t*&xI>Z}I)?fSDRa=`MzgwI4_bFK@wSjS-e&Kz^KzcUr6a-#Ihyubw z$TAdNw20O0usb;py%e);)38<85{hG=*S4Il#Xgb%DSWlpRsVm|fHNbySf%3iX%4+w z&&gaASn@9)6`c4RsN*n2ECcTeLYQfogH$o4LSpL0ZbI*c%$j7|8z#N2$a0-Ob&%}I zhj*%!W=h(8Ish>c{Se*ms|UEsMj)p9zFM?$6IFZ5lQirr*o?~dW3FO2%S4i*wllgz z6BzK1*s#P|;zspDRe|v{2D!2kxi8agg-i8STsK%UZ(~~lvhI%_s{nMzZ1-r4XPXYm zIsf`@q|l5xd$Qmxy>N9g;U_LlOmVL~Rp$Qj2?(+TgYcjTMz8811Xx$LCGQL9;+8tF zzg-Fp7{MxBe4HFHmkuNVv}h0zRUA10)9~Fn*Ocv=X^MZJ{H{;yN_w+cAnI9Bw~<*3 zq}&wNwiQl&er&Z(BfDspn=F9ar~gFZN&datPA&U~Y-9>vFb?-!1iVU`|ySj==` zNjqCYiaI-db<4kgy&2xsL$;8`pYcABsnQuSM@^Kw7E*t9RyZ1Uu*d4lv{EhSjUtjSSPvS>ISzkq233Xt@AA-DE&UL16^76Q!Fw&Vp(E6K%REec%4n!07N|9%M?| zynQ#TMDPyc{N1m)vp~^bh;IIAoC^>Yifu$X?jt6^N?-_Xqt1KPy{F+Fj4+eILB$Sm zHB2m6T0%E-1H0Cs)5Er8F!`=I6Fj=%utRNX8LQeZM`&-3^!UJ{<%!PbuF2TL03v2? zESTNiEC$<)_l8N)d>Ws1w3AfQ#CoSRsS{sfu=2#9<7q^NWRfT>pSp>epjx&(B3W?& zdT(Rg)1&ZO-{4KF*x;rWO~Kj6xxnJ*mG-1bR9*@%Yx*|LlrB56Brto1xpssp=un%>`;dqQ?kGa`7GK-HzuqZ z`^Ma($uv9g{9yLm5p~0oj4s>Jin4yfOs;hwVA6zq^Dz#@R1BYFIYkRQGdZZ544sWf z5s8nw#Qs?uZ^){wxHk|)6+J?Zk3+#GJ3?7!Vmr^#to43jeJLgrLA!L`Li;DQ%BC5b z@j)nai#DDq*P*;k>tL1+>)gb73mP*{QF3_Nj@^R5A?9{ru=joB%bI=a3KNT#&1iV& z!m-7q-J=;mtd%pq*tsj-I;lCX`84K_lFCgR5{`szpMOD#m96{KkN!)u6B5e82 z1uM)72w+Z4^NeIOFt>2rEk6BL3-E}DSGC>TGpV$M_l;s3y_pot7@E}$iK zT4K^{HcTC&=pagPDKN#c0=GW&Wm`qwBi!*=S&zzXbfDYuz&w0pTA99c(ppaNI9tb% z7#TlnqD%>?zjJc>dUxHJY@)Oq`O)}L1}k9@w!SaTO#mO2;MslwVa=DK{q)9Ebt6Jd z7c0xwb|d2mJ2ya~mb?QDMR}=R0Z`NRYsr!Qg6$cybd5BzdWTP!{t^Tqz^LjMjf;Fb z5?W}u6|oICsv~POEsc~+YP`~pS27e%)Fcv)p=zS8F6C&BUA>L#bT8yq1-3 z=T9eKPD6D~bCo@7>eGPpr6L7cIi{01!SK?Z)3lYQG!c}fJW&;vdNP!WhSP;qQ9cAt}|Zb zFM+k5*2YS#7}+JqC(qZWAlE|e0l8H_TX(}HZ!3$p&&+<>e9MRbXzl!kfvc)C0P8g5 z+K>kgV$t5O%?u(!N1j1%{g=%N$;KOWR=3ojS5NypFGl8`=a^u(o!wq_hV;O#`np+4_F4RSwLisci#4B*x^#q3s|Vtr)@8*gBmFcKs}{DaHVY_bDUM`C#{-owBEP>NTZ;#&srR z8lX^JZbq}OOkmhP{-A%-6vBnZb2N3P#rm_^eN?Ip8kNZjQ!$Ae_T^S{gAZsJZ7FI1 z;ye~>F!&$ovq+@TWNmWB{?I>N*7T*TT^{R z*VdNc9eKE*SE?~o8<->`ohlSZ(xs}5Tdo_1H#~J6bCGY}#E~E)vzT~@k4J7Ei_$Jo z69yN$uo3ujh0~p{&3CFSoJgd(u-&^ToIruoX#r{ZWGpi)>u8;7U4VJ^CcymY({@_`M8Om_*=nA)FD!2OwK)_OAymYASC_UsW?CTqRI*2Qn! zn8hUxWsl-&jJn%gP?2I0lfT{SYkDDO{v5D0H!_Uy;xv5aA^1du5|ETBI2| z@dDTUuq!)1glUU<)45cyq3evI6vRBFdy-}_W~sPjdY|Reb{q%mjI_B7hm}jR<+#F` zFC3e0-GH+kxhO*B}{R0f>)lH z0FAPgzEC-!T^xA=ouz6BbQyZF;5~fvVtvs3JKkF_CGbF8zevK+`AVg-VvMG=FK*rhW2W)21v=sLtqG2zry*Lv)ZO_$R5sPHqFoD-T#fz0#Pv>@XObeQ3&^ zMEj^=)wZ=P2D1IPer#gP)a(sHV53qOEy7t3+GU}Trx%t(Do3Cn!jDo1vwkXd{2+XY z#IMYUUdi3!Je&k6ucL*!p=E1m8aDwbo>*rnc`t{Y{Ok*6X`6OoL&ofKI%pcO1YAu2lDH0t zSUjbJDx>nY&1Yd6ujez2AFFEh{H)luJbhdZD4MgbZ(TxGj-?WBleZC*M^=1DTeqMM zgFaQ>FZ#!)o>8wBeeWPd{2i7j&<93i`lw~Et_)xN+nwM!%}*IE+Owt zv+IPOCeu8J^gKE6YNT|aYE64U09vZL@yG2q)u#%b%V1qoP0I-8cW^VgfF0%A zMf^!N^&asb#Q4B8>`9c)TCat)zpG^%Nm5{IS0iCmPF|*TGE>?(`#SSEWcB1l8GxBU z&x5uJKBdC<}|2J}2t=n8r`1T)W1+*;YC6Qh_}L zc9eLFWnyFFFgyphK3Q}GEe&zP)Yf>P`BhSLu`X>siU0BidPyfa^Ivj(tc?F#u8)nK zmHj`Mw=iL5+OA`Kyp6wb5Cs zWHog{PIbt*rQ^b#B+X#H!u(>`Exr=(yw4eIrN~%X3 zp|0@cd#>6EKF^%L9v+;(48#zaStD5;gUB^ud+?n3-_4%>DatVeYR-vAo*!18^tk)u zcsXRchi;Y($!_mm)=ejx5atU&MPeLCVbHAQ?#H{op6ouKAI?(ln!Dex?0nyMn!lb> zF3Bm7pZgOhwPcD0BzHyu;tO7O#qP!bq z(4ts$_uAvBax!miTeB|E2L=74sl1Q1dehg?YAw7%I+Awu#+*^k|ByX#ATJ{R6&B zKK7POC}n~`_qQ6@Th3d+-D5oMZ~N4j{kMV}xh>RcHua*&{QdgK(r8DT27AkPsf-b& zTk$U3=Ja8n8U7ckGlb_lbzvWz3W21?mo;_yJVx_M{Vqc6eKE6BS-5XE(fT!HO#4Mn zu&3x%(iciC9a09Zbi~nWye1)5ezDnbF`F7^$Jh_`DPDHRMY1Dm+#R^q=qw_`c72;c zIsN}uVa;G zc=iwNlRU$-*A5W-Fwkp5f`7>39T*`n^f7bg9$k6hy%Bhcsh51ge(0OtI%%kO<{m0( zM{SPXk$FEf32g2)f)z#bFo;9ZY}HL??^(1X)avNL$|q|49X5wM_=d_(Str`zf}Dc5 z*OAXvHfUGj$dDiDJR+~j9lFADgRhE)zhh@ffIi9fMc|DLQWf+$GKa2UAA+r#P&~IT z0eoLzN<_{i$-@MdQkzU>LiWq7d#9+yuiGm1cfrk|Ket2n!+@&@*15t^MBS5}nMr!F zpBoYGEX*Bwp}(?qF@uTgd<+WLBfK>Ti;%6S?VD2g(v>et)hp|~j0v~RSyx54&TjP! z?dOqx7$t6IKlQ`(C|oEWrk{n z8c^i53gb_hP;gP1?=er!fbw^k)GoJjbmo;UXecqU5T1^dLDQUEn!;#8Bd^@#C)TkN zLW_FbmOcH03sKA>Z0-XXD%t04)wL(f?q;1?xB8BqIPE_SMR8%U?#Cr^jz5o#C<557OWv?HSXf&NL_xa0%4# z?$c)}ACm4MBT=Zzkg`hE(H(%-`6%sQ6BTQfOJXWB@nc@V4~ zW|3t;=neW(m-Wa0q!)`)U3@`{Kk$AmIIHh7CyP;M3g1iv#AN}7H>fmsv5l%s7uF*!p zO6zTj`x1;wiV;Mf<4JHBb$A;0b`|V<(5ZSd08b-cR2Hl^py4dk#=b6oVPmLBbcL&n z$2%p+D+yJlGX5s0EHEHPY4;g8#JUl~Y>|%1-9xu5SMPOPYJ;|gdP@RgQ%{vbIHR8U zz$IGkti?YY2J{tFh3&XfJ#|j?qKB&wHb0{y?chfD+IRG8JaO>!{ma@xrb7tF(4$96o`E%3P$sj)WW-9gT&^Y+nyIA+?TMZE1W`MFfR-cF){D-@^mP{jMrpCY* ziK))cVGHaS}HMQsdi}+igmY%tMQ)tL^LrYwE`HvbmxPAh5p}3i)xl(N7%~ zYZP5>lB^a>`Ii7=TJ)C|?k#L5?&$gIWP(%=@;hls!2OhD=>U%O>i4FzgXxQH{pmI6 z0?5T!+PMh)V4L6s(LSD)yO!1`w){S&i1|)HcdZXU(7T2QlNnqbanV2Is@z055C~4W zP>OBz*+`lPCTvkVc z=d*9Wre!Kfl;2o_6!t0}5;YDDfyO2^d?LceYI8z(K}h@`(#|Qkm!Mtuv9)5`&Wde2 zS+Q-~Hdk!hw(aD6w1}{XK9H1@Hb~l8h$F z%rLD>zh2C(C7j~P-08J?h5L;}``H&0`{90K>f<%R zYa8U<2O~!!Gse@pc0TGA=1@mUt48cA`L`AmSc%&0vIc2=D@45Xn%q*=SU$5@R39wp zalLurh8)n7Zz2HJJ0l0`z-&zh3QJ*hSIxloNAFj=R)kfMqmeWqmjp~<1a+d~8wSWB zYf`L3ndH>S&MnO>XeSN1qXRwpZ_l@R=xmIj0bLRuSYrukF)opqzvB+Hu_%~?cUwVj zJ{ZHJffH^^?yjn{aMrlAC-R8##WM+roAMM5OD{QI(pxyo?R}x#=K@@tE_(=t3eVNG zgGUI%YcqkYJ;JP+$VSGW1>a@-=L9ZDzhchggQG!#RC!8;BkSK?g?7KBd6)VKPa#1d z9-Tw3nDpTGWBi1v@(`uU!UKfx`#8E$j7boZ~&=*8%3 zA5x%0_Eo`|Md;N!l?YP{zpv26h~BXOsl`sZAx6-7ft(mz4=lX{Ug3Nm?Bl55ca(g!{NvrL3Yj)#g; z-L`q>RuYQA!Pdk*sX@1(5iy(0r04Zh#8Q^DTsg4Q*U^V8cR$|?zuU0+>k-x$HO`*I z*%ND=aQ$*9tQL@*=_Ldixbeynv+a5o53TLdkuCKlZyhUl=$Sf1VR!Z%k%^;M7psGx z$83M8ZGn?DTwXR8{zdSZAt!pcf4?pWlqtD5Et~(iu8g&;p(9W1c(!A_1&irj76t&P z^`wGD#i>Wu7us!#g{|HQi%|XJA08!c+419{Rq9Lx~ZR&T*yga zJj413SxjL#GTn_8a_oGR7l^cyb%n2t1VTlAY!Uvvlr^6o|JchWn2CyuiQTwl26K<( zn+URs+Oh;$pU&dQ@|&ILcx0w~``_F-&QaPsvML|XAU6L#wo^>OE)c|7gGbb5ZOpWd zNim!GU-dnD3fgH-rjV?++cwtrsR(v>>G<+T_n~4LT%CA8B@sVG>^jh&EY(0Aw;S=r zaAAvxSW0Aw{dwoZT{g2-?9%~`CNu-4Hbr%r7!5WKVT(mG16H$DB=SbqX4~loCeu7S z%grnkEx9FAzVXpS>jqA?tTHx=RX9`fF_Xw@4(R-ABl4Em6RLUiW@O5RGz)$d6db<$ zi&>s`=Gm{#4BcsH}q54g^ie> zZSv4YWwR%`gTpX|??P*M0XmiB%B7ZwBdgVPHg-Xn_xJsx;`; znXwlPavtJ9uKeg1VXMTSXOQ+7Nk8ZV^sXL?-MH2Ch-6RAu6E@tdi?tOvDae76d0{y z_$f1()3&KF0~+4RIXxyNaGzEK8oSWO0Vjxc0~+cgT*LuYXf2Qbv(6`oIogT>x1dr0zI#=y{`ydz)v0U0+}C;Fmw<7vZOyoHk+seNDU9a35O9OEAfGJW-sDO!>&n`{0~(;9k| zQ03q~8oTu764W^WoM;b0=E9aHz}6;L@MD!g4Gh)uw^;jnf_Fq41J)1b_|3vLX3r@SIaa8G2P@MGgf1`}AxH zl7K7sG*Uiv@R{I&o#hh{vnevJ!yLCw6!2tIt$8Le;+FN^d}jDIFmIjwpnP4ufNgQZ z^#v}-?}Bdg{oR@VE4u6tCBBqDd}`J$-Eqg&m~mK9vr`eLHoo(jz^tNKQFb1AYr`e0jM%0L%HB zncw!gK-u^JoX@Vx>A?jA`JyU@DAc}xh#ovhqCFoM0nWh10A=s~w?DGQGqHDiYIniI zmPiJB`eC?PWNRJFJ@cM!*AjspL*aA|z?T9mjr@ujz@1#N#v9&oAKqK&SX`x)K@ux7 zwA}R05Vi}!rvZzsXD@wT=nM?X^2)8GY2nGf>+C(E>#o1(4txg8$^jjG@ zV>m=!-N`mhx8Vw9EwHuPs^B$&(sNvQDNbQ~zZyf99#vb$4VkXG?OTdV>gxj>3LOpl zESi;AJcplg>bn*@L!KA&LDEB{nurzAH;wz9&Q(b#3?* zdajUd$TIg04j2$u7Q6PuWFs)6N6lBvPGCt3&pY(H1c%7s*QmRy0mi!M1yM>;16b<7 zl}lbRR42tBGBU7AJ$EHV^QlWBpKCG`)PWvYLvG-!f-rnH2W+IU*yg8g&SBno&KL$R zv?vhgZMg%$3b1Jd>IkI{JEqvhc&y}Ve0bhtO)8nmm7}>lX*&RF>j4pF>)>E27AaO2 zsqzQLzhEI+S5StjvEPwrj#PJ>{j7=9_xZgohbdWKr_T*nbI&v_k&E=`8Bl?dW>4kZ zBNK@FH2;l;l$6DFN?>o!pXc^g6rK&^+jsRqWpOh54dgx#DAQ3sL+uy!BeiUO6+=U) z<57LBc))l32JRE_xJD={P5AhWHwM(c)i9z@))hyzd?o{883Rx+TtK_+c?bY;Nw^LpRc+j!xeH26zp>e+O+h?LbmhL%+v8VG$ws3c<9b(;)+T) zl$uRV@d6B(7!}T0)GZWpaF)A#fsrGSY%H%B^>uxRBPU)1;EPL+<$8yj&p(fiY}db$1QT8f!8o=LQ@Mc+D`U5IeD z8Qem2Z7oo{*fKO8Hm)sDYb~_&vBZ6#ULzjz4>LfK5j=An+ImpXT3Zz1{BCE$eP-yJ>dxV=;tBX-U}X=W4o5% zPlsh&fK+TT;6I8aK3M&T+KUScDT>-2B@=D|((yXWdOvXkkzP3F035AncV-u7Y5$=p zjzMLKL1ra~P7~%oSk=gx#}xcSwFkbrl0NxO!4_d(w>-N|pmA9vsz8OzGz)kk>3HkJ zRPt6-{)3b~gVu!!tJ9P{-PR&6dKRxqgq5Z0=`tXp)w?Bg#RuZ@hoi7^)+XHwBcqIs z2A6viKAs;mdrY>?MaG>EpE%~Rb!p@hgR4`kCA04Hk(qW&C^e?j>+r)wg6S^{a1n{? zob-(Kkxi3@>BZxcdnlWC{MvYh*M|Mp4Mu7$8G$LVN}5>%C?aP+|3tRJGHd&JXR5>S4MRg)UZ}c zh;J2@IK*JTeT`v^wN@QDjE2MXh-<(}uA&q^f(((CgdM%VX|wj#h|1s9Aq4WexCXhJ?|3*Y!Ws}45x@k9JCDI z^Ccl!kCCLxKNBPNaYDWDiem;fV(WA!EFtNKt6;W`xF$AutQq~p)U;aHaWK;Fz3kN1 zhc1yY(z;qCK*UDy*ghqUy*+;1h||MZ z_gJ=vf(8dFRQ%hVp6<}bJcngTctr(D4h|ZELN$JaSRz4-PFEj?Zbg7wcBjp8aB88Ra$FWc9_Gty)nZ zH;ifRS^x$}QOSjXqWBYFrY( zws0{Rs#~b;#yWKtD4%<)71Grq=sxOkt=$CMf0pAi^1t@L8+0z+5QLDlv%*dtV-8|L z&GH)5R7u?~g7b#hSrU=Asu9Y`ovscq97JTwe&FZ&kT4zJ(CYhzKIJ7anl`UfsK6)R1|oy0&&)IItVD6_m|_ zB`rTtEL>|_Gm$Y`5`CI`dfvphm=xzZxHWDe!UJ8D#`TKjXtv|8$!%=#!T8DQnq4&J@~>0MeD_JcE;)N3 zu{q(`*Geu-Jnwl+bOdy~0U^?x)Yz8I9(;PDjb~XB7aV+a-F9m-Pv!}~HXWN(x~yoC z=peDyA?ACp*}7SLTT4}FEs3_58ndTdZFJvKzdDMDVvrYpFEv#*7E@e@Um&!r1Lywg z{G?a4Uwh=;Gkko+9U|NvAFddL?%-^lAC6s6=hL|;jrw%1?^VF4WQT}>KwXC`+i8mE z-Ug)X82;VG1;Qv@>g*TYUeN-kNAF?_j4HY|m-nbXkg2;RL{$TsIjs3))ZkL9O(&x9wCTy56{w7rIaR$KP;t5`wSRe)iOk!zdaT5YFqxmogjzBt zL!By6L&Bwf^n?|TUr5RZP=e!I7+8kyh;_nR7I9M|;iZ3>Di zh!k~myuwn}D}C!Jd&@pT{+cDu1Uq@-S=fxP|EN{qyXZ3ZJb^x~ws&5A^Iu2jKy(Yier zr>;9ye3d{8hm!vjr5EELz?9A ze~MNy|KCNcSlJkv{(H1)eCB||vFBL%#5zyo7pW1Eg1LYef;VQL5ysAa9uI8vRe%`} zgtna>7@5?BsEmo~Qy%<>&xzEjJVcOjm0obtOjy#lRbIdmWNUlUL1ry~?w4mnuRF21 z5Rm!TQ`mg(xAJ}J{Erz8bXZ=n$HmhbRHzzW+~#+S4}=%iPC{5&J`_ zyqOIno8Fgu2Kp^1TRO$liudd516Gr){Stlw@`E?T9{LD}fXwdb(WGC_$o5m|?IfCu zw}8$?iQ={UM(G{~b-5ULkTf5)h(+G(9l^9&nLYZGMFj`xQc=Q^AqaUq+d zj@sDWLMRaoXBE(ib!6oMWE;7zIJ%YlUs>lCvQnV_nNa=C4) zPQH21zWru88;&BIJ6cUqv;N$V`Knf_hVN14`F++=yPhN5W;S|G3(kQqO2ju<5*7nF zM5lX;(|P`bSzQd>^)X35b<9W#IZ}B^i>LsVCjy>r)f#UNO57fe~oNtNfO+Lc2+3~y_Oc&Lo~}c4kQKF_Agg0d~3L@0+=CH0zre&{PoHCd7iWA zH!N4NfP}Y5iE1VpE4{Gu7^!bD7HC$Gz%n#>#7Z_K6q8}mFHMFycmOGoat2%p;!m~< zjdx~&5k_&viIA?EsQC7P7$C%R4uM8-JZMf5$Q)f~q@$nn*}%xYgT?lxE~F@5IFuR6 z%h<$x6g@&K7%2~t&OTFyq3-_pOa%HprhMqin-^f}6#ymR6A(hjeY~OjDik4Nv_t4+c=4i|mrPfEmA3)2gaij*$8p$~zW&!U zn#;I`100hTSh#P2*mVxn3bra}*cMHWAhqWt#@aU8)>*s$#;g~B~q_V z_+x}&2(Yj~0tg3P9QcqD@iHqg6VlX+umBZ~NYUHKi!AOH{_qTH*n`gwn^{hdun3Mx z#~iVxDPWR?Np8Rz%UFLyfZP^7J_nZ9k)9=SUJ=4Q-x&VYvN3F6q}3pMdc5MA8r5>m zrY*7vAAp2eW<^wfU}71^F@zxYWDns_Z_FJi42209x1)U21s3;=cqOP!-`5DfJ$C)n z=6?W}4M%7?P>^2E=#e9B#8}TWEPl=U?|$4nmx!F7XJe}4Ru+*B*I{5-fSlTqmnCE2b%Q!3Webz(1gY#7$5izHv&d%=pHLE7M-Jy(K((NmApaYS~0+* z?$Pvz%W6zv#+k!pUCOxw)ct~-=RX9QAnU$m`xW9Rt`O~HszlBnXa41lb9unw55W=l z<>h?Khj~YtBse?&>eEV$AzSy^WNpB4-t1~ZWIoI1729X*YTdpZtFaSMPLIm!6wGr% zJm&?5s$UuE{R=7W6*}AS;3>@x_NDK1mK(Pa*X1oASv=nC7zHOqiIV?#UT7sXoO|f{ zwMn#;t|oI@!eroO!SYWm_qRd>4M)w_YjezAd~hueF~}gA%cIx8ycJ3!t?ADgXfB#&e?r>Av@;?O4HVsDswq+C`V}q_ zRr;A38Hr_n2r$$vQgcEKxKEM(yd{sG$l_--T{a+9aVJeb@x3-4h#C-C;eZu!Kel6? z#Go*MSt|*NAwX3z$>Y>LSuzos<=`CjZxr1r)uLStD#K_j?`V`Ez5wgEE7c% zv8BIyio-I+At(UfH1*<6cfAtV6Zje&COAe49I#qE#zzMo>4|dEA;0gi;T|MlK+(E;lb6 z9o;2-xn`1Ao#oa-a*lZy=G%_53b3@N5hxKHBI7U3P z-#MM;Su=p>F{<5B1TsIFd1`x?d5i;NA)CntxhAnaUKW`o7E`XGl=LSgc*f?Hk5*&t z(7j--*EmM*3OWmpZ4RCcz@jo^v@oCF2!t*P{G|=*CBpp>dFdx!%44*TiB&UmIKoEw zvsW`V>K?U6kE^HaQl8kA1#lJycZsHv7|y)6&rv;UOVV6J;68~au@1?%I*%OUwH1M$ z;nnj*eIP1O2n#Yk50Mm`KZ9x2ti_RlYs^n0(%7M29QN5h-#p$?WckIa?H~YWbK>vc z2#!ZObg(HDOPa;S4LHXh2Z^E!9%vP$TU6a_X%VZz5v5B< z+}gV*Mnq9WC^~F^AU%{LQ(nru+Fq8Et9c~r9P`A ziz0V`oIHD}Yby`j0n;!{P$)u0N+4x3a94xpg(^P-G{#DAfhOOXNe$bq3mlrbEGJc< zm_+1VXjH7Q=9_D$4p6=H?6O%PZU8i$%#5Up2~kPnrrg%FyC76Bd^_DSY8LGK;k%i^ zQw7|m??Un0uH%o3ZiFm_fM?OOxv!w4a9OJuX}- z|Aw7k6%fm_hRoT*AOr)ONCc^|{&K@g%=!f7IC`It3OhAy*#hEj;86d#Mg}zpuv`v(8p7~XJ~~L z5R=Dp=22o5#?O{=r9N32nh?G{NBuD!n~)d5N@l0JQLVihR4QF{edghd5XZYPnI{#& z5J5jF^F%`Q{D+b8YojH}#|I%93%_{*I_d1lJ1K?PIbOdAT{yEcu(wIk?}kuz_m(QG z9Flif=ADzd1`YET;TA_cz0!OkgU+4TJnGoCzwWha**AaSlcY_aI9W*n(Jb9k6E99$ z@%JJ%jwbYd>p>#V&+o?yK6uuFwH?vtfraYSF5X^iDKy&d(%QUN>(FfkA9XcYCjJ~* zbH!9;rV5yrMG1M zH3QW}4Po9s6fV800`)uMF@^p89s~L4BUQ2J?Ge)BTJuzpA~B>u}>l)7p#YutQOLP zQUBwMJQ|XUlH1GwG6iHL2o<^A-i&}DZda5ue=Jr_&{t3{+*^>N2E*MKG$Xj z@|jyicoz*Ipi^D6H*I+?-3W5#B4`R2)v`^Ro1sXCnd~_FzE57ElF5?R>Qy|vI&Yzp$25fzN*Bq(b z`2b&f;O+Y!Q&1SHY~7O+jJwWjp}r`&g?1Zb0P#vtcl|OFERNnmtKE~qaKY{HX_Qtf z*(D>(vONgJ*7`iXjAH5hZ|-+3q-#Erm)n3ho$I1EuZO~WRQbRI23V&h&)diKa-uk! zrt55w4>JGkiH~*F%;)1lHzrzfx|GB}(uAXRD$?}p)n?8FkHRFJ1{1OMN*CW2R&bXE z5vdq|4oi@P%b>bK2yh&)Vxfcvn#lTboSL>QAzH24tu4p}^KjWMdlb34%?yk=G%UC82B7{Nd~je7@(2Al-Wd~zs;Z6))nN?)hfM`QUO+i$t^ zZ8Fw?Jx{79m%DR#OMCojYY>1px6Y=-pBfqaUbKj>(}&~vE>`|^*Qs1T>fGb*wwI*u zuj6?Fv%_G$Jv@1hbErLQ!NOja{7%)0AQ}Y2`n*)Jvv;3mt0(1Eo%Pa$jk1WWgWp1$g{dby9N-&KzbZK2%LLFk5 zvBbERc8!1pyoq8T6%0-?9o=NmG4AKMJE@C3I$~!e>0b^BM_mRU+1s-J>e;d3rK!T2 z_`Ty?4&3cr;~>K--PnT|61UYpD+}fuXc0Q`pG5C+0MiuY(bpyThT44**soHSlXc-q zj6K}#en00`QSlwY51&sXQMT>ON2G%zV$-K^Nn)ae^Pe;iMejct2h-byoSI z-*=0z6bWZHpcW2ad>6 z;Pf{m3JD9@DPK$<6xYv`oqM3he|PYkYl0SJdKxm!-0U=fmJBo2PVzBA zbcw!@?tl6DkP2k5Fhtdu{j$lxtmdX#K&w~kh)DT3FTTOu64L;^#}Hu{_WC=lb(3Wy zL--IlTU>_o+JVTX(m<9#MyLZZ-=FZ~;jFcVXo)7NeztmkQn)8zIeUWIokuYoKt#*h zHl2gFK;7b2hklrcvzP&(N8x|SoZdio@C6G znz`guC!b$IA80WV7lRfNqqZi-+Wjt1^4%z%e!=F z3n}Zi+@v_SD%k9FYhv71h?pb};z7}`h$pJ=_s3wWj=AtR2v(Mai3nqB`bqE%?Ytzc zAnRKWxcOc^c}#b~+Y3aFm~U6=+>1qymfLN)L*>77cBTBe6Y1ElDtzC6_)>+tK3?L4 zYXfr&ag&2il6NxLFWNHL56o2b>dl;1gPEpde+(-K1a3sf4U9EpGrHgTiIgF(DR@qh z-1(LFf*>wIJHGv|`19WVSe$47N=IVEV)2($LcQx3bcJlP|9XP0d*^zySmEVG?6hi$>`L_Y@be!pONf;J^zMy;C z0y#l}VhnC$8!!lp8nE4=1*kIjDecL0t`LXh4p&rY{ZNtlU*JA{3&@%?0=a_zK!!B=mcaE%AQ=$gScv81^AlNF*mPc_~Z&Ch5}Xd`rD+J3XvpvEAvF){C?3Tx2g-wbjyu zcc{0Ai<-4sa@qW#ZhPn6hKBdD_aPpJRd*gwV!neEpz4{fba7ZS6nVts)JF&3JaSJu@`HkitEI7#O zIuC$V%b@!osdAPq)s?MOB~4#5d%wx2%%=T2sV$cW0|j_*3(Kv{ce-!(xNkq8to+jd zX{Px9aHRd?VQ)gnpe}D{X=3CI!=UV9=={HrNZJ^fnZPjoAikZ=34e3IFi4nKn3+2h zGXI8Q5Vo_nb5yoBFft+3VvrOT7BX-$F(zbUV*HtaR?_)tMApE`ijaww?LT!G2B9Bt zpn{2`u$_&)ovn$jGvQBbViwlUCXR#*V%7%ECL$(AcE&%Q$(Y!h{q)B1Gg|QxIypO< z7}&tLXI0Nl+pW3cj^6gtB(?}IUNxw!Rhw_B(#^Y`=C7qxD6=>JD_Z19^zSE+9}I5N zfgpQ;4n)RBCPd1UwC>YKW>8)K95XVLOkIsYj^kR*h-bfp9W7$ZoeUwENB^Yy}E+NeQf8Xc0o|Y=6+T+ zejf-oHDKB>_RInzQYLC8VZE%04t>hHMFBT_ep<7V zmvY4hgi4N`LDZqox+SlyeSM1EaymeE_s>M?i+hg)RU{~-rI?~qEGSb26LNcF$$0P) z2U4+|81X1@A~Y+u>?(5j(N9eaM6A%law3f`K%#{Yc@^3HH%4Yw)Zxr?+DFR{SaiQ3IR$VmA4=RB(2=vp)we2T8@`pM8(;tVgj2 zPtbOFp`lw*C#x*B@K`TC<+hPLtt+dsz_re|T5Bxr>qte4S>d57_JaA-aT_Fc?vz*N zBZ6EXopZNIpXrW+t{2h_ZVzR97LS)aKId!L69{nRSPRRUgUcHa2@4;NIU?}vmKbFNxqIG?pO6{Kyl?FjD%PX?W6fnz}=#DdFh(`&K zV6aJ2Xx0@+fM=+u=vm({()vT`t3mQW${_Hg$x#A73FTev&g=K#)D1l|;6Tb>BCqQo z@~M2Uu5TSv!!guV^1oTZ6#3k5><#y>);}3tgiYt}jyq9$`MSROHAKfo|0kXJ&kJm4 zXbHo^!|?y96AU6It`SWvkdY}B_y+;+4PiYP1lW27Jh?b@HbxnmuCLk#T(vS7Yc*V`M_weZ z14E3B!&6D^o>V4!-e}^@%fCKO!a%M<^MR`-=BP3-~KvA?DhWK|Ng3ecZZ7$OI^P)dj0|Z?z{v% zzq@?A-gMqFF!!l&>tp%{1awJ$b9rxuhcFD??UC0vdH8Q2***aaiujRX0&SCA0f7eg z1o(`VV&*fco9KJ^hX8Mc`5FMB2!}-WPeish<;e38#&ZEGkPophnhqIY`4_E~C_{YSVS&Xdu|s#agx_|+XC(gGzFdvQyt{5%L3NEfS`o)iU(g%cX z+kp-3c6fMv#_%8vE?(K*@TBq8w`uP7XdcxMMEh|ImY(E(h=WE7OFsklJJaD@N#Oev z67 zEfTL&$&cBhq(wzZt={fSG@VoD;d!JqG$l2*>B!g4k*a`?f&YF=ZE-=t$pS^G!Yz&0 zM(%+buKyIUDx4|86HS!NUjBt#v=t)} zK>ee4!?-lIYOu@w(Xc*0OE8$n(Pr#@rc%T+uw2E8Fd1#%kL>r4>O@VVfxY*SPBQdc zY@Akt9AjfvDpETv)@T|reD|>`mIE{8K*V3p)!iNrAKe+p*&cW7c?#o~1 zEciStd`jY77J=BgqsMxeA1fr#V8pF8-9Q*B(Ut)1mLUc~`WK$__m&}wJCZmS4hKgn z?S|;{>frhA*(x+U2DlI1!q-smqdrxt>VDaMA&dI8pHTxA*Y^XbywWj9O|?l-dMV^W zfL-`vXm~WDE#-_fvc)3YNUK^Ih3el#%#A}|plLxyfAhYNU2>;DYc7-l9yQG+Hi!^M zuUv*wY>ZrTgCJ`2L7*UU9r-!BYEe6wNWA_|$P@89xMD~8tFdwiM7;KX;LC_RCw#sL zAZwL)R=3aVVCG(M$*|loc(_QQA=^NDk7+$3Jr8AsiWPZ}7I7A_FAkd{0`uDduN?b! z-{9uYjSjGp!hKvy+7I;}6CX(NE0e=I6TohyuXbG@4=!tPV`jR?zhERWy+e0m=gEPf zu&xvD)?l7t+mlmt71-LEFnql~R#}T4)gr29I7*0`Ao0>BYA!_{9m>-ZSCh_=LW8y< zXt~+0qW!vpG-eijr_3)6`cHRYWB-8e(&YTxYWEqhIL(d-TBj?9hX`sBY=M-=TG@;E zvUHeuUeF=dOX7QbKfdnP!2#xnWVkbyrIM>V3r+D2npKyyl*gmjDNdTi#ee7Sngnj; zFI2m#C=t!2kDK=m&Qtw_kFLIQ3rTaizGTf>5r;}ig`FIiKs@;^UwskeMRda!{6@fd zAeo8GFcwZ6zSbfQ?DlHIR>64~M`Q}&B%Wa3!+XOGxk6?*g%_rbo~{ZMNNDxWMKB%e zDFqBl!fEXWQy!l%ey?Is*`R=25$cJn@xeI=s(nw2dxv}Q59=gP6AavGvIdy` zkZ_r#)eN0Q^B}eL4w9P%IF9^?Dnf(ia?TRVj|8f&q1o1P`Uw%+y!Z!Vku0)nvIqc` z+H&T$brOesZXq<=qkWrt2DJ6Z*o+)e&N%YIVwXFThvbS`c&x$Kyc?mwwsM2n-nYTkbf&dg{JZAP&c~Ci7A}gXtO22elGPHOA~~tm4afz4oM5XT6Gz z;9c?aZjDo2ia#0$pH5b5m@^(+ho8yHi%7Wx)vE(H1*)jQU?IJ#wO%LvnF&x;i;6Hb z^MI*7a;=0W2Z%L_pIy2gPa9VC8!}UG=$%UWIGE+fJWT}BR;zKV%mWFJM4K-qp6*!3Gx;phj?KvX1ja4P zhB4UKAyAUk!K$S4T`21FU9@PRT_V0sJ&n0$wwYcgCH_U>#mLyp z_G&D0ds#V4GxjHdi_4T>PbKxgm)A zN*0=LUl!%jtE*hpq>wL7)1B6{IZGJX_FOS4c3jh>Ab`TML@e%1eOlK>BSkd~8@r#F zQT@QyS!Tq@dUj&;KRZ$XQrNAQu*IRw9U{YyWy7O>(N(Nq!?IAvvN?NO)4}AbR&!!v zmbSbv;=+twM{nT5R4MDTFRkN3}#3LP56 zOguU**{zk)*a}wcVmcR@7~9E8IjTygn)dCq7L%$Kza+IH|Msc`t+ua}xC+InM|(QD zPM_}zT6je2#?TLfPnA z#G{Mig!wdouZV2LW>60HM|i_$${D4e>buje;=AU{p|%rdtr7}li{66W;%pY0W5b%G zxN@ColW8v^XK4Q^7*WR|KkqIQqRXT6-sZwyABLLl;mq2An32NW%90uv_OaN4Ac(!L z=072eW`0H43VyDte|c5(h7-Qq2R8lug$BB z2c6n&>G2meKG7Z_nh>zl;6;R{UoKTcwM`vV?TiGV5Y5v!p8L&ai9LvD|wP&pClDm3UWV) zrMvTBFHD5}H@4qADmh9pBU&~DZB|lJlZHejO{yFAwWUXa+)N=6nQSfQKwDcZ_4 z5X7W^o~^)lEnKZ!h3!)GTPwQWAtyE$P&6Vb# zak}Hs<&c(&=D9l9te9PFM}CY8HZCktE8Lw=#~e&-6lQw?``*HQMQ<^T91)^SReQnw z;a~w;n6>M<)Qbi%-YATWN?#)fG9~)D?o@9$3DN6nq!I>E!xHy`o#3~1n}gM4vV?8j zlOx^V#f|4~q+ZAmEdr}fGj>@8n@A?Uf6~H+vY6RHrMx<7%t3 zf>`ZLdd;4S%$ZWT)2|i!9kU=k3EfG|wU{%=E?ymH%4T9>TUqs7-v^It_bQT?v>-C_ zIJW~9d%rKS&uERKAyQc7pO&+j5{!KhUv^S{_d2@Ys8n%9deCvWAk&%Up)~t>8KA2x zPBo=eysg7DhANdP80nq+H(1OwBV6}Q!Ifc`=vL;^!l`P_uf?Pq$ z_OQ{VIqlkmIMEN;jb-E9^K(|{SBclTz?{7*SfB#WKIToS>c;QDD44%Ta5;# z+lCa5y4d4YtWU25Na-`lI^h$~I6|A1Z&A`h|iyNLG4HE>M;k#4ONpME^7BqF|p# zmLoVvNDs|UQtL9Xnt$U!&o6s=+%2V|N7INemEB0r>qyXS|Ez;e!UflC1Q(h& zDE~zMg`Wmlhi&FheKl+@hI@uju zYp2mD3M}h+h1*lsl@_F&KpWUstQFObVYU@hnvg_@6>>+Gv?>KHV!NvVxWiV8Gte=q zQPafeuJ$=u)uf?hEit=Lz8Pa8l7v=a0?BHS*OQoKT}*A$F71^T;^tlV)g3t2LeI#g z>C1n7PZzm)GlKqX+s$W1G;Xe2Kp>VEG>d0&U?;_}9gi81uTAIYi&j0R18kx+J|B@$ z&Gor1+`i{nUg-8LMnpU2PBn6Q&EC{ID~T?FAvfB6^|@szCx#3@%6$OJL;w4=U~pIz z1{#60KkDI`j|7CTIUyYy&&+X|&|4MnCx!$rd{4I{bzQ6{?ndee6;d$%!n(kF?O=KZ_L6_|sCE+(S1l=-*9F)vze^x3lfnLYp6y(AszWfq!tl zuUfWp+r&~Um?np0jc_SXP+JkMNVg18rRYYU+866&@Hd$Rog-S00kGMT2^+VWX#Z$S zdA9rGV^}S%#7FTP|6ZNdZu2y-9`3c^pb(@w2yMdu^>iej#>+TR+Pn{L3DYuZ+z4~= zaa+Z4p#utA!BhU%Og+JT>V45xU^PKZe9cdOTy@;6A#%|A%xsk_I&|I7cdv`~)NE^3 z?afj=l>bQV;%=@|RoLrcv~*ooE?a$(#R(f>jTkCo(-_|dHHVF?gO2=qqU_LQO!Su; zBOV4Nm6o(5f<0`=r`QrcVwaOPF}sl;8xi#K0$b8GduVkl@GzyFG3#^z{ujwo1?E9@ z#g)D<@U$CLb3T!*u4AnVqzs&E{tkJ$z}y*$P!=_V#${8O5}75hwRHkxyc4SXey<>f&Qr~vHP-J6g zXAnRbiTcFR{n|ENPo^%^gE95yC`P>J+{ffFPNu*UcBhTwzQ$D75;emcluDF}&F5*_ zL8h6*1*Z?lO3(wy`vkOm}8Sa z+XrJRYLN(Kv&ktoYg2b1H`{`_ocYsdplA@T5t@vo`ttusY_>{s6hZycJeLbntr@h> zUH81^^k(|P@@4ZSJ!N!ecERizmQnvg(BXJ{>Unn+oZL^<=YsoezDJ~`gu705#dB=q z;=dcY+1N$UfFz0+ktAgyNB;M)|2KYslFJ(tI$BQ*Mk)OUXXNTSb?z!?pCqf~=cdXa zTge)bLRT>wnK+Ze#(|km2N-;WBdbEnywLkDqzoW+yuXwAkeYE-V|DcEmBf+ixU=sx z5l|9OILmd?^XT-xyZ$1WiSByVaaTKjpdqM{kjW)aA9vH0IUY21cgRkoY<@0*y@cEy zMgHPULlAiRkp95Mp7L!c)NiZ6*t+R{4_T&%LDofNMfhKgol}e`L7%tJ*fVEr+qP}n zwr%^2ZQHhO+qUhQZ{B=+v77A0CVkPJPItPKuIkjU>i;}9{rQ%4TP;uxQ5+!CWQ^I; zqQnghJ^=hX{e@x1N?o^Zel%RagV;-H+-_~LiT@DtcxHbIc`k1c#4^V#Q2d|&xwWyb zFP87!$;8YLE$z7(=kVy}Vz^->l@2!duo+j$FD-yUT{DJ$c0~0e$W^zSxs{+#ttn0D zprrr-daBy|e8;~>QWmPJp7sW2e7>Qc%H}~_#N+(B!`0;Bc}Y} z%G`p0_`d@~|9|NU6##r*S`PA(vb)Z1ck&GO1DIyTHHk~swhbJt=P1pUXx5%IY3=Ciz!^&$X3Cvp)|Ru16@hAw`n7= z^8@q-~ZfLW-a6ioB<$V z4zHk}`+C3-|KKOE7b5?9Wx!%sH8wczq4JWGf* zP6|x(zMk+(O@#J*pWPqeK0cQGw4<@-fmxE0J^@d@$E4u?_iT@zA?`jt;L=JK@b)r2#Qs^B>Cx#H^Yk32Bo{x&zllCX#O0Od{TVrW zi+P!NIDt_O)AEj}xa+5MiYHGiXqD9 z&%O$fmpbeZf(P!VijDlwIcRnyaByw?`Nfw;+h&$`A9$%3U^2c!qsLhj~ z6ei{-1*IG=Z>{ox+QtJ7HRGETI9$|8W(&~CE*$Dy`ZL?#@L6&!cywm#aD6_jT4RGbE36@*SHqw>u3-}DepR9CpR78cWYVa zkuk*)qWE@XR>=#j490_Af`rCVA+tn0{k=;^K>OA}tgcndy%Lj>Jr6ROIg5#>imf0> zfwKTROANtDU)7vkAIR}gS6_dJ`oHz!O*w^;^}BytlEbs}zO|)&LKDLBbiiFgl-jky z)h^8GjjlmxA{EQh?|I&4A`rF?3035=g&Wot8R@C!EdHf^y7D~4mRzmxAKDf|=AX(K zHAf3%=G9kQD_Rf7dxxEs72L95q4GmbC49-M;J}uO0W4$dN)F7#1&4_ijks{3%=OSGzj}Ck$@s|; z&58j}+j_^nU-JUX`e?^ntWh-=d;DR7=jLBY!2^`R{4wz0++0D_)8ykPGCOCE@{jVd z&La1h$(D50d1n@){D3-ywQJ4FBxjO-@h>M^s+8qASseg3^0BQxPAFFhTRs90!|2l` zthkWs`?o)Dej_UK<0XWxbDi~mL=q=FXr+D`oih`wt)X6h3XDLRPI{#Me8>a~B53IFZpq z=b}-WqwXKLIo6;%zV7j#eji}eB%2HON|Ih0y_jQ|YwA(DJAEdrZ2qYDo*lzN z49m;4s8-32$(3FRQ<(&8ZJ?N${QzcLG?RV64;|kyyuJF)3}b->m?%)=vRZ z>8Of~EPjtJ1ylr!=^`wU@ei=}AC{Jo+v078QI0=Fx}YGQ-*e@V%Rx~mB8u?coSydF zo(V~WYtm9E8Vj-gprt$wq(#XE+S*qcP1|hzjw<7@gR2<5>}1rJ2(96rBQnMoSPaD1 zoIq(a*(YCuJZG?G*_E_JK3qk8U|{-t#ms+kVJeu9t9^JXQlqKtUhhGqV3sii?Z~KoR8ax7EGbE_E;hk zJp#=wDqw?}TFx4K+VWW19HTFfdq&1u8PZ;BmZFWPjc<)H1rZIvWzr3M9C+-CSdeFV z-|$J~>EyRn;AhChCjTn{HETE}zCl5DRm6qH=uvep&P#Sk7WyimWGX8B|PqwYPL?%afDP20i*{$u%bmB8w1MCpJAwt;IYQ z@^@$K9-hF;c`*aSfyGP}5vrRd2Wc;S?@5uMgJCRL3#i-wQgMUgOjj! zr{&V0K{rb$iAA+6JebX|pK_|DzS%nLTrzJ?Lu)?ZwcA`%=^fX|`$Qn&B}q=k>@d}- zhtZj23Lw2`@A3C(fI&XwrwW%ijpFe8Tn_BlGRktc(RQq=24g!EZ$4A404^bGA#>oLi< z6B^TKp&2FSZU<}t=#I+huo9J2U~kT@`Lyjn-R>WzkxZh#NpgP7{9^M9i8B>qEEZ&H z?C}IctHPdDfHaV#aP4Jh?1G6gOLHUt6GB#Y3GPXo~2hAN~;}I?2Qc-Zc%unLH!F<*Xz5pLS(ZrZZbMwYC zOG$nI1mmu}e$EHKBHn^y?O+i(pM3((q^B2Wl&eOF-$w zTcUJl8`zH5{7YkWQatP|qYa-Ff1ga8VUJj20*8?|nO-gBVBEDs2ewx57?2Dzs5))2 zc@ZG$w{){dG~m1&!&8^nkM8G4yXe4Zx|GZePWxEfb0-z?kIXs`5f=b7&`a}_4c*S>U8zI0flP)uV11j zDKa&GQ1c3xW2IP;P1j~&N?N{XnL&F`d;zHwlxe%eZB9I(>T}DfSwtjv(|Xr)$Ha}B zw%>YoE5G!{7r{dis_SFct9^I|s?js@hdV z90P#U;^c$XTT8m^N+(I*e&=q5u!+WyP~OU1y2OTcI^r+#xW+Y7S`yjm)A(|4n*l(4 zv`j^T3EI@lWkaITN`nX*U9sI#J86_s` z=o?R-wPl2(uhKQfK~?o&dwnNm7iE3xm8wZFR?=!zRqhl&6iT40N25AOxn)2IB(13@6p4}s zOazfq{w00$vev5F@tW#7#F#xQ`jNW6tstgI}s-k(6V<|j>qQ;<*Qr?%>C^4pdm-RAemj5b$C$`k{ zj%LbZ=?aDK23;Djx$$LMu82jZa#)2$I14YQxtQ+s+JVvwKMFVpm*8SqL8FtlKe0*hs2c*1V2dtvLk zo!+43PYY+sdgFqD;h%eO{U@ge3MH>aM-fr zyxO9Akxm;4u!sLHw27lsIqI8W9edt0sfVzbPRWp!nNu#0j+jmJ7m7VrOR?i1{X%m= zSOKOe*2Rg$mDEG*=CoT|`^MXe=jip3&!=A?$oz0L>A4OeFy3;OkNIb!T1%mmq)Zc4 zhezrkNv!q(HU^T^D9Mn-$ZH>Ix~f^^A-aRt06yD6N@M(Y4f;zZr?35OM z(&qbfmXNWci#k$TL2JSgzT#}^4bb?&j5PbxMXL1(z4I(t5p(>6WW&Q974_AVu7V~rAo&M(z0-E`OAK_rki z_W*h9|48ou@{CLQtYMmy)Nip7n4gEa*tg`mqTBUGRh8T%7Q`2~*1)`KuSK@tPCNQb zt!+OU8#2!&i$)yAhq*1-o%fU5j+AsYl^;O7OgP>|>V?-jkM^;k%-NWli>;A0S<04W ztX47u%-AvM{|$PK-tNsFWee8q9XL~&?jV_iq|DEePpn^O%GR^!^hhjrb%a!+*5++p zr?tPuowe>I!w}n@BbfJeCD;TIpZj=%8F&#}c5H0R2RC~H$TqtM z>}7;ka(c`91opn|@{-vF%;$b!^FF}0->@mzs~@oS>8esqPVcDi!>G7aVZ*{qaZkm}MGfHDr;1aH`|rG(n5r1d|D43#}H z+P}ciF!Lxljf$XQpbb{W4#M5H*m%#DCm#>g2~K3#jZRXc-Xq& zUE1?hOQ(gb%)JEA`yt>@g}Rtw%iaAjpad=!SG?3cdisxcVa9?OF(q@XDt`V5%XH?%i@c}fTJRk7?qkoI#l&% zP_|^upDC;uVj;DJ&utLbi&K99!a22THQI@yB`9e4g@dtR8<9i{( z6r=~Z=q1v;t#jCT-}MH9@#w8gAu!myF?*wH81{{sJ(Mn_!u<+X#WIxJ1hEXY+mAIyMVNemU$S zu;=lR3vXWmX0)P@-KOc$nLzQ1G|i!sqj6cwvpq+KZ462c&9M(NUExJX5{ZyK546g(VXL<^lJl`SmzRWm|T$^LNUCoi;g#EE^N=o0g8Qq$x4lw>k3Q z;%JBV5^@lq`g1!fio8DNb8m;%SL-Acq&Vzw(Aqemw@p=pQ=^#k=NZUsUI(H&b`{~f z-lJSqX3zP^x1 zHXPJPH7Xy5C3B&g+KAM;%ZZeYU-cyK{JiLJPsm5&4k-~rqUn}| zww+~$Jz};4kVl2^rA|nZB*R<6!aHqH8D$I#S;>NOh%|yOJ|{rI5o84!n~g%faF8F) z7VxppUV8DX!;kUIH^ zMOj4r(8VyI59?02;tQQ+b$qH#mhkds2)u$8uRifPtNg6te4UxX`dzH6FQWWga1CHB zm18Lp-JzkRt&}nV`pVr&Ac*SRYTBz!( z00(LitE5tw@C{cO6v&(&zM)XwNT@(uZ?07i0_x)iD{q~7?QYLy(VKQu9rCnnyXS~5A#3KHTrr3gTuSOGS=X+r5}+$KPv z*^{j4O*sj~)-~Ci$CsZmmEvkG`o!1>k$Z^sKT-l2*N#DgTzde+B$>8 zs7?3DAo=J;x8=DByx6>{f&n!yHQ(CLn!^{4AHB5C@{O{1zLr^gkdU`EzhE!lrV4Hr zAKruum$0nsY>@+hC%WxVWkI5Ct&FE$OaM*Y2gBPx{^iLYP1ZMiI{Ft;Hg09XRFWAK zrp{VF?2*YlL_uchd5L{0~ z9lO4(1bS$dgF12T%Oq2vjxK+EvB#oSdU>4DAJj@iFRPe|tH?^+Edh=V&p>~;6EK>2 z&`eUjCZXs4G;;Z_B%5;6x4PN9lz>$r!8y3uXsMMr5QRUfdDz7X`+Crsa8ky@6@ryi z(5?MxUkD^GT3r^}u-MY$@Tx;Gs4M|1F_@;o2mdG|DsNn6%~l9f)zuS+hMhS#<$m-nvv2KU-Diu*(Ym-EDKAaBTqv92eG@JHH{ z)8w}7;pJB=axS)DrNd;bijPAZn-TxJe0J6l7;vPt^jjT)w5RmN68CZg2u(Y*qH1+u zBhaord+tFk$j0rv*H}rGW3v3}(*bP+ZaOZ?JkGg1x^NH??v+Dim1sBYwz*~~+FuLB zTEYWU--8-h8T{2zd)HWF)+qANuKA46-8I^74gE|C!G}M!l|@18YXfVK0xXASq1%Ct z6cKJ&wJyt?{Lms>&%d)p2Vs?Hbw~d_^oHX24VxER9LvN8wMQeJdr?^3 ze3mmSvo7{|KK9byJlvw#Idz*Z6!{Uh`LQoK7s<|rgp`FE)SJt}>ecyP%qfWxRtVU=X#jDd;{e_slyU0l5{XP$$53|yJI)Y>yVygy! z??e9Vouui>&odp8Z1PoL?*Ul0_4s5Er9EU2rRzJ^V0pYpJoW)8-_;LbN6yGJeXNN6n+honDR67-{wdHM{YXfyinhzQ z?RrqdKj|#N+v*pLDZHXWXB&Y#aJtV;>}(XJa@jXfi5s%(45fq@fx*WdmFEs#vo8B^ z>>dlHYVcUWqy!nV+5JlURO$YkoiKPK1q>fOO*+6EH}vY|fMhj;W1XkD#e>$ffnrriSjDM+`bopaikqTQV0;2K1dWB`Jn%eO`Sv)# z^HnR$d%5vhJMfm=Z4?!K>g@B*u{l0DNdPG^XogJ{vGSSA6I~DgShXlDS4XwhYN>}t z%B1Q3xZHb7zRY}$t`<%|t?~k0zQ`Bc+;Z3FaRrzKd*a9qlzSQ5mwYBi+Y)?Mr4e&% zwen|ngx%Jq)&sVoKf;iR`yAsBl`!oRrFV-pFrTCG2+UWnVYh`0{Q4s=HTQ+-TB&0u zP<0BLQ?$s=*X)xE48#E_(&Rj-&FdA0~F6ts%`rY)Hzc6&4NM7Fv)+_ z^|Nk$cx77DuDKm`i#RKu41>J@eS8XpB zD=l@UhxhJrby`0A+Q&q?L!Kt?7v7+LKo@w=o6v0y7R3ATZ?Fm$GuI>gWso+GT=Sn4 z#0|e}-Y{)l#@-{Czusx_-Zm=XUVC(D|J~G3`6|Zqsy8*4A~66D_sA!=v1zoK*^u2MhdZad`WoK&DAj{#g~>b`qt*@*tg$V#D)N5 z8hWt@)qC+gN}z8XOYWw~4`YMsD<58Tqv8WH48reIb$T4fW{xn$Ceo7?DH{{hU*T9X zwU-BV+1W`yjC6Z+*oLTnTqS;NzO-(ce40KT70%#(1SqGFx0(=Mki^Sxrz(kk%?fBfjPfu873ur4`8GyDwwet0W56dC z7Z1Vh8_3%i0k#{zkD$l;!=2>q`PQ~&7q0Fu-L2ned~d2^3>RL^#@VGWZ?;O$yHi;{ z(*^vaNckmJN}b;3%{1fvE^^RF$o7=$(;AR9po~N&8*}M{pTJUXX1nUiT>+erJYT={<4a|u*VL^|;i9xz+{xwdR1G>`X3&fZ0D6@%}YtxOg z!>{~@r3w{qb{y&aFkIx^kxs7r3UwawGlL>D36;hK{O0@vYb>tOR0MF1O}nG zcZNZ;>{w_NW@q~(%wM-4hMg;})6Yi*m_kv=s?#2G?p|Ob;wJCarcod&VSi-$WEFeo z&)q5Z$3SE(dN}4T;t8p#)*qhVUmqjr3C1;q!yU%O)8oYu|E)zATxq83ovlY-+3Ln~ zrOhUpzcx119EC$1+c=R=<{q1#!yN)9sJ;`}x1^2m~v5ASRg zqtxGPbDZ?YQI*9WlY_&AFSW(hU2KY3v}$=nOOWjQUHK`NAZdi#l&Jd=!>hH7Lm;J3 z+xIt8yCk*0Asb?=cqnBfE%(jj@(JFE&heIN9r+uuX;0-2?Lbb{-=zGzwE4zTEbk2dg#Iaqe?fC+y0Nn#%nD08>bX+z&?~}@`4)ZDT}|J6Q4a*=3oN|D2lzxks#;3@&d)>_Or?ympG&{o*6AjrE7+9C9HD>FlA_*??|kL!U&|^v~l&gzBe(lq1q6(U7|HUA+ z5wdx4xuv~v6_g0R1zmS}WC1Z~O}ugfGTcqY5BN!WFdc#82}V&U-TsA{IEqn(Y?Ii1207w)3n$RW{j|fIgiH@WezUWAQ$f$#9t)TMK(l9IwZCz{eTmUv4KT)S-98US_6#PEBM#qGF>4E0WqX zE`1iTv7^HqrFmYW1l#0NQrMVX?~i`QG7>IsHS~XCElqRhUTs3`fTY3D+z}2&{9-(9A6+}x zvRqQnJ*;^Obe@5K455w;0~dcX6VR!d*+!JVx7|5T>|~Z#K8gYWZ?RaG(dr0Nq)-U-@b+2cv+j~feTl*9lyi93SHl-p`k@K0duZ7@SGJ zfcKXY*`E6Qk_p)o*&hb4@6WT972j?cy3f~xBbVPM@CtBsyKp0WkjuOK*WS!-K(;57 zXW%QuZeSy3K=#MI{pa1I{fB8F=y%YoKVKQpjAQ1vSMr0#6SyW))*?@UX*`xop6V;t z8-(xkhS9R7^9pHGu*xV<3&E%jj}sz~38U&7bKv#f^7DR`!{hty^!x*U7Ib+r}v+xeRjHpEdT!Gls5$5Oj4<2Y87Gsvh!cfipQA+ge zqWP>Nz>|MxV*tv$`R;+m2T*RXn`GjIg<&TaP*Q@^L3T9K-mZ^v^+TBjE>#cH-3)vf zp$+Qm-oG|#Jy4N@?Iy+sZ=Xe8CH7{A-zvOiSPTu@UFZX7!4~2b^4XShPiRwU7oZv$ zFtlC34g!2SCvFp4ur&~-%6S77W6LPYhE{A^k4>``2+$nVw8qW90vhah371Qg88pEu zWoxKyHU8^Gm&U-A3yo!OMq6Nyf#EicvC@pDB_c>+D2SF|kH1PZy+bWK5e^JUV}RGR zj@vP2Y&SFc`6+C0zFmhd#Xk*KafapKNzsd}mXpdFvaaItJG)%juHodK-2sVbIH!Hrd12*{1(3bIs}$O!0LxY@T6UjY^^A zTN_>N+57Yc&WMBFI_S3!V1L5&a^v+4Wrg85I(4f>GG%9>9EIYW5w#yg4P$rc+L+a( zoL0s;>fHdF&Z~>T&}(&C{;k)KXR4LJ33B%6`I?0Ra|e0r_Zfv0F4?IXiSTbee`$WE z0aUscpI1h+DZtc|iXi%wa1*pkx~=ZO1O6KfbtCH&&1mD4tTkY{_#K=>ho3W{>PU-0 z!-1h9uS3$wSuiQ$#XZuwy6=ZU&E?l8P)gQ>RRr%jBbqmhi<=%2T0KUdEs$bZXwG&@ zIg0w-MrPvK%>-&DG;IlV37#oU=>R%fH%H&!C~!i2kKC`dd)d?qD1V}JJNJAMhMVNl zx;;SkJ2eaz%Lx>b?`#t(I-OSsxGjwH$Q0il$|ilcGX7TccX<{v>$o+=sfV=_XajsH zr8VxueXbe7R^>!$0zZB=q~-S`T#{hNjD3u_?PY1?SGs`xI*rW|KT$KqRu;UrRPtnq zYd(WiJHkWLmAfHwSU^_8)1})!sNR#=HN3U-&dc!Fh9i#tT=-@AxS+&>kKkYh_jb0OhO?0E9GJtRJ(L18PLus$juYpbMG zv&>sL!M3XDX*6W1T6G|GUQn=Lh7BFf4TM(J6aVddwDvQ`i0`nt4@~aqC-p84%}kSE z57F5ZjXoGD{)Hg7lQ~t&`ZRr=Qxjimb%c{@Gg{VGU5M-KTY(j{XQ?&#LD7uqDMJVo z(lQh_UI`81$)f>X*Zau|#L(ShyPN<36Gmf0D!K!rPUMbx7~6cz62t_8ht$`m6Og+)b3k;2M3;RFWar=z_HUn^)ecdOCiI`w%)Blz*Wi9RpGtlX5goWac0%oEel8s2BR*v5>w^gECR{Av| z{#Gps&Dr4@?S*7C@pUDwT9nwf;)g}xKeOd-j>?$9jrXUzbBm;kkoQ5}tK5^M2e5== zxKAYYtv(`-u^!H`6?8I>w2iP5Ie@$|>{640ym^HL2)1uoFfOO^4LsLK{kg&!Zz57} zxCby;ze79HXm$zzOg(%{R@R2C7k%~;EX^V{ekzQBgD*)MRwMY~SbM0F8gZ!Au3!0U z>7wI~@xUJ%hJ=Ch4S7$q*0BMa*I)6V1L-io%EKTKTi{k#?vLYMDTsa*VZRWkM@Wr? z0hymYgX4&$0fFo=#wuCrYGWx#Ux~+Cj3z({)sAHpV*oDQvVlV)xvOff!2(EvvCW$tEjob6p10V9pp38{`4J^G@O*kW;$ zyc&Z#h{xhpl@#}kG=$eYPcceCM0<)BrID6I{7f9>q~^?Om6+!_+0#tiLXn{pw|Rtw zGIz({X8fY0zD`!$t8(|W4!uTptMrDV1GJ%F6GkJ1dr*OJj=*xw<>s!&n5)hOYXgMgpX37?jDEV@8%F#kpF36HsAs(&_XdqsowYk$4eisMHG8C;rzH&hxOn zMRJ@}$Lu5kmOhTEvC#!`)k{{Uz&>08t2j2`!{R(#HL6OR!2sH%m!z|2WQelhL-G=$ zm`BKa^jQLZ8{~FWUnJ)k%GejJtad9<16|8XiLgisgthzk#SvWMpGC9VDQn5jsIt6fa(S#0svKel zBbWtNQ1jbA10!RrbZ)Q`Bc4CQn8DM*binruw$$|m;`^_A2S(yvJa6O#^$dUb0-Ygn z;_g$R@8$it`t`=7dLVeF2x=Yhf#dB&C1Jl0kUBHIPo+N%ckzJe{j24lNXt24rcxZFy>z?guO^$)kP041%Y$1#ES-4KeNKnRWI za*ahIB}AD@t8i73sqtlX>t*za67&(x%^xmP5o4XvM+fwxFmZWg6!c?#Xnf~XcKdIS z5^;?+;Tti#GaHx2p|d}8{gL3X+{5;Na7m$6()_z{W-;}Dm`Dx=QOUggGewv(T?Q;k zaSwh^GttmMPria-?e%2NBYH#!{WwU-h70y&e!EF{zE6w^czm;Smq>g0ME1NMoV_I2 z^|hGE#(BzNErk?H`IS^`V6NLqHULX`a0J$*qAFzvy*?bwAdrs2$bpNe&2ut&cd7fN=P*@W61*3$65wf?wYFBYanOF{ggywTTjG$A9UZ!*6 zn(56B(3a#PI!>6*j8BMix5gr6iwXxq5hzND3uVf-Cp_(TV*enP#e+QqnRZ4ev^sv` z_0%23sGGKPF&R_q@eeQO`_5_(0Ug;hvl)XLOy;Qbz~GX?=zQ_4MS`UqSNL_7&B(uJDRW0A_eno0URZb0LWHS(0vcgE5qRSQgv z{%R6hTpkQk#W^gBl@6&8aR<7D0l%cW_ARfE4eUl$NeNq1#@F4>F9j6rYk4_gBtjD- zB{6gRvSb&_f?FAl@z|8WZ)H5S>ZkY~>C;`G9gK{zxxI5H^+XVmYVy>7W;(qI{FZ;O zv+IM)SI_7IOXLLE_Yg&+46(fH@XBua>5y@N7CHXO zb)I+VN<&*5f|=2HUW4H+B@|B|DRc_AJo~8v-wwkyxH_qn-EU;E>eKx00FUkZs!!xJGdGnyaoW^dP_1cQ!*Zr zLpAzz>YF?C>lK@)0a?u2jV^r{Tdc^8(e)jvplukfNiAO>T_CTzm-}omBqbzS7@cFS zMK8A+gvfvm#LKQ-1OA$STeYf`5I?BDK|U_sun&MIwDfB|Ve(nok#*sVR|q5|%%?@R z+MMXhV$c6TC4^ulpq}a+$#7Isb^JUQWb$2-Vyrm;+WT1)E@_>2@U!bGQ_ODh1UbHi zRr9%e!f&5w?j&ux;&`J)to7O2taz*%kD3NIy`Z(LEJk%{;I0bD+1wXK?KSEyl4nd) zdPnvQN$RXwTsnbMoET?pa!*eP483sDF0yMJbz0rbqJ)nWo6?BxXN`we<&*Z7DI<~F zRwY0BYJ|v4K*2T@=Fj7LyutOAk4>lSd9(n+*Wc*mdY{sA0(f1gHkBL;hpP3`XL!2K zML>*CmcV9ZV``*S3HmQ*O>-*9MJUH$9U;B#QXS=&d{bbV2q&B<&bp}X1;y4VseG=Z z2jhn*ye7T}jWvC+y3swTsChbGn9LnMM5btSf)?JXmm^g74)_;5$9a5#2n2q4L^QVik+48xnGLaTC z-mN4*PG!Ld;Oj~$ik?IDKIzWGIf{OWm29@FefX~ln1|=3w8Y#)X_v6ShU89uo90HRIZ{zN=Mmf}^JWUnZ97DjB^w>)u7ep9#GQX%+jSn9K^v?dU zH}{AFS)18D)xyMI7pTs{TF6%k`L_^6h{S|Q5HFWk(Tw-e4+87p`ia5* z>#2!$2M~V=pVAa7W~QS^F&Ru5VRwbPo51L!cCPJ3K9}(XM}0n1q}1KjNr`msd{R`= za-M2@OJwjNjLtF#@nYU2=enh%J~h+BIXCyiS2Hj}^n(IvJs}Q|h27{#v%Go6ABe(M*0Y2*EXrv1i2sez#Mkz>(TjB& zr6?cLa4K!_&>~U^ey9+jh)9YPW8de~i$O$zj|osCR)MPQHrCyZ)2zP}$%qyhBOGLIfdCV=luFFY{>^Uteri!PaKBgIgM(}670L32;7I)yn~PB2IDILHl6N@G#cBDA3Erpy{~0>yRK8~oX9 zV&27FkA5^!V#DHddJB+KN(1N&nn%%O{>(`E$SIAhL3|-MVs%I3!tt#MOR!9MLwpN# z_}Av|j!;{v4a+xF*~h<0$WSM#2d=|S(d|l1NG|ZtU z-w()v@oujp;4&qHX3|!4Gq%x_oTOoQQSg_}XF*mkqIYT2C7MHmxa+^w9M|N#TliX? zf4SM6K{`2u7>nmEqb}Ms124{$q-hK;q4y4}rRPn3E~xB0w~(1m2GZQYNzLUO_sHgLa1u!PRmY2Lsjp5Cvv=YfxY_G7n0Zqj#+Ej{N_0~8 zsdHpFgetBUFA-o)G+RKrHwf~ZEMU2MW@g#ltzR&h>&P-E*)z5vwoKiwP(rSh?PI35 z&oMNk(j~WTP2zyy$f_VkO!N~|#(+s_Y&)Y_JM65oI&%rSbzGVLEsPK|Aa?Jtefu1| zencJkmST?7Kt4!S6Sz096NI+Krg~T4nKGUo{XfReF-EkYOV@4lw5`*&ZQHhO+qP}n zwr$(C-F?qw{>&s_CO27?+LfJMKPr{%%BuCgk3@4)(=A)v(}4rDX~;efL0j{2w%?vn8$0spim6 z0u$#}D)ch$(%uBU<5o^VrNma{S?GOYiC*w0DoDF|kf&Y21N>n;dF*zY)D<(9BUfv>nK74&DZrfS;H07Ou4Bk!?!f`Q(QIlbtNg1T~hwO{vFW(?x$xMWITy= zk(spZJU+gLE{zBjYJrQ@wt!tOLjY#olC07#R`kR>MjQTS4+-q?<^gOl4X4JC(@bqu z%A>E8r6-GIn(hhJSsaIBrtB-{3Ni`z9b9>cF@#8_xxP46ZLE}IyC(arT|I3eTFw^fq5{6@*^sC)fVQPOj0X@sJ$L*3$}8mbN6XRs8`A?r_{SfB~+ zLoJXxBH$mdh6cNMccHz&B{I9jFV$mFZF9{MFgWpopaUPDY@Z7d6c@j}x!MMr?b`RL@icuM2lD$R|iJ#NozBI)6%9$Ne zR_mG(F;0Ue@#x}MM=6%ONJVGcBjthKtN>H@+&-tQ&L19sW^n<&b1ceQ44rR6G1;8^ zJLL+{D(uWrR&cS(^82x@C|s&ho=*op8*Qs_-j?6l(+iyn4+GAgCt-{4+tQU^7Ur|p z^5*&#~Q(f@k!2U18{Rew;%%LZOkyVhfLKfhO zOdvTDrk-U23igKwTo%r}cyL-B4PB&G`FOx zMRSeFOz zzsw$|og!C_Bv(E=pZMUbmA4#dauS?eueb+ra}@F+n1yH`3TFt32~aaDa_Zf4{e$k< zUvOG>vmv@=^4*LD8I)p~8!wIZl00ptr9j}}{s`r5RgOlXlHSxAFWT&P9gfFXHI7Da zyFK~hInP5VXVn|$P0h>kZk3&loh?gKZtHB%ZI?b4%BZp<9l`UMxpx}c>Ecx@|C?*S zQsCoHB2bSXk+TP=l1Yk@-8 zf1O+lh{jgG1q#c@R5aSLjc!lB)+BAfHn%TCXq?a4EuC2l9&LmTIo8g&69@EDa>uTR~WO0)(c*k6`EU?m{Rho1JwIJu8-oZIKE`0X#JV+)G!!8Bon zbB5@FZFLgM9$$z_=giUnCWkl{xahva7h^YKb~KWw4*EfPXt8P>ucO;RA8#wqG;KxywCJc%2RHWa zl2!!YbqO~RQztd1g$j8B3%0`M{h7HvQFu6R_6GGRmfsW++k3E#!}KujY;4m;ylK6P zSUjF)8g(%S7QE%payrb2x%%e_LFV4vdB%3NF_eSl+t(xr77beUB(!(`(sL^07=`uklnXMYP)n#;H zooOkqzM~+;IRS|)98WfM^XV>z5xUp#5^C|q#~7}*n$)?w5nO|F)mp_S61S3x)wZWs~bY zyYS`Y3eDY*GhWe@4@!BDbK9+t$LQ{WJHG9^Z)-OuV7-SvzUf{0t{0B%&kadMG>1B> zl$V_p+3*WnEgaxXQB*}eA1H#)A8iNN$iXi<@ua$1KZbKgzt;Zx3h>XaoHv7#w{KbiZQ~HLqv5P9-nMY7xoqBA zJCLT=7vX;G{J5Zdg^x_6y!2p!%TMb^#!{6g{enwoh2;OIyVL()05U86|MH#b*4C^f z?zH#W?KR*g@h>b-sBrS1=F?qaaHks@=gWyU#1gPF81?`9%DY)9rd?2Yy}9=vWN$RB z{JVTy87W~wkevDB-Up1^8+H{tGCq3y^K_pI|I3-$?en#=q1KoC4H zp*~`6^;4=FH^)x>j}Q&GNc(kJi~IQd^&E@0>r;&D`;`k13omlIG#KEKNBSLlZu$q^ zg;$WSGgrL)G1vPO#l7J>HrDp{;qB||<#IoF6r8Ka_jYvuaC4F;4wv`mj-K`n%}eT0 zb8j@3*V}7g5{|BiD$baW>%a^_Tl5YjNQbwV*XQeW^l^1?^l{V#EQ+yh115|t>+dhA z+dtaQC}|mkw0a47F-lSOzR(96V90#Ez%rj^GP?txCZr*3Kp~&I*E)kWN3#vn03$}Z z{<4-%v%sIIDrFiOS`pkFy(Sm~Dx}q8V?2b_8tu4}E~^D9CN|?oW6I*mp({>plIAmq z*MQV>KF;4-fj}sE&MQw~E1f+EzF3Eh^UdDxSKHsO_xI}0?cJZ(*5BvD*WcIH(bLO! zk9nlM&%@8x(A;|@Gbxfg$fpZ^>`y+o0~YR3I{Fu;zPli%`hW|gm4!GGL2#B#sw)BV zpi~C3WDrguI=gh$n{4HoE<%PxIxL}Z6f*tk0kRBZjH12t0&@V5<+(y2JaDCRkT5+^ zVJ6Ic>?sTGM4nJWHUD_v15R{(J^0Ez&r?t=W^?Sa3UU$N-1HJMm4B_c-^FI&0dmy8 zFTd)l07xy2N^IKg7&QMGltx+aGVLcu-bIbRwB}ijzv1vb%3@TH3FTr2>QmT6`R+RI zE8bRsbQ^^C$zunebA$X$=gfVLj6W)LLiJwhTQzce8q zmSV2I8g2CL$$EvOjmrSnZY_@a^03P=qkb&|&^0F=_A zv^$3Cs^iRydj7|NH)$&#NlVF+6WzNE?`}2@>Q2y4A^<4coP`ZY2<*wN4VxPUWFzde6GpKWcvgt7rZtNh&cs;Y zSxbVFrMasB#tu=kgIjXz)%q8d{yagY9924!&ZSTQ6!bx62xYM7xY8xf`EkeHs+s}) zcJv64tamRkb1XpF(&nXRtF((+TN3@50WwFc%ejI$LXO&oFywVpuAEAU(lPx)P8j6+ zb97Z1--+va#%+HU71DEAfmsATL{;ev+ku;=FaU8V*m)g8+(vBS_CRN?_*zplsI8;Q zXWGF^S(YSsGJ)T30h$QBP?fL9y@neP%Lh(G*CW>;e43-^vbQLMNgUwRuIFb}tRw{K ziePyepW%piY?867LzXHpVph2(c=d&4@dHaKH#63Gc8G0>r5}bEt>v=?>yInqQ3lxr zL$Z1ABO)pCsj>2f#bsk2XZM3f7~M}}seno)dgdkTq3$fQ0mV1jL(*k1mI58$L@B2e zN0#Xcef4Qw&&Nq``VNcvdTA>7$675UnA@_d)-Q8fAU3(^5AF#^K@^Gub(qG4ktQFLE~(>Sl$Sl(}EN|S|;Mtq>TN#7&ljQ6tAXI zFKpzS^tV<)PNg;*mo6Ke<96}r3@v2NQXsvH1a@vq40OgZrC>?@CBrEjSFWB^EO6fL zWYdq#OP{yuD@m4DVnZkZ$#;#{lYa=Z#XvKjoq(oG*+6XP`{>^+pi3j6x6=aJ3F<~R z{o;hb#)06*?_kEM!V;u%=EYJ);uE1XbFX081XsF5WCcWOl~X#BZl&w%(-4=-RB<{+ z7t7`e?lF0?ZUc8fSIZDphYoeCV4mym#RGaq=)fJ0i8XF0&%C+|ght;%rP=Wvr??)) zrR^L}XL?T;2&;$B(pa{rhE!A^?q}w}*XOe^wAeZ@+lzd&Y~>2Ol;~z|g%Zhfz9xx` zjpS`L2YhXR7EX=irV-K8Q9&zKzU9js1l?PV_GGG%^cWpzVH&$<=dv9&2@P@%oal=X)*8PUtLvaF5E zzg8Rn)~q0^k(rmm(8fPE2k5c1R5m7h&cxbnS*o34B?H$(T}jd<4q5A~vq@x7EI(sV z7z==^l(C<~GiE8OQCnh+$Gp`rH6~rFw8`&E7fz7%mUso*wm38#@qAQ z?CU4Uque_cd$5snmLqu3zNDv1q=|zPAQk!w(ZdAk?cGbUWaDD<~S(0RO*9~^( z`~v?NPPE#OdR7i8U?&z`(_c1z6rpI$ZfUW9{#E(|kOexxZ^b!7%q6mh!NR98OX^Z0 zdSVl?iTa}~q!4J3xLAFdRRwY>rZc9?Dr1fEj(R$tW+CjIwDzz09VfK z@eDT)TRX09sVHmh?#JbK7fTcBBvCVv^Ps{#y%=m$VR82)u1x7wE0~%!Crg zyaAbQd2PxT%Kw1DU#($9v5a0RhF?oQYqzZ&@l+B}5=q0UrLr!|zl5AB>!P)Ysdy;_ znCe8Q;JaSudp6(m&jTHYuo%g(2DaaSB~{g5yI5WM@!k-@;arbQ-y{DLv7G zg;bgCSj_|ZhMDwrCrio9i%Gjvd_7_{<1kjN)k2}g5p9@9a&YDEIg!jo}Qy*<_S0Mb<$m_c;@`KM-xSiOZ_2jv`A`f&xGq!@yj_rx8^FK zt^_A13EdUT$t6EPPgyr^wEWfI)F#9f#@JU!Ny;o(uY2-Zb+Ra|nUtamvBU7SZ4;GB&>2!` zu>s6t{A?uuCTkJVzt9uKI@S~XREg$QO_lRE;o1!`WBBB^d)@nT1RZ7AmQa<~%@3m$ zQa|jVMIul!px}q&kT7c_`Xb~$K(6W?2-;dlHyHyFos2CO{VV1N=#PN?4q(Q8kq$se8nZzt^0tKxQmT$8R#_3Ac<{n|FVX83l;zf+H z{r@f@^E6#>O8%*H3Q7)T6~@C1s;$PW6c&7{$MhxsP(xJPdc=il$tlH7VY?4@R!8Vp zh+TO`O-VkEBd{g++O7>mx(G9^)`8Ym$YA!=*zPzon#Htnz7zriIvjZaVsFh+RI{yR zzv@3rQU%HA?oc6bP?I-vzBD2rmSS~WV+Vvj(LS=1(VyODt@-v|^23LSaqFEPi$G4A zVo#N4QxgRI_Ya?hGE#pCu9t}@^D3S<<`QKT7v4TURMYQ5;HRQxV^0wQ`R73CrIna! zZxK*4sbj+Y6OpQpX!gXAN+cqMSXY^BHDMz*(r4QEEMkeDw@0aRsCg}q5#P8L2zQie4}#=k42EGcS0DtHo_pDEo$5uOXK%kz3@u9panFzE|7XwzkOuv@I=-@yfFneXr>TEtOB~EIvLw=9yKNXIpTUlQO24;luQmk=E z`>1`|{+pn%Fo)MH78HTbAl|E7&JP%4ApMQjq z^b=6JgzsBWx+DjeN~@YBAf!U1`;l{p zZ1oKw{9M(sS{j1pS};4rx#ft(9KfZvt%f|Jmn8INzY_l|6T-dTG84+Z!&MW?jX9y% z8pMt2E3syH*{&|QhSVv@q903t%g{OWXH8UUc#5X$IRAbJA6R+J;?J?bfCfk7!T<=; z$i%voy=8pqjf(zfbvf*QB4?sOcy9|hv~6)V$?VXyH5b9cysc3BSXhgYiAI8V+X{rL zXqZ%$8BOX30&Cs=jz*k#=&IMX)|}kbxaDZTaN{FGsyB^Y#N>}~v>l;?|KyJ|QM2(Q zwM(DIh$zIR6-`GxbNC^Cc?)Zxr2M50s6nM+_Cp3x{VTJi*U)B7-fN+Eqi&qK_;-Xq zbdiTN*adz3vfeDYo(!F0--?vV5>lfv!b%5=@rA2uf;)=g23wcaxZ-sM-`P$oYU@jZ6cgy@?iMQP z)KZ(V1*URN;FP#x;s(`5CTY{dm!x81?%ssrbWfsVD#^&CT2u29CyR}QV)Gv5HT8n0 z63YYYl#+B=3C>Ke@Xlps6LpP*7IQ-~dQze2!dCVilhfR3Ysm-nL_En;!s%0Vk&*zK zOwHugjP)#{bw%==WXKW&B4x*z(keO0(^JG;bykKI zv-FGpaI|QC0bD4orDW86!r-%j)k95SoMDQdgWi%k%rmmze@T1MD)OyAXK$z$5mXiB zmhF&(knKW1SR~sHXd>rs4vyCTJ=Zqj%&eE2;0D1iJw^-V=jwPgUER5e1WYw@1K?efY3McB$5)-@Huo;z+ZGCIl z3vZKr^4n!gxH{&H{%YTJM>fpF>054u-V;f4Lu><&M_J_R;`Ga7H{`4t{>pJ50taSU zhdRI6IHy%H+8t)lytkO9hB%qijm<0`SW`9dBez?A3D%B<&i4nhnA^+_>V!AEupok~ zEe_)dn-Pm=noF{nQOn5Csu%PNc2{0xj3s6o35(3E(8Uez?iK;tEq>wd0P``%b?d2iL33GiHNM_e$WL?3($n(_)(L zxJvm@&azTx2$jMUP192ehvC|o+n7;xy>H!4KgIKrt{a8LR$GXng5y@apOF#4Drrm4 zy13drJQ+O4hyiey8zC6%!Ml^BCNnNsSe(H>4%{8jG1<-Lz2+CHn@cjGiP20dEEaGA z790~MHqYiV!-A1ki_r=sOZW0$Oc}Q9vGFQbLH0E5O5=tiP==P$=|vHEln$or1L%WM zj}v>mrD!zhrWbV3OAwb3Md7kC{tnSb)DhVZtuFp=E8Tw9=1)BFR6Dp^k^;;YWPy@B zG|@T7V+J0F&`7Kq^Ba)UnuyH@iK3U^F&h3Ox@ud{ZR?5%Lq$Jb-Imn}x$Ub4tGezT zP7HalMs5x(S5Xc0hSM;oF=VS|YZ$W_bPOEJ$qmKLJ0Gk@uX;kPSCbP<%bzMH!B4U{ zY(1LD7T?;n69;J#G}^dU@UN>kvFkQ~3!&1mDf|UYSqALadU2i4YBGzb&|qTCI|i&7=AW%vR|w25yI z7KxO5(Bx(Q;8xXQ9RJ-++viy@*hpz@%Ki9HkDCgoeR{)3PpCnu>nKTZFw z5pC^afm@zUforaZ1Tm0YxUEkW7-J>-r1Cy}Q@EyJMvy|?UA`Kk z!Y8A%{*H*8+c`m`bp^0kgdY&{_(Xm4`%|j=*$wZjjG9&RI|2v+T%r>5dRQnqHn#|9 zuRc1HrDrA!RtNgQ0t!g7R7d0u1_CGgv^xe{FfJ3;^5+7+Pe0ABy*VRbU0j%VAB-Qy z&MW!H<^jgzeMv0ZjT$V00PLX??FTw}7`w>r(n6ij3c<{GbP04To}#<08GLGiQryBE zU|IxE&HO!IzT|jQ(w>bAEA*4JRO+ou6}#uz>UajK`xrA>=e(fj39TCb``s0Wy^ft@ zUqp=HcR4+;zr6nyPKqGHUtHv4OAxAlCE2$6`JMk74t?>fuV@)Oie1mLd|oO%%)DG> zx#H{R#-vFLE{^SLmPG>oO&%bIjSb~c{KKJF;YPo``4Ud>utZ5BXPN#yfpBR4^$Z;^ zp2u}qoES$^lkX|BaHgu*-8zzxeJ~(*SxIJ7tYW1DOe`Ejac~f&}Jsiaic^O zhjY&Uil|y?TaXheyFpG%+VOO*(NEk~d2 zh{Mj&_X(^_h7?<^{dJM%tX15?p8Y07Au>~y*ehn5?W%sc6l%vs1Bx?>C$ zc3~VeJ;rF86Xzglnh5^zM>G=E{ zt}-Ry-7z47b$xxM*5V<1{F9OVT+aSJK1hG&((wM))|P4Ig^~DrXZMgCH#K8A{V*5R z`g*0OdCo^bc=0j*f=GRgKi=Nx&gQBX4lzj3!YFE2?b-<8l&AEUX;=uoty@=G+k|wb34J3O8paE<} z0e}AWLJxe&M|3*c^@j~&ZA;zd*>C5CQWQZfmNz?8USffvTfb3cGDA^A6CnNy1d>G` zhoQ#5eykGQB*Wtpn7RyGJw>rS0X$mp;CJg|-l_fkZWnZf)Nw~e;G{$9Fdk`V?P-|j-JF6zT zh=bU(xwsgHKxzXVT_)2liyWv7$gI3D`p*j78`Z|V*40@<0S~atdmx%5hauNJU3VX@ z_OcR13;z-M{Tfo!=W^`|fP_X$XwG{x+>9x)2VEag9BZ7?R6pTW@r%~NCX^^9N14=# zdBp@IQ`v*d78dKhs$kTbM>*H-8P%3m3NzvhxUjX$IG7$9iV3nk)cuqf4+7q+=(c)o zC@#tP&s6#c{rNoE)ehXVYiYw=Vo@Lmw>&m)Y%@Sm6TJkM<$yWrx;LtGnC;6xe#+A# zJ~?%q11xfUFB3>ULBKB8^D0Z?K6KTYZX@tB&LDNfXK-TtrkT8$EOm~XM7XetklQr{ z5kKvJ-xM=~{6^<(kT_Qvav0IM2}J=M=^{}3d74G_H)^x!!@)x)%Kg2I`KR31IAWYz zXw>Up)?hH=?k%)=McaB#w6CEP{eD@>Br*RQ0O4{uJ2wa6C!mcgeH1N1>@(ohf~JX# z?-hT#+WVp&*|quEF{`AIYLP+cg%@7x?@3Ha)uzFOt84O;8f9x~_a#}2gFc7}vHc&*k)H^eJYK9ioi zrXbaU_ zx^V|oxysry$?@BYRL@XrV<0jvv)IkSMl2yXPWIFY7(EPW&6Fkm`es*eoY&090z_=x z&MUE3+=aqiQ7dE^n_)~#k67v2ivi5?yrP#@0sOP%<)(%HuHJY4BL#jzP1t5R_7U&`Uy0wMcQ8H=O4K9-&WPdkl`0dd#C6HG@35cBj>J;X7N z}R#qrQGG`L*Ia>O4 zgmf~Oh*&Q(}IX!2m`fWQFh|Ykm{_zKl+pgCWPm;?dbNu$8O))vP z?tKEkf-w@O=S6cj^pHWNy7bP8kL^UbYTgeh*dM~{c^%tQKGJ0uIxSA6ZI=(y9 zr(i^6bL(vfT5IL|DqSbNPS)Dl>FN0$3K$LkJTR}%&#%NU=u#>SmquA%*To4UGT^iE zP~vk~Zu>^)nf03^Z8;J>vdnEB?hPz@A4Gweg2tA{$%U;fEPDqIa)uxk>5_AC?Xx1k zmlU^Kwi7qP5jJb+T42p+z7N17#G4a}&~YyAOzQ^-YM2g-m-;RAEojELfc;GjJ#<$p z4nTe|U<^exe1eb1ZB8`4JC_*mHSjgE=*w&Zylt+6OwR!C9e;?oT_Evau#Ks|v3yvh z=QyFsXZ-QWE>4mzSkoS$cOd4Ro@mBjXS+dRuzo64jeiQU)@DyUGz8=Kf26xwiF;ps z!^ok4oEFSbsKxONyV2qlL)}~f7xvAmFBLIV-5`aWJswYh(Jio5-1K=}MbH8nP}#F9 z0a0Fv#l!T1oH_WelU!z!n<(uGg0F1|D#T5FLh~R-RC9ksRBrbDY1nq^#%1rC7<39a znIHk|iaoi-jYw0`raFG~5be0cF#h_c-m_mCm&+z#{j<)Gd3UN1M^Kub@zcUy<>Pm- zHJ1}{+}U-7P>lm8li&TQT54!1>|>>{-CQoFHoM(zK$SjVFTE>v3<<+Wb(i!EIU zfyDqhOu;r=42cdfYlbA!AXH&qn#P(bWYPe|8Sk0Kx(UKkxZUtO2)aGk;YgChu4LH! z_+4O=&ouPm<#t>rId243BS9s0UAbM2QA%VO88Q&)eSH<~55_r!83&OGbHG3Aq`sc! zkN@W0k0G`^ss5#vn6TeG2b0NCK>3b`=%{0ibIN0X0u?kF%CYv4XBH7>cJYYJW8&vR z%en=2;pZlV_^{{Xh)!xUDkRz*Y$*#t_kzkA50AZDX~Zo|Y+x>hW!Zdw(=v+Sj3EG* z5F8KR?(`9VwZfqZkrF&}_e6dMqh${#=CUavaDo-tIfSqs$Z>ZO1E10cAyN? z54Uv=?Uh_A#_of?PsVD@LVqEDAut}X{;1=}xIL5$p%cq-$0=|~1iz$m1R3=R{m9^) zaSKY#1nS&}1c}Xh`LsWElj&D`qj2>2hvF_$htjE9FUoBwMZcf!E|-%0 zBzjD#fd@$WI+6O)OW~Ec?}U4g4&}K>nF1m&BL&F|%wa$QH-bCLO2jCiuy&EZSA~2sycwd<4VNYxg;g%Q43d2gpnN zsx?gBNq^%nu_RB}CFtdUo!KUBu_R~<)z~=5wxNpV^plf{5-l|AsBudX40vA5-;r*u zmyP@|>Aht+eA`(a*tvyCN81Bv1;x<|lRh7Rbx+s~_;V)5OCBS_Hp1DBoghMF2AGL$ zvP%>#!ZyXZDLb;53zzrT zkG&^2+KI@Nb4hR?nJHj>AH&R`GP1Xuerng)84JnOmCe))%eDlIKtX_{XEI}k2_C0d zVWWwpnsCZgj_Sr!z}wiEFr8Ip?GC5mW$fCJ(#lnkh8QYjInHw76MM>TzHgg*u~#wR zVX{?x5`EBW-WqXHW$qX0=X4~py?f7S$*3Tq-h`B4*^ZIyw1l0COF21F1@JC-wpq)T zofr_qk0Zy{K?P7_9@8AcdVt|U0tz3LyBuMW`@p+qd+#9C%Dt^ zt5_f3pQTBcr?Y!LNHG3ZgnS3h`f+zOSvs>CLi>KDbp+m{N__oKPs^m><-YeDahi;| z9r{d5CNb^q?N2~Q1B3RM#G)X6{nLt>nnGs0^T%d9eJKSVYfh5u!?SEurvRvWF$%1E z;|@n2%l76Wg1)P?opS*>ylk47qv!mjQwfr?l)HHe!hi?0#1tt0BE54jeu`tnE^?TK zep3(RT=p&b#K-N+*#ky$ch>;rN4K4QMp88qXo1nY^rW86f?(}`>jz#xCZ#=O%E=9Z znrM<~sN#A$LRA4P;{1D0M$m3Mv(O*-@XCdyPP;~3ulZw0*azP-tBq{C{v!oPp*W@Oi{;heT zUAvOZr19Bz3BA*2Nlx9ixXD4OkrTeB0g0ZJPtK>Nl5%XvvrXKP@ROF5lYPtMRl59p zh_^QQS?X(COPA=ZF(2$bq%SdF@GjYtmD|GtEwxj zrHZXp^BbhppS4L2RI?-7H#CaqxVVBxVXbKEcDXcYvpUA?b@>Li~!h(*?bV9$9Vayl-( zag8NCI+A*Xsx+Oi5$AMS{d%)0qF()!*Y{hnw}sk+9zQclhK7znumykn+7c2c&`JTd zhehrAP3UVc9XW`oL+~5K2wLH~`Rvq!vUHS|SjW2DcI215RJfvhU{!7?%L7IM!Ie{M zh={%&U)eBEjv-FQL8D@{uDEC4sYq!6PJv_Z{Om3WZuiY9Q0cOsab?iGnKL-h38rd@ zK_}7SARy1#gGj1FZk5XVWs~GVIh5-9gn0n6CeSY65$bLkp&_Xx3t^pz|2 zCCb)h>%e~?8eb z{~FtIJN~PcWbJq9ldi+DL$U(Iiezrkv`d8h?OJjHwpqwUBQ)gPD><)45!wV~HU0y= zPV=a36*!eK9Fp$dwx*f9{m&6A)uh?5R5)sy<2DfMyka&=oG`{OlPoU|G~aNKM8Y0< z#9keCgz;yBOj~eAffvxGKnY$q)Pef;=&d;7P4l7`r!AgeItl9BHq^Z+jz{Di$e}2S z!e)k1t;46Q_~#dCG0fG3!|*$rE;^5>$;q~aRp2`5*?%tDAj8?$cH$1B_K^sSUim|F zYjQu}=!&~xRt|SR4f;0aOh;q46kJrbizBer=X@%a8O7IunO7_;xCi_rAbwd?ZXxtpdaSDjl*>ZAL+LvC3xQeo zHCL>+`)4MQ^;RhgOOK3>iDU2Q3&uOm)H1;npl$LcA zs+`l&kCqa*SdL)kDXRO`M$+GL)?~z|gPNeb;s&5z4M>c6c?F;es(hb(XsNm7o~`VGG_$VndM~V|z3udB6aCkh$=ZJWC^<(9 z{opf%v+Vhi3Qk+B(c$R9c~=b;7NYq#%`STr7+RV{(K-DsRx>6?we>x~s)D*HSs+xqoe`%gvkH(thu~O|7Y*$Q|~$M@RSXA-yH#`UAQ8 zwx{z*`z%qBR|M)eH~Hm_kL)6y?(=AU-y<|IRESBu;dDTM%4lgsiWdcQ0a3KIj6@4b zkKZ_b^?mDPkzPLrekPuH;T9iwz1rRcR^3y5GkET7t-cG>JHu<7q?vp}QQK^@4X&?h zq%sT$OWap=!;m~rW^?`}f8G}m-e_q~dhzc{BSo@*ekW5;On*vlneKYut}B)d9Y8;y zu&&dgRu`p|-cZ58y?ACdOK{M6ynhpyr``085*e3DrEXz`LAA8@yu4{Gs6BcwfcSLKh zhqdWN-DM_cLmuN7NNav(6yeO-Veip+qJwBgIv*+l&<;`YeBT-1P<=~3T=8f_tiHzx zTm(CO__O|I@^Fj-*}reDUPOw$BSGKnHVFNGJfGI4Gk@(sP5u5b|9YMbALyRn`u=sjGwERH)?0HSDkDP4ykm3V*)LQ6IXkpfc zLVoI@TT4NR$^ISSq1ZB?wPOoywET?ev?=XgB!@O$?)l(-BSbV;Il~0M4pibGBl3a+ zlV$oA(F$nr;Sf&|9B8T~u^$I)LXn)wXftC7@a^66^oh=B+0>+itB`^b+$ihC2@%$f znpKl-nrB|pOUnH2Zf>VHyjr1?tc$U)oa!CDaVFp;c6D&X5Yetl;iulTT#GfTQmjF~ z*8f7#DACP=!JBXv#Dx6+>Y zvO$})Qy8qzHZHIs@p3awM|a4NMB=0z7C2G7ZPbj6!rIWt#gE0WI_}Zb?xgr=bFQ3i zDL#IJ_1TS=qb0jA$p?lDY+fmz-@(jIXkP1}!fRb(1A6XsfB)~m8}Ir{ z1wjsTVSk{v<`ly^x}$=4%hGy5jk_KFOf+NBHQzi*bX1h{jDP}{j`vyr!}q9Z9i5^5 zaEuhl=?YQzlJ#A>K!DIsZu?d+@Bssn5|aaHY0!%Y_}}q69|JJ@he4gkWA4Fz{>T(p zhRi;?2bqJSS(ZQ*-gh$t8au58;EpipgGO}l<=8oLuf#T z+%xCJg5{tDGudLgOjP+Y1Bl|4pP-){?azvC|8gDBF6VhdP^oP7RPpM$*UTb z#1q?PwZE3f9`a?i{qf4G{fcG<&#q!s>&z_zI!s#kw=;aaHc~z?%b) ze~havW+X1}Fb9Jgmw3QdjHeY|TKw~LtD$@EX zz(x2CP6+b4C+DkoZY{03v`A{-(MQ(KELtnd$~EgQv)nrk8FfYtlJBcF)Y&CF4XhU_ zDQ0PmbPR`TFC8L@%K)f8m5&TI@|Y&}r=76CirM7y8It9m6F17L{}mDclglp-d;x2< zYv7sv>1Q?8xi&&K&ZQZ`b{Z6gqxlar>MxvJdSq@PVp3WVxg)b47cjZxt%`XRI6P}e zQn4Fnj(-xzYMu6rFM#rldOjsop$qEZ1U5bUOkWV?so>dPa18aCh&K>$Z?e@<8Hc!T z`EO=6Kbr1(99-=F)W>XpBuhPKs*0m6OuC^dvD3Hz>S7zSG=WFbIFaG}ro7N|(*S{` zugd(1_#TVk#K<0*PRmS+A{Rb!&=*su%|V~3^rwDK*nk)siOxVg-wnJ}`J)e|6e~aQ zZg}^nYCPCMm?Zl>*}$0?e_b*o`5LdPWJtyU)~3kBvA=lMrfTJpQx`GqFu5SuPOITC zY^%B>2zR_DB@k^s7T#a?rYS;A?@X+{(QP;ScQCuwqn?EpOuR$%*DRxXPz&=~aJi-5 zb&TX$n^LhlH(iUSKM@Bz0tWTh3#>bE!5nm|J#n2=HSJJDa81&W<+jXI)U7A>J=2U+ zycbHdWn56b(>2}AEIBs2h^5aFdE3~3~IpukB*94sBpqM)7_n<+<| zIG0z!D{{{_Z^|YLx$^-MlPH!J`H)jyzK?FDXwAE*!YCo8dIE$v&9EHz!~Eb6e58mD)Defeg|(%jE#2C!?(Rxh#CDmfspP zwg!Ct18Buweb2z=pD6dXGb=nd1>|-za*5P9zt~O-^R0)^2l}CoiLH*rXumhq#kTJ)L>>jEX@uy0#Lch{4uIuu?5VjXQ;%CqhYGM_Tz zneBztdg8hBkOe$lgMD9Ux5Q+@YYocitFGA!9%soLst~-nFj|=hW<#Ln&eKG=Kt*%Y z*@>TR(1!8!{t8m}O93n98h2rI#z25z=JAKBW?D9TxcR-jv5ke-8FlrfbmpMsmC@9G z@Eyt2z7WZGurcjXctUf0)Eg3R^7wf6u68FkW>x#`^ElQ+RBx;?ZmLXLC6W&-?AvdT8&c| z5B4*;$P)YC?iJ3uD&D#CY8t4^SM#oM-V5Z*vtWprTE-@0X66a0!NW_(tW+k?OgK9`nQsyw_1S;TRDUJyv$W1 zOtH{OqTB0(g+Ryj$gVr~%cs$bnZ%b=Zn>5@wjC*pCbF*Aqj}QN8_2ZNra*2xDcEHa zA8OpaY7TYhZm8gB6J^ua^5!S#J6;7zBZv27JzDY72Mb`Ba%$Mnrsk5Jkj zi0raekK$xbP}q?tg1aUuE23wQQJAxH$0#cz86xo85YD~UmPQ8I;m?*;u)&tQPagC# z?cqtQFel(NTRor6eit%m(ZFM8H!!JEzV6L6ky?Q9vYC6M^IEmxca;Mjh>O!-%HlNP za%V<@DbaL9ZwKwTI@NDX4t-15NH3?Db>WKQ5qTfnH890f*X|r_1||ALQn{14vrS4@ zJ!8+9uq<%4kSL;w*p(;XDVYN>@wjUi*|d5VObcI-52K@bu$Yd=Rws)_mCG6B<|gc` z2ZRd`L`b8t40{+K)^GCe9UH+MomU$k)6$0g2-WFWl!Woy$N$~YQchp`S< zis8UCLf--Z-MyI#zhcgoKScAOZ+G#iO!lzg?R0%z$@jbCSU;7#`aNG%UnW`I@k~uj zMWqlv*K4RfU%iWAfJf!8ZO&x3qxHw$B)_MCBaVKXECtMFJaAALpJl8t@Cp>fTPG-jDX%+6@OTJMmChj6Fj(Qp=Ue{GyTr&4P8T^2#;DP7q?Dd zYJ$jgV0Qe9g;8HRyg4AC-B64D#qGfz8o8@D-JcBTNCB|VmMlkKd;}zGzS6QabVNM=1&3)$MfgvJD6IH&__hWXP+VNJ|5qUjD+?>@|0+b` z9*-ezw}1VJaAl#p!Z##y!-nY~H#l((I zRDHmy8g1>7?`Q59gxRlBP)N0}-5noCP2ZPyJl*aOaN8e)B$_`~0jR5^A1jXB_ukQj zE!oGyMoS9qx5N9}R;u+k`jYrFk300WyN?7}+eIogx zr!K3&IGsh;4m|m-L1t{vuoy&u6a>p*pI#xs2=CmjY$KvW5Q{=2??2wU@jym_zX@so zbS(>dJzzANcP38WJmpjZw1gnp-L#^V#mFwrdj1W7Ts^dksQ3}@KS`38J++qOPT0pC z^^ey*L6B@!6|;u0Hd`Mi#YMK6a~QZ5s^$Gl zgu!09x&Hp_=<)e{J9;ef{kXpV`T+bmE@L-VX5LRqT>trYe!d)7YnO&>3&2qJRFcu$ zA3PHIwm-Rx6W_#!b*bVG+Qq_hFRulybBjigb5!(+CJ1|57q~)n;i_?17&kqoKbc4> z)f(fsvTFAIWxpo-bY2{MAwjdU?|Z?;`GCerO8saGq5SNSi7!#J6UGBd0bgIc8&$3dV=9kPUv)1=-r!#Ei{2Ov|g zW{y*+#l};$QFCy6Fs4^@lqX_>)$UrO zCoLIKS~72EC$Z?Ie23@SJWV}H2c~zV18go_G|z`IKO6(TsDXZAd(|SK5>E3C5~TFg zQkJ2PI*o+FFq!pGZKJRKh=Vl-`Xo%;o(TO0Aqt+|@ zdzbvhRbR6_Q9{2k=rrPJ6ND1K4?g@Bxft>0nP5gspdq-E@3q&aEI=v)q8!7_HY$Gc zybZM;fzZab4h!_>*Zq^S<)?vh%uGnyoq#*5}s4wOhWi1bby>Twg#`OmI9%~K& z*~`ml+ef<HR46n=vP}$GpeeXW zQ@O~jKn|w`VsV;MV&JT0FRwc*)E20T8ey&&!?L@q%2z;Ibd)JG{eZ0kb5Nk;o~{vp zf%05~>!eAV%KlU>tR3GSoSW~{IY*v*AKtAk{iPA!+Les?e#}{%C@zcdt>R3b<Gjr5pR;d^Oi6E>tIHBo zIlu?dvj!aoxW_7D#!B&PIF+pSy4QYFf^T>F^moTlcE^QJx@@MYVzJHgFWFa0Dlr~s zbILJ= zQe3S0_z7ygT(Uo0SCTIlo>3#zU*72q}iB2V7E{oL0L>okPVS z8F+gqzLyiq$(L~IZZg>}DkH;WyL%woPd1JtEzVTVEUQ|{0x$5<$+-WYK4WyT2aj&rkh)EIDt~C~BIR!s~?$wO% zA#6MQU9v=`PV`Q4b-ENOXYlyv{pAc*oB6;{>Y1S( zcVNi6-r@)y|B%3i%rBYICen_hYj4(RRSQ(-^0*y&cGR$t{xnILf~dux3C~c9KI&Xd z6&TZSZ?#)z%G_MoryQu>8PtbXZKROgcKqd*>3NI=?sfqJWumg&0yjK$*j@v+2 z^n!RvCR{t<(^4OQAPC@hJ;Al?%M`FQ^1{#vtLBky$Z45zBkP>FaWD3 zrLU%La8{yixsS0|A+6CzE)CW@3ks$3Le%?nk)y)y)L<3*CY(`W3z0)blMIK>8oH)d z0e`$Q+uGmbTx+2=3l7XIIi)?+)5Tkg+;2q}&ozk!9RCRljMYspOc~j6j1$@o&sFk4 zVXeh*m)Qn_+%YbieWY+u&c=52;?C#U**n;X0aF;U>3DMZ34J_zu5?OxW=<3zzY;Sz zn+V{|bw;K%ay@zMHzX?e*C#7+Hf=5uR=6tTWV)&WSP~n?2bjl84in9mR=V!=igQtf z&c7KD>9Mi2{M@XC+(VFe?+lA0Iv#BwcZ2N(U)*gL4-q77okT6?;qa)vJ^Z5kL|`jT$cL zl-G1pK>|Bz{R?DDM1PoMC912lo^(GD$3$efuLHwYf;3RF zB={n-|82-Z%+>t$7bNuPjS)mcx=7iI>6ih3R~3jSo7H(|G>%~-%P7>#cR#bqtj``} zzQW~Y>4!SPh1U&BUj}`X@pD=SZ54~xp%IZsQUA< zc|=m9Z|?$ywb&-+N0_~r*J%;ynUyXCw)&^m-_F=uQ&52-mL{CF)wLHFF|FL6Znmzu zh}VWHhU9_;5C8qWEotm1?!k)I!KVWk;8|&-|vs7ptL+TCx09 zxz+N!X6{nqux7IbE9l8*Z1U=v+hZ2eP73(n4$BVO8KPnShE5z&7G0DN0(G~07|wz$ zi@9Q4T;nZ3nxz`SzklvLJ;aEaM1xNG2$g}G?B5Ydp&ySu1Uc94n&haSP-$lnvL#Me zkXa4|x9S8dZ^sAeT>5craWwJ<+YsxiXQ7B|FrK5vD8F@0aN-r-aW29=^_$yME ztI4m5z(^K7MJWP7UY)6p z*C6ESg`vx&TmCktI!PIy&czKYu-GRh$;WJj)}-@$u#30!(R69>)C_X*A3Ko%DZ6&X zEv{>N4VU7}Q>mVssUW308}G#4cC$3{HUq=lLsqFAw_f*MvT)SIJe|t(rmHfE8UGbE zXV0cN&^PROkl7{YuZ2cYiGd72$?~dnN3tCHi)Xp5r)CL9tuo-CmsR2A!KAj!x7c>D zYA!z`Q`kHcm^|RbW`%VuW+mUl(v@CWAB=>^nG~XaG=*r#$UV#=-3K=dQOI{L;9T=8n1L- zZJ^X6G}p<2Lss05OtP1{-(CiUELA0?(M%zrjH#;R1wMaftd6Y(lzvT2W`a&V#XHQL z{qG6pJ0AD?sN+=uHwh?oY69a4ahmf)Ow{_moIo7xm}3V%4fPoWyB_^fI0N~Z6~FS3 zol@LH?nWETA3h6O3ZYw`CvV^!#ITd7@>8vY#lL!-LZWqrFX8AcJ+T^T-Kea*GAzP4 zcsx92zX#JpK45AHl;BjWUQgZi{1+WzEJ^~LVAZfpHy~$$SkWU-7#?o2uv7G{Gk%Hf z4ydx%bBNj=_XR^Po%!>^l%aOtgvVKgWW$!hy3iyOEE!aho^#x+TbKi^9YSk0X|_56 zO7zepN%$$bD6=DlqMUE&l67>dFd0x}L_8}d1}&ud${FVUFBPq<7s_nLEL4H3gOFzy8;nGPsB%H{uYpv6Oi`wng66zAIc+5_JCFNZvL-|WnV_ErJ( z(7JR|kj&hFwm(4-f30u>u7h;q^dvAI9`m=j3>F7KXfANV+u|H2eS76D0dRUD{XA@^?qGR z>FIKV3=Coh6ZX?P5i~4D9fF-j*XqBBk{WvWk`p)M?qf*Cu^IBM9<`H?{Dom|6Md^| z@_3=A_41T*^c%SK)BQ79k{8pd^TRAT>{l&oAP-PHBEt356nw9AWF_y%Lq6cCz{TV< z17>h60#K52WB3u0__B91aij^0k`ED0#%e80KnPZD0Wm=7<1vT*rJJbv^-Jre!5NRY z>*I_hQ^Z`7vfI?tvHHW_|8-#kj|IGM<~BsYgKSTnTPsR6kJ0(;Ld#{Sc)uE&XEO+% za0D*L=VoL*K-ZPxGq(jPLLt9JvrbNEPQVF#br5VyuTSPBug*PmoIZ}R%}0QqDV#)P#j9;Px84PbSDg-kc zJ!oupfCe^%tl#8lBVqYWAzaX$W7e8CnO!@S@uf9`GD$%I!)tMbodGb{V;(A<#i5ox zM>sJ%gIWOrc{*oTR@)EI(GuG*BMD?I!!3(To|Ay2Et~i&7>oK;_XCWl3G!<61IiO< zoLi(cbSgYy#pw?d4ZOFP3T^Uw;d=9n%KmJ9i7;+8Di36?+e)^oVXJW-4zhTOF8&u; zJUQnSKkZCybb>`8J2SqKfBTxTaumU&+RT(pIj=NeHwGc>4kYrkR6Uxpy*BH-UUD7Y z5S&((Jf(t(JncJ(#f2`I{CTv~$q6Okz8;kGv~~Vrt=}P5r->h2{`=w>xySLEOXoVZ ziDxbIe==}~t&3MnakH__b8hHwnwunTkX};b1Y?xm1Hg_km6XSY?Qu}EGkCWOK;7FX z=Z;V|I=Kj2cgcQpmXG}=Zp(55_NDtMV8^O=@AeA8om@j71KcMKsI!|Ane;&&uw%`U zlS-4fv1lRM5OBspydhdPXmLJQq+>s%XSj(e5Dn@L55H&?Y1Ez(7#{R9L6FuOF{xpM zn&i~-8+SSm!xUMmSjBh^7N4y|P0=zNB2k1V+}8grf@IQsi4*w&q8znZHheGRcvHf@xZv!}V3hK_9c z=IR@UR&53;qJfY4sFqQ#tTUxD#pR<4axzZQv6>SDB4QlTF;(%FN~_!ETM(dZ^Jz>q zTviIk-iog2PPS|bK2rCq_Az|Y@8E>FG8S2CW6%|3*}2=uGihD>%uosN3gcYCmqHU>X%+yCpy{CJXQ`=W{)p`xrKF$ajY7)@`JO!r%xMV z?$o@Jg}?$`%K1RFo!=zLH8f#s+3Cimj_Ts2WUGJdh1nn==Eb*lwL09B7lg?gqo+dG zjc}^EL%RuoTw2tF2$N|xUgEWox149FxQMGUcb(1SZmA)l!{-Pts{rW4n}cy@LDCJF z{G!f9@%0M3yRz1zmnRes)Xn;+H)uiB6AMNaPI>I<&DyWF#iS~6MI6~H8kM!I`8l}_ zB%~TnumOPE-Z(~syA{?i4uE9AjO`Rk0OM(U$Z)J$N8i;dG>V04nwr3_{=>egW>74a zV!iAJO5$Ur=i_CTDGQsT28XlX6q$$A#iH5cr3Ywgd&ep+4vEG$iBQlaewnsMbrJCs z$-sVJiRYNQfhSsxBh^9yKE`~(&E$O|zT=Eo9#VmHK9!dI=v=?we1l~UAyKxrKDjA( zN1vD1*;GA}-qjF_w|SuG(XXj9I;NvOW`pzV*v6W<(YDiiwccH3%%LLsatx0L z%xIQwTU8+4gM~Nj^y|bX)`-I}{Z_jPQ`!@Qa0naID6Py54V(cpdihZv-dd{~w6nC-N7OG6B$5ZrEoP(90s9tO9eS97;bj;$Tqe~;&aZHc0(MaVN8 zf~$m>o+0%-B`+FD+*nTgUY(jYD==A2+e1Q!Ilx`Utc`CnONoc8(ZOr^q}tF<R)>*>r9h<^?_a(G z?9ssb1Q0x=nvEw55U?g|;QqBUd`LkQM=6Hj!YJvx{e+J7h=lG_&qPjLr}m;cIGJOo z_5*zpoma?2?V4~&%t{HHqI@CNFiVm77#&D)E0Lj!yBIeUL&6ls2?2Aj56hIb44oSu zBbjR>Lx;x1-94z>uF^4C)27oicZS&(C3qYm&Baz(o922E(hKlzZlv&~TP>o;T%BsA zsmUEAj0DXN19=W}VTdOl@`dNfV1|Ug7*NS-7`CPxNP;o*9^?s0VF4Eb2lpd@kB6^n zlJPF?d$Cm?TMV)|fzagNf2|PK>6*o(AN`qtu#Lhl%s7H@jmoTPO(-xwIS;2_P1I<0 z&@Y!cKjuD~0MKPR9M6MNr*Jw#+>>BPH@vb7J)uXJ)xKlK%9D}sPSXbyr)W+yl5j;uoTTmF_cpl~)18iQhn6595A4&L zNT9nZt}RQYp&q)UxxDdH(x);YqG18+V&s4f9G%n**wN~k`qsxSg}Viqtm?0*daJW0{zfDbHjiJ z;lgF0v8Nz6^?Oog5$^j^kemY1A-DyG{v*q>{H#64)@frN-S-5`)UZ2mufOwaz}&Z! z2Ca6)Jg(dE7V?~~YDPDED_nvF#`QO1zfHK=-^f_8bK;OuDK5w471Z9P6+|wo*q!+B zsQOEJJDCPY@Fjc>y_^!f-SW@-khK|-oJRH(nUy)A$sd_H;*^~9M;?+#Fy6UF&kmPe z(D(O$g3z^~5u25A@V1cjXs)uk0p@-i{ru^?1grer?bA8%mtNfwQaSJeufP}S=TP&- z9R&m|{0hgWvv~SnI!LsK^J;~E3)bO69cYv(H;YI9q#evkUrbK@$v3cb!&QF3k6w_)&b(5wWt^uL?M?|&)DqjNsCHty~IJ0iA%aASizUk;UvForwfb2eTW zXw$uxRMEv;$tM)>h``c!yCC|oQ<9`RdMIw=U(Vbgx@%lE*9oe(a_f(bdB18~y$KI% zHcPSXI=fdj>#UU(kFaFsahjTQMBv1s&xaH?2~dZDP6=ulEeRO7+UEeJxVvEd6*3o> zB+ht}$rH0E3<{-z8!Lt}isex4VUopzeizmezp@#|M=SJ-sYF6n z=I>BH(Z6J<4KwtqbfrvPMm2*1C9+Z1XP-MqGEl=5LUjh>5<_w+b;tPJuXcuDF68Mgyh}rG8t{|M zkl}eEr&Qlqm7YBfiW^sMvA&xnrj8qv**5}eoyX?jh|2I{C*JWiM9%D<1<|A{zTi|& zPL^E`B@S_7%r&j@CXHK8=(0{xWF(%v2snrJRDefpE!Ey0~V-*%i5y3I6Jh)(3z{}Fy0Tr*3sw$P#Q-iX&mi6Xjw zscr65HKbj3gzF@NXO@!_ai7FwI7>aB%4mz>(a0spNSo{kw>xmX2vLkI9#So)W@sct z(>665I|Ij@$6dls{ImD_SoRvH&$PgR@^@*W zS$)~Y{o#BLbN_V6$Gxu&exXl1JMS+(hktOG&K`4covG+j<~-hog^G(Cv?_+(-YaL) zA&a~$%y)@m++P%|*g%zZ{8&ty>E^*jc<^uE&fnNj|4l_^{~uLkMi!?3RFOBT{~uC{ z@@S>U)EU+e6!=T#ncX!0H>f>>Uruy*7eAe)k@fGeZ=T$8r?d8^@?uhZzpRwA^MyjP z1VZuz1&saFFBrPsn?9ykp81=jlL=b1PpI(TUTC_Hqu7+4Z(oHK0P7r{ zTs<%rWI1`hx4xbawkW)>yM?2JSgwzUmB>JTVj)bB8^4G**_2pbjn9S0`=bM1xEvnu z4*(!X=Qp~~%ifzuhnE)|==$D$4$VO>o}Cz5@7>Mo$pmR38k|54FLciL!QIow#u4Bi z8VOa(9uCPJX$(9LIArFV#S3IxM0|rRJ|96;0l}AU_g4X(!*7f2>}Nz~te?DqMvPmm z&b`QsQ?+-$tuTF~mOxeL=>X60jnzZo2~sQ6cl9fmm;JTe zUn4MCBPQ2)li7AkEPrSbwg;^7G~N87Z*`pey45@HI9FL?pD655;AjQ#aryVHJqus_ zW){Ro>vHD)Y>183=bZ|aw#J&X?z7mc#LYZn)u_U;KK}!Md8zq+4dwNHd$>KC*!jAE z)8+lX?fL12hp(saGi}QS+yEReG{-b)BLT9<)lxqvh&^m(XQ1CD6v~;u617zNGc4+M zwHvAQHMY(zPMUp+%R9K7`S15P74s3*`Wr%!8rF?z(AVJGbBKc}e{ZD271zRwV7q~= z*Bj8SwBrG~^&#B7b?YRMX+9%blzaZEct zfwlJ9mb0`UR69)$$373eWz5hHQ;b+vwR95&lN%B(6E8SK_12A~q`w1c{s*L}mX?PA z{YQI6^>~2f>JSr4sHUa`96_#=Q9i(SO-kRZ?gqS-)_I-2HXLDlVf0UUWz26IevuQ$ zL4Ad$5NxN}AvS{D*3mgl5mWnlh&u>NCK@rJY2BVE-N-%k!F4Ny(U?xJlT=Xxq^;If z&izJMpq~lL^i%Swol?1UVbKQ2!YAKZii#b(p;g#LF483jm*cnTGE?1 z-#wAEJaj@h5DfO7*d0xzUUu@qO9_cLV&NE=h!Uwl8df)N_u!Qam~eB`Ad3~8Dw=4q z`l}SX#^`OJ`g`>2WJb)xQ!9DgO^DS}^dp!H_`nnc9G-5XOL++c;?^+Z!<7^hyhe_% z7?Rkz(L*6t_BzUboXGCMF1uM(cm9Oh=$wk^5!ii<=#?SMYnWI@i|E|aS0lGox4)9g z&9#D~G11!d1bT5*t~5~MT!B!u_(;MRhL=|KDTYD}`0^i{g?cIvdUQgRLz^;QuptXA zTrFf_C~@$Fp`L;J(NI*67Y4EsMgjhX>1?c|ufL~HM~6m@4M9SHyI#`h)lKK8P29(b zlg!wdek>ngZnv=2b40hAmZA#qznwszap%9JK+l(jEpAwU$zVSCM?%+7VS;;U#<_aS zBYkUZP3vq9JjHW|&oMt4asLgQj-l_vQVb)%EWyTjhNbvC+E&Hx7P)cTe+s-<)OiI>?pq({qDB z-W;ljKlp7o!Y$nXllk=F7{1}H-sOo2e!5ZRghxw_Bh*2(nqeVIW=p^+Ig+U3;-6vgk#r1zadxN799>8w zc5#jE3XVGOIEQrovEQ&KjpP}PbX`xg;q|(StroOWe?p77b;+(X?p=fYj53eXd6q%`#W|j+Zus2t!N`LHSX%yMph7G0;9cFH6eX#!t54*OCpXzP2Djf zR_n`hJi6~LD|UX3d6Mh5!=kaqx1RbDLU-iEW~3tkG%*3<-T>qs{)7f;`x2!SPH*S) z`Pt7@p&b8m7t)?rBQjmIYA)SUL{>jvi`h!3wTsQo{h;F!#pXpivgs04M=UW4w%Uhb zNwR2*PZnt9FIb~Z>yC~jSiyGq?>c%J5%7PJ&s%qX(?U={&*-UZt#u5>hDi_uMx#B^ zY^avQIO9b7o2d4PFsS>L5IjgfRRSEnn{97#{~&bWqheAnN2lFK<#aAh>eZhbTq#`-)N>a4`l;_3|$QA3?O zh5x;h$0Mf*W3ZUzA+mV2qx@|8A4OVVJ#gBJfnhGJ{q8j;=2jP$8t(uEg99`Xcn(!d zd`q@|tEw65p}$N65y}17wCZTg7L&y|x-8w-Mao*qZz1MuAu(oN*i)ise!y`nJX!pH z3aS;evbPIjX1!>ePW`o0a!F&<))VbAMD^sA>Mho!q$hu(qIBf&d#5*zD1(4lTqZ?W z{`{+O#zC)2^S_(dvhfo!WK@KFa3o}eTI=J{8$a$;q2Dx-?6VQr=(O6nJzy+8F1YRF z^ER@mK&NtoHqYrSH?-tsZWXHS<=>S4U(A3=NR8JB4g%%+3q^L4b7od3JYjE z|4UG*HZADyVHC)2K!ska_!oArcN1)vL2WB6Ax)|{OGSGRxArCEhWch|H98o|k-e>O2Pt)_a){2?M4 z#8lBYHdnP4T5fWfJLHR6q)GD`{mm7VWM!rHmYoyksmRY!M&KEJ{p|6YMPy+;>N_(l zgms6Z2GS?x-_^EhYr?|%O6OE7k`+$^1JNEvnmy$Zsqz;WDdW`{mh!lVuBi_jJ?_u7 zCXd8@5Gy*Yi~@Fh|5k>J?aWrQJdpZicN+yQJ(x#-u*lNTUS`nci#;aRE|Z~-G^|!D zbQ5$BV=V1t08YU4(y1TIq?WCJule_u7Qe>@sLVkt%AIEg==5^eF3)e*CvNJ9=)2zS z>5+88e(KY#Xt-i@@=brd)fc`3J|FI|RT^tLR@@IeXTkFGR|Y3)n=nZ;e%X-+6jtn1 zu|&)Gf*}|JRR>7R2d?#KH3k;AtCS230$%CR(uVdtlq+oF@xAkq#)w;(rD&Xtod#}; z{rZ9pB401h2P?ci`d2B3jiKO$(ldhdtW(XuX5plpu$&C~<1O2Ur_NlL1~&1jhNn(k z*rmi?KV8x!HgNWNM)z0#RC7iv9Ojv)N|SB%vaZLxqtwL#NBnJS(!xi2*bUit?-9$pI)Ta)D@R_cbpb0STGTrqgkSvHcOyyv*hbV{%i9?H4> zV09N*N-<47U_1725}J2Mos)b@+-pX zk);*nS%tYNk&soIMevy=ft}16dulZgX}x1UL?!QJZN!>YX2_4l@L7cR=#-Ds$@HUK zdy7$>o5e_D$^l`SkVS;dU%bKOywq7PdWEm|(O&-qz2cAMY zn8iUe^$L2j@wL~~n40MUeBw~>7UKEf8GI7?5)!WcxwbCTKQ;Cny2~^H^%LVr9*K=! zj1Sc%Of9P&rjD~o;IbG{RfVI|m7%B&l_;!Ja4a7T(UqoxILY<0aRLP@t#~%2K_9e# zajxajavnu8RG7blv^%0jy`k1BU-UlJt-^T6zOj)DcxYW$tP8qwPRAA;qhf)4Px>;4 zqVCDDE^czJYu!|Ao_$kmwtt4Sw}tB2+r^=VKDxIMt6tWfnbOTjbM*8Ws#W0GHse)m z7})7VCk|1-Ls;hBx_vcEG1+D)|Dn8Wd$FN9-@tKJa8*;bob)uNqSVY) z!bLk&d9hC;XmjFM$r&J6LP>{hFOb2xU$Oh1jWiRgh`}xZX*-C>~Nk4@S!PN$%!a8RsekCg% zd=Sd1j*lf7Ys!*hD|K}vV~$~Sc3_%|5K5n7zpAJe?n0CH5>+xd0@wM?iZb>1ER4ACqdXuK0}LO1I!h>BHeCd@L$fU{IWC zhw~#U#lvN~I#!27%r(}`Q|q4airK9^VKUXv8hZsK?-4d~R8{11-rgINvgj^l4ALP+ z8wQ7sft@v)&9#n(|@S}fACB0LYQ(mNRLwy~J6atj17ydKodgPbf(Dwu3D z1&;UmBwd~EW%sAe^XTOosx%K8<_=2=A-3i?wh^SH65S|oc4N;+ZeuNZO$~<|I#G%` z81$N{o+l3UBi<;j?^cvS4w|CD$J<1Gr;5vtBJR)O1`(8j&nB~vO0=uLHat*-WFOn9 z8X&j5GuOh^p|{lWhULaDN!@VEob<6x*@6Fk`9Xe8VNnQ>pTuD`W?@m}uX8wR#SO~s z&mK4sOAa|=rxdch(?0g7CTV<4KHUb9c~fo7LT+h$L{Eq1+-K&@U!AlHDP+rRjh&sF zGsrH-VK;_*U{n7tcKy@NY3|KE=p34>+N>dAnK~;s>rF9Kqj>WMjj?tr73$Zl$?df^ zxII(-%pfe#fNV?aC_FK{kiWGz1q)I~!qXu*yY(67lb@499{f93Np?u-^sD)AxrO}5 z)sP&LAwEg8R_8-=or<#lJQ)v5C02ji!%IQF!&9#|y>Bj6^k_;{PIGg*zPaz&mW;i05 zPcu7*gzjPI88GCwX`Wjn3b;ae&_O|3U3|rR#y~Gh{l^K`^&11ioud9{gJwss+oCp+ ztW_krPkLYwX3*E*Ie8G#Y;#c43ip(-2(s>yx5{Y+=oM>(Dk>a_4gFkKsXqI=J9f84 z;2UA~Se=|Kl-hMHac=knZ8w`q94J}`qvCKC?7vtsOiuaTgM52qNqhI0c!D;?ydX!v*?zJ7< zJuTFW7-D>`#x_B$-^v* zdhDK=yO9MqDLYwXVP|n5%dJZtt+P}2vv1YE0=)8czaW|<`LtfZ70*wKTVg~Mg^GO9 zWOmv*UXHGw@)gjYQ}xt9!%QY=ILq4W8q+DB^{St7$c9?9$t0c;vm>2yVNJU$EvIW+ z&Djm6o$Ijt^djK&rV~w7JwQ2Uh$M}z6P;~AdVaff+Ln#(xoz9ewy1Y1JB$HAT7m_$$>sj zdB3~txxcc+_y;B3ld(R}#Z=|=N^_N2^V9DNfFno#sk)o2xyUNjNNd6%QAXghT!p;^ z#Tdi5X@AzacKm!i+sq`m`oS*p(o523mx;vV(ID4Z(l~|xnw&z9 z+mXw!YZ@QsSZgmk^-O%_nzEzq(^hD}NEcwEF=oMs{QE-cK}R!L?79-zWenoui*+D} zwns~087wS*-fijtG3{t?Vg^l&_ag-_^mahkr`_vg4wm=x5hM`Hr@NHKr>oF)#kZ># zJw@lmV(j#s9{Mb&I1n7WTdVQYXLf}MAI|=b5~lx+Vwg4s{sC^>ob&+CozKKux!Nau zS30$OX&L}rrIYh~B;e7Y_y^R3KIv(K#w}W~fVI-S-X9-YmnNMa>pOquGV3eH2LU{w zv?mPXAAB@k1P&eu7Cvu9YB(`SAi~dkYm?MLr>W8Mu?a9vbfW%mpgZcuGie1Ch{iD|MuFPM2IO?Tb?$oOLt1 zM@ltJKVRVIM{Y$=M|zYxbJ1WdexK9TN%F=}!S=m8q~els8;#ypKsb8%-Cm#3Zj)-v zi)NZF{_b)lB>{y@$USLV*f=~_Ex(zI!Ou=aCze@I!9hsQ)QME)QwmLTFFzzgV$8t$ zWtps_%ZI{U$JO`d-J3fF+~2Kurf!-~oBzpf>0bdEzkK=tm3PJ%3Ooc;8OgWu%2yc@ zZ1}MMFzH^;J2&(o+STP_6zwx&ug6R?{)gB83>0li5>NE$R5rf`?hM3088HX`weXL* zT#!-Bd@lbC%^&flEA{%;W?@!ZVVkxFRy28O%-qZ*J+(X`8R^CWkW8wwb3Oe)Lu{^93C8*0F`P;iFMVY>3 zy|NeGI-No9YCop{*wbDv*lU7Ytw2lv7~|Rp4MdR^(lXnV1VfmJE?{tdq6xq4^ToJH z`KI&u4?GH?F@~#+^^)^x=I54GzgZH|rr+5(6bK$8)kN4SdNx%o2rudE< zo3eKETKiT)hzSYs3I>_wHSeVHJXXQQlwm!7r{}5IQFs2qdZDe>JJ0ywTlHBP!AT|q z{gO`D!T2ER1he=^vbZeHs9?2?U`^@3__p!E=gxYpF4<0-qMo5=Uv>RdO2hlazv!xt zrCKMi#kmezM3XYrKHF%Yw_l-sQfscErcsHBb?2wOMS>z}t=pPcO~ou%W;oc@W%6W4 zMd0nOf|7G59^0Vjtj>tz^wAh0Czp{$T0wcIGgPkRGR{0hI)=x0ztUhra||atCsxq1 zvb6oY^1i)Xy1=Dp)}kmYlzX-}4(mDzZ-HG~X37U)P`sv%znT`TQie=BJPnx=O)?R3 zK)2v&~s`y42tT015u6F4(vtLaP^UP~EKrEDY9r_H&uze7wH?z*#7 z{9a&I8UbsgD19iSGqh!On*aQ-!$zT{40Gc{h`+~#{0{^{%* zY_V(844q}3D@bfM*CcCH1DgYjpk~Avt4zj$;nUS$07dD{Rje%*4(FuIw?Ob390}ks zaBox8!u8`%pKZ_I{l>h!+%$2)VjZ4CWF9T|H}@n8;%&e%eHp#v;%5fax?ocr?MYiV z2}myFo^d8u=5~EC-)F_Dyf1Vw0jf2gnLg>b53J2!@s2LD$$7#K=R&sC3z1aJ4TzP+ zmgBAM)(1|MzCKTHN%bP>N60A+)IqtjpaezVJz5U{Zl8}B1;o)5Y!r3C=-iH+1lKQe zcL?6o?eA+eXNv>Zx60p`q$0mq!(l;fNeE)N81hfkS#-#GrE$=zuK*z{T+bPy{^&t&ipq&~YT#%N^T&O}g|+ zxCz{r$wP@{P(S-gC5V5azp4Vyh(>;@(NjfZpuyr&!@O5!Ut0$60(uC?o9(p>GcEVV8HHo7k))> zE%$Tf@t-i!&IpOT_j3O=!{u7P9Y_)Ke0zD^@5D(}8*|bq$BZ|Wo5{i>*T}FtllCJP z8w*|V>m$du7=XTck++o5=ydksgB&KO*C0HI*C3|OOAw(5JDbKJAxzc^1gmmoe_S8i zsFk4a|6|5~QS#PIS45;XWtm(CWFBph5cZalW~ai{8e#gT)b~{b1tHDo*>EV!)X)NM zSdsSGe(Qb0jP~+b!k4h@q_X|C<;}PtV5opPpLpjcHv-Y1q_%YtP?LwV~%jd{MtZ(gG$%-xw@7LDD zf-LVBU}L9K*5vK=WaYVKA~wedg!A)mWP;%oj?Nq}hJ8}Z^EHLyz zq|DE6;t0R60HL%&RXt?cVW80|WuW$xrGlN(1!a72XL{xKQ$N zfd-hqT_A!!Ct|Ui2JfUmU=9aQU%#y>8(#FAB~15Ex~G9*Q?$`mv=ua<*?1EmCQcW0 z(p~-Kk^|dS1k-3>n;p5Gaz;MU5N2>7j2+2Y1cTlWFc9ZLHABB1cye$Y`sLJD0(x*9 z_T@`o(HM+({+^QMxp?ttbG&%*)p&6#C82HgkU^?M%tHH`YnDV4Q)|qIRjZ4c6$v`P zbRkhDW+3+3x){!x%|Mh0#M2)VYti;=xLShwP~(E{uGx&&8@B3oeNj7R@ZYKfb`C=VIzi2(Le{`3V^+bjF@q3d7&RZ!Zs|eW6s;#LMA)-;?o*{edqk`L3jZM@mD6r-NV% zdBWDb`TpRAj5>>)mI_b&`G?y4T3aJBSh3aBDXQagk;mxQB{^gac2U!IhK$l>fF*NR z7m3p+#PxK(Zvv?UGyBnPc6lkqDMLOTa&xtV7U7{izUgL=V=++2OqP$?vjU%G^#P_=ih7Gjb#hydMQVE zD1XbBU27Mr(^@zs+4VFXO=lwa)_^*=zgVKKMbZwL{p@K8a6Pq!gX#*xm_i`$I4_7d z`$%ovS@5!20b@IK_m05M4VX~E>aUYk?P7Hf*AG<@*uTX#4@qqc(j}=Ma)Z?vr7bRv9GgHxJ(zL=^{8={fGcfA`2) z6hgqtwEe5rT*zJ1H{NI0q$BfuVrQ$LP0xe@pQ_CC?J};c0Q4%Je3l9rk`Qw>1I_-J znT+gSe_Izh&nNQ#X#2((U83jBv2EM7ZQQZnv2AU0d zm(6xMl{)D@sjgFv46HL&PB#s!pMp8P zC^fX?Fg{$>t83p(GOTjT^X+xh;A^>TgF9zmhS%E0g^^=2FkDpW-zpRbQ7}N3z*nU% z@($`s^44?#1N4T!+cr<}uRAH?!>|waD%CEmRI-R}l`^XWvG>5wwskT>7^AH$ezWE& z0d@C^xOmnY%o@+%UPk@yzeNJl8{E{^heUO@zYN{;LP!c>*kO#^fHYu7m1LM~-0SaN zOY5zrcQ06UMN?2%GjD?n>j@9@M(XEb24c;M1TRviM~E@1H4+3mZ>kHKjQ5(tHt zI!#`C>G=)5v;2MH&Xnhix7OFE&c)RIW+l_Lc#+MsX^9WLkXYN!(L@$wlp>D|igcCz z){Dv7bbTMrI`t|9tHBqjk@U#`C? z*V2h!m(9$LU|R}J?o9LgXr>#;TVtD$S6W0ekqu(4z2>iW*o27WoF$wC85f1i;04-o zSo5_!YPqo$2gDlE+1Da2FzkNNUdjZRbuEYqi9yZm2V!h~3&i4@g1x{F<~&ii=A&Ug zBa4XSHyvGjVe0}}$J_$Hq~&r>$bAsA%M&P3p26>y)1b>GWUS3zPFWK{aJ_w%FT(@@ zWQE78i_-@=SR$?d{zJamd94p#1sEN~@At#L<$>*wXsdubZ2zOe+H(79jf4yHk;CK!L1K zz@4{pcTAJ8yK}5M$|(t@3psUqtat+}Jewh#2H3ATEgTb$6;FS^2%g%|oSj#7s!8F` z!eSU-?(zXc$(`eHUX=W%h1ZW>=*MeFXdoB)&zv1lx`lRQ6*NPnM4bV-|n4)#3A{{sQJg(E9lcpwI%a8 z=-sIJG~@F3wcziELKl6Svt!>fJJ9GgpZq93z&&S94yEy3ID31MMyEEm@Qy}m4P^ni z(jWKBFk6zG`Iu}wXD?90z&+`Xn^`ZD@jbP?ye$jQ#M1LoP;EOiC>YeAK$lN@9bd?? z*lGd%#kT&zqU&NkSoW>NTKtIf<(T)|Scb#3okh5+!kg91_qe~s%;0UM7rJ8nCTq!8 zFQLAw**F;t33}wT#kJkd%}qyvAe74teEEv@)yBK;tGrU}!z_geEvBuH9~!vXSlI%Z@z}=O$zx(}zL4=YFd9Fpq#t56J7x;wcr9B7 z$hxpFBJ^~Iy|yvS3(etLJ)-VJWvgduzMOQtlAM}_${`ZYrR&sZe0eAFuJ?p6AwKP# zutk}r!q@R&X)DVne`zaFWTW$HKSH$u_VMrUJipB3Iz6_uIEyK}v2ioghz6SMM=9O~ zYhU*B#mtW2QZ=-dMxlmGoKyWQ<=ECXI>C_mvJBVWAxDIY!h~ZD9a$MR9v1cGXi15- z+dl46SAt{?2C{WaoGeO|3$TmbvEVB)woWQUo_8Nm?+_;AtTGe$H5c zr1Rq%Pt&vQp_(E;2(aRIvH@hduVkI^>~0KSs-kIT2K3lZOZARDBs~VzC7MqNq$#rX zKD;#T0WhJ^-n{b&2vOs#wbQCfKD27uGebU!8&U#k1U&M#Vq4sUVHGhZFh%B>q|qGa z6WEGKB3V|SnV9K0x*T2@$R>~9!&+is-1k@O0K&!Y;OU&@sTc3Hg{c>fkoj4gMfHH9 z#vfWWfj}!IScSh|$G43Bopk%taDF5qI;5~7^Wfw!NwNhBB?8$m5foevj` zvmvmBBMi}KM!!Y;Hdiodjz)6!>JyT|U@K=uNoRHgwK^DW%d8IFtn)5nL>pzdHPuUpvAI#qe`i%ZMZJF=%Gz=$=k@)Xdo~>0i0i%@M2Z=;P zb5+666*`9=VS63)=`S@bqU%(2i_-5{eLsxyJov!_?_hnS`ua2GcR-D$AP7#Eo1o>? zCG`Dxi7~X_RLpC2JYNLVbSfkv*rXw**~et~Y;Ku$8m`$0vooNo7HkMypXkXV#yB6c z-dB5O=IXy_!8xwi2|s5tLMM5)nnbD+R#Pk{@4sOSi6>4#g(C|jgns-9#u75T@{_S>-C#IJ#HNp0z2@w8Lmd9 zTz%ToZ>)1ZvK)#gZhGeF0$*$3KJxj$PE=9=}%O19h{uV<b%Y`_}+Z#%@c$MTkXnfEw$c)2WHvpFyb-G9p2~PlDm=TZoBVJ{f|>W@pi=Y z*ZJscA<9YcEjYcvf%n8>$8*n_%k0nNyl3C_B(IeDFiM3LIajA#L~}(8R>sRN^UhBy z)dj(~M(^0{xZzr0$MU^jBRki1lw7e`a@YrkdL@L|&@Tv&r~iE5HszSFT$x(wI;}@K zn{)Vyy|=R0k#Zg*1S7GX`;A@+c7OmnqmUy;cAx#q2dE2NAotpv%9E$e2eIV6$rtgIqV!YKGj}KR1gGL^-JC;A?TmqvFwzWizozOT0e*XJ;KK1ZC)SXFfyPGG*G7TQ(HJM(@L$!fkN@YE$hzQ32UUm2q=RKZy70;8Wov z)?(*(xCbrduOFfGm+HYYaD)B9Gy6Xxa6@C<+(O(Io;WYLNhT~oA!u2PE9h!-unbtr z-8+y_l+biECb%Odi(ivN7W3EHX?dXR5sP6xxTJf)Ts$&Jpe@y8p=F|@m+&l>2vE9; z1=ZL~4P9m1Na&u*O(!!F#4d_xf^x?yevf-!OUQcNyeoT|(qc|HY&R}Xf=JAX+Ln%; z?$KkQW`qW0Cpu?>m-_Q*c;!^Mow>t>1cZ6rf*~!51XaP%`Jt`;-sf38Nr=S=?OrJf z$sfd;@n6URM%y0@wbdd&7)K&x=tg@;hqgj2zn4iokZV+*R0J>P4vLSr zw10LTz(}b5(vUQS^j#CX)PJRrp1>=*mPDA#veMU2kJGMT6QUo0SzCzn9+L8aoAc99 zWD&3{5vrN~bJHTI(f3(^g}Us~aKR9-0;Z<93DW+p8M2^pr(-XspPR}}yL2XPtx6Nk z0Fz(Wv;#SB4b~Gl&%VzH*7r}mKNxB={x4{un51bptTRa60@Mr|C<{swH(?*sq&?EU zJ)xGp^7ld`1M*cYB8=PTb61FQP^;YZ=W*T7)?Qi)jad(L%rIqWsNeCtj{1Is%T}2G zMV`#sA!mll&ITTBGk@9~jWcwT;!^q_hTSxHFI*TYEXiG#!Yjtp#y||W=!pqW(QTjC zC-SbMgyNn1P|W?DJYP-q$7tio0STx3{8@x#=UIpN{?+4@dqFIL{o9x1o`zYyD1 zg?as(0=iks_!Z>?B{cJ_@vP!;jj=vfP8j52GV1(%C5_|CP;j@7N9#AfY7rM`L)!N4 zURV;dAf|aj?B5nlCBLiO<|;e_@}{q3|f93V3GO!R-^;WSDOCw1jR`gN;vjOrgNGg3&{up0JlnREPZ%z|&oecN; zo8p+$*!4-Zc`v;JSR;rll5O27r&h`ozLKb6Sh5uHbXKW*X@Xr?)1v?cs@X`b1cXwo zX%pYSMaX)7)u9#WJ-Bp!jS|$Adx1DusZXpC1V631Ok;wRU>&*Z%I~19`eoB$EOJkit6ra{7Qw$LhI)ku8 z8oOl1z9Q+Zf%T|X^QL35B8cdNE9g3g8AQWt>bqjLz8HW7XB$VDSMo`lxmQ`o+=_`&4tzmC-A$eODFK@@_AL3 zwSB={4^y$sVeJLd)UZ?ifFT0QDLhFxbl&EF@9;7*|N18~^%cH3UoZnz6-bpZ9Z)5Ru z>dOGtX&N|~Vmifv(F-rVUNBN@)EDHUR;DVjSkpf}c|zdtVxyMI>5&sijyG7)Rbz+| zy8jCE)QSu5?=f-Ms|piDtfIW8#S>!k$4h0TqnmVqRlnjFR14pP5$~QOC`kBGn9gJi zMhztU*A%GYNs5$GL{c8TT;qpf<L1Lkb+#UMyzLKngU^hGHHi4Kp}6 zpc1QnsE3PA)Eg4 ze~XjNk_!y-NPY##?+UlO9ONWU6xQ{!FqgPl7M6TkL~776bjm`-x*ms%SQhdX533;P zho_J0Fl)}-=UTqxih5|?d;uLSdmb6YA4~6wqH_Al@$JFz4qtctw0-+h2m*ISxWJxa z|dk(5PLfLwDjw4^F-xflfEX%=Jp5(6-%5$_XRM(2a>$?ig9(en zD~nxCC%+{@3(bzFA6(EQnO)U88usV%?(@E2m;f9Q0C+ag1}v}1C;a%C!M#ecpJ>W| zHSC}4XE6JN?)An!2rK z%%^)F=4-m33#?Ti1sy><9R{?|qAeU*0Ub(Bm!(CwW~=&1>mdZ@V22_#!K1ujgUt9# zxabXHMWe6oO_yEk&*scsXz}2UH%c9^pirK?xQBh(y1O+D{9eSH*r)S4W8_;7V>f@M zv&H4GXP+E?*6`aQB>zI7tu|(H-l-U7C}rrG9!o|`8OCWTHd@Py+IWzVa63hrTp@Jy zHf*{!P^O7`-a4ZW^1fg*x7XUjUk(Q+DXV6gn?Eu-3M{=RG~Z8Sp|{Gye}E=aW&3Oe zyPVcrikEd~4nfj%$Nl=Mui33s1U*#;_&sORbA|ku z57Vd0Ei#8T(B;C@T#^G9?5V7a{NBFTtpkFiKx|l3-NRd^2UmNsml`yySGjit&uBq# zM%L_&`E+}JKMx3-WEpl+B(oSM!j*r{ADAX)QmsQt?PPCwwJ(E6wK%?r z)QGF8+{}F5rSTHx!+TMOv^Xsgp=;kmh&U4ZMxr&51&4gKLBKtSVbEn6IieWh@;`u? z*&+GLy}P`MEKw@Yc%2F8XGJ&jkaF639h+ffi#O~5mwOvh%E(5^@5HR22=tUkD+eMy zKfM}&LnGV5Lntww8s3v7ex~uD+!45WG~HGHJNIRtF5o%6_s~b?T3P|c$w+~K%@4W! zqx}Smdc4a7DMc#{jFhR>$8rmdqWFpIKou@%q&!2!m<*AWwDHqp+pY# zp7oR)y+1R7F=1xJfRqx7b6(bwoWGx@Pkgy9cE{6(8A-FU&OW$kE zW8j2WclMQN0Z}D2(h@|#*IM|cbm-)p_i>&8khaTl@;LsG-l>p{z88^=L07~&kPx+V z)e;HI;9aw<@}y!tXqD*BD-T@;&)KT7-wE%~3$fQi^pL;@>G3}JW_cAc`$Kz-kc(W>#aM@h-8Q^iIo&|p-(0&uNo+pRd`XYv%# zkyak+QMRJ*QvaH96L&~cF|JDSmdHQ}(Y=CFagnh}!#$j=+GpkBI5PT^eZ4Jup+@&p zRV`qOJL0kA68l=Zyd|+9td@yjPn1yZTthmw0Dr_xaNxA<;{jSx+lB4p@lR)_hpKA` zC;VRg&u8kD#RIS-9fJFij6wxZ5#~8ugXrn;lDD(yn&CJtMzW4x^*R4lO5dzZi4h)$ z(#yj1Yt!AK@^Yc<_+lE}N0;s^6K^_fK`yoYQ(>YHP2M44jbbMEox=5kpIXAFUxKSUv4z2%Qp5Goh=f4O!{Xyb1fu?2rQySfc5;e7`85 z#Y9F~GL{hBrr}I^EDq$viGDPqY0v867-w`p>UTC{r|KacR~5Wc2m4uezJscfULGBF zHvDpCo)RC|-Rx0l#;oNa*o5@6C@ltmz8{whx9}U-+_JM^tshmS{R+?Tv1LTZl9Q99 z7R37?zJ;9~-;vM|bS$(#0$+eWGaDB~z7YE1FAx z5Q?aB&mNCWme+#Z7dDaHMtiqmlgMWfvU8BkrO^m}0QS6U$#dEz?9aE_X&U8btI=gk}l z)NL?(mrgo8iZuIJ+!P!fH|h@0mzU^Bc=jpg^_7x$6`JnzYxHx#<)3F_gXuIFdo{#4 zAT&g|+GD#x9q^rwVCkJ5Ia_vHWMNUMiHmKdrsus73fw{j#x`UJl39mdPcq-`8#8sv zmg|owP=(Cq*GuxF{P^@?%BHfj12}=3FF9!Zcpv1JDN*NMz`E5(skVq*3xZYmBAfUxE2tuZsP|adFSH?Ab{x&1 z`jx%_krW)*==)u?XOzAnEP870bX41D%=xQntb%iH$%l#JAO3X)H07%jzt-dpFZyZ1 zy1n{_Hyi4($Rtv5yQfaeh2$*{&Zo4f@WnUto)axnc&D=fNM7+k@9`>wOWM4i48C>V z)i94KR+;V?ug8S~C5DBI(tCuP%Q>(2=?Ca1y)1i7fKiwfWAm&b#znML-vfmnu%_={ zCt~v-`my6%FJ6w#2WIspQ#yUR)%i2Y(`4c>SXWkTQkI_FWW7Ylj1wOsuUA0e`tU zTKd{tztg2rES&#n;|7WMM|?{BV_V zfMxEEYuZkmftFExeU_vrgudLm*qx7T58Q$VR1kZ zY8z@>6i6|7HK^sNjGG;wsBM#KElp3?5ss;26&*e(+zo9{ zAnCFX!{R362kbhBC0W<)Ye8tY z(&1bAHWoB?FiQGV!aQnM%idG#$38*<4dGE zQG^|f`P_R(4G=NxbqsWIjG}^sT4X7`3`@vJ1egp6;1OJXU4$vxU@S#CAxG1S3an$E zDv9T5RESCb>QoPU$`&}dngumFslBhyWhFA68*1j92awP5W51-KLF&oy-QzV1$XOt zJWh;~%P(+=nJ_dP?BZpHN8tKGa?B#2m1gZxc2pDy>0Z0)Wqu0B9V2I&8EU*1FY6j zPD-|Rz?kqWPSk`ryv*h60_Z@RV$&b5F|{p+tmK*H4FdkQh|P@ma{l9`wuX%N(>>-& z%gd?|9h|nfsDVBIGGqZx-_WvbHnU#SI8yoSoRc{yBIIUkww(!2wX{$T{%9|)mRbJ? zEh#P?M>(J*`^xZq5+<@i2AaUoI6WmY^O7+`Z#AN@thALP&W~`6JlHl86IGyyoq(?O z(JCM(*3Z3W7Ksh`yr3I{`b5#uB{&qyaUP=K9{ET+pv1mRxQXUn%W zu}$rN4)aMUr&g-gR<>!q!)P9a2r>phu^6Lr zk4ngJ;rETu-F5Xhg~lX?*oth?y~MBgU}~#qXluQ%U2C3HFhRA9eRZa_DgIf9Wj;~ z`?#(NL^#%Jy|Fl4;j1x*TtCaQAAiNO_YQW2A*D>_UOy`E?kycTd>OP=&0$S_8>|s& zUR!s$}_;P*5OWXB4GQ!k&NE$ifwIO~pXjU4@nnd{2iAyZLquH1xP z7G?d$SXm}e4aZmAYKfj0bmzq9W8h?KmqEF{s0}*~Re#r)@6IBSSl8UPq_y69x{^gCW$%l7%leo+Z}E6$7*o zsKKfpP7D_mg;kyu)m0ksyXj#?zAod=!*+54JcBUY;7^c1J<`zx3{TZA9hHx?mnv5d zi}#9GSB&G-)fW;grROtDc7m_j=V!>0)kLo83efu)2G1t2k^p}vHzUa3N%~Of zN-_icJk#)RC5M3VSdcBNgqeefV+<9=iL$C^5r`pFgFkHeYDrXU5UZeW>LV5BTot*i z=#`m|PsWw9kmO>W>N4YungKWNA)-|)Ln|)pe5OZADjSkTrB>WF;?_@BX0t;=X42fX zV+4Fi>~CJYFK_s-s&9>o-b@mr@Ez!4{P#PVCO3(_&K@VsbDR6z9Qy&{l_>>n3@K(H z8Y@N!tWmVzXQ*O}(d*qUh^$dj&*AoC1TW+muhPpOhBNEjDr}_`+?zEeYjkoF7Q9?T zsZqIwbWzgmSr=(MN3qFAw*n1+Kv?X>-sD4#rp(j7whPa}+W0E>7 z4qt#1nvzcxXP+4=Huc1vCPq3xdtdo7u?1=Yh?1UA#^jJ~T33K%XJQV!+iPpN@zhsO zh8Ap7xi0h?Pwzn?n2rFa<)QK`H7En|Sg`(_L3z)eYXdxiW3*i#-VnpLrE7(KY6gOu z$d(e8&m;= z9H|i7?kx?fGtbctU^nG-9W1FbkF298Y)5~?8&qTXsKQ#N9YJViFCBxZG4c6@+1L^< zB$kX3aew)lU*(WM)KqpPj-Y;qn%HD%i_evh`bjKfo-&QVh3joP|22?+JU=L{3{wj2 zPtWh7@@SXvz&D2JDPcFPTjhsi4K0P+jTM;05XLDIEU_smg{5G7+pKAx}_{Bs<^}M)7eAbA=>Jo>L*cAtmp7cWUr3$tvzVsc+kyV zy&k^(u3Pro@LysY1Sxe?G;x>sLUBN(k-)eN+*%qMIG>nEUKDNDiosGtZih9XD4WU8pyA%3(W;jA7s zk~&Y}$x_5@I-_&rTQa4dK>=Wx@p_LrwYtdDwe1|Vtfvi4;n#ul_iX`CFcla%o$31i zebTifu6u23-+A|jz>%kp7C{B4=5*L_fiY!$8MF%gw9FA+YdzsLxP4$)Nv7;qGo#qYe%l%$4+X6J_rfQhF$NlcmO0<4y!<5KPN!^Y(h6S4@1 zIb#yLOnHI}qn)Qt|42y8)~2TBaQ6Y!tL{#;2zBYHk5u!e?s#p9|pqaItW*GZV2gb1<;7v#@XzF>`Y=Ff*}oa{T{xg#Eu9`M0{FJ?*ZISvxWK~nJT~b3*TdKGYv1{|&-;5} zO4F#vsG-gK6MUn&!=xt~5|htv0^Wu#)9X?||KK z|N708LfYK;DuMUe@4$horg{CkT{r#j=ZEvWf7giq-+$j1pD*?QeIfo>{ucb+@bweO zRqz)5+xq#kDZl3*dOCxk@BddlcbpaCHDHgs$Ja-TC=8l=)iQcqSR^JKa%pdXlguA- zGmJ*&8zx?9aIe<$fga37q#tvM8VQO?6evcx-e%v*>yDp~n_j%vVo4Ngh7rGNt0cCL4Bz-S$`)_sOJg&c(~D zIM72EJ#55WP<(LRe$CkfL;sN_31{0Dm{cDz*l}wQ97x~Wy$fJ3FBr>xVN&fIUqnRj zx=G3Y&6@bQ?{_M()cfBUAfbAoqT)8(k913^Lh`h?L2@pOpG>y6YUAJ~&@N zJJrR4lq|4GYU<1gOYOzjz(&%^MbkcI*MGXlS_(c4dH5b>?`?-cc$ zs(nYRF7N%qI+5Nsi+~*Z^kISAAIoWN#@R-2fU934p~h8{L-8%2l*&H+Dm>IZVK5S{ zAhKOHyoLte%zT^YEQydn8gu%-pWrOqXjTHzy_&%s6CrC1v6#7_ z{{>3~HVhwn*4dEEQzXO&9rV{WQzDu(>*#`W^#aY7kKqS?!P{xXaP~Ko!gYx=jSKC4 zp?>fdJgX1)^u_=un@t*V;FUF#+=wkYLF#X%p^g#Q|1MEL8kFj=f&NUDQ?Ax;urRvqv_UHU!>x73)H5ornn&?# z5$w2Sq4;?#XiXwXZ`dC-Rf6^q2qn>Ad{|M)hUI0B7psud(?2c&Vj~{}D4aH;>x_sH z0qUw{G%!s#(3G_i2+!Cc$ZQt04(=r0y0{OU4~vPb>>me2ok%1!@RJN8l-R{X{koUI z^`A`dFQ0wz+S@o~q{t!6rO3RnhnTYb+E%XIE4eB|1+M~=Y(KS ziSdqN4p;ZQWZ4e$p?-!-M0Q*;A{1>D2nd3F`9jK7Q)C(g(`iy;Fo2>zko&C9sCj5q z%2C6w1p}j9V;}Ln2E*|-!JnOODeHu3LtN)kg(9&smsVvBvEGx#@#Tx(K$V9c*$i$n z@@+vMTLJgZW>R&&kgZp1Scj4yojYk58Jn<(?g`ygW5I+P?Vr&>MG-mB$g-vP=2yi# z2&DxYiHNL7{*2j+b??gRw+lP!p03NBWx8%AMOqCg?bPJ>AP-k7n-bTJ3)3u9aju<$kP9% znSIvu;61QN@EoW#h~omNuG7YAz5}_{H=?cu;pnf^x8`f0_sOSX?k8#XCR6~p@@aQ~ z)qLE*)V=6x(TN~UU+knTm#R^3L%O`ymvXenN7nsf%@*&i-f> z#`S0diIo5NoZj|dHHH=MA>xzW%OXb5AKO5BNQQ%M9N&Yq(44Ur=R@(gV&0`vY;cWz z1F*(xx7iOOjW6h^$?8wo3TWSN;rFbSWyMXVuWD%sHc{2#<_$2Ad^ljIVr&jbo?iXR z%{BFRr}fY^$ONecrrN0mx9c}q*9^;|--9hq+_oc;Y=~*%GBC7QlZAJZ0H51+(`Uo{M@0J&rSb-u1KT&;eJ_2(->@6PAU z>%3oGgm_4GkYyBMWbJbi(TL-naVqjovH2MHKrK487nBzafivQ1?_-JCj;4+JY9ePl zRe+MxN@E3o&SX1n1u4&!azoeNmpR=Bc@gd?d@9q2uALjcx6WmC4U;)mG8fPMeuVNa zsHC?bY{${Jtie-qhvC2j-la5rXwr%#2L=}>RUB_A57Ukxwd!LrFxj&NN^^;oumN++u@o@Tz|- z#Hq!hXo;#7wH?(`rRPz?b6D)7bW8!ilOi)%p_6E8I$~A;K_sWX#m|@W;GZ;G3uqFC zFKsf^OTAXyQ4S6^=3q|F1=~M_>eSRm>9ExrNGyi#G$x&)S5? zJ`fc$@U0_iph(ddeIpB4^OxuPp)NeCcr%+{Ha7c8nNCpAD@xmBqtmO zPC>2YcS1eL?pU9h?U{P_Tu-oUsdRqy`ZX-w$y=*u3V0@_ijmz*-Ic4+zVM_Ix@*W? z?r6dKiw3eFJ=wrcVX`}$FDvpBa(T>5o5A4N>&!~D^gPXpXrGJGWpyp$*KAq;#o`}z zHnzy4BltGaYtL>8s)vSSF?)OeD+#sGmata49uRhGpSjqS;Y3O{Mf!ZYY=YDH=vxEZ zspt30zHJ|Sv(}V?pa#;@?sqNl_rOnnkvK)7no8JBAoZ|wfW`kHJHBQ5(vD*?Q1IRS?7#(jFJ`a-hXc=1nmi$*e4M*-VRroXe*yu{iy!DzYZdG#4+ z%eJ{XiQs4_KGBzqO^N8j>2R9}BXk^sz<2Ft+2!e$`5K$|xZRx_(t)PIsN~pDTc9g4 zq~z1*f;np(DNaz?%`TXfY)iQ!dRfu4xb``@Fkn)@&mYE)9X~bRKQm^wrguT%Hkfl% za@`R(C29LD^17|!5R;j2OG08G^jgq z4o2ryr?h%mMr+c-c-j5P%O{;wOGDQ7Jw2(eRl+SR;(d2Z96C&nD>(cF_>s z7^74N`c~$8mK9?O6eYcq8!4&8Djm(l34~@r_Q_aXOcHR`#$rE~scf)GVSZFU+vst7 zY|;nV|D{qV)5Rda4=X>&8j}&G8X*HGgCv*Hh|`m(MVbtEqwRE$Do>NL%eaQC(xOu? zwy8FZL-!3dDAv0SVV%p2O`4c{@E|jMjUNnZT2A;{>Q<81U~kD?9z1PyjvxPIwhpE@ zI=PyTFUI%dN?aYA-CXf(J9uJOYGaF9stzrtI=KK^n4W5ym}9b+D1C~Pk3eB3iGtHy zoQ%i~%25X(GQLx?^z5uCB};o!-O8&W(?v>jHG}=}A$6$Ok`Ya?j|a_kK6ZL|wKGve z^p6J)wt9HgGf_c5szGyChF3n>T{bFq>vU95i>G6}CyeYP3E}J!$jS-10(;VbqWkM7 zy2Y5S)3U{*zX*S3v-q0xgjzqMaQ}qXE*;a$R&UGYyQi&S!LedlYb}+j>J-?gb_ls3=d+7O0xM@K`=Z2;+CJ!7)qO$ z?tnId#S!b0?lJ=D7T8PSetZQ9b&5EBr`uu|fsq0B0gPBrTgjdVe)d9(^?*(z!MiuX zj?;2%G{6JCO{Pk|A9FbsnloAR$X|O=#={X=0g%1CxlMEUTXb=X9_SBD)&q&FpZQpz zOBjl2jd`rQ)o|zv@`rNJOH-DahX!N!a@tLe9`ygbThyh?tHN^rr-vS8M#hq(N#68f@( z2M8R7upQJAzx15Pq@3NH2J2Ab_x&GufMRUmM9lN!mab{)26oLeoncn-W^6cmsqElwOC86}ayup3_kTo>KLUDsu=ftD}WrEEzmPSAB#+3=k}eX8wV-;Jf<{J<8~qEnv4KySX742^kTmku>uP|038bG1c^<>=FUN0p-kU^ zN1FKSAOJ!66lAZ7O%_yS)4-QR8raS1POiw)ycxL0g6A$na!iGWurNJg6Xeu@v%ICP z`uXf!xh~CxBQ==-=C)~}G$vc(4bL8QJpDDsnYXIg&Xy)UkBoA{5R4ysk2>*2$Re3F zG1Nnkp(cf?_;>}SD}A$h*0vgO=N$2JGb|=ErcM3FB5*Wfy*!0#;OsYGL_qVv#N$QK zB3IrCmKGIR0oF&#NAvPtr=RwGy$P*ax@NR*NWOjy-j|> zW(AIzJE2UP7JfTpi_AgiUnQXZgp0Et*|A)F<-zh6ETGMeBrKcRR@qFhDr?qem2MiZ zeVpd>7a>OCSj(GqoW5YlV-`WGE+eSC01KsL82#KfGq>3uBwTm4vW5^3?*(TA%ji#Q_9&ZaZyU zh4cYUF-8j}tq;)dHZbwY@orWqW1{6GF>#5I27~hzW;aWgjiX$m2~cM7?kONs8b`P55sK|D{t4 zn&Um=uCx=ia9PxBCH7CGi{|kLWH8jISm$si=nlJ|a^w@)eOtOz#f^`e*YVAL(SC#z zAI*Dx&=-JeBLP!~f4buAbVDKs;&|(tH?`delVv%fFnhZoCN_&So_fBl=!O@2(>rbu zY)6g90}OVqNM!1JDZHDar1VaqXc)WK#o?%-Cd=#ahrjM<={N)1(yL>p*j^WlH))$p zj0aBPbm<>mss^Y#0oo>(?$lkldLq5dkN9?%(hNjirb(yBZ(^O0?4ytK$B{b+^!blJ z8=8X1ZGxOrq$^>2;2vx{IJU=ym>rN0BL#SL>mGiddH|g5%&Ub1w&bGPM(zX|uHtl*D#Kkysz@ug*{M_B<`ruB&{tHjA1T8H! zt-{Y=76%A7#8wcVDM(SVjvJ4Xv%E2b{+9o~eTL)Z=-~uu^0-EBMm{3m7~dXY&sJ@) z!Lzb=uxSrldE7NpIgYi(!vzVjDadb#Mwn<-$X=Vs>0Q1&L;7C=3f`H=`gec9YTY*5;nWx`DhCb{qDV28e z8u2tf`;&DjNF8s75qOX5(QGGg~4Ksfs@*KRt~c$h5n5`us-ZAmHIXe)J#q)oMT_g0%bRO1du4moqPwL{KbHi zY1oIxDbnOJd+AKHGEbv5sIAkM*|xALbNQz$o(1M7-kCWeYQ^a!v99vTLwiIbnBWl+PJ&ByHiNx z(rDxEPT}q}){VQn(~Y}3g%|Gb(6~Dc-??$)#GRNQXJ&rvT$#C}GGp!9R=HL^FMHaL zco^eMN`hni?AKd0Njns)y}Y5M$m>8Kr>*zPEksjiPd;Nl{x~=jYY(nbTEc+rdc1X_ z{qOa`kqeB-4l&ou4ohc-oTH@I2&NgYQ9qO&wGCq#L%9^w69q)SB>he!U4%b=jMyG` zDmJp+%@5@48`&7N&lYa>>`XaJ`qLQ_{o%l?e-Ihz7vC`2mGVQ$Gclz*va=y6=p##7hwwPp%_K&nI;4kCJ zxu~)u6#ILVAFc8#XK*jgSzP}%G&sR#ZtAAB78Tk-+o`!0<--077)+eFite)z1YX`S z_t60VkWS@SZdV$!V&#vq$lgzO5;V?rl{cH58FxJAk>5Xfp$f+Q-6r};nqp1S`PvC? zruJRKITDwR2Y#&_A;EPnyEJG`K}fkLRaqkbIw8HT7Z0ys;aGU+%8E78?N%$&fuUkl zA-E8Ix#9RX1?P2P4VoGIrs0rOdcFPhCi|OyM9GLDe^keug5ivByTZ~kk&C4eaNJbe zkmIy0x@P0={MG_hO5%@NuSVXp*n68Z8?K$RIG3)+&ZdcxXpn3a7%!0cYjo2DeyTmU zS3S@Lsa3+o-g*^HIIGDy1Ht2?=H#eMhGsGB;?_~sYt#P5oRRL(n^yR6dIB9K%@@(piSD`l-4`G2KsvU5fSDbQ! zHGvU6p7M!@^muyO*}KQ$0lDe0kl`)SJ@``)kP667#Ogk>ZW{W3WS&o^=CWdB4NvaW z;af0}Xx6ws+?7UeqCVadyNSH+W3;&Bwdb;kGE)9A3bVXON|jz;CgZ+D6FW5jUKi9> zjXN|t3gAuiL2DkC%J!?SidFcM z;n~v66VI6Hf! zU2&WeyH>W6WNqF0IINIEwCHQylE2@tu1m)xGIB$RW;aDZ-LyL6?*ziBnM%@)SPGvp zrxDaK>`~ew{HQBI8?XNrYAWbeue4ne-N_z3bdTeDoeaj~sMkLz)T=d4+EA#@r7jAqG?9v=TnnCwyZCAfVINq0Py&%A;g7d1MarSp& zVT}}5KNFCNP!nD7m$Zha z>b2v~pYo7?RBp_NPbC$;VUFz%i*YXtk#Iq(VjX#Rx?qlcrPcjb>Wgny_DQ>Qi38!) zaAx8vLGBI;D-H?$o@kyEe-;b*H7Bo+7A6cRW*gIpxwDH@o<0g+mT5~-Cmy3b@z zmjRH-tH$a7PeEwj|5?bBpN;qbkdo^38>{++ryU7*Q=~o+SYcDg7eHeX@Wl!svm)uO zB6|Yo?#6r4NIXG2TTed0@%hprVsfF1bGHR2MI5rfQB|;HWk;84UOmDAYXLt7rBM#v z-Fvf3`P5JaoUVo*BNMzn6aYN!8XbBpMivDT!E@cEZA}z$0k+Un+I4kp{f( zKQyy;Z@oQyc=^2D-S2-2LK%MC-kqeTUVPkbemoBuew+oopS%Z*e{_Dl-n`wto!#$? zhqr@Xs=M2Tyq{z@JJrn^^8sEaejj(ut4auIu4I4Dh|jywwUoq#vR&4xxDT@%kcl&8Ke6dB=qpL6;i9NT%|P#tv#bGVC+mE{!R zFjw9#=?UoQ76gvo8UTH#t7+4)`+^>oqNr|GoTXBohsYgXav4P2)kgjr7dYF=ra3K@SVG+OdKTE^6GlB;x5<`M70ua0LSM|L$lqUXp?f)f zZ#H2|F=7;{c}m!mZ&B0aUeyp6ucG9sKU^6qhpXJMT=A%PhE)SKaY3btL15PzYZV1~ z!VCo|4-3`M+i^3F63%oqESBeal{S{^7;FA-{#^M2!vLHEh}MHEm=!Zb)k%r5K7%vA zSjN|d-VII;Zs%rYlLR(RU{(VMmyNmLV_0(SqAvc;+GxctehtS#YqEB{f>t`1WmvG8 z!?yeDXzd*+Rpa0c3g=|U7q6bH$bdRpXYwyxy#aY)NKm|& zIaJOu;Hb^vka>j0Wp~}HI67?2&M|hGaVqDlSEP5W1NLr-G-8i1@^di(7vmY)T8`-u zfV0vwLwcZaHs#?$^MANT~dpZP>RcAB7!HoeGmgqD_D2I%9ocwUdA}zv|^c~ z?%dQ(wALeKcgk>mR0f13Gir4*+}0_$R6+`~9~bRzozM3z1c8_gwtjI3ndE|)1JqT< z89I&RqGVeN!MrMGHIxRl4AQ%V?H>&r5?1Z*)8)OFTv3Vf3+fm13|}|ZCC3f_d+Mjn zY`8@%6JTZPqvqCB=+j_nVzpGe0ZMSbU5d7sK7+qpW$aiApLSn3c1YREba}qpEu7UI za^&@%eIEE1+ogakpi&1VH_UJ3du)V!rb22Yv|FV-)b9Kl>eoGieRUA}7XWuiFcK)} z!FtmzE8?cV_@5J--F0WSN&gaHvg7m1~L6*hvXlpA( zMU15#^U&y)U+t}Zecch$R9C!iGY#Xe@u>9l@+c&&qEXuoWbseL*fP-z5WxIngg=yP zxj|boc4~NOP(ZDaQJaO9ZE6PMo(jlOJ82kjK`kNrvSivxSpggSi0+oV$TZ3Yz)Z?Z z{;f)ci$itMKa!ll9BI>IzzX}>MeX#BsG1dFUge%Dmv2d+CaM`oS1xvnh0-kxz8sGNL)XEh4ZINqHgF*M1!l^ zQzck9MSw(dz1dAp_Yw{Z6XKS1?MxWY z42Hg<0ddfF#q>`f>9NI=_1%FvG=*{NJIx|MIvyq z#kdsI6T2L6(K1CKGqr3{QQYqoXm|+JmzGPOVQH9%fHr=!dVQtuQZo`s=O_h(4_ks6 z#6Z==V>@fs2w;g3A`y1IFSoV0U2fNqT88{y-*-1g5RJt5_n4z)+zM_qkAIRGF9 z6Iq9-&c@m9g$mNNHy|%M?Z@63pt`EeZ00&&?|?{ou-}-`X#X60V*=4gfB%3vy76<@ z#d=4v)5ZU8tO;6=%{18`9#k5p>LfZQ5op|M(wP$IlsEqV^`js0=h$*wT75dNUaJ>j zio*fr=ZD3j^5a}*CtQdpjTf4UfeVL6hVtA_`CT%94PVnZ zWYj-WHgQNxzFJ5iMw|CvdWNXdk>4|E65UjAgg z`~p$!=2%;%7DDS&`RhjhF}I|9-@$Ki>;^PNB zX!ZPD19mpzOre5`7xaq}K=W|zYL=U@Y@HFkl@;Uvnj@LmLjS7|>5Xpp2Au-&&FZb@ zKNF%ADQik}LKvl6`vWnv35$ia6(ro#4S6XSqp;-^i?rO3*A`XQx(xYy{!Mhm!pbuV zs+Rib%`HLmFu;`PA`{6{dzQ|{{%o2Va2uQb6zMBY37}CY zvAV`xs%SW4F6*j3D;cfu>7pyLD4K~Ewu}b#&rU(dtRk-qK4xI(Ziob6i2kEMD*^LQ zpA&-*v&OSvUmxvo5!Si5toyc&84k9vtcArkA9GYSaVb+#ALHnMuCwgV(O1?zT3oRu z6M5J}+!(8TS<~oYUhPkKWDDmm&(>(HH`*0slz$Q2+t2QvM2~(u z<4Jx?&cF+AQdyQ6km}s-0ghHIkK^mNDp0rcs;X$BH&FE|54Rk1Jz09q1P)AJx@o9? zFu@UA9nFKtWAR!QQN&(*?*>!`{J`qhLJ!4K29`<@6E-SNOZBx;a6Bn0UbgN$DYDkL z0P48x#h_?&jL@}ZEq8>94SMqS!ijRO3*OQh4WMH26`3O4gnE{vHB&Ux&BkzvVG<_a zHbbS|w1YL?4BmIlgkSWP3ZkCY=@^M}m^7zr4obKSq*}{VB{Ly3|G5Y^Mn{|6yM-i| z7tWhYXFSa;mlxbqCW5lfT|TRGtE$!&O`qL0LdgfCU=~D!q^9!I(>4=a8&j0i(-}i^ z%h@R&8{2La&x|llv(!&Gada{YH)ye>3yhtQw3n-5-?*f&&lR?YI3m zuem7?IeZ>J!Sb86)ygfDQw_&a!nNhf9=XB|c5X+6y3|)x-z`Gefd6bqgs_G$VZEe} zpWAa-?_yVeL$U>9NawO#H{GGQgt|^;@#2aNGv%6YrGy;62V&irSB{n%LCC=Pj16`a zE3yK{59@>kK6Y7OhsK|P8l51N3XMGRzu0BqT9Y1uPV#8DV`S^98NwN@V&0;wVG$&) z)ylxomfAYqu|>khUZ{5UTTL6vh2v=X0ja?&y3Y9Y`gA_EL#^*A4m4E6T2)lT%EN8e ztzxC$j*Zp7F8qkb6Zr@7`sp9RiepsmRESaqhHpTw0=4#-eu`hGftKgB0@~i0wr&FF zR#q_t9>5x*mf4P?rM7QbKe+SgBJZ|NHd={?s0?epyn}|WU`mwp1 z@YyHQJbby~`q5;s{XgIY@~fZe(~tf2ao78&0o z%Q12D783tTscQNaP+*3xar;f-7IBY#ALC6M1L~(SH_GL`@GvjjKPTvhkS0=GHbtJP zllUyzQQre!8ap*|$iKu#)N1if5og}16Ij~1NX$Xp`O)8TrOZAb_Uu(?1=l_)B;)Lr zf?ps`6_{tLKkDq zQL|J#@o99Hw;oar{>f?@KF9Fr;g|6|crGxN61n(EFZN{3hT#tnK0<=2{Im%8 zXY*3Bxof9}5e%^3EQ|$+Urm7E+a@Qc0w~1Sp3)Q#J0dhreG_2rYDMQb`(;iMT^NP* z;GMO$cR}a(J}O(O>;{gw?8YitFk14&DKlFKDwyCTisNr0fSe3Iv2Y&>K?-I71F+&2 z5bX;|AEh{v<=ccuvlmR3&fyG)@Crl=W{=pmLg?@(+-1{w_)Y)oNSGg{m~9JALDcMV z4{Oah4ZYR_`3o{9otAkYsxg}AwzoXH3=fX$aNe{6=5pU=TUtk@GdONh<3jXlR-^Mf z5@|5r(vZ&G8&&|mS*>NL$iOdw8ZS$}!ENF&lmMMM{>oXQD9uD#(PyDuMHNehjR-q) zUOD1t*D)EA{-6`j4nPg4k{q7Yhh#%r%kXrY!?UyA>de+|{*J9e?T28XDGGtGlr>F_ z3pD1>86vl<+dOMoQ;k=GvvquZ&)MvaT!+2aQXXf2Z%WO?XJ5)gC5OE%1>IWL{SE^jsQln zybp9fawg6IoCFZm$!6Ju+Bs0JixRS=R9H()Ufnjr-o%obkm9>@A?aDyGi| z2(gkZ8xA2KW%*XHKh^En?wjsw9omE)?A78TXp91Tla5{TV6B;rCOz>D zDQ?R$+kf{*AXHcS_Jh5g^;MnhtOY)AvA;yV=Roa4`HBhs z=9dIj(J1}9yuW$IawCK$UT%C?7eyzn8V`1Yr_}^j#z(L3aN?ypI)_T}#HF6E(U-y= z@OAXFVWv4|<>a+y2$mO=^La!FF0YY--=~M6q5jx>?GJ+Qcczvy13xW=Kx=5+iID0; z2>})6@BdLX#$`AVm&&2SfuN58T|ugSZBhmDQ)~(IhsfzustOeG2mfbj=(d- zE6v1w)ZK77GHuwYu_ae{65+S4#luwt5i#DNt&z}}6Oo=GR|&qW@LGS?!$j`yd#sxP ziWOD)_4?_Y=~|rW9FvN|X%es$S0@Jt3CUNB2cm)BRQizqfx>zE@<+h_jGn#37ENAC)C8j>0h0zu}h?QSiC6 zk>R(_a>O?vExpxox4Fvv&>srON z+P__iSafH{>z%Z{!5tcDWagHTAqxp>RZ_utvZw;)VJs2d6?gA2JDfI7&>{p6Qqp5S z#)x+Q;EMtdW*O{VB^lercpzI66j5iOXceEIopx19rdr_Vs^kynAv`H_X|n{ehoZ&f zP3q=D=L2ZLG}h8ImtV$7{LT$F`s5Ge<(zVrI@rIs4Mb075z_;!U(WLKcfGlLej_;g zAhCEL@yz71KNwyrzVvp%leJxm+J2_1c;t3_Yj8$U2Df_foqZWjmy4KO?XgA;tWdb% z=&6O8T6ZWJ?W3RZ6A0m!Z1XrS*u(#HXM_IG;=sl zFjp<*=z&;6WVv-_fES;gx7!TdN6o9I-varzYUVb$OMz%_;E1XWmWzccRt`qK*t5%5 zoI0yoTpw1cGqW2(jXP+N2ltn(=3)5bir)LD(t!PzeeP1(yGMTXTFJf|`JJ1$E^F63(FuNBa`f9xe{x zGW6VFFZ^P+I6$1Ey)ourv8+k?)!3p8Jiq1}QLdRRA><8~=lClx&^HXxJpl1kh++)IhwQAIvh4qPkWyuemE6YtuO#)MnG)Dm4n(%PxDhK|y%U3)I&OQz48j>#?D67c z4NBos0k3-ThodpCNDQ_N?$u>Vk()K&sFmZjJy19Fq{hI;Cbl4I~!FL!+!QYExH)tP6QRa{18bo@#W%IZZ;Y9Xd?u)fbW*el`^TIu*c)pA(*C(B|p=T*LJKntL)6r3QA`q zJ;vVsCkZN2I8jQDR>A%b+RDXln5I>0bsFP`(QAd6%)!+w^j%F!9Zq<&6ULo;{TeO8plhpT43->S<{la~V@>AW(is?_+7OkXd zis5K9tXl=(5|8;h<;LdqWHk;otq*sc-ksyC8e7~PP|ZJxeyVw8>z8E@?G>K1fsRx$ z$qm8*?J3E4Jafp^^NJXn$)wJMKPH@Ydugr4E_Fv?acx>Tm^F5C3|U|VP9~O%GstPD zCLcP3gge#hvs8b(<{JFb#toY7P*d8wj;J}2U||){1@F%6pLRdGr2bs{JH2{ap7C4KroFjo~d+x2-9WXSIkrHC*VIN{m`I;TyxdZe4O5N>@R`I1J(A zw)AY*8*Dp|X0@p1D<_B%ZG}UNP~X zTXJ+goh7Q>N{S?=8BqQa$-;Xz^%ozas%&^gJPXLK!AiDglsT~?R1Fmc!`L&ta%y4f zytL9(xQq;C9<>JAKdg5khTRBGOci!9*D3s!4kJMoAK8xFtIKL)FCslofPbM#y_YKV z-{_DL7B7{ZqMx*danYaQ1k?x66g807Ml%n(ay`!CScIEcAS#G}N8^ez7ms$Cf^@Mk z0msyji1kfj!p62os-MREzf25p!cnLOg`R-l*cMuFti$awk668~+}*k_-!aWLRVQ1i z8#C@?mA14WXV5yfFMiDaU!%+VekN7v@6|lM6P4lJQ0t6lx2i9v6%ls)02NNV9EL(_ zTk~Q13qlJq#lfmwyJ73gwmgnKwJ5g+U!tNi)EoSD#w5j)p)YHpFZd7TtKR$665ZmC zj(4-QqyHMCRs^?nn?)K~8`pbEJr1PjrB|hq1D8=gj5eQ67b*gq-0V%a7Ahd0Un{j? zE(bn~+y5$#b?XI$P}efl>+CKUm=vDCXMqE$V5%ni^@v-lvBfF#p)s5<`t2d-_;ig` zi9qM1nc|r*v)U83ip4E)ip5*?m{rko7OD2=C`Yj_AG4CD{2)a>^@0E`s)#L3(`VS%>`@kPE>W?9>`7(5v^6bl`At@{PbJ^_#mfuX^rb?p1v;Lru{iP4SF{ssRUv+?`zwF^h9=myyP8-NzU>Ei^rh(_m+ zG5BUXcl7y9IO=NOWY(Czy~JK!B;#gwr(AqEzN`yynwQ{dTUEf&mE@|NR@~jD9qpIq zHq06XL$2q#LEE#>IS#QsH<@*X1Xc*O-;bz&k0Y9KN2=Af&i+0}o05v`>Eea|TMXxX zNdk*QJU2!xCZ_S17>+41Q{Hse$u@nK+vC1@bsFLDR4U&qhWvMmVF!gQcry}HJlA{V zJqeSru7PFT{@jkwmrepaSaW+ja5~nH;NEg-)VktIM=KcFRdO<7Lv^INc9#4fx_$W^$>l$VNQ;Jad@VoHiuDUwqn!OV7i> zEm>-vRNl6yCTTcfW^0GnWLHhd&3Fll9YC_=UV13LR0OB(Tl0zp#Gjr?0{y7C8CJw< z^DkD%EmF-`z3G(@_rKF<_|BktpS6lOkJD7cK)r&$EEMM}@ShVPZM79muuK(6&27<} z-Lb6+k{1XDGNa$2ge^YRpNx=?Ue7PA#N-%4JvXGxJZn)tXNw z8*>jc(kkGY6*Ild7EX4P(N7js5_Tf_%Sz@7{(An+?b(_$sF`BoS|=;)fO>iiS%+rV zW@Qz_0bQL(uy$#e6gc?jxxJi@kOL{l?*>}^Fo#4wG!|x~Xd%T;O`fwX4I_L6Qa*#< z_e$B3J|UxYlv-4Ws+0lXdmw{$6-3=l(=bUBdY_9@o#z@&6Ww z@!u2)4mK7ZJ}!QKzE7S67YipZCmZ)CPlAP?hn<6q^M6Q@`2Xq7|4^2akDurNWJ&m~ z#xU{QZ~6F13RWREpwP!BK@)MsrTz&bMXFdteq27v#_vxfIUV;7%I@aH%a6laRFjab zeAsp^B-9?IqK?O^Zo@k<`B3`gNre5%mI@15L&z zrb?WVhR+Po2}Dwww(an*cOVZMAoqBiVl zSy{Z?Frs`bd>tZTM&w;Y&pu)VovEevRS9+=-VKwcH7DCzixNQZqPJ}!BARa>h9plm zN?dCA(|D+S*Cx)$j=(D&MH+K?vIIQsdGh%mQks}Bv7-{`eJi2?vDaF3ahU;D-<>k? z3mT+-t)&U}+IAU<4>x8Wd}(GA^?+oqgZz1uOj?ylPws7RezP5U9Iy;%go2SOmuWa& zsJEy#x`7H;4TVR!2`n0Qgz}n1jv-5d?}RF1 zyyBqm*~QU}-~t}jtU-tdSDZ$tLG8JN(1jVP#z)M`&s{p-GY@qbA=FPxS{Deqa(*E* zH)^aKGDq)D(U^SyUa79+Sx01b%!I?Ch=X6v9~t_;Pp*wQ-D^1qm;q6TPR#xrFSrPR ze`-J|ivUws=@it_t{%xU~C;dj+Rl?a6VNPBONxjnZGYdKublzwFqTaZ7 zCS(i{fa2-|5;}hfIgLi%c^waUzuz9iQ%4gbi|MXyndRk~#OUNEi9225h5<;wPJVo{ zU|!!|npdkot^(fgKJ{ncKi;JuHZL#Qas$r8SR8xvHVHidg%FZucq1!xO2K$@1ZC_iZ;=-{M<;Al&9K9aaM~7OK{!J) zlUJPq=pl$z$W>b3HQ_+vb2NLBj!hLsE!R4Ijt(gjz4lS@Zcek4k+0tshA&(sMXm^8 zdcs>b`MAJ8^?^}0MjlprkI~{c;|^GX5dYPJZWq7dS|VPtkOk#C#hVdjSWes9jK>td zM`I4vzDv5x*yt_0WZh>HXM0C2Q~#k&TrWKysQ;^uNe?jR=C40YlbN*t$G>1VYHvKD zJSv#$86&>Sv@$Ox@<0?03O(fGniP}tOmZRewI1jF@Cz+ z&8g*weE#}~F*`D?LlkCy0hmMV(RKvq3od2m9T^UtBpg5*#-T~#A^JgD#+gr>5nF3= zSF-!dcys=9X@Z#^)N-+FE;w`@S(9qy8Wul@y*88(iStkwiMW>wWTUDal^Jrv75F6C7y_rpsSj{% zpK3J!m5f2}QjVo4bRox&O`vX5@rk=^bI;qUy6D+y{qZr$GK-l_(yML;pZxR$YH9or#Kb!K43^AcqXD^v2D=lS5b1r3W zK)v##xrTJ6EJ;aAxvP<%dTOpV!k~!x%(jIU%{ClS;dK3m^JEf5KO$LHgtA8#?o>C% zjPHXU`K@Y-np~-J|JD@L*fWc9!$FeXpNF>uH@vC%;K#Cl+wYYQN6Z(Hj+=J+->TP0 z9XE5m#(#gFE7dhgOe@>2&1~k?6*@HZ(`6bphW9>&vy{9I%BsdobXd*9ejGgMxoI~S zv{mS<=r6EDQi$I)&=mmrSR;_4ZwiK|{uFc75gac_D{aHty=6QC zWeJpxJcr?G*2o0Wg!`Z63KNw;QF zeYP3DMbhYfGF__~@V$GH{0z*vQ)p20Fxq*Vm?hKvf;bw6@TI16l0Ne*Ihs#9=%-^W z`fhvhVWDB<7I5hy!Fs6TJ|uq&u2$6~YUZX2dTZ!?r$i`Gb2mq`M7X=g1EHwF^z5G~ zxd5dGMZ1l9aCdii+HKBs#+D_|c$sX^UyIINyxExEj3_x?CMo272K5DiB!y?V52^Ra z?9Pq-^hT{=eqr!HT{EPI9K>lskXpvXb%`_06?W?b(lElxBwuOxZ!mzz%-oJ7`cB4J z>}Ayl;^}Ko&kJI@hrH~ham)eaVZftGD zoe(UvWDZhfDZJpYvH_Q5D_kgr&j2~d0qdQ(gR4CLsK3b+Y&qB@d#RAx_0Y{2dHT)N7! zovY$^c9(tVoBp_AlBb{$>y3@b%VcJ;r}$={=_Nw8bz!{iQD z=LT9H6^px|$qf=B?cf0=ejEo8&ocVZx-2|P;Fdn~pYgri2c@A|DIog}uTabGH=`2W z*l*O(MtXfD`Hnkz25fy&Bk{PFzlQ6%43!SA<$XXay6=U%3SWtN1Ab(7Xo2O`{seTI9o~&P6;(6 zG!$Oi4LC<|Pw-?p&2Z8?mzFRpEtc}T{u){vD@OX$rNQ?ZQ&BXI(`;(n($6R2%&q5> zUE@W_+ydM#-@SH4!%=vHVy>(uqEbW;DnxF?w^B?68v^b((OZb$C><0-Q!g+czh3Tz zgln2EAhEAEpxXZ?w&o&Wb`9BtOdb}B&AjxF#cc=cg_}@(>1n7d0ldx=636DCBtfO} z)i=Vmk^Y8h(M;D%un+U`{==PbumJHgoez%$!B$_k6F%!lG8Dgl65kl;d@UJdjlhtZ zw~-#`j(|*BN$leg=B6ABXofH}|7EVYE$SwWdinzMT7!Xn`vPG*7yf8`C-(CzR749n zF|iQS(ybfzKD>jYT^EeVl}~F_c=d*xj~lK~ctNg-e<4Vt8DSceONK2V4DirA$Wb9R z=|BW4JM8kqhD8syv=(GNhXvEnOj0r*K>nhwQV&nJufxIW$xcVBFFuqlm%_)S(@JmjoSfgLQ;hng#vTL#P zSpTCBv&CU>0xv${h`iWChgcLKU(3ZlSy&!wEg z5?9D8POS~0k#m$p8Cry(NIdm4YK*mbdht8>H@%QM zmmf-0cDwQbF!nswQOQE!EynzQSUx|SjlF1lRwvru=hNThn|35FxF6x`URD-}X?+7n z#WyHk-7nA;#yeyEx8QOdB_aJ6u+xpcx`q~GYlt+8Xinr zJ@9=Caa$`3-n9T<^RJ1z4vP%t{&!@nFtNMrGJC`o!c~XQT$s#4|C##d$Sm=82hCto zC4xAEl+=WJ+5}jvf-fS6dbZ9QZ}oQNL(z)gT3txazh4`$w#njdcPXQ2Ju&;!Ha70p z=Zgww3z_Vgw4hkVa)n`hF!(ggdU4+)C$_Evk{(Z5u>KBdVl5ieYg|75h~Vv&yx7yB z+Q{(94J0)b{~34ho2w)KGl?PB62n0hRoS9zJB)oTWT9WznCSUybe2sL6?<5RD9L5* z^u`LI=1FH%BfHN}5|GToBYnRiP$9awwAh$?Wlwewd68a#t<+}sr2G^!1BDpJM8DshLe zA^U$20@3DOsHYpwfEA0|d1js^Ctq5l8&FK#Gh#VG+9Z-YI$eAd$sqoJ(F|M9QyT1g zoP77zmgCy_=_Y)IhuOlwxW1Q2?9K%d5z_%Z2}(wWwq;~Dty=JClY~PcKoftulDZLD z(S+mnYUeY9E$3$G(0c3)>{qUw!-j@=xeMF(lqPhE2`gs1=x&^&qYzSJhwFWtVOHd} zEF?@jLx`7A&w__wd{5=vZ+iFSD&D2hpe58>!68l0T8yD}+sI5LzKXJ?IJa7I&kuG3+|d%T0w@6s-dy+(>sEH!mXPPD0@Bc8jYpc6cayLqx+ zH1B7pc|lXDlDnqxhpvx7Nw}8O1xsRWJ+`$IICW5157RHX3cILGT6abEv;ceS_{U6M zYUb_!s^+k}=zJX`^ zTEmCz49}ZYX*t4CxAf0S>{;>5F$+C<9jt$bpVc-50PXa!Ee#YWw-VAgQD=YlXVm;tCe(7V`d5<&E!yj>D0Z^ zB1xV;P;G~4dlq$(FeVxi%)LSUK5a zP4{~P3+!CD+4Ml$@_baREPXj*Z6D9s02m})OM8#eL1ADyVEzHxxBem9rk>F(xL?}8 za-P@BQq=)GeY-derfzLrJDp~mNPU#Nvlu0KFJcOhb8*KGyZ3gf2=NjUY0z{yXee(v z?`U19aA+UbH1;XyKd>tN*T(K~N|#YH2T?hw(TL}=6=_qs5TzdCa=kTI&_g8dQ#rqK zTCE#`9CMxo$R5dd5Oo-Gq=1z+7Ocvn*&4!5vY@PIBh^#}pJ2|G&Lz??rp|aOFd+M} zBxGThAtRkND(ccte#e}`p$jL7v39YyoTjw+~%GcSuA|2(Zc5yRtUe7$>c__%&p&)s~# zwg_B8@M-WfoX>T!i;7yW?yg(|CFQ98?sY?N+uSg@d|oOiOz>uJV+lOpn$q2FGu%|e z_;P!b3!1dLLk)S?NAn9bZ6sf@q5=(PxSa_OvP4jrP22d-g*PuP$K1m2Yz?%;K)aR( zcJaaOlyYyE#DUY@5mz{|wZs|cW215ziZ{CE3c8(Pf5?TWP);jf?E-gQ) zv+=ZM*am3wd(LcI;LW@TcpbM9u{?h>)>JjVsU>W}jZE>tky76AA6`VlTAt*wzL9V) zDEv7H*IVh%Xnr@%i6r2+aj92ca)m(u39*hc``LT<$^8ClT(Bv!VJv0cn&9>FQ%j;f zW_NU&m+*Ajed*Ef1z+gX{;)gTAK{p}mrw+x;@4M3ZYC>TH3>I^7ic+wC)AK~7<@*! z-}C9;{lt^*KpGSfVRkX5y?w>X8 zr`FC&RNfHpI@r$FSoDL|@f^b4#f2Y?UR^^awD2MNyXON!^fe^(UQWxy-CdjyH1mZ2 z&2142f#f_S#4a~Y(l}E=?>=MM!vll zTMt(y`n?KKfW8-HbV?78GqGBheXMsTCwfw>!$`Zo~<-Ry+^%00R;73?VS z`Wmz3sV#M3Y5X1TFpgaXN;Jm?;G3;vDR`d{4U4}_$Bq&BX>Os z(<=9C==}j~;fvv(=k)kHcAMUh?r3c`emE~aoJ;>(+TNK@4y+wLRe2I#t$h%!1yB3J z4iJ1l7Xn94u2CVPka0pru8}BEIIC1j`z3JH1$ep#mOF<#@%y$b>Y^J{sI*<5H)axE zq%__*k%=yKJlhT8SIblA51}ODs;>FsnWmV|`_4 zI397TWQU(2E3JI3!^gU_UrqLgr4`DO{YaslemsC-$9^JyeZqGv;`$%O8`KMgYM*Ii zU6yv=h>C87K0(?A*BMu5(`ET)SmxLah0@fAs5YAdD-J*#9VBohgjIX~N8VA(z9 zNhEti^L$YE)$bJ;i1T+v_iG^;Mfi(J%oQzk z_Tl@M+xFk-ra&tkt&TM^8X?u`9iF@fofezdnLLO%x86AWfel)a? zrS%69&B4Leq)j>lA+ebuJw)GRpZid^5ozQ%HonLr5ge3voI#)eFf@x6mo< zcj_RL%dBYn)IaMt^++Wfw(zU)Ph-p5=gh1JXL@L_@dWRU1KO-YEl!*f1K2J@uR8E9 zw^+g{2NEKaUFVG)!p;9$c9!f(E*4HVcH>v6T?U*y(BBa!ao@PDtBL=l%a^{F$T~ce z?_i|Oz(pxXvbEXo(d8zQdr-5^LYzmgfIO@i`rn zid?mfWt7+$E5}j?-SRz+;dPkB-+p!b4`O0dE^aN@Ma=V^I+X;|lqZs#?!UK==(F~} zKpsgbk=yu?FS+QwFa7yg;R$}6xxq9=Pba4-X}9HWh0HoXu|`yGob1A+^P=m06CAR_ z7fNDhiCfudh&R_LOcA)DUAriDNk$UaRti4N4hUQclS-dPcYr){D%O=rC40h+9@?8z zCA%WB;jR1FxNPx-U{ZI3CPQCZ@xO7^I%mmuPTd)e>#}9)`g|&{K+}q~7W*{QcjF6Y zRc9DJBKqZc3^^CJy*pXaW)qYc?#pv-5pMmsvMsw71@!~dqXA=-0nYUXapIBu9pbI3 zwn4>vx~;-C_Gb+y8QJ_d3nm%hdH!%=dmYHIsGYreLu$6wod)H~o=XzJ^#SXqy^T1P zuVwN{{^Qhx=F^zBz4nH>3JMz_s4 zID2e0+p}4FuQUc@t~$+D)B%k7AIAIPQLB81&6k{eG0O!=G``RqI|{LXs^)-<@Ll_; z$jzH&Cv-lt!UFhmF#Yq_f@EtYHhHAmR|9rZ5F zdC~UlE|G>{YEDedqh11djX@17nxcV~CYTCp`6^AglXG!}5zNNy#!HOCvt+EJgFz>4 ziR8d>)44{Qi=DLl;umZBpQmhjVZK}f3-ZbZe#S~Q8JWsnrtRN`Rm&2VwGK6ehJZuF zFYSYaBO&pUBPpAIYAKIOIfpnGz3(#eFd1>KOkO4ZO$cA~A*B$xTUEPEp%ct6*9NqH ziO|hM?C;`rpSR_g zQm(Xvc3<03&kWOpYI~+HdD$g<`gF_pclwop=&;0%48ralJc~Zh-gL$8X*GC@>_n-E zilc6%`3d-uQ+=k+G&L>>cOMXBd^zq0SH0AUxL%SVj}dGLEJUqPXCsS8s1fFSBmQ0@ zn-0!(N{M-t9*O5sYmgGYetG7-iqCrp$oe{~gZ|f@ncmG+N`)w|RpBvG+Wv|PLZ&Vw zK_C5GOz-=IWAX?x{x9iHfd2=V^Z$dhaIkUz52d1We$7$(X1mMH%A~`tlR0G^0KN32 z@$g?VS>&f>Km%DHl@sC6B+AKg!W@qIoM*>+P}OVI*#wvJkN6WE$_O&#T>+e?u6-D# zw@L(u=U!dl#{=4@aEYxxbko~=6iMf6;i#^_$Ai#-x=AIVC*kuEQiF*`i~<7p^Q}@q zTj%roQNY{dIfTjk;}Qh{Crssf$Cn8g?bG}%+^6{MY*Y@t6X@~!bi@G$v^ zpyl;u*R%=j;CqMKzd4s9VPf^_8V$yYVfxxgU1L>9lA;8$(jcA)W+20O_<^u5yua?# zJ);$Jg|mA*IqsVNVK0IlcrIo4oVV0VL^VsNx!4U8$?d-({iu%}B{^~tj9LW&QGcUO z30hVBqE==0L95Rk!cwJ{d~FiOMKlnkUGf_XwjjanflRXUM0>SHLkd(AtM2p7kf}y= zX*I6y+kPH02sr_tr-Kl}2$>z4_xG=mA8J7N<0C1G?0&IaGxfBo=-_%VNQ(+;Slgiy z7RY>f4*XJ9QhbNPVj(<8T8xm5behtEM2_4pfSe(gjuE zu$}G)eohK!Nc9U%vWqt&6o!b)T(WRPmI@e>@D_(UAlmA+300Ia2IEfssVO!0@hdHY z9#!jJh16x4u3z6a>jF+yxz1VFEnESxN0$3&D|uLK+^}^AFH|TRCR#z(wGOwk`d+^U z3XWaYbLzzaa4@CU7XjNMHv@P}bo84L)ZmKla77KO$}y~Pz3;lSbm{$67Zb{<+-KA= zH#DxVJ%6RLP#c@}0qq@f2UG^89$@~;;+AjCM3N_?GBh|!Y2rW2!PeE}>t+xh7#mE< zx5NfkXP>2Og-JFHX#70zSHjIW)59f%rUvj`c9GW-e$7r>Q{BCahWBSJ^ye!)r~Cci zZ9|3dOd+l)H73An9B~tXeFT_wJ`KG>O7<=s7$@4u0iAqk8vkN(i6qjG+jK9j!laNE zvD>D(FH*3dRwiJIu)Hp_M7&(>?5NiOR3`4jUVNUbEO7g|zR>eXm9-*uYLNMf;z5Wd zp%(l!&HS_;uFr{mkqgHrnOP6;AAyD*cvqnwL1s~dBf%Ir*( z9~Ir!z&af4gBNXE>#blqOSb?iKL9L%-}WH`D;Z9O$snEC%n`AbS3F zb;I8nVVE{~Iq^zo^xMzBET$=m7)~@e{xR4E{{icB2hvhr?!1yJbqt)WZr|A^lJmGC zFV7GBnBk}5xN=aHpF9lXe|*Jd>>;|0kl{cCgm86_;$}{|6Hu@!!;taVT*_ZW0EFSAT~Rj5@`g*B9i3X&otZjs5xW zn1cb?cLUt=wzb*qw|OL6R$Z756RjRQghAZ9{pvFKd5^SjMt5cA{Sq{xScb7`N5yN6 zN%L^ok5cgrfBtg$=y3FZ2mQ;yHBLmk&|9?pNsiqQC0h;OZr^`U;ZRG*ab(EM*BTg9 zmT1(w8_Q<#nnwQHVWRq1YBZ#@V5XUULwE@FoD^ph3*h#Ap3NvBb)Tz;89dZ~=j_d@ z-DscSbp89lp@>Hr@-m)6AK_}_4X(M%Q#~sScdukhNdkz0M(pPaD*KwAEqr(5++%tz z3TK`R(Q}Cl^?*>IXcm@~(sk|eWyC)IMCK4a*Z$~jNhP^zlP?HzBWoVVqQ%=rM=YzW z?5b~7Y0wi1Gw0Y#*~hwE8DAy|*QtHaWw`$6`;H{)?=5{S=mx#{o_H|p2bQ4vO8nHL zqmq=E`X(-QZt(Q65pEZ(?RuWWvNY)`d9}O(z^ju6FmBkwPf2zJd)6LN)fYx@f+G*@ zx1`fr@?3lVRL-@}mhHLaH~VeyzYz=8$A6*`(XcwcyApKcVMb_wkBRfNrShS^)<3tt z$=N{79U9pD*8~-8Y-w4G7!8iYjDr|kEh7yVNaPEt^P1KcscVuSr$F?c9aW)kV>#w@ z4w_j=yY7pOo0S7nGZaIsm1#EM6= zt9f0=51*6bAynhkT=Tk4kEn9;raYY?nU$UWS(8(NWT)SPb1ANdYVBLnqa|s+ca%{& znl-OBNV9Nq=URk~z~a4EHNctu>wG$%_gCBI;B&qEWu<$i3iw)-hOb=It44QER0hSG z!AG5@v^L!}W^UnD6^~v@$ba;Vn@F;G)(D~^k!g2l=6QY9o%qSu`!VEdY zT9^3~y+?6%m{#BjPg4AA(t#FB_`F;_HjHDn1mfZ#hb(R$yNz^&kxx)9Gh+B(WKcW; zB-GTF{C6K9W`>tp)uT*xbdJcTQS$B0xYjQM%2qUv89pxi+T%1oXHt}aR8>rui+CQo zF-o6oTMPpxDb?Z>({M1|R*0pM4T(Epy|c*xt$1(Q74G0_#*&5rW|`ZwY;SnosT5MM zssX+6QNnm!m)JH4{0LPrA7!Gh?2rh7$gON>>(ebBRUd?_X2V=uZnsXNK87+LjW!R9`FpBJ>TpLS%+Y%;q$U29<|f&JO^?)n1&y{GIt{!hfS&<+w_}r2v8t* z%MKl4^2&cnGAkGos2rse36c_}&MDu1P9T>tr&U4HAxiO1bw%g9L}V|faHpnZNg+zP z@>tUQm}p{7bA^lEhx?ARFEy@gm)it|GRrXAIJvxr6WIsP$33IUC5gbX!$82EaavIN zimjoV-nZV78%QhY_VOy1={;d8hX*Xsszn`5!j@3nmdvX8@3GxJhY~<3i?rQLQ5VS~1{_Zz4=QAQ*X&GN zchCS%MlRYAU9ixd+!IdvtNzoO5C3ae5ZS|d zolguf<7)d{d?Ue!tm|2IwEpip%6!KtG$soe zv$RCZhw=1qEmK^Q34NgP>aM9%JGJhk?=ezdl~xkU=^?eVR0NzcOjl$jY0 zJ^@a9t#jA02GamC>2bSJvMM=GwJc3)3nmG4R_CI`s_5HKIV$>rW-pt;c5ZlU{rpB6 zq1c`Y%0Oc;5RWscxP2*hXf^_o^D?H;`mCHUl*>Kru^^#E ztxcMN7vZ~wrD8iWB0;kVBO~)9;nqc)cn`#tV9(wmqZ0T=CUeYo{So0%VoiL`+WK)_ z%nr*b;dsVIuc-^zP_mksHk{6BdoK6K-tWzGfk|{eRrNS`_joWok2ZpNb%;Lm4_|QS zb>p!4fBXi16;zBZ5mj``+02@M%=|TMKm$D%=|gx3-TWzRPLdYMY}j>PVlp%KjNC(S zH7nU_0TACInRQ0^iOayK)U^$ckX5@TB2I$!13&(CC9>l^hQ90%TT)e2q&+nC+`Tf{ z#L@3z7H7Q6oTadk&a5|tnE|5rQiz$m^23D-r^5{P*0xM=YsH7Zd-#|czf%!Ku$2Gf zH5<}*^lWVPDvVJkaRR70cc)vkZ%8DqoB49ySq(?-UN@~MRw6VSA@Q6=uec$BmnX}B zLT49*RB#+DHYhH2&M- z1bDywhkwA0f&7t$-FMUddmeLOvQ8eIiI(x2IP9@|JURMG1$}vTh%sXEqjkse;opcM z#46$zf3BidQdXycf%q@32(}fSfT&%U(%Mlg&uczA8l74-WmLK&mke{p;AL#oQd;c7 ziV`qoT&>J5vI!v~4)lk{W2tRaxjd!-cw!k{;X@127saU;S_&+(O|3ahaNeGo(I7SBjNW;W$CQEK9wCVVc5GA*gqEDJpZ+rMkTteT zVhO($_HUF}G7?CeN=VpQP zf;2`~rZ?n4EK1MYE^~1C_N1MI0g?5vquw)W0lS4Qwm*2yB2u(nAsCmGNqgyxbOOJ_ErjocCP|T~~AL`}FgkyD!deOpOmPd-a zjhW>pF<=9D*6s&f%@yXXe8i*YasM$ak_3&J#-Fw$3iAK~g+X!#NZO2%xk<&*u6NM*Rb`R=4z@rsUw2?QdkB-)Ag^eg)aNpacazoSsxk8) ztuBwxBKdmMLeF^7n$!Z+=a^dfyN~t|G!B9CD>%{#WTZaW?q9pCPt70{U@+85=rtgmTDz1@6_kM21m715|g z4(oUKvwmS|<=vuT%@Arm{Z>9H7(9@o#cNr;<&lPpLR>$0)$Vvs%Wj>_#${$$xFEh( z$Q%b-6hp?ZW}dJyJvpR9_33|B zK6Lq&A}5DTbl6_6#~IkMI!OPGi=Bt%bqk?>_@RR!%>$X$Qtt0UNMk5>)E~6ZhNZpI zXBoNb;mTG2_x^&3@GN@H=icXULeITMFy!J@!>OibAO9ZdXmmg6V0q_EH~Obm4GVU} zEz#>d#86_sqwHs{tpEczl6ak}4zue?>%->8gVV`r^aode;wO4j_WWe!wMR<8M8o!I^rN)&|pFA&j8=UL7 z7|MGc_!qqeM9JHa<1H^0C;x86-??tejHEo>D@LP_MT*s}4J>E2Yyet#j!D z-#0topUwwA!4sh$2mag9>i?E|&B6XZj#kIDrJ@*`tu`Jj0jFTOXrhWJTLwN}`0BX9 zao{zaR1JSgISmHEZ*C!#Xr=-|KGEzH!} z(8=_AyF$qtob2>oas2>`vOu55JY><|THoAb*ldbxd zf@022LsHkzdV?a#8`w2(fn#{9<@2{%f%{SrW&~dZ%)`Wmt%(!P-5iPVA0%w_Qx-41 z;clc(6|=LsJ~9>>3ZfC9p|cM65|f8P$uTJ^+zgWfx1-cT4e+dY_1Y4+^GUirXQAnR z)}d~cg$1~Zq%74E?D1(7*&j+!ws@?O=c8|PXKr#H;W-yEtc+LFAWMBTIacjLJ(`&j zimSoLD;qlUWhy7?qKgD2N_+SsW2%9Bf^X~je*4=kY9dF*LWP2`07WBM!)!SjsrSa& zpqgs-Xfw%+nPY(PhxwD1$a@5z>xmnf+JDwV+5N4wj_ikynhhcDRmw;231uj#n+mx78!m42jOufRZuO7=OD9+>?0=sXW~!bJGYD%k2Q7 zHe7_up_qBUantSYZfL|z!(3z3I(St2AIL{d;hy83V?TtCU~JaKXInS@#7fb6*#2DH z2{TRG{b11;ujJJD{pLJA4Rge?6XUdjVzs-zoHuVq{W9-m)-d^!%oT6ucF2z0mZc-+ zzAV#?n1` zGO%Ei+xN;8(*^gBizx3Cm96_prsLg5DCPH~=tS^MzQh*(kmvZ>hspq5=CPD{fKO|$ zVl4C7(9u8WI^-U8GNEcw`-O~8H@={72aH#w4ZDWTN$hZ0yD8xL=+(oUiW?JrDf1alSWo{30JlK~JJCH?M5G{Ci>aVGI2pRON{mb&`KK?D#c3u7f$D0B zmvh;&*U!m~KD#B$hE0Euy)SkQOi?EH5f^-l?tQ~BA^F--X2gO`CEj(zcwo{Z?{~&5 z_gdJ~)v^ynVIW^wh%vO++x4(}Jr?8G^*F(2@a7cj?87)MY2;=b^1|(P1Pz~8$lL+} z%EQx%ORk9(IaR-nj`{8mmti`uSoo*Dvqi+U_n<2L!*;s;!neaHn}y`3h@}<1C>tG- zJSTXy!6D;M{HyKq8(2gt&rnE>`bpQ+N@YF%=2?=e8_cDJ-6{j&-SK2Hy1x|}IK_J9 zlqH99)6z&iuK9U1O==azM#Auh^@DRY6i`B`dJ~FN`3$k$8YF-z0^|OVo4F5gHMcaF z&{J!GefXnuWxkX5 z7wV_K{Z2CjKa?pdsexvQAextJJt_Y)%b>?ok-8f;6!xniLVjVnmKLq33B)0f*;of1 zx>E=rI#ehB?<1?>!!T_{hBMHVM)I~qn{m9;X`*IkB_dAR!a1tOGMh%SIVdL&h43h% z#(;pPXG#RkZNIpi{4O*`lU{h!5UqtcY$~D(R{O8$ksG}*R}Z-ZKX&%$579*fg}1>K z`Wdi#a4ePj;(UpDs$>%#0vmNhs{;xAdfxBF^N~t>nyqRx{v>Afzkd+59iE4 zPrlR@g>x|As{h6u!waW>u#4&cYOaRNeJX~akYd2i7bqI{CJ35{tg+j}z_-G%oT6dK za+<7}TZxI2w+NE!Db3CfZibG@LnWk%tT7>AubIk?ndiq>=NG0Zb!Xq1`l4(GJeu|C z<47kE!(g>XygZ?l;W7KsugtdZreGsFC>ZU|!+v=RzXwz4!=td}WBUR=;zP+N74 z9T+BYh!PX+peC8+$ES=4kj&@DkI~6O^WiC3VNvP~7yWj+cfLqh9($ZCD%3Nx^onzZ3UU9#)IdFAc9V8dU?;&<+vCa0PfRZ^Kr}1>RRv14W z^`bTbA{lkPFl;{3;rDR6*kbc4*_vI&2F{YqeY8Z(b{!5}BW9W#a7gAs&ABKhXi&(Z zOGd~`xNsz3u`CuPV){Y$D=hqh%p~6JnY=oVxS8vV0up}@zy`J}To>)O!OC~r*J{Zl zYu?>WWfcYy^Ye!raHH_MxzYRxz~+=#+dfn@uXEvuNq|cL+lYAQ6&v*F3;|GnN|Qx9!_Vde&vxw18yjP zoG{#AlxVvR_$~~qUXa@Ir^gn=4ccIZ$qna>nCi-|;fK={oItDWNBzX5Sdor~&PcEd zt`2v7;e)!qvI4*%w4iklBMd|LH^1L+T0h>G(tjJISM@xsCUuYif)dZWT&>8%4(Nq* zrK>hJ;{&ztBoU!W5)?Yg1Cat7|F%{MU3j{Raci)56)mD#;w(>JbbkQk-_X~1Ij>5D zI%h$BDOTS4U&VJ?MzZ&92H2Dr(^UvftOInD)#cS?uBYZt!Sz=t0z3)5<((&K0#=(T zZ?s~3Rv&eqr#FS?rMoXKv`3XM+_&JtU8STwWH%vsI2==EJ{TwG@L`1JVs^+q?QvU08HT<*Js2Qo@>VO zk@;9!%B?n5Jk)twS;)cat*(51x|H8a_w>yCb;{_giP3$fgL7HwErA36A&vk1Q%zHp zP_I%P>vdTzJ+9DG_E6X**~O~GIHW#?T0hOByFR~AqmBC0-s-rRhWk{3y{BQ2@5I!rktP&Xcg3?R z20A?nw&)!>yuKm+Py;aGh^XeR05kNlThTustiWoQ;-7XK%M=h9#tZ+$|CrNclHpq13D8fhPzwfy{A=+FnN5I_d~Xzql~bQs$fz-KXc3m#a5%r zk(}%{jU6MWE70GFTO=>0>2n;yaR?vwYOuGl4PFnc;@yB50tUw>ql-EQnHPgOlh~J^Vd%Zl%Fdc*^^u~bzO!PU>YE5=cu@k%kF3fMnQN0jZN-PVRHRqK6B!tMgS+h= zm#5Kx2RmWzDxQ1LQCJ(VDBDeVC#(=S|AsogckJanZ1aN4ItSq*@h3M=zvPz)#(J{z zA5N=9LbK~_h~~LRSpQRjn$gGy(>Nz~*a@#urck(OsZe?Uk>`}jc%1R0L@LgF z!zJ`F_sD)7=bl*j6v#-#Gv$HhffO;DwH{^7Imx)LCLz}ajZ>Z z-rTtux$h!aD_?-0Rem{LD@QhmY3=4!!9TNdul)nu<#kZ7DWZ1`?Nd5wx^%M;L_4!n z2>pr~Y~IU)PC5}D%_k|CV}ljpz9t7X_eG6A*N0dPyf19CsEmxThD;I~y&_B~W2 zIQ-a4Z_*TMa9ht-z2#Cn6tWn&*IV}^AT*_i9pJ6ds-^_#~t zd}tOa{9rG{+Ei2tf1OECDe9-i@(*`eRF>IO>bA~4;nu;=Pq#_`8JftcLuh5nC|kn5 zceMY~!kyxBxUsVaKZ|v&*~WmFM>SDFSnouIC=LMBchWnWj$_xo74-~sMK zGxC&)5wea>)zz6pBV}@;N0lhpxuZI|(|3He*c`bp%WYnf7s0r{wRR_lD0S~ZgG@%A z*N6_PGv8oSE^SdXvag-zt&o1yG)6E0pX2O|``>5h%pwb8=Zbn}ON(P1DwHkQdvj8& z7oDi}xWLF$0(H2=qtbDZKb>}YD=BMr_dJanP|X^Jzb2Klb&XS7$tfgz+X6-U72#}`*XgU2VCF>+}U8iMG zgqvlmTwz6AlT4dbmz-Q!(<8DaWiK8|Z+K?EZ;|7{fVQU8ZlECibFEnDaJ|>Q`U7Tl z9>B|NR690XYjm^LQ#Edy8laW7Olq)fQ3)DcDz!*$9!-Wx%?$78PODQcUt=`BY8H0- z>-?v7f0d4UkdmOIdtGVSwGw1HntuRFcc3<7(pNLQPL= zt?YR|UDIwWThoY0YGy0=w`Id@I$<}8bTDnEb;`_eYfi3os7LvUX{xYr2%Rg;Fp*;b z;&y1RWPbDA0+m;$G_yyATD5p?FpTFS(z&~wc&yJF1$s{Oz}Ew?LR~SPSaC>{yY2kA z5})|s=)`3f>m#aCQ#$jl*vTMY9jy%8;wUK-*F!oIOy*PXGt-Z@+ggpjF*J$LW3NDnG@?}y-ZTFaspAk)9xL!I5}Ecb-#+g4HtqeL5#^C`9TYs2?9n%lAk9atCtG~Ux~3&-AM zo0MEO;hYOju>*LMHC9;d;GG$z#$7T;_d&(wJRq$~8}oNn_j&b{e{9ODm&Q^e56?}P zEe+GjS}jczsddCd(punw_TqUv3`j20&Fl8sx<*=zmO6{L%l0$2A{G<-8W)Zc{m6c@ z>o+$bTv!>xCsJg=uRHT0>*Bp}EfNHE3=|MxxsMJ7Ox7TN!X4U=B^YZYkb!Ah(<83* zE_{E4z7>3YQuN5;#T#|(`0W_Iu|>T58ZN!q%$7AX1urwf4`lMnQ@3#{Huflk-iga?RW2v5G{yqCj=t{}AGZ(+YDgzrxp7}eVTdd|%a`N7 z2&ZbY`Gs~G*GG|CH=9nVX&mTn7-_7oyhjD^kLjjGaK}|5bJC%5GV6QnnZOj7!0*fr zoiX4TzteXBnBzYK)`lXfn9eI$7%%g7C zee8_sTN%_(GfP8=P$wo=m*EiAy08SVtu;*;??~UaT-JH(*rLh71{0G5AE-sa7?Fq` z!F+Zn1;T}X{eU>McirWIt-Ab*3SUDh8Xli-SYo~Eh1^nbrYr6Iu$F-OmO6U{{$p$h zdxAkY;B7zmHqo_IYJ;;7YyDYWsraX6pi$g%&d`dC!5u7$%iF&5pr+0#_^m~Frlm_l zZi+{O(r}IHP59d3x7R>=yqWt6;j(-?Wh_XQCwmHL`ng0yLGw0^exG@*e6If8UE|}! zUD*ZloKY52OUzn^?W|g-oEW@xvJq-N(1~kpmk3bp9F4(bBHj#45RJqJ<$5+#|ps$qJ&iZ;QsfD`by>S46m{5s|3ywQ1hm% z$X>%9BWUBcO9REFQzDVbL$ZY~0FFs4#wot9HXYt-|4RCjx^-fW%}#==@+2>eB0%LL zCT%n^K;t5&Xu>03p%boR>sLX7JHMpEQgzt&mA zzSFB?%%Bms`|iKTx9%EvIL1`UKEn1?Gt+bba@@;oN~b(u^ya6z|Je52p8rezyOt-Rq)y!kFlOy>oIF- zDLz#9@howd-~iwUcHK%4eMweU$lPh{1TnJ$llM5+wKvc;68dF~VM6D>DHLKJWnlmD zU?CDy1IqXA(TpET;#rg*VkAYwNZY>7NT+(w~C7FX~2dos@Z#yNw@O)nm*){p%|m57I9fC1T)YcE=S zrq$@&OlSa0GgN&J_NHX+8>>w@=(uG$&yv(KT`o2wx@VxjrEsph(51WpyO5Vme*h_B z`XQGM%On`(mfJCEBN_)F3w3jI>!qEocajMn=51ne{PzLc0dDN=jK)Yd-3EMtEwO@N zt>NOf@=r(r@^$$b1%KsGe!etm=FUy1hMPRzX1J9%iF8@blhGe|(*ul5XL4dPJ+gRW zZM-onI<5u6Ol27-_{8^>Z<0v=IO?BH#NoELYIG^)1nTYUp)tJcx0k-@ovhuaa6OcD zO5H=XmwPjrX%i>&FK1eg!u~1PxWsDy6(QprF}DqYSg1T(SzuhYkUKaJ8n(lGr}BN z%k1tb#U;h4sc$KKdy^p5KFqbo^YJDKk9FX~?v1#B3?_lEXXn~qn3Djlrjkm2I|}~S zkqXD~fHiX^Or}!~-JAW=f{$4Df#$Sh4a*8r)l1+atmDACiD~8J|=$GC^-{Cm)SDGqep0|6gv=dU!3x<$v8x%7V@R=D^EZCnv$jA zN1#F|fz=A_qE3_B7z_BLBU5NP2d!?);V+h>S3ewuV!n+#@*hF=Tx~Q|BkFF>h)L0O z(Ve?LuNCZg9YoAG@V%*x>!8i4FgF_zm(EysAc9hNvYrZ69Dvfz#r|2KwicD16ByV5 z&=Vt#0m~-glV(?N{qu89DzgEDszw_;#lpU(BbQZ|8=D;kZET-lq9XjI5(5j9SX>?^8vH5 z94)reXC<`HoOKuBaru2PRTQc4TtoMX$C^*sul0&We0>r%s5r=q&+lrE_CeN^mnLy8 z!2ahQrEb?KHm2r;6})1>ewwT3&%%t`Pz|qZoExQDELRD;@s1y`JF^FBZ(}pKX}Xni zsfHwOc7-09s%|TUmYUqhW|e*(9n%CfId8nJKRq(P!w@xU8L;|IQ5tm91|cPClW%ZJ z9TtHSlM+kIEPe_23z*^(6wO@QWhdxnldCRI8taBv9#d{CdQT1*NHoJ#JgH~Xb9xy& z>N3R(4H2N}RQ|)$75;ffXZ&XjoC1udH|B}lZsLP+_g7mX?#%?SH>R1nxQ-SUM1J|oLke1|8BsVB!(>i z;^hrc#Puf_+C|$mYNoP8wHrszBh69@*z+$_{^n3>0A&UadW zq|F$RCjJCe1#27Um!;!s_JjhvU4C6bI8+7u)BX{r(>HKHbelolpV=xcgYn2m+Y!gi z4EBr!_M7OZq;rW2Bq`BixyRN8GT6VkbN7?_t$ACoodd7k-(fd93to4w)E%Zo*NL&s zwX(%d^sf%1ry&0n_Jh^v3susJjOgTO-clY5yYhaQl7`FDVoGzIW9f{$&EjkU=mLp= zg9+pATUgahg^6-9Xl-zZ?bVkbG2j(2?i?1v65;0@K(Q!5Ms>PwPg z@22P5K4Lbm@0|rl&pQ?(No#m>DplJ*kxscm58y58sE}n z?WT-nWzhJAP5wg;ucQ?#e|A$ce_BVo&Dyb4c$rq zCuxpR@SoxsYUTG?D9`8T#m3H#{!BBICR|9{=T(x;kM~SQZ`aq;RFw(*T|DZg7hQpD z!!Fcr{g>^|j|0}v$<2?uhkY)G=UMMg?aofm=fu&)N?otl>&eEidK1sq4d6xxpL{C9 z%>FBr4ckWMmBF?_M7Hho$LSZWo6u12?*T;OrFWCZ{MGr*yTC@9!QYfbl+E=!{h#6p zJc@gSsXn8XKFMDDAFEM~ua8LFYD3*q6formhtYftYAjg;rDC=VJ6I%Uh&|~Nz<_mYmi^kVCsH7=JyQuJ96AE4lfs(i{>AtEHoK=SFO10=j zcvYx);#5Vpy=?0FfFwk>ttwiUweQ^y#guDxp2=>fHcXp2TECK@sN-_<@o1&pdg8L$ zk)185AoD?jE}I^L?z)>py$(@fUQwq@tF`@f*_t0)I2!GIU%dRh`GS!@W`2GMbbd}= zdcSRU>UIDxqJkdpuFr4IS1AqNL%}_C-su1fPvEf5Zc!G5cqo5($HdnUyktmHvizt} z=(pVlG0jY{&c^-^U*{AYO7NxeIQPc3ZQHhO+qP}nwrxAPv2EMVX7}m8Ra^TqJ=0ZP z^Uz)0Gv}P|_dRvF8d9y=?X08X?$gqf_56Yfx-&i_ba)=tb@xq27#1GUDTrcn-Ty2< z+@s64ePZQTui#wWmmmDi;4gGuFxBvPxns1>)}*s2uFlTyAL5-XMYnF2X-_DQvz?nPmn8szaBPdH3RvuV<8jM_lU9D*F8t;>_!`x-DanjBeI6HoWGh? zS=cW@-^5W5J?2JmKBmF9aC&a|>QCCo$*jj-Gk)j6)+Bp7Q@u2KrHQ3+nv6&*GLkVO ztkq;09XZ&Z*e?cYYCuJ3DSlqX_Fq+Dce-;?Rih=deNlnxdYZZ@1)9djFSEhe6x;U7 z>OEMa8L?pfPZDuswOG;;81Ype3%7A?bG(FBd9?bzj`cG{uH{FX%n()<)=}XWnnvkM z$a4ODlQsf!W?gd=%+m5Khg|=@No!u#+PXS;L_p1DRbY3vbKdMnb+&U|Ya`4=_`ve? z2yV>~(6dVmRWkzf>c*PTn}pi}imF1-twAv~|{!@upz3jrSM2;nUa`@Yw?n zVtiG@y@PyCNN0oXFM%*O1K5)2j9IcY2q^RycG&_>okxH-9>LD-U6)~Ya<%F1nX;Hp zZZ*2|Sf=94R^(I#QVj2ROq?^}QunxP{x=4IwWETnB~wov8MekU{?t-}KyC>3wjj?4Yct@gi{JKSZ49Bpq!(v5s zceic#OFpl9u`!hAkhdwVAz5 z3c7NoO_;iG^|y01xzCYaNs{{KqwXtk@9-4HX8FTqk(~M6N6zI*5Bac3%5`UR5T(zP z)>*=4&d8r2ZY_sQACo-LyO=i4 z-+dCE#Tqwc894)i9Yy`vswnWiA^8zZ{;Q4Yhpc7YG3uN0nbN2cT{3KGc%< zITyKD@vfaNFzv62SRNS2y%3vW+D#4V$Y4k+GzL8G+dN22Vn4}H0Ki?_JT_bfHyhDD zg4wd-j$``!{3d2i(H1EMF5_{AVy%` zG}|U1!!M}`qj%O zL<=cF9n67ZR@A+|rEDe6iw)pp-4|su?o-naih%3~>)`@T>;?+a>n zOZ0&0a)p!#3ii|OmO}PIq^?HMra|Y8yo1E>A3&mqh*PA-L;(_}OUf1c##KX@mqA+< zV|Z{sMa#j|eKyBG99LG_*oe*MzdV@zDPKTj&y~h(V^qy#k;%dDN@f{Yk0(xiM8x0Y zTB_^Y(^oATQCHMH;T9*vR#zxx} z-?kUC%ze!XVhyNT3qktiAaW5?dNWhtcc9e}AOMzbz(pzIqd>iGSF-RXQgVKZkKaK| z8wA$T{KKa&Z{;&+xP)13bCRz~C<){x%-oF7IvDu|}`;&qvYBG%o$xLjnASSj# zfeZ+p1-v7EfTNSCj(xyFr1w*#=(s=-8kr~TOWb3gK;_Fo;%S*be}c-I%UhN6mv4d2 zjAtQIkELZjMCU9ezNUI?nx=!BF%!&LYSJPB!;j14gYN;uOeR~rAw3w*!3!ku_PZCo~Zpe;56`ms6mW#;B9HbCKv(wN(us6!m@2_y8)}48P;$} zZZD2E+yC0&B|B2wDxG>&+{oV|Fd46(B%oOw`31DL10)RfQ#Rng-m`D%>S2$qZLSj! z0PeJm7w)K7qV(Dsg=h_R4OMoJQ_|D}^2^eSRUsi5CJdp|ONpvVz{Teom#7s_2iU+np$KBh3)l%EHH#&7-5dRW zaNV=8nglHrxCn*9;9p^F_DMR<&qshYHkdZk0S=UVh?BF%3oZz_Ljbc$O{T!MDD@)Q z7!+^y_m3z#S}L9`VM-RsYu?eZ;(S&QoqYmr^rAFN1!zjEakgIp)d;k+K44sdXkwb3 zMLLO04WAQex7$H8CB1hhJ5IERz>u;R0OYY-g2s29C_*duvnB4Pwu+;&5N>-M>N`rR zmUd4(;g}w&XT5n>hAK>sjeDM5*<8yfk2p8m0Coe!~cr0f$4?KZ9S|;Fe|7)|A zXPr+n>?}S24G{+KGPj6RJtU}G0|>=>xby$FFqzdGv*N1~FA|DV?KjWvJY@#iB}4(L zr4bX>NK&3B_ew6K3r9}E^fn29_9%o3QM}GLY+XbNp*&e}O0<^4gw981L$9;%oECp&c)@Tfj zaEMnXh)JOg7@Du)BLtdNQ_VNp&w78ar=Vinj@Z_kXZcrRcR#{nD%neHntt?TARs8b zUp%0No%f608GEqkF@YD^K*kv|mj2HLN4?^S>l9q${MmjrWK&&}i2;C=<^=A*)WT5A zkis|B?0!>U+~gIU<=|Qn*)w?RFXq-;L7z#c;ctB{O$8_>OfY&9gNQkG8l0ntYLmMr zq)loIb5h=PGl!(KH_@;7czjm@KSRe{o$W2KIiCAO%U%i-6RpTze0IW04Zr$8>Z>`M zMI5$YMzquIsDz|7(dxu;cwa1YACae#M=hVHPE?p&fwvk~CDQQSX4JNK$uOtsR361jSQd&1$t%exo7#x;GYkY16Y70_248MIpVsT1NM z-DMIU$ovaLyIdXF%sdDiQc_>GtI2r(q%sP5X+Gm`QdgOVDwYC*EbIf-=vuiu)9yi` zru#kOyR`x@Gy=y5#_!`x-utnoU*$Jqu6or^>x`w_-`&7C4!L) z!`xW%qYu+EJ|9=xsnzvLOnB&>h_?iX6q)k|^xye?j0~<~1vNZo;v&~kQXCDYI;d>i z$tO}1lyMbJ3&>BiMH{J_=a(WEr0(F&eJn;dtlGw#MP;sz(+RqpG^NJS^4ji`UN<-T zG=w;)@Mht%s2tnXU=xo5X_sm3%nhxch*MSqvT6>6vp>zOvovT!=@Ex4ZHzu^6smSK zugG?9Q2R-~$b5HWS=qP=j#&;JxXkWo6O?noX^M%Vqi97GATFS!|0dAMQ$;G2i;Lm^ zwIgcqN0Oo#vf~REtK5L(l(fEKq1&s-_&a8grz?@b$x>lxI^_lV%vWWRZ#hSAm_sW! zf#bAC@gd#DS9RS30js+=KQyYh)Ady~-bbk9moH9&s66>B_?Mc=`UdYu4c=|8n{C5` z^Os1wV~CF*u<2$<+y*7XuBu>V?B&y|<9g@#rX16RSh*ZtJPq%WXI_r|&ct0gbu5yN zS)2)N3) z>|gQ=x!hf`CiGmh=THHPZVE&EnM!1wFw9SySgIH2BF~i)Dqe5(-QtY1<~8CR2;;8 zV?8n7-tV zlEme*m`{pGF1R=4C`)0V%~vfngT;7V;fqm9ti+{uLA1x&qJUwl1<*msE)y(bv8NXv z`>Tl^crg1T`ZTU6xoTSI3xTnxd?4zalgJyH8BrZ->S`7YHChVneZp+X>ZOVSGzN@O zU=zv7a2QAW^I-?12hHuf`zg0mcp&>r(5#VxX-N4j#}&?+FhQDs?5ymx!crWbp$`p1 zSv#B;V+x%O#}>D@PssgHrou3zcRS>1a|+@+7&E%eD&qv9m{bnin9>IR6c3cNVk$dn&;{qeQ9K-jiO-w`E);+8 z0y(v`?vH33u(*j9H>@`8dX~P>(BfvXSfL*?8gjXhAkuPGwLUOGDd<(#&_yA1)Vv!4 z;ha&{2hJkvbwMza>IlQr$5=@&{ApdoTnWpOXRsL&(e|zf&`@;9>|5iH z`5T^{b@*0TFUH=E(F94Oi$?Ofhb>=rm?V0vwu~m@Dl~^8&bx!O^k96jG%=r2wr8~q z#!-+LiH7AYlpV<%jxB#ihdIS8Jn(QOr;&qLtzFGVW}0at_op3^vBkinJMLe#UwvvF zZ6W#+yw{)H>VH9#cV~5;3#a7lB~L{0M6CTYOwN{oY?+y2 z4`mdr{VOcamHEf7*;v?yi(Wia7g}tUbX|uO5XaL~i2LhDH^^YY*O$^=wXdskK~MX{d9U@t2C-O z;8T4_?Xj8uZt&Z_6Hr65+P_z+<{f=Ty{9=qiP~ayZHGxg#M@6DjSuxfhwAVqNbAAb z8p_5kzR8BAl@-c~VRq?H89yV}!Mlwl>^H(pn_=ZyT(V%7x3_GFE+al8y96ohUNG?#x%5vO zMDs~r4XVmrQbb1?Dp-24;raF~eI&DbHIM0%Vk&B%Qy+JPypUvGN8L4{jWanG6Km-+ zGF1{~j~V;-oM`^Qi70o7JU>{i+ls*`|EM~?-044CZ&7sx${ziZY?IF441I_@L-IYz zms66L+osPMBS+nH0P**ZM?!Ru(UK1@W`GpYyz7|)=F#v_+Hx9(Wi3Rs@Ch2Vw6w4( z4BsZ!_VKeyq3r{B|5o-n86p8S4dZ%zai#H6w3*yyElY}=eq-~`=AGAUa|VJx_(2Rh z5QPq8gygFjf}&)Z=q3J6^-gk4X%dJfv>Mq2PChj8e>hm`kR6h3KVn$jrr%YjY73oI zQrX(h;lQ!9{CTc+Ki$Dq=O~=*jyf6dQ&oBoTNF z%c-2$x>?)20a_z(a@;gY%&%dc;k5|~>~ZGy)_BinDG6q}W$TTBIP=tc1zB@p7r-N_ zDz<>AsDJjeBd7ekJQLnIGJD%%%HE<0v)4uB)PJin&*}@5g4*Y{uGloPd%BH-uILrS zm*xRm8vhPYvcA#W-{(pgnsY@%1M7UVMQ?q+xZ3u5e(-7*a{v5aVfz1Y?EC)^R;=s{ z^#2*Azv7mRC26;Q`9|Jh@3SC^Uj#;@nw2F42VOJs%Zd)i{o@k7YVY^D171}tRF0z{ zd49eMeq&tf8A27luSrx)HFVUQ*>ko5Tk$$4>iO|KIhc#{YD*R018C;`@nDPl8>P4L z^?F?hRNe*zVSu!HTYwz_uM<(%gYtO$@cml4`VQs&`QDqX-F^P}@v(b9p3Ss_#IOmW z|GEC{jQcr1+ZassZTJ4gO0CTNd^#+&;`(}dxcj``qu7A`imzVmevV;}TXyX-Y<7Iy zUn_E%K7W1Aa$$A9uX=qRMt`|iTs}XOKcB}Zw!ObnwauQM?w;;=`^ST;QC!=ot4bHM z6yNW6%kRIsb6owI{iO4X9DQsb-@xcT0mpXW);p-1FGAV7473*NbCWexRW zTWSP3b~`b7IRYvox1|vwL!5($Mlhi(0lL`7vhKV0C3Rps(lXG(rsZ`Kki9ju0@1IM zW*?x^yW}ZICKZSV1yk9X&BXQvMNfwKzP@+rhYr0b2~4}~A?oZx0`SvcUgy#ivz~@v zaHhd+dS*`-`j$o+aWG3qoXmU|SI?nru6NG47H*-yZBo6jcH2`pPIR%{PCQ}~NlzqV zbOcIZ2{mXSkfHfxaUNO13Z9hpx#cbJhJ%W=+eRGt)j%Q1#Z1~v*Y3i->BHp{CHKm! zP5g!FOUXF*eeay@p1K{cMzwCvRsb#iSE4gmIFn!H4OLfRiPz$!div{Xo-7hoC?Q2X zT3as6J4`!kN6g~yF2kZsyi3=T_ZwJ~9mx z6*bwfb|yOZBR?A*6TEDB7CR(>VLM2e9?VeH8&{0e%cOgUZ$pm6)a-?#_e_$hiy^YC zsWB9k^~_RQQv3>DgST!mBnvnp!bUKdKBozqotNKdcYH-Q&UPd2CXpHc$+5zEjCC!q zpj)yZiyHIZJK$5wlmwN}^T#Nsc`oPj{^#Yb7Jr8n7dPQ|gspA!X$<|Z1M3}6KL^3q zY}|ETbwr)AD1c1o?;_VS?4FIYGwjkxN3hFs>|;SX#d+cf)7>5rxKs5q4|R_V?%ux^ z9XdRut}z5g?Lj@LYJ0A@re}#`DG1?|IYFYFf5DcwyKyT3t-!ZM!U#Z7N8W<1uXM5H=TZVNy)0ZY(#4>(Sv{GE zh(@pbS)GM|`w9))5`)H)%YBnCjn_jzf4CWE*I!?cciT4#ebs!HM-^>2Mu_qjfSJYk z_zPUr(01<)o3Fth;CCMQo~ZG*%=j4EcqxZG!NA7X(v6hH|5t=B0i!V7i$D7Af zPiA}k7JaS%RkJO9UZ=OVr;d?su2KB4Qm=!w!EAxZ&3vvc%ynsmn= zXDrR_#|WVe_Rstq#P%KgJVe;Lwz@?dCW!~K6EQ2tm9WMcI!*HRo=^)xe3lV|h zc7$^`*sc_4uBIViHQY}dKp=2C)`}cRkcfF>Q8*x4dWX?w^=eOBYsUQ7aG zeM-PH&m(=kr4SIL#jWKO0VOq+5HV0$UF*_&c^e>~>xNFnYo2mm8=6+ZQ-TDpcn=>3 zvb?3Wiw*)=ViyrXtrJ01NSaMd*9h97grFsZWeJXU6#fs6YV~J6H~LMI2Nta%ecPD5PJ@4wvC7{26Np6x z?YZ6Y4lbG5bfdL|&R#x{UkPO-hamwS-VpFthSw54fy zR__gCfk1dTwZpD&cCzi%Ahn>%9{WA-RJ*2P10_+PpB$SRfABlF;(H?50=f$rfb7n89`!kw5Jf{o>{wT~~(BB6k2V%Nw zW_NI8?CnbEuG;azaGu=;5*qw~8SyzAT$Iec$y7C#G{_WEz(q6TyVyYO16!w= zK_pasTZ3c}>U0{!5-9;x*MQGupe~=P`Ik`! znZp^TyJ}VJWTa+2$0@8)Uz-l%EmX)I3};Kt02_+*Mtuo0H~M7F0D!1@CfdO87LmU% zmH>jTwR}900obW~MzX;0Zj!YfLk=YTwyL<_@>0Fvm)M`K=P!_g$9yE8PoDIZllkVs z+U4v)oU7#k!4-%UQu}hZVeSlX>*=bxFMXptvuApM9!t0VA7TGz4x?U0#G& zruk!~E6k=Ti@X#>xC@FX(YD`POqz6Rba)MIwM0e9b(ve+F(PEXtf{ENQ@5@SPJ)B` zwc0uOHGqtH1FLi@30Y&1v1WTXLygN-Pe5ARxGsPaAh`cxQ?grn%LZKU#fHafOmC3w z{gL0zMp*(;aKCb($=0u3(l6)nhkhi)X}V%(auusGX~gq19RN2-V$ut7xdw_6I9M7z zYzoL%RG2N`pnGKIJn)ee>;%SKUteSE|54XEI$kj*!rTG@4EB91nQ zW(?_GP>>zLtS)JW1rl##&iA6T5YLRZ%su+vyhgs!`A~9$EHTjaFbYCOL zROd~th&=k-R?}&q#~lps!PQr}zUHv7-oT`MTXNrIfN~;r4@`y<2HO$Mb-pEI?UGh6 z*NRTUw&vIcJ%QguV6@WIADuqH5;T>-TPHqWWx3EEw76VhdmmelsxLrg4Dpuewa?9S z_+eN|mi$KzOinw#>nT$GuFMi)Ga*?jbH)mnqI3nbsiTl9X%are>p+8yw55!3n$l1% zzODiN0ds`7z8q=U%>i%&t%BSpwq$gg7!l}bChO4ZaaX>c7AboS(;Se$P=CM?mn1SV z+Z}_Q+KbcHy;6H{iHRfon9#6qNc&la*;mYNPYpj+we8&rxtnwiY)uR50X^LdlzG~0`U?H(t@uVLYX<#0l9`}&_*d7F zHO3zDwR~Q@s#C+m@F;l`-d6Bxv5EZ{QgmEZrrrUi+zh}FG}Wp5kH+daH#eiJ)lJ(kUic7(QvrZc=- zJ-oNtz?);kkE|jOvaFWBUv4+B%WNaVy^R?^LudO(k;??CZuht6uvumIe29IJY|_HI&;ua^w?_Tn^CN+DHbZxt`#7Gt--tf zW8``S-gVa~kJjv#By5s3%bzE?3%SupxIhUF+xu&=(-t|E5K{8n3(uxBI~_kpP2k%O zYB7jmzI&<3v(Rl|W?!oOJAKwZpWl7m9!EQh-=4U(d}+RqpEKjfx^{UEp~n?K1sl4! zF1=w%J_aLSmiwo#Vy@21Z$TpXX)iQ?}d`d??$LE$}f9Ku#w z)>`rerEnB0iX^CKh?%Hi&;AXuE1$d|1+E~I<2H;Kg&q!wcv|aXkWxk>Q1CU|O}$f^ z0WGF;j5lG&;$GN(F>IMkzNhyI=#T`yZsr_(BUyeeBO*Pv)<*yRv zqKp>mW9tkzmxY>J>e^Itn?mtx!^DcEUFLm{Cs%q##8&^V-W!$M^O>1qPCw>1g{F~- zD+OtB?`-?c541cxG*&d3{R|0B_~WRG%RJVmU5!b`_pcxH2$SK$RLujkBBaI_6xcp7 zFzUb?L}_Qc>!u=TE7#F{ZqCH-6#hB~_qYvX589&DW(nk1e1Tw#XrJM@%@BLNo|E1M zDORKMlyqSD5~!Y9*)rdZsG)ZBuGWz-)STRsVJ`^n`M;NMNdSbUH_cr5OqABwN8(~0h^RxZg_9#$UhlTmvODP zGG7&GNa$xL1)xNB5!_onq2DQV6q*GMGGfp*|BKEiC!(2hr_U@35ED?DTT1m)1+KYuyrYh zIkod0Zu4Hs34K4{w1g(^mu`D)0Wm@ zx_-Ve{*XRdgfKE^ducPC9JGdGDpF@u-GFLA+*%&I`S}f2cfQ|&;6lq-dM|r&R}gmOt1b*X5)^=I7GoI5lOSM5sJvey(T|*B4TAb|OyHiM?4L0a2_uTiYmu zLqqtb`35*0f^^uj)4i(PY&{g8aUOPVBEyyfe4(T?S8{*ahG%gkmB%^QvS}2>Ezt$G zcmYtB5dzSR{qE^S)jGj@b|_eQv_gf`X}E!7G=Pf9?Jgh->7|$tRqb4bE^xNai_F{t z4mYWKNGwgBrD1pkoFNk0v+*&9ox#RH*0Pw(u?+&OVv0t(x^G`>uq60#d+o{cDp_Hg zcU)0okXT`kG-}gs#O91-X{D9`1S;GNKoGzG{Cb@Sw$m{O$5-<=knXJm@tHPCm@Aax zOj*-S33b|3!;`bPN>@!n6OjKfwzgA;q^q$S$jn>)(k>y|Deuk~L?zYhW#G+1^+^zb z6C1Xc9&CjJ=s6`!!5{r8q)Ct5I2S(*I?mO^Sh(y6Ubn8Q;FrK3!DQXznG}wHrTu7# z4###8jxJ~>B7z!I>VB5Y;CmTqSsNI!tvooIwS9?$BD!^wO~xbDpe5MWPh3}sotCr>2`bHF9Df4XfGbHiFcBDx3vqvE&%4zwH=FS z^X;4uv}uf9`Q{`5xi1BtV;E_*$K)tA%44m=6`B)vd@ipOnN@6rAx|wu=6Ai(1|vF| zi@JD#=V;%$w(dJZ=WoqY@irPuXxdM5UCF2ul+T$|aEHEXaHYC!#~0RT$9CmV{UF?! z%Db8Xc-^mx_uCRVY`R(n(`hvl1}0}yqwIiMp!Nv4nuqDO9}X6EmObA5B`08Oo1S&C zPvg$lOojX>@e*4zi1S_FF+C^Av(R?fQk!a-We_)mf_<2jRa@e@9L7_vBjk^IKxCh{ zDz)fW1%g7$QM@y5=Xh={L}RmFZd?Bzwzr~h36m?T7rr_{sGUd;d(=-nB0I+UJt59I zs#KXiRS$$Sdry&{@|!ei_2xc?^64hl?2-pt>Tnn0c*3*nSfFZNRF~G_ZR=QDQfsD; zAhnchOrCC3Ws@m!MU4deDUQ1%o?icrWJ%b3HoCpGFN%{S8`r~frUx)CvIE?{GGI%* zs+;{PdVIv{_%nW9s`3KpRe?^EM{6%PtM}YlVw4|{&q_HATdSvuQUXb~DK9s2Y+Q^k zi6{_r$ZFSpfc*v})>SiQnmQ%&AkV;`h{QfRdw~#=cC|#u?{0>S{byn4fwEW*Q3J6V zMUdpC*O|BUPl8E><)+9EwnUD(fc^s?r9AclM(?(~JZrJ(4SWf<;8kFbwjy#_U*S&f`lx*2|WDYOHN( zuhEFBFemwL>zU-RtED^T#UMecsa&%+b-|qD3P$iH(PvxIfZ8_C6$AU>1jBNw9{eQ> z70TtR8B6>R>nP6ehIAr`_mAj?POaN#Aq;HQ;MChJSPVxaolT#n4yttLrYGaEh#^4I zmZT8A*YZBdu!YJIqAz_@m9Yi@>$gCA8l0!yK96eszCpd%Q%TJlz&N;bJ7*meaCP8-t{ClHVI} z%d>J8a#8g=DLi@Oh=(3Jz-?2#K=a(fGARn^F*!l^0pHQ>U9=O^MJ}+P2 z$*14n+ce6Ri{0n|UvX&}xfp}%*o-_Z&sOq$O+VKS2h7HrPqBYJ@ge@{0hLhPT6Rkx zE_Uj2aVs9e|9S$mX23a@+Hf68p;sj_U-5Vwl=E;pOSbgn1`A#KsvKD&LA4w~{~?20 z8nL#sQq~&VyexY|Mz=e+w{)h^W+lRE&Oa|-ICigAG_(F`>3L)_oaDs0nQiq^#BsbK zS!JuhvIZfC2T-&$vtXJrFE0V)^tu9Wig_pN-SSi}Ir7#3GFwfu(4lnKL+9}HgWGB# z_HHbLWt^i7HY3Uu=cwo`5kI+Tgz}z~?314;W;m}ei4ovEs(u=gC@a3mYiV9KmV|>; zBekrg*B$EZxL4^Ep5TnZB`8NVGtWhBA z0}k&}B4Dk*y?5XZbWJss_X%zTxS<&(xZcPhM4wqhuC1475;?T<1#pL09-+#kzI8nS zE9*$)wigV+iNW;9l!#~pr1)NYL}JO^7a=IC7*{`G!?4Ha0qkbIMntuBkGq>#Uw!1V z+=|L75U1xp5gg4Gs872=X+`tk#Gp2}&%CFh$rvR8KG?yRtE^%(>A|uUX2M6#hcq#>;l9=|{9|GVjsJbIOh>r(1p8ZLHFda>R z#^zn-G8k2H(yAb&u5+P-Cwlf^QUzeE9`9j6w*%bb6{g~GJB6V8K!uKm zEW9BjJ+z^h#_pa|E@m@7fp`@4S#+@?6<=km`40_o+PS17>aStIW(%+B=iK4kIATfA zN93}e?La~va651s-L6-=#<1{ntl%TJ3l3g)sufGWtCdl=x(-(RbwAH zWlKMu@vsppYO_Utn~(H+6GuO&e|Eh-zofo^&VVq>l<@;wGv~ff)k5P%s~``jd-7E? z6ll20n!<~Mu(XHQyG(u=<7->Nbe&>^1{p_j+1B0HBaCpiLI~Q3rJvipg+`}r`t9|k z#&gBIHm%GQbp!q=<=X{fMFyTvNd-w3`h{A>`4v!Wg$GM^WwzE+E9xq#qfJ*rR}wqx zcU9q77N*ZaeO!Cj3wnCtW>52x$4%ujZKM{z>yD@DS<#rE7>?mNHNzjZUwb@Gyt%F7 z{wGxQItaB?LrdeqCpX!g5Q@Co`s7cAgADQUvQdE^F3jRp4c8TC9BZ`=jmkW=?F);z zW*wL;+PZVfT2|Df=aDsGc{}47WU$oc`A|3}Nke?1C?-=pb>EE&+R`7h}ijd`6)sh4rK9MRhFL z)pPZR$_{WNsMCbHFdx^n3}N>|j)2?RMtw(nOri{<@VDptE8!~Ou$GJ;P*zaEeky&H zDaku6+#1fHCI8t(Y(=u5)%7mp6k?-6xtnC&JRnmDpRn%o4WX9eHK zsao7A`H;0kc(hcng{lfq+0YVc67FRJwh@EJTuvd|rK}aRa;Fyl*U#a3c3L&q7*mMP zLt7bHOz_0Ds#evlxAP|-W9!T7!?ESmtuo6hiK-o0W3%1J09oF${ubUlPvC(L>f>yT z4XmX8hjfe%l^te_`X+}gPf1f9Y3OS`;i~k*QJW%;NlD*0_8j`9->6Ozcs6P1Z%auC|ET2RYD6s;>JBt?C_vIUjBc-`hQ z+ST=-RMicQ+*DOk%h=S^{8FgOM5)mzeP(9DOUEi99qcL5a| zicYdv(97*FGEO#Cpcj|%X{+vmau)WvUIBWYwfKf{Tmx|I3`SFf;!zf!md~dM#DEwa<;N z{0yK-YLb`)5DeJq(paEB73x@{{Q+oy6g(#k+|LK!QgJa#xiYgim`@uH+KW@JphN-D z{Q-fv`N8N9G+p0qAO(*`ZKy48?zaO(@7xp}8Zh0j!ENc!Yw6xhX>V3jgF%!bmieSC zZ=T?sNIWE#-se~Emxc-{9B^0*tONk2e717n|2t?Lw;W z&&|%)+rh!)+s4lKiz~19*VoUN^{d+^F09BNZYZuV7EmiJ+`!$;O>Z~P&yVvQT}g;{ zrM`9Y%Ap@PTF>{%Eg(swcEh4`ikMEguqk`vH^0B}qt&bv9ji0HH9hMDN8~PfLrcNl zKK!*4KT05#Yg;EL8sU=&IkUxPp1q(%POc!oBv`PWg-mBWxy8{OWJGok@5Y^{%6fRc z%lC>d&d8|BKn3G8@j!|h+tYjthq(|sDH%^aQQ)_f9k@`e+w%$~8UftN?UZSq*&Yo> zH2>iw^ia;8M^FFo_N*?hUC)L`DUq|p<1vsU$VMf=4WVi!K(yMUBfk5v!C1slZT>bm z=7-!Gqqk!l-0HMS8JCDmX_7@ex*E{lRL}Z_iV1JjE*ZQo zt6v))=Q_hJo4N0bg3w!Q7L{6T>gp@{Rp5)`Vq}fqcLXdmY(={<;74ia7NLoipAwSSw}l4JP-A zwgG?31lW@Zw?aIJt;i3gu+0U*j$RKE`@q2*QhTSi6bgGzwmTreW=%iFCcfy-stOpg ze+~ofPz%N z9gwStIB&t6LT>U#w)HvEbjlm<%rZ5YEj}@66}&gJ+$k z&A14^`I&IVfDmjsN z26@%ZSlW=)NBDucuw8M%k(=?S{;iM!OEi0KmNa~>kxu$;AgA*U4`8|g?)q0SK<@g| zB>Ysp!H43Uk*f!Xrz}aaTTpU3h^N3}K2}q3RqnvEN?_LV$gDkB=U9`fGx zJvkaD8F3t1r+|AW8-|P1eWuYsv3c2;-PWgaFrCix`St`Ne&*=Y-yYw>668?uwjl#m zF)CaX$7OufTk@IUI*-7sVpdFKm2&|)S)zk1W{E5%bks=9HG8GHxwA4^!KJuHe`#Ye z>9+4a+rWol_Mtax2$T9JK}ToWJ!$UdQZLLrhO=WwvW`cL&)U8SD&vr}7#$ua1j6YH z*|A*BL4aUgEuSYFy^+2;w!Jmg<$#R~Oh8|Q1|GJDpb@n8^q$9<{ix1Du7AafKCuvU z%R&E|UKKCs>tb|S1^5>uwv;_ivk63+#)sk;_|sW5@;i7HEkT>f4A(YrLbEV(NEyj$ z?T21Lf4p%BnER}X{gVxIlFVLj=3VBgL&v2m)pPS#duRpajW8i==e2`^QQJw0mexV2 zE#=N4mM6@r5l;cwfpuOXTqpbP$&k@>NO;fV$aZR!F+%#?g+CuRh1D7w-FxvjZa#J8x<~^o)WoTBUw_+GArid$M)@Uw`kP{8sZn{Hj z&rpAL%(2%?{24+baF-Em2%x_FwF{|r;~li7H}|W$!Dm<+lVH}vXCQ|~6bYlA-RfWB z<+GXZ@6OL_qKBx$9283LJUC^=f-TjgB(oDFW#Yhoti!)X?bP((;lD0CurG1+t( z4pt`j>gU|_RSy*4p?VHc!?4&n%cJF+IAV3_JTsOgT&2Gjs?5E!>cSYa-%~l2(-F49 zmiapeM`c^GRfJq`XHF{`(iqM664H@abWPz%>=jBd(xgIsuNBnzyyw!JWRm!~0Pot* z?hAjCqDnExj(H)3QSz^45tqNBVC=FW1VY5BFcg*nIN}}z;K8m~)VO=ff`JFXZ9XSn zgJSVdm7BvV#623CSAr^uD6m$<_+M)(uyc`%rrqx6sgeGC2P}bN%TNaiC(Vo`cC?4@ z?Ki=0MjqNCFlWG|8g0xE9V%8Q@u)ya!hbGhiZSPp z;GO+61<03EwTT5)z&)4R?BEP(ZSr4Wx&u?wWJW_RjV@IWsy&A?H#phB)gG`V}!Z%G&Fkq%;XrMSOw0y5`rLT zJ-1lA!NDIdZ3Vs@UuR6=$0v9(XD7M)Gl^6tywSZs3umwkEuT>W!}bf(?|ouoB(lQc z;?OHh;VMOj=Gpn;iBfjo#qf13nEpvup<((y@i|awHVwC+7u3w^jr7Pcu|4_td?{0z zqakW)y@r96^=?ko zHzcGG{jyK?G(fOgh6NKQAf*9>y+tRatAJf`!OB+6+~-K)(-6e`?M*Xg6#ZzEEJ%WD7Rx>`7QY+u%Rfl4{k5FW)0*O4`|yIWGo6LuJ@syuu}cuN3ZrwgR?z{x#fQr>B?}R&mG`tv#4!f zA-3%DR2e{iv|Td`5`Ss(R8jUO4g^s7oURr*O}cG>{92~iSQGxp<_!6hke%z;w$BN2 zNmRZntEL`BqP}S;8A<YQp5e&W(6w6EfLONL+m&VnBshwK+9>H_ zG_7BraN#1=^0ERJvTd@fK<$bTa6U|uGfMU30pvuAfjm15W3BgU9ck1@fy>EP!sCm4 zU)SL-(g}D@(X?*#FKH|lvX=ikDMo`g-nCO^#K1mo5OHQJlRl} za1g^iUkSmzmQar=TIa-IoaY2u9G`%X#t+Ct<}W$qwwahX<1VvZ`Qr-45edKz`(Dm< zd5erR;=c|5AC&sWiCZR(nzmIfVK9`$i+JPU63<)ykt1JqGO2tNM zl=SV+R&g?l6QQoXa+R=Z6_zWRZpYw|oYH@9l~r>0_%4*&%&wi5;6(QF3Mu9@-%VT9t zW7MQ7&y!59FV=3%q^o@dA`sY9a9qWpr9j)5DB2;msCCBXD#Kv|!4AEBQf$q{ znL%lICEf#W%sjQ`jWVHWi9$mBYxg$F#vpIbZaItB>ca9I3UsUC+s-jGL>E^Qw10t1 z1DS8@PR1qnH~DTW=?TvEp(UT{_ttgunrYj{TrngI8qT)D zAAvm2Ki0=WOfv%5f4T0vkY|7=dal)$ASMs76=}n>(D#+(cB(qlD#y9H9%;Co)Ixz| z$BMv0v{CUkHz>FjAWKvO8X647Z=dojKU&6?*lTe?T^;n>w}^#NXIy<#zNV`py6ptI z2YQk!p?|ye_*l?qeM}v4eQILM>-}#Tm4s^U>efbrWH)YP`)21@zf1bxvTpePkp83e zvOIk1#@^qu(KR(z=ij;0_e4)(2XpTI)7%oNCKe&x`4)q5pwS z?uM)=CWb~Xlqd2+H_yP&+oYwLkGpLJCH?Hta@6|b-ja315#*xz+_a)BL~(QJs%RzS zwj-YSH60I-oM7E9TjKHH1T56HUK=)DmJezaXRt6@*~E#p)|-war4V^V++aoOjDKb;;T47il zC(L~<5JWuz{_hizqEI6LKF8toDMyf$8;Q~PI(J;5)_hJ?N1iYq6Y^5nT=0LnKh z>kQ<|$R9JU z75@ih1XNXEJEErXfuT=%v>aQ<%tmn$>gxJaKwRW~wRO!bU&u-t=hf3|rr}3y3iBhi z{~b1ffBLy>OJ#e6=D4cm+V^vLbsITS2-(2};%Y2YsDiR+y3fRbs{tnqC|bx)0I>Xb zNgaW*9roZD$GyO2vTpFc6vIEp(#`;73rSpRjE>z{VC^8-`>ZK9uf1sIpNo!`!i0_X zalTWyEw1LV1H4#xjc^SMzl&v(J?RMnI|0bd7>6&yXe$aMmoGvndyw(VLBQf*<^pdk2~N1Dfj7=w2p3s-b|rL{6-FH794`wE!SGZIVz;VQ~VjZ)H ztb>SO5`C;4PHDcF&pf~Uyzs}_QaZXj9upQ=(4r{HQVI+Qa>_bpm_x!>)QC-MlZ|V1 zsA6U8k}mdWOwxx&pa~zK_B>+L4?1(YLO%wlEg;IK*C0DHyh=MFcgu(V313(#Zqhj% zPqaYBQ}3&Tzku_Y$pka;bNxdA_wwFFs8q0hL^3R=u^n7r>E~uL4rmXo|n)6 z@-P-x)a~$C^dYEaq4D7-GZz@}x3^WI!lN={*{bEAR4O)l6CEcHx2&6* z&mzT&uW3be*AcaRCE*#tctgedER*7Dh$hnbT*Em77u!-i8++S;? zAeI2k`edt|*?12CYgq{ld)b4Kna>Fjjp@ealG-y;a@QZ00bNCgfl!LK_sF)W5mM`W zvFZEI=y8HC&HTXZ^7**g3b6M);>y@HL0F zqpyKdS}WkSJ;Vel{&B+_nlZuIHCp*Iiv@&WDV@(> z$()_~4fKs)VvN7sV;C~GoYM!k$m*Fn{uMA9Y+81dq(-ybRgX(XfIw3L6K5^x;|^gn zXB|nU!HpA87GY2CUQ!(E^`|~3K>~U7G{K<`A6qYkjHruGmk07B&~M~`>&=gR%5|$z zZ&_VI*uo)A@f)5t#Rdk35Brj0R*o+4KtgQ`rN_JtUlg-Ck&i9#Lfahio9SHezjypgqPQQdu?1UJ&f)U0OPOqFL(Pn_4!F=<*}W*~Z3})-X+eK=jV*9t zM8$1(fPc@5FGfoBC_&c?KrOA0ny3MSF*VKI1-zl9i6}t*v58Ij5AR;tqr26M2QFdl zO|s3-^A78!{*!9)RSi!AMNw_fkuB;%c&dlZBqoBOWILo8Mdi8Ea^?+g8qX)xtQ$`p znuJ{j2gCz>ha~~XFn8w*39KXhix2dNql8g{7gd3red=F17g0j|_i3+OmrXzO(1aal zTURFdhP|a29tQ9vxVDU5Vg{hgO&DX-QsL(%lD^ z$ucLajBoX{c@;Mj)?F_T8M|}Uhs9h}l>JlL3?jr(@bW)>)t5)1ap9}jD>3}x=F4Lh zUMFLl%ycRtj*36wY#|P<6Pw50A~>AdNwH-eHI&d!Ocm8GJ4z_q74|Uu z*B;@aj_taX2`)Q|!iN!NHA`D^U%^Y6VRWM2*G!fN30Pz7m#mh1o}$_e9W>Z))X!Va zG@WH}L){zIQ|;XwwG8{go9=L$t+6~)Yu*EB{VsJXwPvf7+XqS++Am1u(>O;&HTsJ; zwK5A}^|H&O0jUmT_da>8uocGgLUP_RA__AKV&IWx7OOQok#u*2#Idx&xR^B@x86s(6Gm_74jYbnCf#KI3{T-*p4RN7KLN$Txy1}q; z7(UA0Q1`Fbb8N9ZW)_2iACZz%(;X2THUEiyRTGfrnj{I{3x6Ao?5S zVJsJ9)9J`*M^}!xQSB4-uhOtq=*E`M$%^%hr8^=QRy0W^+@=K$S6pOGkZV}8!~T(X zxIxT*#y!| z$QL}(Zl%5xs}* zsO;%dV^x+p)t0{MHVL|wYRW#<#ooq2i=9_+5r8fWGNLe%jV?09MhRr5liI+8r<0_I z4crJ`#~iD?#2`L`fYRW6Qcl2_}6gO(t+ z{p|b&koj@!GEPv2CJPR$mT7}oBV0McIS?oQAnNC3U?=OSdic^)3lrSgR#Tj7nisKY zb5_M3G5O#Gp9Gr=_$@0`?U7Ix!RSu?#BuX#eBZ)+1d@>JQb|`qk8p@7j@-vEc47Q| zb&M41Ta*r6utP)#qK*%JAp9F;b@AdBXBc)_&tb5x6_`V*jSc-Oi#t!d1%II$RG1hC z8N5w@p%VdA=oiSp$%fN=G@}ufmJ+XCOQ4D6a~hYL!~Kak@YF=2;!eG72vP=f?cFSB z)HoZNg#3sI=ya?mHd%ZQZSXGUvS<=e%g(gX{+j={(~C8tcssRUI3;)KRmv7|98cp^qz(+ z25oTwmBB>F2TV8LdztK)1TKo`a1l1a#lf6BbDk!^JTgmK-+T#Y-y77XwXbl9&_Aen z=yVUAG$cmIxRi|Ih%gHi0K*x2bg{!<#c zmx#K1yV&sBA@Ro2=a#Gs@EIytCKaFhc(iAz~JLo%TJep$SD#gVG+@V z62fLg^&~rmWIp-7Bs%D#zo9>W>H8iN%DdllOJa0neK^N-n31H1fuw()=t_J(E6(_2 zd^pXHvKXW>HkNn11)BvD?nTM@KR2bga^@wL0wXmaUVc7 zgH^VA1>1~Z?NbAtPp#nd{ng`?4pX@&qMaQ3vi?i>mFs$aXJcjXlmTb!Mf0l(?+C)QiKestQ zkN7%0-W)!kGd~|CI^ACrKR-EV7YE<2v#5A{vV1?>P)9Yk#TIzID-NyMe!jin3wX)b zvhx8UZt;FRn{V){FF^Jtt>;{=8N)DIyUyKxSN5pjzA!GgG6QLX9jXi0$_XmKnZ@M~ zqcF0FC5AVfq?Q|jaPDB)bCroYY_%>MMxM7a=)(t5H$iud8pJLm zh}Ur>=q@7>ZNMBb2tL6ZOU)+yX5dlTZ_W&DCs}6k596mLX4!3_y{eEAsmw)`raBVJ zxnfJMNRF+Uzzjf}S5-WiE86fiO^gkb=!6L*yAGjTlALue2!yqjULD9gXMJ>7xPlxXY`s4&z99?Y3y0eZUZ!jz^H{K(Qf-)`^aCVR$4awR4v_&JzHVIZ0r z-dM>w?k1TdwcNuV9=3ak6>3z^IK4E9ef8iUtpi{)yVHwDxnyaQ+l241s1P%ScjiDi zJMSI9T#{<6jV_1MO|9~Z0Bf|F;VFGA#7&OJBm(C|heiMO*!;GD2*2yjE8N_89FGcS z5bjrS&n&iBatV9*&aML181&_Wf)W-D)X_m)9k|Bjw0hn86pRo39o$Z%f9lCz+-ti8 z(T({HXj4uPJ(tB%jFy3$ddyk_YG<($zk}djb3S1sn;9=As~gX%RmpdSh9|qYCIJt^ z)>yIjPzDk826WQUYbs5u;r`9-Wo_FBYjsjkF57Wa;vseCmmV1>v=KD=YT^_fEL10;Xs0RWG z$5*$)p!?44XD|SOO|i&Bhk3E2BH^(usptue_AZeI)Xa9@(WZ`ti%2Etsa;iZBUf_% zY1EF<2O|or#Y4aY>-#-_19JnkZ>r$B>8t~(ULqJUYJdZ)O;LwOQ&4((S)0IX^E!dc zmPtCTO7BDp+)Sl<^2|b$P4gpF%euQp+&Ptk7KOrAfyv!iMs0)&s3Fls$_RMMNGX!P z#Cfu@Y;>XktI<&1!R}c!d=wI?yi9a9c+!bzVWccs=rKZM=u>dLi{NqcA3S9BN3-dQGY?GtE_zd-I{7rz4JJ z>{VJ^jZt;a3UwI5Lq|zy%2RNUE2l$%oW`iXN#IYoQC4s*1}ap~_S$K_aFO#$tDcQ90SK|1-hjH$0e>6N9dE>c!F*2CkG1GQV~fbYXOh_% zG4fH|20GZ*LIUDYRi@u|Q&;B3Q^Z{NWUSOQx!D8ZbRp%2ACyzcRm3}W!@M4jy`{pZ z-@6g#u7cRIY5@kN5GDb@_ZU$kMzHmy?VGguS=|=B@`?M}L_Ay|czfp4WdqZ~;WI7B zc`C?ryo=@4Ctw-T4`QL?B3FtHrRZ-N@G6p(Nluq##mx-{E`{0%QeL-kWj>zWi`X9; z=O=g6cly2^j(R=nH40&bSLUI==;a7;_8$sLWZ!-ooO=I zLtT~t7P8%8U5`uBIHVospu)l_gV|4YdsTgncan@n8r-GjWrkX>o{4b0WVI%sds;UO!tuiD8CF&>|ulfvsZlJlO zYt*DBw{4qef02uH?f1^Y0Pa5SQHIhaf0sRdH9&$JNPeAMv7&C)v&pb{2XGdRdiJ#{js`hUqY~O_ zuyaScOn&W)T3Ea18jP{Tfv}p#+p@TrBiZJF-y+;j5CG24PkEUS?uaI9SfKcYx2r<8 z0~&BopYzDE5}ikBUPEt#zKOMYLgnAU25CriZ^saWdhgeQh)_im3Fj*65CB`L{fG;) zwQIN1AwM+HbyoT(XvsF}r2wh=0_R-aUmpoglp4~`CN}GDw~#zOeP?yU&=_b@N^Krq zr6Ge8x%2ZA{Lr6(r!23(yrm*h(}6Kp<~wUk*z?#T=m?2)qV!)&W}!gSY>BX0zI*l~ zwi#bf6`PLDI0B&B_FiH^~KlF0D$u+t#QS#;e-#@Nv+p+!K z`=;UFPBIf#PI|iw$mbNK7c1U4A*kt;+iy%Kcfgfxv7?S zAdZZ9+G{cf&hO_VuP=f=@4TjP(QTW6Q}DoFSX=;2JoRGFEHAxBlCC=jZU}MzUX_iN zU7q8sHbHPHP=?mO5G<>V7=~Co#kgN2Vq6q?9CROK0e+TyFCZWwur>?JweFp;?45s2 z?yIb@;zmMlG=pV`q!vj8Qre_q9iCDo;LXEl{aTz$@#InR zKx{B`>%F!$9^pHigghf!E~&yeuCUvvenr#f{r20a3hophVCNL;`R;&(t0C)tGIiwl~lihqs_u5l^Il1!+X-nO7()&*P}1rRs3Q;5v-qLbk7-e<7_W zauf~2XRjthX={t?KSUufyz~r%X zMdY%xG${4lwfxm_q@+@ze#2MRz<@10z#58;SjLcJ6M*=EWHmYxHKq52xgKN6cG!`9 zpQV!t>s-z^0?@uxQ880_QWJy2bXGcIni2ws_3*1R4EG#qf9l^Sn-|m9$0>)qsXPFP z^HkHjBRwr}Ge?uH{M&XEBfnabkQ-3;N0o;H<>e7wBFG^rTPaaBk@Cx-C67sJOl`FR zzsSE-qY=DFtC>&tx3w%ejudSma@)5DwWBxxBJamMt~|xxwD0mS6h+9$TG@eZFA072 zV7IT2X)lS1oGyvj=_|a$11;PI?C z2Ec{kVWqKQrr@p01e%$kD~JyDZGfnnY-!Bt@&TLuCUsR}#dblQWgAdTJ>wx*?j@ zxsy~sC_b!4@_EAE zLuoKurqs<9{C!1FcYblEkfI~tx=3ceemp2{uxl(W`ISy3 zc?uiT5Yhl{t8zX7C`7NeHjL;NUx}|jH;Rb2FzP)pR0Lt%OFN&L@iE;JqU?;MioyRo%s=b)4(ey#JtV+lH`N z3o1zi0nM;isrX$nwllX-S+y>hT3d~mRb|+uZJ5f49>KskJRI4VnOgih355W1xsSO;D?T9jI}!y2t;cIqqmcm%y5?(Vr~)mX0z;+~s?DDiY~UH+Ik9UC zl;~~lj<>mQHI8J0VA0nJhp9p6rs8K|H@8j~`v5+IPPe>WS%lR#? z;)X3=$%9oCknlk;E>Z|x`LrFtR+n&YA#zOCma9a`t*IJ6+#yuetbjATP(xPHbRXBY zKHlV>px4GMg>9Q4P-WV`d--TLPdbWT@>D25)mA29za<1ojIgizrv7Q_*6%BMZDg;4 z36u-f#UDl}jn7aW8)9EZ;U~psn=4ms^o0C-J*c@>VsnAFmjmJqXnx+GcwU&tj|d!CO%X!SZ6Cx&SrDjB$D5$D z^sPrbB72GAUTh=Mi||;EXaxSlzobTC1*Z~cgT&rHhEW-Oo|%=$M{Cq|0_&uEU+iBS z6n{mpT_kdRBytv3SMU$$zONofj1c+}T3^_7W;axHDy=#P?#B=T!-@FVrPP!)Q9x7| zg5($)^?;2N=UO&<^XM2AgRbZ^*Rl3eT7uw2ub*;N;VQHk$`-F<*#=n@;+U`Yr&7M) z^&_RU_J@m-RWv2*vOI_Yo7VLGzeiFIQM{wd5gKbp_2TpxRA$k4%ldM)zCJ}idO9ns zRx>Mo&B=q*v^*;)!C!_ZiwYn*!O;a<9x2?>F6tv(TNeV;VG@DV>|W0-+3mUV=}o+VVZu ztcO@$K^Jzl#%w3ieeq$q0GuEw&|`8wlG2A|cmO_IBcrcN`)YE2Zik2f!?ke!|^ zz$WNEUB=(TwN#p;3U9x&+*b={%A`^h>zH(T+;TX4jq$QByQ%W6(`JTHsE9I;FO;6a zdV7b-i@Bzto4@x8wOOoN2n6^8t$uSZ$-VQlx&`?wIB)p->Bu0_Se~ zVXhj9qJBkaFrjNy?HOZticZ@;+&`ryJ1jr#83VI<(f?}#qFn?bgsEVHaG5!2m>q+m zTBNlJe}5SZiTB_PGccvMzYy%F-eH4fcMgRz(_xTO;CIa1YnC~=Gwuos)4~}ZD%AJ= zu{YBdpgjn|Y|G3sqw0|yE%FNm(Bfy^Ck%n+VbxmK_a?yG!P@Jsacj{4C*&|YxaXcg zFe2gmbb2=WPeR21d?5DJ0?m{23D|(eoBUztYoAmx)PExx!#_BkJCAgN2<7hvIsyJu zoW(2Jo3TcAsrhf+z|N?(dBXs<(PuK)3Huq80CI#p%QH!jgh}W{=_gGHAL_jCpJG{`ku>O zuiz|e8hInH;5fHgnpLBmP&NYIvH;axWzQ+X+PjJRURD}@s@T~D=Pcq`)7ZC}nZPSF zIc)mae)<_neRp~=^(lw>=budadruL0n_S-MD~SVV=GFyN=TTa;v{X?)(tXqseB4x< zE^d1hPS^fAYzuN4Qyezs^PXgQR?I2vWLD9epANp$#2?Kr>??Tc*4ZpWXzJTG<8nl6 z;YAx&3#QSrLTmG$*j+5MYd}l>sZFliJz1WSB27pZ9FQ~avK$yooFmJc3F{gLlVq^U z4_3_U=GWoA=dxflov#%W9EOBma?;P@p5vz&QT=4a`2A-jmcEaieKeGFHdDQCkoo3c zDADGKY7C}K4D+7E;o5?ZC;fv8j=CVcBz$qshw>$+%wArkM>tNncO)FgD>o9+4A9GC z3{L^M1HV@=l5-iQ<4s@eh*JF7B=FNgHw9R&$ASftf%Xl<=3`bzd`I3tb;IaWFs95k z8H0}5nY>@C#?J(^g{0xqMl*c^7|#DdF*^K0a(83sGo=4nWjuzh!MK)KjS%294?{I5 zPS0TKpfC1;3JxK^%Z@|9(eEVhnV8eI4EL7E5+qwlo{ptQD;xECpC3QN$syt&AJI>S z!O)$LCxuWMnPet&37NDr9;Hz6Lnrl!HBDreaz>*o$capP@jGRmBI8IQ@DmT6J|M3g zP}}8J0t>J)xF*D`(B%m9EU?ksUf#OySWDlO*=gxROz0dVlrrOSH?(3#$qw-p9t`NC zNNi}Ce^0Zp66ZJsxnX;Uuk;@-iHoUDWmmjV{lGy)1AoAkM$WxIBcXu+pT2s=8$ z&CX7Tf^)GZH{2egbHd(WGC+hS6y5E{B^D8JDPPD_Pspn<7d_EO4~tq2^Q5bjQy?9e z-Q99zf_~dDPP!#j#KqJkK@{{?RBwC$r~o|*hoQlYvB=Od4;fWsdrNk~bQ=9@0ZeE% zq%mu_Ecpr+sXNB;nmgcjJ+6{T%1R9n$BAV)(JILJxb0LS1vb)~8L)^c%UrX)-WNa| z5&KbYA&$JRo^34pGMGHu4NYo|rtU_4t%7lE;I!WwW;~lNzL_cyqC0u+3!)7-&vp&l z|N5?Pf?vIa{e`?v9Cta~LU0hbd61_aTVPUZCzSZ5maGp7oj_`gcyh-68-ZdW#@X4u zJAF*w0*lV=&%FC;oNk85UQ~C0vgUNvhqr?=bztW2JA3(bql(ALl)ZpoFr@hIO=yo> zWpDA6OF399icQkp1jYIE0P@<2^*tq;7N+;6!On~dB6QMd>p{^+S@i-o^eoE~X*VvG z&0xbS$?f>IDUN_uSScL!CNmz|nrTDVESLEdgvc$2Xfm-rFS}|68&+#sFV7{!5QYq# zb>#@wR8I1w__M;}SDExH`R=@Lh}A#CE%W-S&!J9YINGZPj4gH>C9K zUYfd3kAmT{4PxymPMv_nuRb%G=h8?kPagw`ep8y$4n>2ErR@wwgPbe*p%(!|G08_{ z(pim%7MgIyu%jF4O6#3em5p>Y)w(1EP2@6Z*=PQYfn{L@<7~|ssf?GQ^wTT5i?})= zcJsf32;wP97ty#^XNQ?FKOm0w#b3Cb{~SgUj2GRijMbp z-3Mo3X-KiSIb&ZYnVEjI`oDvN|mVRB|i2_7uw>_)zc9!ww7icvTka( zodD3zJ85oPo2ygKY6@RRaE-f-i>M)QJOF!yka^-4Ne&K)Mungr$!c3H{|8nQ)xsK0 zjb;zWN)b|w5}l(3dvDquBUo*Ch7)d=LJ7grn1nh#{haBQqGi~l;UEgR@i6q3$oafZ zoT$l>>(JAbM4*hB6C?`0OvT@YNPh-D6q0{~$P_?MOwnO5f!R;>eU7vr>(Vh4j>Ax> z6O^&*z4*2CLyslB#Ac@ugNS+Sm-&LF`^TIS#YfQ%{R%{>IYRv-k$8+ASu0|_@y0Hp zm!|!D!%EV&HZkG6X{8KvOgC8?IYaDZfrNcup-7ZsLzr%jl!HN}#1i>RXp&W(cf6j+ zlP18Eo^e!T(7!-%?nPG7@RB9q>9?tCnV-_vu(mo zW1^d7oKcK)C0%tAiMQ7&&`r9!8%>&|-Az#?cO!`JWpX*;El8|yc&_kc_SJF(#6Rn3 z#AM9pvL@iS6cX+@&7HqrZTulPLGA=31v69-kn#djNX}-uhAjVRlJ2yrv}7z)<||;T#u*i6%*>*&PuPK-u6)3D5_;@LR&VT zumHTZ4psd2l6tTMh?e6f5FI6tS+I@7V`!%jIPbKif0%12K8RshSyO^GuX$`3VyW)x z@WLK*wLMxad_?zcw+JYx;NMpO=2syaAe(5tLbf@C4|=DMcXQ2o%B#l8mnP<-Q=uqm z)pdK>+|js;cAho}!MJm9RiJ>GV7`2dcIi9^gr7SDY-5S)mcw zFYeRU>?B-J6g0G2E}qe5Hi*Ug+H75ct+nVWM~@cQ>nd(QQq2EQguobov5M-AGjzLj({mXhQ`^o-6!k}A@ zygy{p;y_pT#_Achv3xTCH`BUqUmQ@UXpFxY;gi9r;mF&pN#+_fI5y~Z*61G6lrP+j z0`v>A_4>c*d4a}olL9|yB@^y>#qO)E#=W|Z|Hmh zdiP7GA>?rLzmaT~{~yU_W#nM}Pm(>PwKi?o64m{alV1&@_BXr`EmtpB#envgG$Y(0 zr?@@>xHG*oV=wnN{|OF_6IxPX_4FYT?GJ6dMyn?gMbi9X$xqfUXvvMzUCr{vf{ypw z>(if4bedmeM7|3)J|C|OH!?myuTMf$7NMED!kXV3E~lBxDsJfPy^lLTuLEY^w;Qtf zIo`PovOll%wv5vr4)*+Hu$exeua6)hKaOwrcV|1YIeb3vUr#&MWb9r)Uq{YguaCB5 zhYKnAe8y=zduIE7fhBZ3o}R%GsI8%354OA2@Ly4WS-F1LoCCU7U^Tv@$I&Yxo<8sQ zI`}U;I(*kUD!&;d9$CUnEAP{{pk#Eu-QQsyC*|>H1ehr5;L9?h;{>Q6P38#RgTKx9 zYyI$Dhy@WNY>Sv~2Z*qIs57HW8vfwmHcyAgU^2OZ%|!Mn>VkD4DuCEHBI(T4xPs&yb*L7gvVjnPyUx$a6LD%Cc12|9>T>nZBWP1>FFebDps`7)Ekm-TZ$ z^YivFqx1dT^TX}s{ZCHm(lPr|a?`^H_MLNg8LoE;H>6D3h8cdhkR8B0Ik!?dKv6T- zHm5aGUT2e9)ABV&d!3?5{}NtXo@EoLZoUFiiP3qd!eGggXFaG^w~rgW-fTmza=99( z0?r+EV>%S;l4=91UaLQ9syzgr=jJtIZC{A0@|?7gqwYjg$%TjKPd*QS@;71t*4)<4 z1+jJS@3pQ~l-JPjm(>@HwqVKGSruTOy6Xj~s3hA~qwcvduFXDnbX9WUiSXKV3K{H+ zr_NUrsR6duhpO|qt|X7WIGgKu(L2oQ?LHAa+cbXhA(%7E)lv%(VU4StJl3tciqidmb|WEo85c30=43<)E?X9*C2MeioyFs(i0oNF-a}us|39~ z=3o^Emq<2@Q<#+3?D)gJ5Ba&VGK#euGGR(8-4AEesV??dTi0%HX0>FRJuYhl;9 znAewEEfkJ{gMVlm7}kOw0raAJw_5E!OZQrYFV>6^g*ySb4HCc&Zc!=S@msmr?BaGr z$6uLt-{176X7>oTg=zrPy7UY_+mnCM76N(!oDQq0m4jf1JGCM0GpZw)q%~*&O#23* zQ>z9U_ap2j;Q`X8CmVCpO#{C5q3B%v5IW{ke3yFVQv9FJFSuf?S)LPRSbrSMK&55Ydl%(=gzfFkNS# z)r+-r^p$63H;1&UVk~c`$<@Grb8=*(o;$v`$XLnd>^uWpsk{ZL`nhDtMQseP^KDLa zE9zt13gYkLtZ~~Os+t{Ml_N%79B+1_s?uF6kS-*^DXom&2zb-e@~TB1I$JbfR;FL1O5fc}=MqLj$D@)v$Sz zEkd6=C}AJ;j#htQEtjZL#di(*VvI?O#7QcBX@xvmX?j(2+oQ~tdjkeA+jYAk%J+8V zfr}wd5^fVh(rv(CL7{6uKDttAd?j9I)UCO;8v@og4FT`+d~3UMUn`HK&821;RB)}v zqG$)atbX*Ux>{Cd82+!5TskUKRY8_#;yZ&rl_t5NMuDmH@g#zlKzg=}ro8F8u{gaN z%&bW1i2@8~cvpnl+)&4d(vN2K{!T_M4Ya$VE~6(CT?x!D=C`A>q`=OrWnA_z>c6L( z$O^MHh0L7hU+2A3o6Qfyw$Y8eU!Tz8dBha>3DiD zuLf74+QTICH0x2(14Wg}LDa{)y_{uK0r~Mg9n!f%h&8JDbBN0knG7h zt1q(dU@GiS25cZqgh*%Fzx&kDgewkqAJbX<^-ToFy4~&!zk|sg6`Sne9-ivcla&wQ zxUB0iRPQE=q6s4U>jmErV>9Yeu9Iw@m|a8)f9p}BQNKx|I0VBiCgiF#QhE094wQ={ z7B`|iANyw~KmkGwt;Bt?O#Dek@^xt8f)q50r$qW{DtY>%E|~65G&u@7P{OKXgGFZX ztkFgPx?@d&&Bz|jP;t^9vj)kxX%!F7D4=A{_vqW4(yYK}(S|VG=M@-qc*z{A1tdek zku?N}@L>{Vk%JQ_O#Vq4$2?G#14D(6+btuH&W!{a31fZ&F}%*jQA>!jF@r<|8yvRG zRHjG}K(^5&zmIJCb%8Y7xT+F8-`uPZpM*-!N{cbCep_sjsk3W^@VT$+hDj{zg3DU|ahsovqbjB5hTrM@!P{v{6p@*wg4eauZq%4m0E$&o z$(AQ|=NeHlNp-3p@}^COcHRJXU`;6RLp`cmI})9nT@YA90v$zupNC{->*q-$|8I(= zG`qC8pLfB38Wtg12@;fRoeR{{RtZ7VJ5KH4+?$x0w0&(a}q%-1bgx0fiu(e98G84O5Id?cL`MfN? zR9s>6wJH$3SSmO06!KuUcx3fR7xpS)9m5i-0&U?`or(uIm^1koQ9jzQu4AAw@u#`- zSaRe$CjtP3nyi1sjzEEQQBykQ-R+py$#6%S^Fs2yD3)2)!QDz++dLFt-8mxF@XP5Mfifod`eH#iQKCnuArm{0#-t z(odXR!lPbjv$6!RR1?%uXgIZPpKRn%oJFmY%Z2`~svoWV>Db1C>&-9(`ud9#^BAH71bj$()Vw^(%xA^(RrM1S2Z@&(Ns~%n66rJqwlpg|qMoctu zQ1>7jej&t!iAr*W{w#VrXvBmmt5>SW5~g%NYD~JzA$41a^}xxQ=`J4P)dAbQ!8B=` zT!~2z&SawTT;i4K8tbWdm~x;&o(Z0ijDbSK1YXK@6~mS(zn=AP8-^-XzJ29#V^z3d zwmqL*^5!|GZ-N_Y#hh!gZq(UjdRYc8!c}yq-Bc=JUc$Gs!JgqdNQJSk$)SxOhUEj4 zgLL1TKsb2XKo!Gvos0P$wir{zE^95<`eGyo3wcAmzwsajr|Qb!lt0*#pU|s@jnR77 zlKf}DA=YhglKw({A2w}2oqxa4fd@vo9wnp5D!)rTI$z>w%xV^2i`qoBwhG&f zOdrxCTR8lt)%s=1d*upfX>!R7LHa~FQLWd+Wk2VDs*B$~@00I1qpy$OHg6KArEp2! zYCSzA%qoZ$!6!v>n%*%yZ)(R8^+0LTYFbX@Yx@Okv{r@5Qp>^acmZP}k8KsV?Dz{+ z?vHE-s(G#QjQxt*D?OMQ`BN}FwHkeGQ+RblPSQhjX^@J`u>}}G#|$~9CIUX;Z#tGq zzag~83%rMFHOu+FlAS!L2u5rcv+Nc*NzBKNL<(&i>IS#%=tRp+^@q+bZx!1?QAvbQ8jnoMDt`C37qt(6alIh z-5lzkH`9PO-;6TNBzBx}{cS?U7D|SO=%7daJ&lqnUJ~mFGq#*D^0NKjM%==L%ihK; z*`?IZt*U2iZk{UD&Zkb&)A)gj#j0n`{7d}-a5-nf4s@drQ8Tb{+TnHR*IAR)tZO^w z8~We}BT%a}&ylff5IO7ve6=66}`l*hTnx8j}L)#VL%fwnQ{4 zLz}U+}inW40p?U3C|Sd_;6m#oN)}k+rtTz8i0q5E!(<^K$ahItOnULSra<&57d?Feo_Oy-Z6!k&Dq%XqM}mqF z`}TFmU3P6wl_CJzVb0$v3tuh94T9-XgYRjcxG4xl5h@kfUOY>#%!>bxe3w?>hd2v@ zODY9^?{j6}-KBQ@J1OC@uR1&OhYMy&(5tocCN4LVtT=Z^CPmQ**wpZJK#HbdQ8GGL zxsk~;;{s<{$zadD^>%)=uV&Nx4V`kg%S6D1f}f+>$x|Fed+_AX7Q#&JUw1K;O0UOR zW3)C!!sv|Y)3%)`VM-^|6SQ_6mtfek5W~-|Gti8EJSv9ETR%tWlvkqu!HZHtNWPf=fgP)tgB$>ue zcFd{nk{{-`*LBmKl3%|^)^hNCMzpHaF=g+o6yNxGC-$rIZ@<%rN|3Q`$hEer$vb^x z{5M;Y9Z~Icn}lM_E${GRujsR!AXGYC0cE+?aMRk&k~>HQO&T{U9s`XrvQco5q#4&& zMw(XeN|`q@|DHwM_^J}j%p&d?@MyH;d(3HOzz|SdV26j@Im>-Y-SH}~rvBeL+pfCe zIofeG2Seq85#H$@yTg5}jVv{$QSB1saW-A+RhFnO`&5J$?G&5@rm~zJ=Hg$H<_KMj zcn9-xzlNixa8TecA}S^pr$$64XOz(EH3#aR%PKtiSuYN+qK|n>;fZO7vM1YNSknUE znF3UFBxwu2g}1VS?B3cnleePnbt|N%!ho=mfkFHS?yN;NaB9X%b{A^IsatWKA2J81 zkOS-oBB+gxxUb3(WRWNyEm8?C)wCU4=-*c*mwILd+sN{L+CaqDQboly5lIs7j8h0% zPvVCG!JtmP@_cxVU<_%SHQ}Vp<(B#U7sVKpB=f*)0)(u`FVQ@1;pa8ahXetF)oQ8N z#Na{8#ik~nj%Q_2+!8jVCRU0AhrPRN>x;r{{CMlbe@O8OTkcSfT0M@9&*m{Q+w`Qh zbd=9(cGZ6Q3)xO8StoS|8>l}+;#{O?_16Ws^?*c28P!3vCl9lNj=Z}p7FA%UwcT!5%2orK(NU=9rnj19d(Q_9|Tc^uQ z_x$Eo8am*1vmU~Ty^`j2?Q{_Wb3C8(Xe$y!6(55q+IqKfN$fpaB0TB1V+zUmKpKG) ze`))aPx@x00UV-0%=e4rvP;5r1oX5t$Do_-=~q@&=~yaUsCw4hH^>EWwmyWL+(^-w zCMPC`IHJr(c?%?DZ=k{KS*#D3PA!P!+OI|d3x+7Q>r7ZZL25XsT+(oOU!m3R#!;Es z2M(a`bPh_lh((V|=xo!s0*UUID~qXGaYs;v;Dnofq|^q_FqEB?aQ5!KPB1h)|6TRK z)ja41`E+g+&fr7 zn91+e!2T3&WtsLQk~^#t_4tiw)M?`Ier1F2^S*UjwgjPJufh41}wcCdip`F@6v59=sM_5C>UICpn;f?y#14OEiD2kG^G@_6)C@No9W zU!+Bj+lLi}{jdJ`3{%PvVB#i$)q#drteTH@0_(V3gn&6$u+DuCNcPZh`+pcar|3+g zZe7QA^2O+M)bSVFosMnWw#|-hc5K_WZQFLTv&T6%`<#98UsbId3!`dPjaqZQbIqsV zcB@n9$njYTK}D;v%8q?=P^cD}-W}2PcRJzf-S)q>PG-Ika8xX;`6)X~SM!s1wQI6)`n@a|rimRT^;89YeWNx+6Xy~8tuh-#m8;3zBts9|kMyJGgg2z(t zv3;r|w<+2=uI+oUYq}XTk!JX(PAFn$rFRZD6N4jWdiOm{FFJY|4%Z_QZ;}d0oKM5; zg15TDZ>(*Sc*>be46^n3b&T2y^G4=uQevwqBNB5N*d!rayceueh#x?bbmKxoMk&O% zh0Yx&1@}l@6yG2!$#=wXZ;-(qmmlxAWE~=i17$39=V>W3qY+?ZCogL@pwxZfC}w?w zx@7PN`;k@e{ylb+_9Onu`(k*hrhbX~s}a=9L*zNDh}3;T17j8SsH!;DVg-it>3T-4 z@vuoToDkGSSPqed0opWMATqVIa#JYBa9HzmwLpB5NGSW&IHop8mj=RbF8JAyR>3FY zcBTB+tDTDLK9>>oRz%xvpHo0H^*a0tnBU`cj5&#o$Sh&m1x|=A;33+k# zb`SH(BP~2|9U2EUT?p489aoL{8W8QWhrN zcsAm(r`X-;J4;9RO+D!aR*^dsvyHEyCT1Eo!I|I10tSgS+!S>^4Vx@=GmU^y_r{7n zeB*d4quT~6DUNZ_wbP;50xLw_lkZkFj?)aEtg7zr_AI+G#54rf!Ow_>R@y2OHPB}p zz6#ujC6S<$*BMqcS*CH3n4PN+ahmB9mEk*(j^<0b{R}m$h@2E;+Ka734$_?XGMHQ` z4s?hAU=tJFIqT|pM>(Anw5-a$nrO|AH$1=7S46QrYy&p_fb+OQI=LWg8_3wr1gJzc zG(aOezEBTcAbaR1eXsU?TzuI-F8L|jZ<;J(JzqEc`f8$Ck-~~i8hLJXLt1a>sBpyr zJ1#OKudXBpj_PmtX+(Yv@j4DN^A#q>k(_$%pGFHifF+xMztSu#2_rW?whpF0pLLrN z(dU#-f>sXwL08w4Rbtq_uq&jOVBzfD;X=QlciqMR{%-;Y+kYr<0Ga*3P8{A7;okgKH#8pJjde1DxSu?WJtmvT5mU@WE|c@sU6POyyf3p;i>yTP z?Vs{$|4uf%=Jsts>F1J&*GpeE@8@mo=O6T*0c_tfdOolBGd|7F_nTzoigqS)6r}2h zuMc0;5#L#GDD2PAY##@luj?@)zRr(9&Ch2YA|yIGTnjqTaY*#T>^T!c*}X%iJ*|(G zrmf|`-N%o;H9jp~zOIkQ&**4)P4D-c$7UZ-kC*Vlv8Qal!Hy5#WINh``v6*n`;4? zYMJoCADRyrxK~SIIIuepxY0NCUoUTbKHlDKpF34wA8%jJpL1XD54SJwo!UEgOnlnk zPbkj$;qQ{}?IE9E2KXCkGY^e+Bsd&L323~50kVn=2&D5zw+elwznc)pdqt>aRMaW7b)p$yV`f0&uev&YuT%8?gtF8 z>AFj~kt-Hue^RgVMJ*K!p`U_({%!fT;DUsn9#}ItnS?o5Zl=lmfy;qG%-lA}?cfGj zvP6G-Ll*}Mv~-(BO>yg$U*vF-Xeq2>SwxySY@czN$E3RA_$lG2fUSbnQdlUrC4z?qSy#bFJpj8YyaH_~R9G@>86d~Zplwg-;uPh*Z{%-3 zDU#d~Ri@)cpbRRT)10(9p=I>2!QSB|NPN_U)%(X3WVDd4hu7Sl&+!l^ScjV=ZXa_w zPe5jPb4h=w43X??tQBr(liq*>Gkw4}KsoL>e|gZXU1`Ucfqfl!wSQw*8!xY_MeI>5 zKy^wzKuPg+IGEk4sJVBurxS{{C&$1NdbQY=)dhVuUeTyx81pT-5|u^WmEbPjc)h11 zaWchf;yGwF?shP3TI%N@!@5AHT|h5^8=o4}=FTRVt3NOz<}4I0CgX%0VUOtY#}*2C z9HHU@Jc#w6k;b|Kir+5JNhdL>IFi)u*gN8kYkY-`x}~$Kv54{QPAlMMn`MH+ZU#vk zy=NQs!VQZHN=X8-)S*>RR_BVX7zzo|JZuvg@wEO#=7$%Tg)Cy8xCmZijSSR-Dl(3A z_9FX|7_Kx%#LjQ_@xc-|KN{=7n~mK~(UrSyYE8|()1>W#s_o2RjR^1nV zc`=g#TXK6e7fR2yiOJP?u4-flZvr{4(`KCJS>3DDD71hX{Oa-xwTD}kZbx3mV%qZz zb#)5!^6j3H_=Ja!tPJWjXNVz@NNQuoMH*#|v~$gRk9rZJOO8^4eQn(ft4eRk;dR}h zS-_ULQ66B0yl_=aeb(<%%}iIpHrzJLnO5a_jj}44+zvdR|7wQ+4Hx2-NIe}tT@81?S+&v@{&&uRf(I*sX)vUGyv}$cwBwfdGzI-Ze}186v8f@BcJLvRUAJ3%2eeCe zL|3N}kCe2qy|9H;B$5ub*Z9xG--Vse_w>Srg-1v%F1F6nsvS*}92iP7h^Yx`L|c z#yj$~b_qI5cyr1`-1VAj_putVqs^v;e(9WDZx04h4$D z%1wL2dGa+uleYB?Q9PoQ3T|$KDF1oA1TEhaEBHnq(`15P6K{R}C9Y)r*Dx;h`4zgz zn{J!O3rNm!80EUq&ur7&*DgHw7E6-_u^|#tw|{(6w<0YvE4C(3LKq$x{p-*lLgW;4QJeu!^lY5YFqjK;>zx;71c)v0$Zi>*_*_ z9o3-9U9jTp`3L^s#L>C#*2KS2ljfL_q^t5n8D>XfHV(A<%vr{jpNkIJh=FSLWZbj! z0p2te%!Pl-4wC~`X!lodX2sL)Gb)>z`ZR9(uQAzxjFmVhAp?ctyB#G9ur#vs4mKQH z^}bJ~nV2?J!Uv}(Ju`r+NrXGn!RB0*3ry6Wl>Sg~1>T_<1~qR;ma@uG0jUJ!TU!MR z)dmqC!D{5R)uXgkxSS-a z5T}WLtrt2OnUW83@H6W9?y)$PtUw=k=&GW@;|oHgC`TD~n51z{!_Jmpo)!LhO*ppd z*dA`r_prEs=zl)zS(>1P;B47Cte5YcB2+|BG*MKF^y^7qAJNu0SutxmS`r`Kn>*S< zW=ap`9uT@r|GD^4U^uvIeN*?x69azDEtm`Tat{D?rh5_4H$qtmca&Prh1+QGqbQ$Z zo+2?*j|*yX_{otVB;x`@m4pvKr&tHI#!LrQc8{vYU1UZ}QKfNieLOwI;EXBF>mVPA zu`iphF#u)M9-W?xQ?Ail^z2PAFGDM-EX)VDi^W7UB&7g6HP4eQpQTXnR4bARR&fN< z*<^}kzY}>k7uiik7_YY&lgh#bS2MRmcg)`zK^pkxilGx%?tE0bgF}mOD*>cJGcUh2S*Jf z^)6>Q|3%ECwC$8W*f5S_6JSUg97DSQMDT~hqztyCX6s#82N)@ru#)Y|@BO>&&nkjF z)jF&Nqdj0m_y0+x?84F3E>d65Z>3IHX*EOH)-lv(Yh`uo0JgCDLv!u?c3KO@N=ms8 z@|AeM8>3@8e|lBXLeQhb!MfypIp>aa*=Xmc#j745K&OTy>vkMt3$oLbR zu(ga`;>cCKV#GdW9xzs2kQSrn??+IYo9^j-rjM}V1ceYeCDx4F^4`4hg2&ppyz`Ef zxQ?VSlMAVC8B(&m14i4}NN0$sS<%7nQsf~-SR|htj?ub~H>s^x(-~Y&?>^bJLnANCBcYHSbOgp zn^CI26Pg~+H7;j14J>E}l_$MEm4<)}=!YF+ELQDjqR7unSMV2jMi#1;e9t3Qy}NCg z%C>x$umMB$kxa$I=3)W#5+~l$-O(cX;dR;GGUyR|eurbaae`OJ`|nlQv_#5HFxtY@ znUy8#Y5jj{nO+^{R%RISo4hw?ne-oLm%o<}X9^pOnyc^#`o+MssJqP%4KtOf(?Z<@ zxL6Jh?!cMsl|_|DPROcL(91_U)%-9Wz*5iS6fGn;K=)oF3no@O7y|4#C>5+ML(o?n zy|DtW1xL~{3|*gQ@C_;Q?@ZsY`;kIb@PgfhiEWwTSRG^K7eM#-kJC$9z0C`yW`ku4 z44khNoN80!&3)rjlcU>kV-?g+AP0P@ZR;Snmed1V%H?M637lZB1YW#ZH^7rI7d?wb zZ#RX6v%_gKk5-3%(CYh5P;TAbCgWePIA&8=0KL6PY;w(hRP`=KWW@4aiR&&9`|t|V zc{zsaR@rG-vjR^Yhwqe){TxZ^~} zTMcrnhLu8khT%n5(RP^e3ay=Y*~Eh)nlf@=$#pkiucx*|R|V_Tm7Ct(*_dCLeLy*; zWGLAu$KNG!E*Y-$*;oXRqrZXIG`-yUx6WEFtfEb5&fHlx`E<#wu@A*GauIpj2SU%SFP z^v8_hd)-qMubfqk$KF<|sXSO&`|XtL#ytuj0sTkHZ6aQkRO2m6(jRIL;lTUSq@1h; zZz#c^>k4TiGsh1i!RT0xSO<*mEaGrHjYf(~Y6B`r9XivUL{#67XD}9RFUyG~3kvWN zL`-EX5v>KKhn{?k(kAn#xGpDNQ^GlUo|0BY3Qf1)I|>Gq&r`Fy*zja0aE_upNNB`{ zk$RC~)6`U0d&rbx#1FYje?Y!E0{XM7{1rU_E>4LwPTu@Z1&wVAbTMPI#E-vOp`_>{ zu@KZ(EpzS0TQFqz3UV0QJ^}Uh|7=XJwr7p~6TGs~Ko)Wbcz$x4Se7*uWI|LLhJPQA zkW%9RLAv9zEMGUJ5Y8Cg$!!GHvw*B?_LdA2kB6u-x7aG>4A4famjQ~G0Sk5^H&^nh z(id-M5*X;?!R3wc_pL7N8|G%=JyZy!7yQ?S&6Gw*(lD9JHuiN?rh02Rk(H{abAstv zo}p_F5*<3s95mL967FgRS|+I;PmHcvlU&Xj8&Tuo8ssqciV8UeULyN~NVuHC%0_-% zl{Bgi#tz?ka_U#wmNiopF#gpg6v_JLw``4Gm=cNZI%6EqS&N`lDu3h9A(zJ0kS4HR zN(^g)`2$-{x5h%qIrL$1M_qN0NvTM{1 znOG!_5B(>9Yn?JUvCU20HdduZ+k=yqDmE~06F$07>y69(`JL9nyAII3ZqDJ&q=5qR@)%6&r&jE zsK}(MMVkL@41LYnbQ)^8f3EKrc^WLWWM+Sdk(JC{1xL(yOj&72aJ^wRWyMcc4P^2; znRn=Ppu3YVKC06ay= zurS+EkP7n^D4Ls|BsAQ`EZ9QQ<~PGLE3|`16z%eCGaJ;hH`%n9AF+~bAp zVx@DkVN7Knx&G=5=Ht56J_7j!lo)}eZ$7Z3Q(bk+aOlzEOekL7adrN+$w|e@oJ9~O z<4&^{^`e-ZI3f+o)@D|KSSZ0CeOx7*rJPPJ*ecbFuQaK_0cxbnxgdh9sHu)s{wg$(yVm zim9|LW&AdnCAzS%Zj-Z?sm}j|*gfw7=$ie?G(V_oF@=X(Dl|9qvaCTjw*SnfRlTrp z*z8P&CoNwrtRI6@OsjXHd;xNt(YikkUeAoTrb>!HR3Ty*37L2aS%pU@?2GQHjVvsh z;I;Q(KZt4<*>4Y1k9CO6O&>@(ecDPv#MUY__5VOR>yh!YwLp-k7&6sBf6k8+_i}aq z@*lWjImsAnnmAYC!kIG!+VN%4+0@YiMYlScK;gJP`Y%BG8P5776wr)c(k(lm(LC&vcuiI!WIi^n|#GmY1y-> zEsqAq3$mLEv{;^!^n#1)%0^+u+Wz+KA2TEOCA>KNyP3BY<9l|0IVg(Gj?RyAw4*ye z=eg$DciE1&5b)x^CQ{VwO!k=;q(?3K@%j z6%;vh3a9yLyu55&n7n-}(kGs+*3f)^+}XO1&|xe~M;u@Ah;)C&>-}`oWx$^2^S^oc zIsQWrKLhLk@bFLYXp}K?SYI8f+#8@_`^3?Xu;TL`pPmxlR>w&34&T+X!K{$At?+w$ z+bX@xI@zr`x%W=?0Uai5NXJ?woGGo|@24Q?Y+u9xUltvm?~gJ>J})reuq9gtsO{UO zEuZ%{KCS=b;xEVE!!Bw#`1%OU%9shW^aYu_`g%ATdnfYw*c)ofo;Zm9`XIKg3DwrY zPl1OT_DS&>+#bvJdQ0uiM&{%F&XIR;cehq${l%@lef#kS+~n=#S%*Bi-9si~BH-I0 z>jqhLeYq)$mci~1V29rQgKZNy_ycCc_a&GaSPj{14v*jx1KoQO#lPv<_5K_k{Z?g7 z^hAVy=<`;!_5SkR^+S`-TlUubQS{a~r-|;%_v>38_+Ui$^Og!?3PUtUs;@?_f6wn` zbZ0gFzTca+u_8ir+@jy*SVu`ZS{L_aHqkIC7$97a_3xlGq@St`Q0NBt!Q>Fdu?BiQ zCFn8&9HjaIu{2RW`pJBD;_$F7qRHHaUDe{EbxzOkdti-9i|!W#^geb)C-f2ayRrO9 zM03ppp}JxQn#Gi#K{7tXgQ`b%17)5WsXClD@VTS(&SA8M*10W=QLEh>jMueYS{R3_ z$}Dkknv6J8CMbOM5qFi1{!cH>e1wkB&x8k8=%(!y@7es(pvQVUdR4l@ecK;2PjyK6 z3gUlfBhSxe!z>fNK~s3o<3l;HsyN8{=DlhGv_lA+epU%in8arCx)ThRYr<^m088A; zddEmcGhF>eW~m&+8TC0?iXc0~pn-B0L>N%D#k3?{jiAL<1WvOw(4o!dhC%=~$1in8 zak07Df1sSkwTL16tw*As&`MTE#EeeTLdXq@kQZ%P>Bmx8H zCus!B0@FJ^Qe@-A2J`qdS%wiMzd5;}*+eDzlQX6=p^V zwmotu3|0T_t;1r#875X6m8OS|i~YiFJcjhUWLEPtol<^CfTJo=4F&_?Zds#C4xCt! zj4X#wJyNqE2#qLw90OH>bsVkHlN7sf zrFCxAh$%@itfEL~C9@3isH8+!lDtK_jy!HpSZK<8}>ea|90(+ zF?J70nxkPzthx91GYmrXZbc9Pj*0s2s7ZS zXM%FL(4O0-!9QvMqz(Dj0sSt908NQg82NY2*{=OhdeR{3MLkYVWQ@dy!7XvrPKbbT z5N3c*i*hC7pNVrxh(Ux;>Ai5CE?IsEf1LfeG$nqe*;+J3neQ#NmXbo^NsNg~7UKYx zG|GC3>+-5b!U55Ns^lDZR%$>dYyo+FJg8(fmj?}?V4A&z z8-;69qj<)vliv5v`2xFw$i%@VACApcjEH5Ss8-^__U7m(n%V6`v;w=50=H(DbU91c zkE*)5n5hS<)?6Q-+pV*MRf(o^%CqSNJM+K9Q6zVnIWi;u6m$A9M}$Hw z1M)DoHQ-oMh)}sr5#G~EJO?k?LA0*j0mfqVu-YTR)QH=5^&W@+FkW1aDcx1@Y=;|3 z2#+jRZ9?mmR9yLEDem(e7v7aW3`NM*nQ>6lG<+^&K1(dM!KqS(T6opb>i0)YPpTXR zXo@q**o~`*1hRIs;p0_S2f9=$Mx=O1Wl(dthrGQ!!lXhY=x1{ZpS!(YnG2p%gPvR7 zSkjQvC_qU;Dt`SV4}f~t`L&KI;pv(JoZj~gQokOr-?jvflewd`?7n|-Gh=4sdoGYe{uOv@WvuEf7$eU3@#2c zhsR@7sw6Au*T?G{-T?^@u&1h2KjC$;{>94BD7JL}K2g+dHfN417PF3!xrk`|p%e@S#b5(r6b7`WG`^muI4GRtn zLO@SXM7LmiY`JYBu_fIkXs}rfgW{g0m*ki^9R$=3E9MXo$r+Rv87FE9b#Nyb9NBL9 z8Wq3bzCyMwh@&?=IP$e+qk+^K69~ffLW5kmY`sw*p;%jIK0~U-5hD{2J zUNJ2>zhpqJ&*35$MiX2#`9Sp>m@5(#Y%xXJ&;*U{ zPj>0?neXKaD%AOu2zIC>AvX=Kiefm^Wq{al7ooyB!iFkk$Js^d&We#mr}0 zw7kydq&892a-K8+?wx%bb}-66FoUUQ9hz4K%i9vh`x_U=c&=Qv>QYxi>pM?Z#?9yR zl_fM@BA^oT4kG4GmH)yguYO->i69-dMA;f-OF0KZ{g^=pBwVCi2%Y|pdnNGtfGqbDi&GD%FLJ z<1BuT=8BJ-By@!Afmz|S6j&|fcGd~omBW*N@v81I)i_W#QJD@d4CIha*bEeqadEV5 zXyuTdj{z4xk;1L_!~Z32Gn>;Vq&(I+CsmBJ&be~Zt}aAk9h^V|XvPC*XsoQ8STrT_ zhNON3;@QG26)!mwtqSG|tPHTMCLnL%YLS>_>(}XTJ+Y~}g|n_8nmkWWW;^{%o3r}@ z+olyqe*olyh(!b0qfnsSz%3$0Yc1)9_6YiM%8nYS6q}N5%k!vqk}Rj4iWqt_`%?~a zeCiZHQhVi|0)0gEkTk`;wTy$h7-o?;`;Ci|4gEM5*^gnEoarX6EQdfMq5psT> zqMP*TDi|*Mu$Ge*G#^a{M@BXTn}AFS+^wu8irSAK-P1*=4y3eC?g+soA>||Eq2oHo zasP=FORR-Uxy^9y_*0M{kpCD}{172*04Jw>-=qxMpu)Q5D@_SNgKVRi9_O1GooZU2 z+;-u7IbZ#hfopMXt0ClB6gh$=wpC~C%{5s@dCf*4vhW7X-p19mEQ6aO7b2D|%pQuS z0f#`$9@NL9_v9+RUmF=!iOM%D!=_5-IKoEm&3ikVvb~$4hKeL3cQ$%)WA%+vz@MYj zSB5rZJG@LM&Z|}iJBGm`n9i^EQHVF}Cp(y_6fmkYD;pSka`>^RPSh9St;JJk>}^?V zmV0)5Kd@ ze@)T{GcO0b#le<6f7psf>9(Jr?#BEE2mmTf@?1Vt!IOV28En&*z}T_%XNWKVmT09H z^k*Ev0IpN=|N^ISb}|WOhQmJI!K&7r=K0r#v>J7tqNg;=%yMLAH_a z(DI()idu8~gJMPGz5b2q9lc_4IlblR-fhw?^X>`mNLppV)#9O5vg?rfW5@6;IceWN zcSQ=T1yZgmp7l4!b-2sfT4wzYeht3l%6C#(Yh;-u2TU)~S3Ah=LtIVHkn=8A+)S9G z96#JWvVOzr;x@|y1{|8x%t+mf+E#g&nJ_upr$dSLin4)&JD$w<&dn9<%lYg{@8V#8E2_=)UZ^b5ti~=;8-M}*;$(m zRfrh%0D}MZRt1zt$TO@u;)%j`jL((P8s^DrbhKF&QBJf25OW40`f!E;o%Og!hf~JB z2pc_98Z|ZjA-}}c@ft=Zc{JYc6AbD&U+$s))I6_pY6O(ChR-l((VH_R_8y@}Jt=O^ z1=UEF%wN%VwsnL~7LYz;f!M4t%jw`P-<}wHMu2Y3w$F2R;Gf}aZep^sl1Z~%H=O!Q zwB(wwD`{;jX1fMYYim_gO}6m}nO4!u)~==^UqA+b2j{R)Yif5VfK(mZl+$DT&KFMH zH!We2vW!gL*toBmFlBO|vJ0hDie&S)K9}P5* z4|r@MH<~NVdptU>u>3b`up8rr?rFx^dxo3SDpC8DW8hD?U@T%6am(}K_x7l&?H6W; zbvep7#j3{yT!V=Q!kz^BH$@H$dO+eB`eT%OY=6<_x2WA&9Tc)xGmF*4J&1IJddbJb~01)>bz;$Q;n?3x^fhd zOcHHJRQbq>*#GD-AxH>&k?au8t3`Q{j9KPpvNh4bvCG^jf3WK3hER}Qe`8%lYN>$r z(Qj`d4qnssZs|7AruyUYQ}LzmO>yIqcN~vA*SzytDFIa;vcL^YQo+2c>beON1ZIwZ z4EEiB1wrZ2r%~KM*z3TxSLqZ(iYIm{tvmQ7$g^8yX*e2sGKdzYuG%Xv!y*p ziw>D5&xSc=upjA-8(*7nm#g1PF_`Y$V-`wH5_ z20%Qzge;Bk7OL_A0IjLMIk5U*G`&|uahT)U(EjoAm%~b1Zqr=XHZ@#R&!)lpSBb7I zR7)L$9i7W&iub>w`&J9>4Q*v7F-}wjg0g)Jx0*znOArp(_d{7#oo~6rKn><4l2G=IlQS2Bb-e%Ze^NH^*nItZVpMjsZ;84 z25wDr5c70|GyY2_fu7Y}q;qvhVeYq!(_0a3G%d|k_#Fp~39JEY^bX=7Z<+Wa#ZaVi zIz-F^`ubzI2B>~v(c3Pj0!`$+i$k^g59bh6rzgdyIs5glrUi`c zyNmm+GLWwP1{QUQNmPyZcdH?AyWyL@>x0|FUs`AQ`$q>ASNpoI6ei*Ac@QYb994xc zZQ#l^S)Ctf(E)uX-HsOc;$n8Msc4(D-x>B-w>dJ%L;ignp@6MC7i3Rxgz6s!v3sfi z`=F~8bsYJ~04mR$wII+htWJP7cCnQ$ZCzftklgziKUms}um)s29MLv563UtGb5YSSEYL>evez{p zYfy67lNhjxR|}Oc>R}2+%x_($Xs)hV$|~-F)=QFAsJH| zd|c@!{om7#E8Spzsu9)Ar-lXD8uw2q{p8GDBhGh-DR!^L1B9twvh{_goz^UC33^V9 zvh;A${ktaWCyvgyD;=Nr*S#;0mSq)(|6f^P1Ty@G$^skP|45vQ+tS!YkT{RMWd}sC9G^atzw@)c{9zI@LEwK{;`?Sx6Sa0_c=MPYlrv;8%qC@f zcW=+c*vEqRUwyp{SwHVp`EYu@%sBeIPQ?dJn%NiL>2hLB@@00ui{36AteuSUIoa6g zc)NTIX+Uo*RVA-I+#g(WP)~P2-@Z4zJzf=kx-2Pt zSq&mGH35%;$&0r~*t42HbGjLzSWP*PJ3lm@pp4U7HZMUd@p*n(Bl>!?*;wo7+RD6mtNI>4lleY4xahN8z^BFUfvs7qgbu2X z7V07c4!47k3UW267w(Fd7~}!zq}Nt2L=vHcX_^bF@#%Hh)x)x1fEdET)zaC+lDb`G zXmGMS_2Y0kqGs))%_Q7!y&1b5+W8yxgPdeNJ%_lgo|Cn=^*A2d1d^;VkFgCu1nJno z1GH6wEP+l@L^)o>q7r?AhaxCNXm)w>?-B0n2NBSj(d3Tf323{wok@Q6*S!db%$*`* zGC;9OCImCjsZLoY8~cuamuc@@x69?<{KZZv ztSUJ&wRYKFI}ng`oP*))evs6iBBnBo8O$9rg{_a@+KYS(n=5_p)_VkxILo^1sE;+~ zYi!V$Q^wF~qVoQ+Ec^a;1|X{I+e|62?UWkx@o7oKsC%65pZt44C@COzYh#oYt_eefr!g z(~#&sZ4~6w8isj-gp0`$_neDQybbWu&m?tVC5Yk~!b@l!whU=+g!WP=m*1Y>(Lvtj>OK-c}6 zufzC`^uO%g-uwlkBLD@3^+pN*W31`L>5e-sB6XlVH{Kbq94$o$^+xNTLvC~1yB%q6CljNTExW}<8rT8?H4J4LK$Qa+LCYy4b$KS# z)bg{nJH%`CYR&Ly9TbK$E%ZsJOVE_CQ@qA*Cd7)$){io0yXc4rV* zHaL1INPI)m;}7&w8bwDsy(1yCUG-159uM^7h-R>v;NrBID4RyLa3)NvpSo?usw&rd zFy^W?L!?S-b?}Su0#^M|LgXeOCW(b+L&dUJvb2>K#p>yPlMH_s8WoermnNLfq9&b3 zcWB`_amHbUmv@9U>TQK=D1{RfW1F?~XP2YGTJ+g7Kp&zCv_@FRIjTmzX_rxaNYb?s z0Cp=BK?G@N{YN=_oj7ZRLdRz(=v*s^6eD3|YxNdD>wXp01$|V#0bL?hKLgrTuzl*3 zo<;vS{|dxtLbRd4TLL>$csM9u_V;bh--7wSZ^@|_2lukjxOi%rMtx06bg`fAOgD2> ze6u(L+L@-D*)neTY1UFtd6;jDe-p}IAuz1~c@Njxt(1@D7I&WETPM`G2BP$xMufhO zG8>;bEQ+Q%OhO6Cl&i^&1YCXQ8lmn`42*!RD`VVO8 zPaQer&9yd)W`p+0sj!Hu4+KUW4kOo;q!Z3NOj%Y6U*h1u^s>e)Rz+BphoF2#{&hUw zaSu6K6Io8qt#>l|MZ2QSJPXz(M#GLp^} z%3}@t586XnlWJ6BxcHUOQ}jKRtV1m}OSQ4q)Q}cu2Z%{6SDjA7G%0IuFs~ zkA!eJ;YnlKlUfSv%o6?-KB_-3ZO||up|T4huE6FfY$Xh#<4D%SJp}*GMO&}xhl)r0 z@9>d*Lb)5FCC7DKlKzjO5TDN0T1B(?qi!C+W)*se$`6{Wi9FvcW=u(U;177XXphr#t-17iwZb5Ryuf5s}A3 zoBM+inKBN9SUnQV5m^ey#pi6=Z>x}q=`U%if9dB-e{RH1r!){=a4u)akWkZQoLhcg zio>A?&_55kqpc9xPZGM=br>*n&x6bIS+2<2{0l(MJo#%toZSCY2noE$EE|f6cTPxT z@UP1xxDF}NM1(w+*G`*}aB;m*e?(+Hmzqb)BD=scTnNPv7<-yZAi>)phu&Ro*Icb}GGTwjY zlY0({GX_*1l1oXjU!&to;^>+qYzvKKpXrCXNvu))p|2L>`O8d5M(tVo^Qw~J&5ii) zq7$Y)4mTP*E3DD;+|liRPGM4YOA~o+ywT?gNF<@2OJQ*fj(lxLK~0)T=Q|C^1sg!8 zJnKAnqde~}jDe8uWF}4bIKi4QxWzE>l*6Bt2r=iYq3VjROXlK-?MHu0aI@|bm;a(9 zk~)r)ym|S~sQfFAgu*mc54*;BeOfz|iw{l-KINJrDwBfGV{(T&)$$}1a@G1<>q(}( z9#{5lH8xfShGn(mMvwB8I;IQn8HYC}0@)59FloCT!jo9lreut>uT&HkkwS(XlY~1r zvex2dSAG%oM9^!h&*PiyiD8K~MEqh`2Gg<9X`Nd_;8%1d6sah&XEB7IvVYd@6B@=G zlAG8H>1ET4q?nSYFi3LATK(`zZS=|d%|{=1e5cH<82CULzPD$jl=f0TVDJ5 z@{~;Zu?F{8+w!WTKvTaUdP zE13#Nts%car*ev~ygVD#$`U9pJtHv8(uk~eS>mh;LFG08Nb-OSMJY8C#ttXpPDNne zwxpXLf_vLR;qP~JfjFw#9w(!ElU<1W_)`JifL7=R4P>_Y`9rZ3DPnPsbncIN^<+n! zzs62yRSZF{x>Uz@XHgtMO|5n$*}x-#e$S}C7NbsCdU0PKd@^jeZ5Q2!JRWw`IdgZx zvM$LQPm(Y&pjIe(W=53&R00&=&<3A6FHi3a<`IGyl7y%ytALK)KPg&ICRgk+cD9rs z1c+6olrk8-_X$4jI~9ZR6Rf!%8QCBbgA%&Obhrl>m=HVW8~~9pdL0h+U%b6#Y~?_= zr5$GMFee>mI$=&a%t?ot@r0R~nVGS}%+#R{Gcz+YPwuNv`evm2<7$44WtCl9mP=c< zY^hf5_0aPxWlmgX2;+$zfs8!x6I6;9htBo{;A*WsKGrQr8&wE>8zkDyt)h=(&O2HF z1vdjb%cPI(WkVDCm}rM5zRI5 zmcMgAK@O9>NV02%Q{`&FGKQ+HD&B?P^jJwDUxyVY44PYNbnnu4v5J>4jN~q$9{T^Jw{kSB(xtY^-x0 ze}1bs8bqok;r*y4qw~;7-?C^Ji>xs4Av&1FWLIPq;M}Q`E;HkpYrJ?$8^CCXWL>ta zx`gvLLahfdiDji~x|$i^!sSr6|57>M;V=AchxC15~PngojM6`4m`GR!Y>%^=-bZssJ&))eAU07o5XkqnrU z?~@&Gf4~@3&cZKt5RY?*n!*$=2(PW8%2W^Wu}~L@*m!0nijko(m1vGNoJBe-Y3%yV zl`n;Nu5|jvf-lAHPe4I+X+Xb6-T|^gy_%zCC-tK`vB;%#lj)b-RbY2}r z3p2=yU2STzh73huXv(u06kMFXRSGd>(jOuJr=_5W$F`uE*xMWb4e@TP2fquBDUJL! zd*YSXttbypp|7ZLCbnNjLe*vdHiJw!2^rd%9Ne5Dx-3(#p|s*Ou6Eo1=b~*QjduZH;HIv@dA;Qv=P%N@|g1-dn1e8ayQ0< z1J)-oj%ZBMEiIi?es%tiqPZoS!oFxdVTQ4o*1OY|eT_FO0T>r8Ap!#{0kZQGpm7Jr zeGw&i^l6Wp6B1hVX-E`Wwctib2DRVo&!REM^CmSp6jSwW;RFBW7VVz=a>-%F@raZ%&;ZX zC-;h|m+M2HiJzfX84FRr9B5itc7dFz4%f}TeDwpJ@OKM;UZYNIQp1~_uOg$haGWbb z;BYlE-c=DznrRz0q6*i44|nN_tR!lt)vB@`__eWE^fcA_UDdu~uCJfAR3leNo)o8B z&a=SYsW~;;d#h`#xH&m%RLqHup!)Mvx&2CohPV`7&F8DFugZ-BsvK&ysf@O2WRW8;HM! zk7t7>HvoG^b7tKK&n|2P#@iZpmviy_xxc#E6!-f zOka+(Jz3AHmNi69gxp}f26=%v0re04t*PwN`Hha8IEnw$+2Uez=hDvZMw~o)3JXl6 z&wd|5)spHM`;huiOYxs}99PPGvzglZ#3x>(0uwu5!%*&MTEDgU4pXaj`hPwJo6+YwMplsZjIXQ5fKlNHC;vx>nC9mD871yh1%(!y(=i^b`Xuk- zcVp691k((|o~0xSa?3|opRU0D`#u}@>;l1Xi8HLB@cQ|eBF5DLzG6US=VLbvLpZ905 z(OK%kN3C-iQMYnqKFPv%z0IsQwd9;Sotv5zv*Eu&QX*odO~7$c_Rk%xg3|rC{}R_wz4|1eLG&v}VCgs+|COLIxxVcU(EfA(LFRnZ&yf>q ztKDe#GDR%lfIYRE5a`yPSQ#5i9;|I09WGhyk63VFtOvms#fOudsVLS?>UST<#Rp(; zI*tw-Z39rqe^=lMR}$eApH}U<`9<*D3)vU-Dz;+(+8!EpL;$cGRmSG-*;e6w#(zOxX?LcYrkiw^vu?97V(eZH$;B<2;j&${>V*~?m}SMh)*z-H|qJW%ys2>oR7>I zV2_T(avbp0*{AVc5pp1&IN=>h?BsP0W8uM-eLp)wvnWqG^Wm4|tBx<#)CC4H$y6cr zJB{`z0yds`1ZaX&I#vqAMu`M+qmE)^-{l(D6*w$Ep5}7p1)|4L__tMVU%YRcmN}dk{Z*KTHe8-F&{lxknqzFlmRdK#J1+u=rI82(-^;j~X4F zCtyc~H`Nya4*cg1U&HJLCVSQYBnXyUGs|3U*I$MfBceMBYCIWi(l#UJaw=ySu1unq z4&Wyp7$w*ul=jpY*y=W&<=44G7c&4O!?J2VJx=Dgqm}kgC)?ADT#ZN*>Do3=r}>gB zzykIpFr-tEC$u~WSeT!?yaq^(+T~|7G+MB{$^qOhiU2kp%<## znVc$nH`y%+Z2-)Ki>_i&z9~gR9AmScdy7SR72Z6i1HGis1>sH?6gwQa^b52lMzWSo z9KtUO)$(fv``-ngg#-=ctOalHH_$=b2O*|H|G+t1RIWiCgybm&rU@b8g15mjiT+XH zaR;iNpg;@;Z})}c#0g}_nq5PV1#j=>-^al0safw*Qm02misr;$87l2230w~>!B*lo z+rq*5*CFuFa0ZiLhNKu1kd71SmmI5KQjTmn;Gq zRVEE@c}5VV&?c~Y+LC$}?IbdC6A^E+b09JdRL2nsNDl0TYP+!z&+6J^D4 zdYwyw;K`>AT?O=HMe4*7>{b6=1lC4O-O=gtqInU8S86ziR3!kSRgOMTPK%ea5Z5Al4Od^0g&uEbAG!SGI9T#vL z%yMtwWX{V-GotoS%d`FyG9>3S+2f}XaGeIcwXQxiJ zAVtppbuQXD0RCb+#3Q&w80s2%x=NY9)7NgMrPIfWA}xg53=lwx=BY?_3E?likuSOp z|IHsi3N5}T6g$It2VZdWLvQ-+2C@tJ`*02Ejo)21T7vjr=Yu{ore5}fm1x~=bqerK zb_yjG_%Yj&8}4z?UUk{f>DR$#SWi2;L5xr?zd2BHpLfypymlkyy>3VrqE_A6JdGIi z&#aQ1de2Wk?p@jz3$Jc>|J=V$t-GCtvvMgMAMx4toS3v5+ZNc+W5i=Amdu@@Ip1NV z40Z{kJ-q9Pt)+6kdM(>(nXjp#$*GNE0&~|^o9o~n{FCq^$1AllnRFlO`Hn9Zd*ak$(gyaCBRYzs6nCuPi3X?lS4DYXCOfpp(FJdJa89bGZH{H)~m;5WGN) zA~~%KhqR$NpFJQ=%3=Y|mjIN6&g_Sa(*1!NinFSjyL|^d#F5QfjF&;T#jBAsHhRIR zwy?B%`JG1}hGKj_nlUzWb=vv2nk)#3zrH|B zXJS77JMD_~f2dutasD4*k8ka&hO7g)nX5N5M%KF!msAFAXXk%eZ9@tVUdJl97-ED6 zV@T?PPb?syz(=N%Tx7a%ax--Ex7HJhI=tZdS)v^Mgz57L46F6MDB|l3OvmSKI99-S zz?a0d)g008W$cRo^CFkw+l=ZCn%b=CF^UxU^5yeWu&@e_!NKol%l9L4>|WsWHZ<0@ zXF65j{V6m!a_)FzFtA&H|NZSd$aIryv-Rza^`D{`#;Y&hZeicu^|wC=bgg>C-Sh`+E*@rS*le zn)gdI?W>pCHp`^qNC2eEBtQ8Mi6rfX5vnUYL~R==*dQ~%HQcitgXr?EK}*p4qsI5+ zaUf1j<y6dtu^*2k9N;$jOr|TMVu%Uc%F48NB+bess1`!*YJqV>tar9uD7#ifqYf0@!x0 zVcP`XB-ZK~5{i@Jhyw}uoP1@68*_siqWU{*wX;G>JBX4bg75>io!y9{rT{88DbH5g zZrGhxkZB59UG^XD^$?P+aUU-}f=F-XB9nP^1_6tnxX>1U{|3KmfZlP_kZ5mS6L5;N zlN(<1O7n350&!QbDXhxHOW zV>BxMu-}kumWiNYTS5b?$|j%sCXVM;UpUrkcsa@*EG;6o#Wd|aGFm)v=UbDp)WWl5 zeDdw})rQdJtOER5ieM9Cwy?{uW&;!%bk;9IX5vpS0P!0YLC(3XP1dsrB}+r6nPl(Z z{paR(PvXnv<@-BI)Q;mXvQ+$dv*n%E;lKI827}NK#>Ea!^K%YcJ5mN*sla&WbXRNF z;Frm*UzxW|;7F^)Z#?U}LbnL)yxeul!x?H&qJnM3`7w%=wph}Ra+>qZrx=H97CRp| zaqcRkkLsbV)!FVM!*jUPIMM9E+fz(L5P|U7s@T>DaV`EW{x9wh_9m?q_NDQ=1Skk@~6IWHX zmisX5A8neqlH&qjVt$uT1qKfIylAw}9Qh2Z;|Ib2;xP2;kLM!W- zRK=8q2H{xyg@me0e>jXC4F!L130+(JvieS$9uNpXU2fI_2FyD_2aPcyh-ivc$gFTa zB0<_2q-E{65&W`CenSqQcxkKlW}533FpE4R&EfIZcCI1cYLfjo<@;0lnpmVO87`#L zvGO(SL{^o?~imVmm@OXbE50+qY=nvNnFFD%f@3hBGD-a^fN9CwVOj{0_MYcck zpc>Ko+qWF7Qh318+ox~e`)(!<%2YS4fpZ)%YJpF~XrXW3L5Y=5 zy*40k_a{#~8i-uo0aLj9MA1{2e?7vPCg)z(4=?Jt=Tux=ySCs=IQTOIPxIg4%&i;W zX7cPw8e*o>P1t3RSVztbY!scDI2-;@vo&xI#|pay_F&`}*TpJ|7uFSLx*POzgFd?9 zMj@gFcokA=U$8CqaG!JgR2V;fVU|}ubeq4Z2Q@cHu)Z#C8D#2|=Z|5lT|((+q5tT2 z{$<9!evHwJ5VU%^7olw1q+?o(kJu@I10CWM8tFY_Rf`bTIFfc>EekFL zntxMHVsr_A(pcK5T9>N%+AeLns8kqW8Ux4t;pJ(KK1JOhhC^?eMR(TBDy)DzZ9n_E zGX_T5+~7pJpAe z+#}n0INS}v(xGB-fV8_7qTe~DruRXmZ2fl~*R!tZ?DsQW>0%j5DP4WH3h$8npK%X(#0o_|)v%68e|^=^f)9?fxYQlu)8iHukWiy1872>nDl zvBi4rh#|>pw$GW23_)0eEmZSDVl#e@vFOiR&@@zLOmtu8LGX+==Lr!X&$`M3a8n@f ziP;>kUTj=vqtyMqnKtHu`dcdk#$S3O>|65}%c)+lW@O2NFRv7mdZe70SmTpmoSwNZ{T=+i5xOgdq?;I(JIv8pXn zx~aUgDv@(m$zwuvn0Fpkl!8X6{E-&OH$9-x(cgs@{kxSYoLYpjm{nJH#nsSz+%;I& zq26rsm{2-RR^ZA`B;4^tK{bJGtAGu}7tx60*YDId3`2y4bZ?rQB^`p1NsXAU5$l3&Gk>Mxf`5i?@phc?#;HY?Qf_Ta zSiST&05Rw0)W%Na3v9QcG2ofq)DFTYYIuoWJs(Zx_dtLT3!{~PjZJ$cM;1l6n`ob> zR5|z!3Cn?f48_{&Yg9fl@%Z zhoLW?$i{mg(&lRKK9(<}c>I=V)X=w(9m%TuH$@51IzCOe_tqB;Dd8&Y1X`Px!~fE( zBLjg~4$%e@hzXPjvlCe^>sBp86!;{^b$COsvD}u88dACPgFgobX$-gZGv0%G5YrN z<>2xXb5&ZGgvvG2hd?U1esui}@5+YXn-O{CfkUrxg)Z86CzBUHB^knHE#YAm@X)D+ z#!*|oA~9;-#uj^L%vtN`c5#jcZxen3tGT6)Hu^A?=~#K_$MvfZT(6djS2Jx4guY|4 zGs4oE?+MZD>>wyu4^S&^265admSH78=H%3dlhDsWiuO75JL`(`W~%b^6ac9gKlL*= z&vF<{8VZ=EN?ERA?FjF@Q8t``wu|#9=4s^w2WWv0dp}%KDe-J|2D5D8UouLzubAx6 zdrDs}phc1s!S$E9noY|>Qf0dnHK}w-2YOzrT%k;{^hY9Toa;{5Q*5$F(zrPgY;S0yutnYjUISDi!9iLjVI(YYpI8Ob!B|yq z5;A6}Ggu1H=8xUV-H$SN3@v5zO4itEEg6fEMr9S{B>Bd%qoKCrGU-!%C9HvwRX1>B zR`cyCgi#dixSPPFpk%Zc9FjeuED-6cih5aB}3Yg`QA8me*9yg@b zgCiVOd^fki%VW1UbJ85rjKXYH$p=iR!<(4&ms-GGR<>4h|2pkc(+JMArKOc8Tiaqc z?sWuEl=;#%-4M@7+EKWTJE1&zrl@y0LX+O_Ng9cwEY77{-%sXs9byE+kEBZmkz))GH{(idgiuRy1!tFh!>AhVnh1t;jM!oV3X7 zH@DX1Z0;o+bg~(UA22sMm&Ml4*zvK!cAAC0PE$x%!z*xo_J=6uerA*790_h_Zu}^B zP4SuOBy&y^V(c8nQ^|DBbewi3?{jhBK0=#)=e>OviCJ`T53k&1KnCalnpD4TMft>M z(yX1t%m-|-!4ZvOlDft6+D-egWO3a;>5|QO&$C)j7U{Y?fI0_BQ%FRrFwYTSC?pL? zPmLIIc~v8BRDp1AXm0@EY*L<#%^~==hSCX_SVLXjlhH!bc3>(oqL$H^zgW26GMB(G zs&Luse)Na#&qdaNbbU32dHzqMN{<=qr@Q4u2lYXI^?um)AEl+(vn!V}f6_ILZlNjJ z!~YqpJ$Cc`6ggc-iia(K^zjP)Cu}LbauIj^JQ)j?!`lt{pcQL-=z02#IhR1=S%*5f zjeH{1P~NB$ML%vi^Fl5`J)Dw5NrZXd)o@t?7NBg}lRkSFqcg<8$4#apIT7mFS(s z(5@7V^1Rf`H;>k|oGfX6c7n-6@?QFskqANB@3eDFJ+4W6*sLm(*@nW|jL`JvA&N)= zCGVGHy2+0^@B*vMa$iJVmmveK}nw&Mm>d20~v>5DZ+SD zT#@;!>k#kY%fm_U59>Ub%=$h*nXXrvyqb99x+qMnuNB<$_Isfp=$oY(d^nV)r&>v5 zsvEGij@^t*3If8~hxnat-AeSH7Z!9jCdS zWatNJbY4F`t0qCfqAUm2WnIz4BpsRN^UA|yqRoYQp1XSa8c zkXrfKWb!8u324JZM=5W6kJ7`c;RH?dmZ!_5waJGr$EG+*#2EaWWyGott2nadKI(zg zo}Pt1>Mj_x#0$t)k;-1`0+q7mGxiU)n`POKi9;Fec5pjd)pfEL3Kh{?uLdWDk?waE zusq{qIgrngYT*`G4O2zhd4OX^OMF(*%<%vpvGYH+mE`t2+ z;^j?G-+Uyige}++ZWNo-wLLzKcvfsq$@sqZmDPlW=;@iXoTTMN%}y_3kTSQsc%Rw9 zEP@4M0>H95orUP>+S}da-9=xP&#^cb^e9W!qiD4o;F+3qFdJQbolbXM>XHq9%KhCG z)2_1cv>U7FuhPf`B1K?bQexDny=Kx1*;!E<9oV=$r29LOhBtg-&5QKsjMb^ip#Cx) zi@aDjX1>kY_X=ioT$s%<+=hV0Ou&5X8k}OtxL^my2k7GHONvJ37o#mPV4$)*VD6e* zRGVhUH(7 zs~Hu7QxaS2P%&Z_(;%}LW}8v(Ao7TtTw7{Z_6U-(gFWK$@!(>2xtxEdKSjBM`?i4M zoln#{B1Wf8)L8A4KL)odoLnVm*T&KKgJeAiZ%?n~<076Vebtt|9?uP3F2hGD*ipNr zmaiR9-bzi4Z{v@~vhs*=;f6`en!3A_^5;@xRbQLzIbAa%R4egvJ$soM&wGEfAI^1L zQ)#VNkh``pLN>|u_psE?Pu5ysIERPlo|Ri!7#ww5jy zxqQCNatk)#AAMNJfN{WPb*0jPx>30NGkE*9z%O1}K{HK>! z{~pF;!_T`mt&^aC0g9ge#NF=*WiHL?QNnrhHv6pu2*DrI$?KI1CXg?F1OgHa>fe`i?X@36zI!aN~mZRwTuJ+JEBhwqIJ`YPugYzEe z4H=0_gx@;tI8P5PxUbe`f^lQGz0sDtYM1*V5(4Dn)nD#G2 z_D+TMpOA0H=B%@F8Ts;Q>)^for(@2ftecxVRBT25n!f+eYZ_(?77>eB%b2yf-5niY zfxr0SAS)f*Zb+SZGc;|67ix(2v|9nZdii@es)`?DY3PLtCCX%>3#3Tx3^8a_XwA~CgKc6dHthH3kiutLzsJX4kF*_y z%k3FRPEX4%nd$N`FTN|GRm+&xM!L=yW7Y-0?Z3feZfJYF&KcO8)7)~GAsE;~9mi#t zdH|QYf?gf1H4w~e(t@2Q(_?f}BjskM#TpOEk}5PRCA)zRQ@b6lb_LSlge4@(lkZQ^ zXf(G_=QDS-&wKgbFjpCS+4i!IV7N7TNW*{r4vC%7o-0`}Ev1{?(86uL=Ll_+h+yuw zv+HHn;xtji;Vwmn{jtrYuo#Ws{X?3rn2S5;jXCJ9fjR>J6`$ZTT{4@zxnO1&;l&q;Y)n&}!yyy#BXqDP|QV;b`^CrIcr+);V`tSiR{2!l=(pv@L zGyIAkS2Y@H(x2cAO(6S}LA2~;7>G)ruWCO2>Zdb?Ol^gjJrc%Y2?W$oTUz<5 zM!Y3-Mc6vLu0S--^by(}-?bAu92tsKj~FV>mbo`Ij(bta2Xboa<;&P#w5=S}5-O zHtsXA4x6*fyw|q@%i-x(LB&SRd6>S`Wn$4(-a1L|^&3^rrC*;5!!`V$$b8j=F8`eb z^gm>~vjG5H|2y0Lf^RK`t_^r~hw+hyt&T{Y&<+v^F5~LVc&ktBf)r=gUxx_Myrbpk z<&$?hTg;$TVQHBN^2m>Wp3YiCm9VQrQ#=y;rLzr|O7#0i?d;)T$=B`ePV4!b?vC}- zZ%ohU?(s^XYI5oX6HZFV!O2S`1omuwLkW>)y`8hUcO_qYF3+dqsNUc32hX(lkNkyUn^h$UqkOeE#tF_CH;L}AV>A4@MPB{Gl@X2r7ix|Kdy^8o zFd6GeXE(b^trL`D!Q-n%;Nvv*JDc2|&o$qV)2A)pyDi@iFW$@8Q1Djo4zD*C*hud@ zp=|S4KOVh4&81(xu6|J6|%PCxx~n?8nI>e z74C)+YNJXH$qD`oVNrF^Fti?~%!=&S5RY1wX5wS;Wi+n{sO~#AJAo_QN@gMG>j-50 zV>mW@TQ#nKk0M zTpji-#1LZ{cT%4$CQKY)t}keYZNq{5B-F3d>dqUzUd*)F?@bleVh@hMVKco@yGX9H z6ZJUOVlV`wke_yQKET%#SK-~qO_6$l3)t*MaYX{V1@rFriaHkUhvVD4M8>yiLAsA- z)#GkwvJl}bK&^s&=}YfeK(bZ@m$JA?Y`DaQIixwnN1KD zN0n|BO4@N@l` z^+cl1&M5aVIYr<}^3x*Q17fC@;yl_T!~qgI@N~o7JlEl4G>p^!O!*V{f_86bg7r@y zZQo5lYT+OS{ryjJOeWI<-7n->WJ|I&@@(_-kjZ!N5`z1mP7%Cw5^z8YFWN2h%7h8p zmu;Zx7;(E9Q}j2n*=YT9PK=nkqH7A%_4VaV9qvB*3h3;so4k>27n2nkthnxnopidK} zjM*4kB;+YScj78zviIn(Y%r&v)}=)9KWSAP;i{Sj?1#Yzx30q}?1qeHMLo6f0fo=$ z2n?>t^dW8pnCWO7Yfo8|GQrgf`R;*}I5EG>X0a73$GS|%lH0607sO;Zij|`*lkLfJ z3e*Yv?~S~m*mm9J|Bgprw$L;D|)2-&caNJgd~^Plr( zLy?-t8<+PUZUh;@e~`3hg5OZ6|8l}aC?5aNpHb$7)q;HTDQK&u_6o5K?d>@c)2oA>aCFi*oV7h@sj z?)KF8J|5x~#~qD0DkJVsl8|5qO?f7Q2`OXJBbYtBV#mhbK)4>QfkNKV4&N17sdPR| zX3_OXjQ(KTx72;KN6r-gY}AjorF;0v7$JRS2gj|4m)^v@{7ya!e|C9|MD#A+G11(FUc2)zOd9f_=FOY&1@Yvu6f z3zpy@M;@69;&s(Q4jM(cD^sG44ZvScD~EIw7Z{8$uVJTZEB@^&s&Ct9{pzH8jez25 z%NlW$8)H{!#}acCroQdjrrQ@aq5QFT-(1s6D-EMR40cal6@X7JZH>eJn#4Fd74HSy zNCAKSGLVz$|4hjwCKK%)$~6>+xGFp_C7eXtRHN4llw9$x?aouF@1sojP*YBRarSj4 zlLFU{Z1kHjQ4E-oOD|UmI?f#?Sp2~kmV^EK*X5soL^4=_QC1MTou&*AKb*dKX0$yJ#{XGvziO`-ytX7~XnJnAx z3mq+l6?*4pMx?hqQ-_jpk}F)5t0nExeZhJd!j5P-ca}Q~ah}n&yIe-}=d7hweSP4f zlOg4Cm5$-Svd!5_RwBVJxM$1GC7sOmWUDdv?1$y-p#J4(c4UX-{IwRrzu<`_N2umB z=+O9!i@qFAp7hwL+X*%4{s2+k(HD;1Uqk_m?+(SFvK7g0<+l1dTMKBOl)A=Y_iwR3 zTZd=JGIEHK%<8%=^~2DM5zcAMspg(S*LFl5M%FU4K{aCl31ZjcgS6wsmqQ#^tZzxGNY7i;a&oDAtR_B>zw_NCIPyt$j zqsfHU&j{CEd_CS6|ML72Kox(gwwy$AQ?Pxv0v^ zejq+YM_9_)jpkH+m&6&n{(4=lTJkp zhyWrD7TKjaImsX)Cj!3Ty4|V8tAz>F9(?I_nTZ!{-HW>pQQ=zAta=h|X!c41?&6V{ zt7TM5?BbS~ea_+#1=d+?5IC<8V+oOjjtE_l9PAW0rCd<0uCv<`C*{YfE4A^sKoQUI zu2gbl4{w@h^sjMdgzQhTM#&qky1*vA>f;)4lhQar=?Uhg?wZy?SsiDd$6CXSco5f5Om~p3>1sy)YtCz$ zTMc0%JIOlwt14T!pm~*2r^{n5_tf0(3?+2r8L@g(vWXwv9wfem^5jW&nxK6rohhQN z^(eJInD*1p?&NbkPKnBvVQ+IYOW7LSxiN1t8Zq#wi&kQg)Z{c~qpAo=q#b$*7~fwjL06AC9jPv1DP#jfN-0a7$1~NmXb^{u zWtDk3>x4ZMYQ`7uz^BM9X_iex0xiLzdQxtdmM`FWMy1KQQUqSqasJn;h{&cxusu%3 z9@9~eRm&XTh=>b~q4^+1)HY7v7;0w({C zId}=4&}YGf`D9-9TZ)=Ip$yGjzu|2sjWLVa340e&ao6(LKs4zeJ}~8aSjEJ?G{cw6 z%CMlnBpj4Y+U;w;{)4kY5#pH9XPvY|xcdk8451%&;>QT}6Z1sEHN#kmgVW*ozV>Jr z3!X%&1q&@sXNT;e zBbI=p_wZ15gf>UrZ1ap=xr^s68gvIF!?9zO5{6r$%08U94J}JWAS-5bC)8$Q4kqQN zpoeCdwXKKcV`(X5Rf{r0uC!_7MgEF#CZ3PA(P0G-ZSX#)3AD9Y@~E6*P>F9NH~hC< z5DG;F$M7@`0zuA(bn@YNt9PL%dqyYMO13={UhZrm``y``GsR%MBf`g?bAsUtB;rP~ zp%l2sFuGuzQMOe~UdN)0yA64ygN9Xg4l(lgCqRo30a1I`3|@ zDyvh;zo}*QRFYn>L%J$w7DO>S^?}KcBw1tGt5{!iIS`zXTIA|cqRR+ASe(Y3Z;&)! zeu0Ad0c>5dP?}-|57l$vG(j4P(&*UPjRbt*?4hGUUdg7-sl_Ezdy*#QQjU*=yc_bq zol?cWd1RO{Z~e^J^vC@lU2Tr5Jk{G%JW84=YmY*UTd7o%1F z)Z4bLkol&H;Slt!RVxv04dvCic5c|fIQScPkmBW%prw$n zqdCPZ-ms7#!XG9*Uxp}RlA%FRx7{o@`kL#4<; z&Q+^l^d*0EOa)!rakSN(I*?ol%b9Y}q=^WIDxV>{HVp zUF@k5gX#7>E(|B!*&~*#Yu2! zX|HtF401|v&i2m5z&t*>U8r>-++s+@y5u_4t;bO z5v+In0A2oypJ^NX@Es-^y_Xt3oSM2P*307^Dnx<7!bbWHKjdkX7|o{v{_E^_H*aef zR|qLT-Mv%``Eq7jlfxt@8?(4f)hm6}PnrP0_C=SHBF=^YGLe zYAfz}Y?-X#SM53VF6{9`2q@p&|_fdV4 zyX0w+^OttUzj3Xrn(sIwPo|h~hZVkDf`&_ShdW|9hF(QO^#ny1;H)NJk zYt2Q+1s9z8LlxI)cvI(w>VxSmF~ zH-Z;#?TWmgu)dj76Vya@(XOzx;fW(Qw4!($j!W#J1N^u{pLn?J0%6KaO=2DMC1vb^ zPZTftotA2&i+Z|)fOAE)1uI3t8+wU@y9spZR*efqfb1o-R*a2~|L#G{(e zN|(FSYGyfxcw0sFuXy&2R<>8JwNC%FFaDlU#@g~klVC)0`9>q=F3C5StcfKqFkhnQ z4F&x|TrU#I$m`g!bhBc}u7TJ*Qx)MSByaKjL4`s{v~t(2I#EeEbAozH`t$BYv5@qq zQElBXO224KM{;at4LzmI$1##4EHOZdkE_rG1AIexeoGFEZeMm16{stvj5#{JzPyw~ zS4Pqqiah&H2byAdtVYtbUalA*D_NI=kgv?YBdr8u`=cusC8ApG>dIS?|Ee7`ki&y0 zPjz|>zwTxgf|5wnM4JzR{btdWWb%`Vb2FFP&k=pxSRCz;q0Ie(SlbzC?U(NU+OH$8 z#-kS~1%KBqEYHR5E>Us$m7iwEmo?`_Oa5@jHl#($d@aW2S53{+>UWAAc{f4Q#S9W$ zpW{mn?RpAfHCX7qA6zMuxg570jIJ1xsyltiWEv*dbsQt7I`otpe4ou$*$*c?x1_lpd|c92=Gi4g9n2VF+10R!a5I^DvXD z{vNJtgBE{d7*qxD*Rsjs2!|fi2mCd7A*26 znHV_{YXLaf7yum101jeSHg*OU4i+{RVm1IX12ZQx%Xf^OgMkge#>D)6y$~@kFXR6= zijk9rtQ*#a4j%nj_EOdJ@Q znHZRvm^c`P#SEF4S(vyuIjQ--xBp7a*3c4;g^Bb3uQB+)Oox?=frE>M0{|dq{Z4}Y zKS{7K0~lDCIoO%MQ)FS_Vq@jt_D3B=pS-rE(? zUTn^%|NZm(QR)fE)()x70Mzx(3nOC&%#&`XM zLO|5DS4?e<#O2!}9hvXokXcz)zDP@qrNXz}P$SN65# z6l9aj05)IDKp9DJ-a1S+oYudmBs{p)3y5c3+ixeTA!1(8JT^>hY|pjWr=3P2t2no?ab%#ppzhD3KSv5``Xx=70G+?%a+*ujLHg_C4uqz`A+QwX`e`E}_wc7j zdgC43gE0UPJw&5CK7>L9Hzd;#gOWtgVD4RxFO50E#_zI~bZs_|^(%u~;nDFKia+63=;F(u(^I$=Hw%~?h3)TN(>>PqbYl0}< zwr%6JZQHhO+x^k^X0 zgToZgGnfU{S2!RgQV-H7jP529T3@9mVujKGmG4qel`C#F+KCEeqv>5>t8fTBjeZb; zt8Co~+5 z0fGE=ZJm%$JX|%|_Jv}5dfbxpKPv{k=ky|>T20*%N}|ISgLfuINo|mgiFC+$leCK` z2HXMIb!^udBU)$mUW_j=4f5E3pjaMBf^2{>+ERlz^cBj?+)-fagwCXu(5#8y7O>mg z65vN5x@MXlMnOJIUj*ds$ot^oJW1HV+PYTeGuQxgdbBW@YR(sF%R)HsG-NKQNAekuAqjInhD8+w?LeQ;+eId+H zGWxswpOf%K=fyAsCe;_MPZoKEbkm(DJN4~VY|pm_kMfd@q{<|C_4wC6FQsC*@;>th zCD#OiY{nzQ!cs+=H|;v`wSXDJ9#W{u0eY7_;>?{jDYEamgS^7O#agxC!n<8X8wPTI z99YvTu48JC=&dm=4ML!74vbl`%B1)*0~SoXA@4tM zAe9j}$OY(IV%F!`yZ`y;d#iPBgI)}_(V6(gpb*nhV5|6hRC*rCrKp$GhQTV9G!`Ql zR95|I$o@ie(4t=tW9D=eTNVw^pX{ey__W*il0y$7ya$$dgVIg|{|)mBIUn2pZ(t@& zEd%utkVhhB&T5(lvA#f@6d5_=~xcfHzoDidX z7bcsv;TW|TS~*$Ro84N6Y&nLg#~w|N-5$R3f6kAjE2)b#B}5j`@6>2!t*hfnD_ zB7G+9{Lh3S;kATeelm@(@q$VsW$th>PIVO!&;u;erJm?B$LqaH|ZkO)iVGD zXXC0@*WjaKd8QYk;+QB7iF@p`#!o%d*Zz7=Z3R5`$7a~@H)dJAF2`mC!hWCcTIAix zCKM}DP>}~DCW0}2@b6mKAspmf92a7_WDf_Qxq)qVuQ4-8)VvO97cii!SWtgec5SCd zv7ywSaKE-Z>p;YIfMK`I!!{8{y7)yu;bZZ$9L=Ow^>gi-gSQl=`|} z=Q$VstPo|qL&m-uFm`k7NizNjGcOY+`{oYHQsi+9BgCjkn-&>qNEw}ne528gq9En2I)xyxywnpN(Cszm?vj9FA2-Z^1kkkVxLAA z`VeM?Lnrhp7oTU*$*c!^@6snf1_t?xFnIB`PEq+ATUEf5fc$>$%>xA1-l#<~xpmP6(?xFh}@H{c!?yZAb`P-#0?0B{kD;G=l zRU!Q$hG4BK%Pg$8d1qSwV+2kE0>jB~^~sQ8gzzLZ=9xAWxsah!XLW8*tUL_XPiCW! zRV@n6k$rH!SwEhKF$@ARJ#}B56gByZrRWC+e_3^p}l@Z9Yhg#_B z#XEt`qLU-sZjN&KrJxuUN^PzF(cQA0j!(d^*W=@qOjR0&h-mV7 zU7arjecLkU^X|LlR72gIM^-{&gfd)pJ#mS}Ngm!)nIzp%R$%+g@=>&)93RaFCH3Iw zaS{XOdsd7qNV-uK-B7pFRiscbs2I$4nFqA_94~!C3toQf44fMEfY` z`b8rR)uw+Vx!WI-2I@knCbOuJI>|%v2P3yMi+LA3C?9F@$LWT8R&FNNs<@)paa5xU z85{Z5mr~?b3qz1^wGhxvs7gtb5|}IMgBI=eu4KS~_AeiW1O6l`xFN)rG-|L`E3}Z> znLTv9yd{lZgGa-1ybyFZL|=oO2c}o*DxU@H=MS<;6aze}hY$n9h=WpS@Auo_K4oxK zE0bsUq|wkaE{+d~NnsbwhUGofKrmF<9BnVB$1@YBU!>}+u5-@-9T;isLPjJOUBQeV5kA3RR zS|v@OSo`{exkjMMXXHTpqRF*wnR_tX+Lt1ObEX0NC`Gu}HJPxnD0cB8dqdHoByos7 z?4Wj*QsZhe8h!GOy8WDGC{N@>D}uje@+zLHFDy ze(K(2L>gE%BqZ(vjVYEIJw?;j|@3ueoJ0pzHfIfrUv{h>Rxz+1_DaJJ`o@_Wd;K zGb=~HYEID%wDw2IIN(r$7|eKV%4Wg)dU}^4*-={4HZmtq4|SDKo{_`@fRK>5=$Hyo zieeQL$9Tem2cTbE9Y6Ju1hhQ(L_%ROkCsCoMhaskw6fl_hv?a{rkrHR7;VcS`Mk&Y0&dc?+_pa1yr^!D#s|N14)7-sd}1kL*J`v{rrY<;>o~vSKA4l+}J=+(t92!Z_3H7<2=C# zmgMPi#z(>rBDxf4nz$w_0 zwj{qA6Z@&DRF#g`O>_ksMt-3!B z5e79!icB(>hS7~6N@c-YgI#X*f)6p=l&-wwLlzG=xJHK5vL+*XX3{XG#3*zkoXb41 z8Jz|^8K(_kY{PJ^m=C@~6dBzQg7Oe#i;a_&VJu`+ue_HR>ldvJhT0bdEe1Au88A&gMa~a!O3k%R>p}9$1QMAs^5vtWdr}p2?WgRm0-F7|E^%BGwO)eFgMfuk; zPCw;J8zdAfID0hZWClAm3`x2$Am@qs&@N!)bA0?dQiDKpu3g1767to?=F5I|g~>&F zv2%1r-Oy)(IxmpUT_WiF+d)+d#;#vCm;r9|?ubVF$43y)Xp4<|zw{oUw;keWoTjpQ z`02i9BxeDAIsCmY@zg1x9?iWX);`uqDNSh54{g96w@}4?tQe@UspIqCYx{g?y(f40 zQ>Ml`n&lo}@Lqv5nNV^h*woEUBe_C6(ogkb$To&cy%-L>YaXh;N;7&lB0ct|SA=mc z6YY6}^<_mU$K8{JALRuyHDRo!RzgNelTKrxxxvu83Tc|1jJlPN+EpmFc>OyIz^X88 zfsO@r6M4hxPS78~+~^h?bH1Hgwvo(np$BR?qNvH+6%2xOu#!wR;${wen_;vb0%B)u z-2_zs#n!0OPyxph2Sx3J(`MVv0 zog3KpehT}!S~7hhspphe>ifXMGjy(8&|{G zLzWc5nceG(M*pT}CtAA?h`8_ziawr18c8i*x0K%>C_EGMvc3Jj8Tq&_J)+a*L1C?EB@3GZ`lfaTB=GqAE|T64yd5H+wO*yChHUO*I3KB@ zlNRB3IOOe!%?=3ACC%g5w?8`2Jt-~~7~Q0a5w~%WAKsbFU>510hD}!|f(gvQ_A74J zWht}1YJh)wd^f?B!)1a++`gA-Nk{|e*^pax9&b?Bv0SS0PQ6=HZhAhjrd)?GGNnjLE*uY$+cnh7+k{ZQs2U-l9DvzY zO~Pel*S<7bZfd^Z?L5wnB2MznJB)XKg}uPF-@XQf6laVH53)B}{gxzm(e~c29hg6# ztxxBod4#y$FO1lIavR+4hg&8G&SVk;*V?r$&W+BTpJx&~*kX^n1TV0`Rn#F)?pf!( zmlYN=<8!IHag5w2qB`nH{85Q3*|a}W>8sjQL*eU}c+N;+XYcQMuh%Ru{{{KzKMhy0 zlu;dZZ4lZgwqLQ&;Ls(h10y7l8|-)twue2aqF0=eqXUF|(E*AiZibtK&!|$C(ntx< zm%^7$levGo-UOuZjd3n#^jK8u7;CA&_x#Wm?g5m+Z^sg^2|I#&h)E4`x*FA|1+*cI z`fXf_ZTvkc-`W~OG;*-K*0$8>_dd9*ACzHSPR+86v(AT=I{Av`{-Y62{KSNZLpSg= z+rU=Zc+-Jwchi>5v?+c%U5&YY@M5D$_Ziq(cPsqqH;>ipS>VP!4?RNhOp1|9IU_u( zXjJ~i*WW(Dla#6b0*lFJ*Xt@T*zVwUx}v-1FNh>FDRa`^>JbDGVgDHM+lbcR z3L1zNng8p|G2(ZC@Y!i)C=hM83m@=%xTROl8aP{BfSrc3;G1o_E-y4)!_{21btY*!f7Y+eRi|l2s8gsn zJ94z-Wv~ae*iCpJzK0!{#TtxPC+X~{IGvOj=#d|FSfM>l8ckeSGK2GCBB|D;19dP> zG<2p-H?pc~Oqqb8Gpn^$8!+3Gr&p>g*QXwbOpolGpf=K{ck0sgO&TYUy&cR;Z7g>t zX10uqkB1Wlu<1t`Nj*2&FMJv{*DrcfrVGq$lxhdIj=k4DEt@f!iZlCBYXLUYax&!s z*KJyV4W5_V!!52G)Kyn=GP82ppJ3ClVH;I7I_oRSMKe~rQQ zn(_yB)R<4tv5u^XkWgeGhSJSgu#FJAG_Ty{s)NQxo1)N(l+C*~JH-4(Pa+Cx;IxFFW#Uann3g=0Al zRfX&X>?O*p%u<(9d7=w!UL7mG4DRpZCGs-Jch<--7ggLzuqfQv4m? zSGv^RuJ3CZDzkqg2#?Ko?JaWwVWBn-zz5&&=WFUdpYO-vX6o(#M5CMTA5?*MxYMIY z0spdlpHx-yeLnCE*ShWQ^n7g|e}7Nf+5UR=_8niY-uQZbJ`C9lba;Q>+o+Gaxu1jQ z>(lN2e7*cKz?@epfd z3vVFC4qw(fu7p~_%oKMB?6J0m_)b#E55z?&F-#i_zQDFW?b!d*+xdLI@`Te){xzvT z)n8!ii`j)ZhE9x5e_s;ixJ3Xe9^O82au-3VP)YMA)y)_EqZAvY3+QR;csQDI!Zg#1 z*kOZ)y?>vt=I?W7fzIDUh(dzG&#dWTmjz#X92<;Hpt{q*>H!Sz-ggZ-Hq)ol=^y@k zzq=mJgy`qsGgne7aO51WCuZ+(WfuHFN$0d0qmBVT4UZ zEwI|*g{w9;LuEJ@9&S66lK0^>_SKa+BxeVVBunZ{n_@K@5|cfplw!>g4=0QcoBzrwjakC5`&8|7>yZqwT3g~ zX9uNAgJAiZo_ll{qRs7Gw)>uRry zi9bp(z8-&dmE|;HncIpvTf=anYds#+%{MuE+aYGe-s$!=Xdl$w>YqM06J4U=o|5O6 zzrb5>WMDFvIdE~`bRx!FQLTg=t@TLFYdUBv_5>#`vxbmSB7GGsNZg4i0BVE#i5fgo z<)zQz#g|r1A+Zmf9P_6Tz@|FYqqD!`g_w0bOh3NH>)BoL7x|mQ@Jt64$x_Mg%zx z;Kl~biX35xpVW4PLg$X3X2US3j8t(96>XbbfU>Awit3O&QPEv?cY>ZPZ}{!l}hM zp-_eGES8mHdiu)DnkSkK$}v^~ej^UA91rd2Rw$ec7`PSkRJm8vntv>cLzu0r#@EVN zhE$#0ZRqrT8F@l=2tGQdfGErjf58O~Nlc=6T*Q;pX=S3tU`b;z9Z62ci`04;wQblA zmNShg&Vn+ztcpggwT+#Cp(K?nd)O;~+C$%JLeQ0KjUPR5`}X5g-ohXk!nN3rF5Otd zzdG@O>(MwNJ_r?Mw8{@N43754z%glafFg{Y5zJH3U@CXwNrNeROup~s62HHPHjUUd za0!*&N*kJ+${Cr9ds)|m)ANzf$H8UNMgu)zm>Utpf`>!=P*nC0O2T|Z1%}M#JtPc2 zB>nwQKw>q77v}X3Y-c?jO&yA=+fba;In3n zwjW+<1`zJgCOo%1UUa%MUqOfljjXMXNw=VthT@9`Y&qaowV zRC3r)l1PK+;PdHj<8t|cuE0)hwp%+9)By&a0t3G(E>qKZuWzwwTJsxmqCxYy06o+arV`2AaTZa0X_jVscA3pHM ziT>yEBIRb7f`%h11NQl+M2*idbBMYRB`<3?Ne_JbJ#~Z8o;R(<*NX#N)v5iK^rffk zb&9%lt|so-6YGWWXLcBN*s5sY!Fkf-%CvTg5}En~$-*QLh=Fmn$ZV=BKh0|n;M;#7GK*bq1WD^(E1G&lkg}FlupD2T<3|4p zOcBz%^e*6VHq>SFd_5A5)yXh{ohy>6#XE(~KWQVb2pjReR_;&Z@z|<(QHe*lHGnqk z!o^~byl_0$T&$fgfaC>za9&(8a_BaaMkC!H8ul&xF^4EV0vY?5`CouLZZ%@ywXv?y zQj2E|J-1wHt*iZ9HEzB}dBabtw)^twJw6<<-qcVI)mw%fZ$u#nJqq(Bfm!z7SRr7; z6AVu@pb`ieSoNt^c|=suksk8+#o{kpVc#_B$1u-;a~vV8gptF0k#)4d7&-kGyoep( zQM50zEe>MN(YO6FTQc1C-65ot&_x zgaE0D1L9yM?4Kxp7>E;c2fk=xwcLjk}0P_pJFW97m%2;W`7GASt3L(ME#kO(Pd zxRmwk5yH8M^oSD%%Yixa}b78qcGqK8`r!>g?c<$T&ttqctTgV|cOTyWem z@~hWFhOMTQ;n^ACnS2%yGLkw>psObh$-q^{M)T)Yl{R{O=A!9HaO2~NNi1O|0DUOS;= z)z%#YgI@dc1iZX=GqMQdMT2QkCv+N4<4jtIl~~#}qv@Z4fqcW`wFeVpe!IAT1Y7*sD(tcA!fosu?>+LwxgW zTm%^VW-^r0N@r`8=yu(&6=J~f2E=1W6>5taF}x?Xku1;V-43XT_0iIosBNK>s*BlO zPQ)RL*onIB_%OMy5K0_n<>7%{t$cMuS3r07;N|9rd!9e^Z1`H~ri(4{SRhuvYooKZ zytABnj^24m?IPqw4vg0TSxwbUwsu5KZk5a-)d*hBKmz_{Kj-#$^CXbp>uiaAC;z&Y zmXs*a(MZgoc`ZL^6{~SstDW&Af3L&^U)oCb46J(cGP=K_H^j9aLZ%YglH-a2kF9Ca zPeG`d8`fv8uZ8x28eFd}JIMLDrTO<(r+&v`$Q4Ia1<}4co?_JqHvz#Ce0icDgZO@B zu;qGRYyNrSu9Cvt(i4OBlzyu~rM@LRuoeF%zk6;AOOtg>1B&5^8WuAfG_t<`GQKuu zNGkC#IUzsrz%@|+T5LyWYi&RmjNVqD^A582FOJyo2~B#$ZiqYTU%kY<4@1R^n+Y;@ zvf%5h4v*FnO{7iw{slgGuh+WQyMy?~mAnIYboavR+VY2%-cEJh{_~1b)ly(Y;Ng#> zZaYewYOm7!RSj1oac*5IMy~Im&ReEgE)|PXl`A6=v7&6<)uzGcz0buf+?Aki+4A_^ z4DG_JGmc@l#mpA?R&)34%)yEL(a#LC?6c1raNb`Clor~^W$A{nT#;!tanf6D)EO8z z+s=w~lA6wcC=K`FJMMAq|8ySu?&ulbkEQ%%#%&^Sag{D%o7OU+KWdzeEY3<7)$K-H z#vMW_;nPa2%_5odU!E74_LfA=>aFgUFIL>Z`%5#F56Zh}F-y9lxVsnOch!da0 zb+ZNzva~!5B)jO@Pf6Mn?8ddKWav2>T?;H->8_@>xQ$Kpx)4;}$aoo|wJFl6IT}Hx zkLkska*@e)30$QiVqR93=SNtFN@S+2t;)KFTF;KhiVpK3%19~GHg>WyMNPPvba?P?^B9}XaNnt#wxb@eQVsUf7Njs0*a(i9WBAK z>u$lGOYr**F`!(4LflSSvp9SWkBz)`r z>NbG+pu$~NWx#W)0t7lfq6Wcnv5Gq2u1O%$F_rxibSvdA!?^oTR(yj6p zLQHQ_P}F)|o&hvYP#4ssk$S0Hi{HoCxoZF&3F$2aPp*T<+;>z-jY88s7-A;?|_ z7SwC1*l4xc1Gg9FWo*Od`m`=sHs zVi7i%pt@u^(6Fl7#D5mE?AwmD5r;$en?-Jcp66KieE1$vk8hv^sVud2UQv%9tNF@? z@p{%(jZlJjl7`$Xj910~QfWlmlr?0o&sk7R4cCjM|Pt)X4e2qSLUQN}|*uYXEgxuqIBc1H)qQ2Q91% z?sRQv)sRgl(4mE^|DJeW9&(&E;%*SPQ6L8oJ1xz;7Wt#Ewt5{WfSaoCJ2by(t$6YIv<71rWFd@w%lViO~5sm`7C51GS)fu#*1xgU0 zBS?#g4=XjC?EAdtr6L@n_7XBIK9{@b=r2>$On(I0u06(vsm&ZMbP;L?Hlv4I5~7iT zye-COD$ZAsCJdy8G`p7wO-Lcp5u0a}Ak8w!p`$=aj@CtCw_HqvVFrCB!I@q!-ynk^ z9@FIE7g017S4ssPro36Z$nqhq7Ne`8SD1?@WSQ<7;5Fe)oVg30Vhy{hsdQhA6}(5{ z^|^xr1h1LyXfWYVfhd$hWqUAf90NLoY?u(WVsYB(@Ihb6!*uD8fe*-eIO9302f}Fn z6eaWHJ1{(&u-f2e3cDz%y z|9v2IIl+d1vNFVGH?~IQ-N=Q!zS6@1PauQz-wc1f&1bC6z4EnMaMh4g!1gZ9M7tuq z)ZHI3;TZ`;>^wKQG*CK&7)5C<{j&o#J#0pPvp`YR$g>8 zTdOQh{9D+f1w*wRVgxH#%|xr2U`@)dGeY99O(#1=@F@e6{FIkt{jrh~BD5EL3;kx} zjnL0nXOQs{Bj2WPaqLY01-))lu=m9 zFw5CJ80pF6M&D6)n{;l}v$&60^O3g?je@ecaZ`O)Fco=dd!>yM&mAZZDum946Z%q)QtXL68sZX5-!ezU63JgU zJS-D#$>cUCXe4qd1-LV~=kJd!HgT*&rLrN~kWPrQL}*|H>Cr8CA+s3@2=iYi0hEYhbu3(susMksjS;((=!-(R}ti}tPD-_{D2_V zmSE>Huvno!IuKRLyLQ3BE4scB~&^ijg+EOM80~v0O8JfXe1Q6KiUDH|5s|d{c*T4C2Vv^JYG3 zK&O6;oDHFh&zhlwL2O#)P_lNoJAxcV@toNb0>@eGXE4vCmBV7j`opupHwbokeVatu z)Z)&%v%+hnf66Y-X}tXp3}D0?2lSD6St;MM0-39$PybHppS$mUASd8G7NEi0Ud6Ee zgHp`d*|TuHsJnaO!Ukt~Y(4a&Ur$U zwqhNRz0{sIx&^S)I_49C0R1l6)gWM-caFhOrojWFj^gkHP_eu(*eDFP}{`t5KhSDcts~a z#mI%XR4-UFW;xl)ZF$SE%9cAo+T#QQj)~eem3Ea{^!#Ze=J*dTnRLr|O||r9s@PU+ zW{Uch^zsvONidEH^Hq>Vcy$&<8K>GuBB#6JlR;8pb0^dcp}_;68vVdy9ePn z(u%|8khZ7(O4Q=a)=KJpNa6e^mMAejA{nP6uubwl(W9Wac557g1(t^ouZS>_4qFHAne@eKkvG zz4c2Iu9S^x)}AIw3P;P(l{3ALBb~m~_F3I;A~(2@xA?E64<22FP6SI&L^6CQ%4D(X z->uT2QFA1+U#YhwEZQ2zN@RP7d|nuI=vv}cdxvIKLT#Li%rK1eANbVY zu>V(;5Cil7pKZg;#?178)uH@DcU-kO{Dsq7-PGc#Rehe5M8%I&{_5TZtjZC6F0#LWeCP80eC+qePu(d(?LD{h zd4Ij&>;8Rzy9`AUr82=p-}tJ{B}pJdi{SxR@A*B|>t6YN+sx(d`IhYddCJAd(j8Gh zN(FruoPCeQ-}M#wsr>mIZT;)%4BNt;_ej6+1ZEy519~yZifAU-ORKgNC=U zfBBiq$6K!kwa!Qx%%9Tl3WxD_y88O}GtHOBTYA?mi^0*AWkwZ}d>p8E@A+F#FEE28sx+79ElV zWKApn?)!hg^jq9q1%3qX-7GJOS5HMpyCHt2_9GEs@QgA4*D)9URRaCBT|%|6ZiMrX zZfUE^@2#vw9q<4+o6zYrv|+@g=rD_U-SFUhn7Y?ccZC z-d^5QiyRNe$JyH4zrOD>K7w?FH{ZwtaC4JA6Mc0};eZpgMs)-cjbKem^cvuj40V_S zvuM(M0=HSeH64B@J0@H>qlBA;422go2{&D$LZP;Zkg+@+G5Qw}>gRt73^E*W!00HQ zO;Jt29rHD+1Nw=wckx3%xz=f9032FNQ>PpS^zs}gijLXzKOn=&&x-E<@+D7UhBIlJ zwz6zk`&>ndn4p+DvODwGljrLBpz1j{0X-(Tqr|z{Mfx={LNvw{{BdMLXEhnG*{}Xts+}4jS83ZCr zj&GNioPUJZ!^%F@(j_J;;f1FPpm_pufP3qKVK8pKV)<8?0L1wF$3Y>j<{GP*u-}>^ z3w%uSYF(esrEU1Qr2BettCrpzFZ zo8>m*fohMV%IXNIx+Kx8;G1vYNM!>uMn1aH&9-l$4+fxnL08LO8LB*X2h}18Vj;f; z3kRMaQD}EnxU?o|(dHkzojB^d&boROuIW7QaGoki56+9n?`Eq2U=z)OIcfxs9s@Fj z3JWV{Pb{!TNINbPgY03V0q9(o4R}DsRzhzpL1^b7X#UghM<2;I zys2%nw@aW^^p`88&k=<6?6$EXs2u{Rg%qJ)-GiE``Sde|WY`jQ z{Uw#A_BjAb&8=q{NUfvZKt+NuNszExYuzr*D`bZ-uF_%T166ac+4$<4!ZNMZ9=Q*$ z<)(K@1aYx|Sx!SwxLWmq>>svHr9*+ z0z|E8S|6aa?;S6oEW!Xi?G|xp&~mC%$Z*V2lPK5|w8QWwI2cg_LpYQstCnwyz^HylVks!_^Ag zywAtDHTVv)Bo~DwWgyT96B>Spn*4Uw<1L?Z6tsT20d23ks2gdv1X`?W>=O#Nc*8Pk zYg}d1LYCBl#*3X6Cg5Rz19k@+8Trq(zwF=#~i;yQF(i!=yT&t zwcl6EK?2U^P2?&ET;VG7w7HV8`C~>Q0S?5fR2c_Z5%=(q3XeRq+Bi(Lka#YAGz76~ z#7jwlB}XNf?ebCr7zk>j7H6hlWiyvFX~`dYJ}b8%j;cwJfhDA{fdIIj4XkGAG3A9Y zBr}?*MOIQ_55&IL^NRYk_6b@HbCryk?bMMlDcVWTheU+F4qoKpG7h5}ihk87Bsw@v zfyw8*k>J3dL$n@&v1ZIet*)Ej6R$ob# zs23>XrX5N$0Z^ZCO}CqXYnA4qxrz{}_!tw=&a2@hD}5L6PHWORfxNI?>`O1-Emfdw zpvT3ey?c^)0U%e-GmCOWwRIm-Ps%I2X*AL=BoZ7F4gZ4xl48w5kPT4CWKha;0}H^G z02~(3j+OxZAlW$5U2HE?f|>wh(34T)GchpT)phEuk%?GOr2@nKP z$%+}->2#8-{WvJK4F|*WSuC8c$%s)+z921l(Hs_xu?OtY|M+MzaGp}x*c~iGOe3Mn zKer|&=qK$HTQR;l44VJ8vYQ%9fuPQcUabT>m*L?>9Way|Lt(hE69>A z*teN}8kyge_PuH*!e!CUsB63BrG!fnE}}HUoX^Vi5U9@7|HjOO%kqrwIq7XPPV5OQR;ekIUNN6qCjBQi6#f6SyBwE9?X`-!*hulU;^ly0YwD;HMP^h2^fnxIv%d3 zp}E;EqQ7-_Z%coW{X)S8f}U%B5|!P_Vs zM+ZZHoCsboBPS8K64yGGnV7YDB(^|~-xEt969u&GwWZ3K<9u`18_{irtAsm5Peay# zc`SsV4zEJf!e(N?z&;-54}fb~gHnv@Ac~);NH8q%+SOIZbm)Sy*3OW)lBrhlQU4@3 z)3?&g2ea1Zsz~WZ#YEf7ebZ6D3vc8iH6vz%sf|Ck1M!OV7!4?04P&iuc?o9$CNB%ec?ofmj81YUP~7!@a)*uYz+KYVQymaBJ}^Nx>mTEzO$uT@P)b3kiL^ft&(sMIGT&O%EFNne&{qe#LpWqzsMGi$ve=UAL~@0Qe@^}p0onH5v@TgSTBCo z!YxRkO`&nSWXs4Qg0Ps05vt6gY9Uzpn^bU! z0Ca;PUF|Cr0nBov^yOrU9{BM3yvY+gA!5JzShOBymMZS6-941I4p<-A*fM)FcZ#8? zFrI=%MRRl-?z}YA+5S&iib$Em(fpK7k}{veSuaE)rRTSfo-2;f*KQ0d-N#jmL4)_^ z{2cd;anF=$XK`B~NvPSK){o+-UpkR;MVat`r_=Zxa8#JrD%5@fEwZ0Xf$IlNeA+cX z+{JI`R=GV;CTTSUyO2M%f=gzefa#j4h_X5Q5JRe!CdChu4F7N~TT-VT6Dqc@jm}Sa zdTh-sjFt0mN$s5vwrGFalkSWZI2__KskC~0zO@p5N`QR0o!kNsB~0w5b0P{uoe|!~TlMd|iyN~^Uu3mOS7-q{ z8UdmE<=>hi+w7&W1;gHmf*+b5BMg!n+B%EzetVH$qRy@hWn#P4JTGj^45XAimn*P^ zD{G1YT=w}k-d*NVR~0ZPH^B-ebWnaG&L3?b(-Mpo_ThRuy9vcRb>!?MhR*6elqj@BX*{v=B`3Uw@{~Mc&f4oZ_esRI#G*JSIgpa5^*)yXG_DZJb_pzUI)* z>{g&~XB?$@>uc4|xmjVs@y0guVgiB3tTQl?%UxCXUXPhJVwGKI)o(7lP zHeQQuvr^Bw4!Nai!t_K1smA6^tyjj7z;tFUuUB8~H+yt9O51+Ue|b^c5?p`lneve* z-Tvv>^y0ab-q1k)&Fj=#9r|mku7S+Q;Jz>ai}&|Xd8acDAI+!*j$q`>}+O#_lCvM zU^*a{vmoj%gQH266%ox&y?Z4qbAe5MVd`dSGiBOP*xI2ac2MVRwRG~mpVP9P+L6}0 zv&)*#JJH$hL}XJ{WvsRhVd85|)D=Rc(7H;lnD@zV&e?smCoPfNA#7x*@|h0mQHmvL z6E0LKM{+s@b|2ohO=>7mF&%@bL~+o=TCb^9|H?AHN(eW}`YG%>kN>xxvM%41o`#D> zj~#ZRXy&0lLM)ghZF8wA8X~h6L9b)cN!ik&G#zQzr8HVUu5;1p4@b4q+ER8nd}?6F z{Mj1giEvk~Ol}Gk$%sO+@U}M5c*SIR$MOk@(D~Y<8bMhjA?aKLE25{a%jp{39Fm=G zxZJ%UN#%DE0($N7{l0Tmyg8&CeZL%4h(Ba>KckM3z+7(x9f*YHcqW1zn9)dbS*C~; zVaS=86<>-~1rO=U>yc&k+K^)v#A1iV(vM8HOtlLmN_T!pXI~t!`NBRqKt`Dypfmfs z_BQyOb*)}P>=^Tz*`C7j%&1T%0dnX`yJ6j?w{U@t-B0@+)@4*j_xovqd}AUT+y7wf z9AkS4+kIWzwpMN1w(YLkwr$(C&40OSuG+TkcJ03Bd^tPWIoV$(PbM>&Oh!+B_uSX@ z?-5tenS2m!Ki1~2xW;L>-?784nFC{Gi<_HL{G=-T?`;-3l607Z|2%^*#=l6BcQPdP zL5;6Afz#?Fzy8_%p0q^u98k+4E|Oip{e_BKU0ciUrePi_i|o?MWlcHU)>UL?A{R)0Gd^h@{DDI^kXL!`JDg}`1;|FeFE_Im zPMPI&8uadJ8nlc<^4RDXY~4i9v^TJ{sX<1B1-w6enV#e-{o2CoSba`Z=MDC$+Lbq8b#ZmY)xwHMhBdL3wSg3}`4b2FLsqGx<~uJd%{|2Mkx{djl9as2#)T2EkvLf*p5z=fFc&k<yzv3^znTXuYeT`?8VGm+b^Qu z?Tw2=m6n8k+P+k1DmjJvjiT2I`8%su(Zo< z!92oR<%rN*C$|kqT_(k%kc&&Kg-+%-w?ln6_kq_6J)~mdIHBF*l9{ha5R^UsOa_@e zT`REMy_z+3?BAgLVWF3gy=k>#pJs9X2ZgRY)Y51c|EHwIL67oTX-}VN3iP-r0{-0M zj%b9W2P}4=fW^Ta-UgZAn1H`J#+n*rBR={xrE$6al4Y4THRkulT*@}Htj}H2Z3*(& zO2-3k@_m|loBQ+M(?I=Mj{5|Tk(LJZzUNLgAyqiEU?S!Xei>nR`e68jTcKfpFyo-TS(>q-pQ&FUVRJGP25A=le7pZ!{m=i^4-Xq( z>3#oZe|R__gx@bW?XxQnPbhwavp-k2H&jW$$OpmFE&ucjwWqoN8#rz6n(&26`z^c% z!u40bNZwN5*gIUWw=gvusp9Azhj==~av*$`wIf_Vw>0%g zmK?2kv)T1RVwxr&<2weimX-;k(2mx)a4nqdis$=}@wMGi)QXFY95V41Zh3iotzVQ* zzgvdP_U=C6)lU_n_6G@v%(T?884fGP#n#!cj29=Yt&`1ZZS9ySY3`?Q~jiEK>v8tL6^B)RRQG5Cw86p=WY3gm* z`;~t^@G99@&oQQg#mA_pO&*0~H!1pNQtHyGPzEp0viBQqccR#C@)CM-m5hScxC%K1 zKB<;fgz2jQ=d*b89C+b9R(Gk!$1Bf9QTMpm+&Kep}GGhhk21hQE?7VlUDeA#EUAW4)c<1Wu(Yw$eN(0{4Rit_*nl2X~*aYc2kz0+q6M6kJf51Vb!&4&Ch8u8ludo7@C3uWT&Aqg#1?=>+!Eb;1MIY}V&Vu@Cfbu|(+2Wyv`AH{Km_I`(B5;j-=0b>UBDfeZ zzr#Qg8L=WOiazxLNut>BR~Mm>%}d*LO}*W9w{?dV5ocqe?2-7WB%YRt7A*N zFB`7X+$bwM)nA!{=i)hHD2-^Ipcc97#(Myn{z0WBnS)WZLEi&swDkx^=}`h&q2NVU z)NZj|`zH+RdIpmUyle`vUPM#-9UX0+KGp)sAWMx`SnEU6EbL^>Foj1=sPi~j zL)*>fW296t%?;8(N!Jw0fcJZzy6C6H`C@L!DMU{*g~R$3g`c_rc7x6((txt~Xs{fv z+Or?cH{CK7*(=W*d;9@sGJ~*G>31+?D~g!OTbjqO>kzJ0CTX26V0u~a-9a-%-Bn6< zKiHq8tp&WUCJjS}R-O9t97adOHW23W&lc}cKSNMV`ezmUK$+JAX^KaJj>AHAtFo7V zvY8*qlVvOoxIsxHbBLG~O|sOz9(MW~XnKcn@9I3C!`_6@>O^VN4J5s8Wegr;eVG>l z8%ob_IBEIFJdD-ee%L|Aj7lu~5zJf8lslM_aG(!jRexo;&nm+#@^U3ewAyV9#LN`-LW;3&orWeX= zm~Qt_+$OhCgfX=SC`?V!6_5L}bWweoQ2g3f^3;Z%d|cWcho~`3wukTy^`%^91Uw4U z6URv}9YX`^hYhD5LIeq)c_**mgOq16yEBlGSgh%?>3#^>ueKQKmJhoy^faY0g&iVT zBt}8aUQ!|`T{-JENlRH>q4x{DFqh0|)0Fv)t8cpfSb-Qh9+|(R36944N-C zd+jFPAs@~z?VXWO2u>b%MPBSD#wCH|%TuY&AJuf}C-p*AE-l)^eD9lwGWG3>ha!DW zKKcc`Gr|W(w~(Sws3#fJb>_>XpyW|O8XonnbEC7-7N&mb{t9Bo4T3Q5?8o+DZmCn0 zH)96dRk@h5C7RJVq|!==YUK(c<4!)t7Vs#sWTpPJ`+*_MK`)OAmis9Y9DHK+!o)gp zSkFTR-iA-wfjd?YV)3^q=noaFx zpLwrDu#FKA;Zzs1WGRw6Ba~xz)_PVtBRBh+9-2Hj_0Lh;@A_d08R)&01y7L|3z;pB zL~jih!7dZjrwyR0F051oBXLJ0m(`#J=>mW~+^CyV$QB5Je#3<`Pzz{NSz*JhP zG@wr)r@V2%b%%9DFd>>wFN7->rx7#qM@Ah??8Vfv7*j;52{r*2Fi72a(S4i7=WtLq z*}{$9?g@PjZe{ot9Z{Y8s!Tyzny@!BxfN;v#Eu&u|A^ne1P0dEDba`ca7stL^oG4! z8?BfEW#;eD54Ik*$49K=MSn3)y(cI1cZVSvG+umlMBwk=xAxjKRBeXMa_v>H*}Z9Z zKZoUBTR7dadDzuD`5^?Xw6#LazD&7amrqi>YIkfQE`!ecqUT*?;OiwTq37Cr-VhVt zshY!95dxfBO^$Z?<2k^xWefBtcMTC7jxdRIb8Be_yG+KWnMMW0+ z5W8mv$WfYm)F*asyV2H6YQ?^I4?Nz%$-DJKPRZ1ztq9*W5JX});&fY4P2$%%qUI!> zWv~!vpRJ1Fu6dQ_{!PfT2%jMTrOF)ZqzxtyeCkvCE2a4IHYb7Q0W@SpQQuc3AO4>H zym|O;ZNBl?NEDc%sYHW<1-+q^SU>4HBZ7th(-IOGlqn- zD=9$n_1q8Veqo<1iyNbRvBg4T#1|c$c6wdpg+hj+N#>G!R=hh#6AobT7gapmn+G5I=Ss3)UrlMGzg{FF0X?)mRVOB|Wa!TfY=?HcRAq>2@d!Qg zWx<<4zoP12c6Gi|@gO=`E#KQbc(}#02QcFXR*ZJd!F1>xXNg-)LgiT*wyHABFYQS9 zd&wG}n?@nNJ5A$9&Wbu`6!AR7H}z~0O=iA){a-hVmK6%^7IA}SVJkCvJ9f{$?g zUEI$@+{rE)#ieAEhpa&{*{hPC@f-xY3b9i=*`>*LxUfnomLzJ_XhIhEOHd!)TF$PYZ{0W#+KAV2 zo-6nsdKXDXiUOp`+R0OC?$fno4eg|erhjQMBCH-NRMFiZptg9XzsuZ!Svl#S1xWj% zS_vEkl6EnI`T{41*#>>$o0t#Tquz~RYul!AZ$4zR_O#O8AhOJFvl|bzSt;ZgFQ1cH z@}j=DFI2gD+q~+nOyNnc#A5L}P}AYb9}2`k*}P`$V+Ix-=KVC`n?w&GLfKl+L!P20 zC6T-t)YrNCj)8u&HU+AF>h)^izUu`NJu=UHk;uSTr zAS(zoO4lH#-}8$Ct+$Pq#(WWrrv{ZWBS>jQ^Ah{T{2M>dYPHEPv9pj;0jS|veBrBX zNrpTh$m?%H`(jC|80KS7f%uO2v^v_&2zxzSYmO3+k{1Vi56q>DBO5(n9#cR^GzwbzF_NEFP+IbE z4OfeHEHvGH^pb8$k@>KMa7?`dz*w+iDGsMS%v=7-m}9`~b8qdmC5B3Dt}{}U+zm=^ zQ%Jbf3TGNYZe-I zEVmOxL~OL7EgF7Taw}PmYV2bPqs)>8f!TCkL6uJ4h)*;1JS@m9 zci1hRNsl9thK-cJF^83~!-AC9UXh=^%gFDz0PDb0}@RA@t zPKN=az;_gcKM|xHcv(s@Qur^~RIDOGzRaO!l$-)4D-8Uw=MKlyNQ%EF)MB>bituUP zkUKrqqqS_fTnhSz^Xs@=i2J`@`A!*P{eVC4=>X`jp(tm{zpr5tY1x zV4(OGD6q+gTOnR!caU=?RI`4pT8i$)QX8@4lb!s%gXaJh8D2!a$S-YERtZM5^^f-; z%Z?#b%(RN^;7VdC0vZ(#k;2yCqb--fe|;VGP9n`gz7DAZP&A{9Ve^1~;or4LAua3D-Pk@M z=Jsw@^Kkq&VeVfa!wANJYnP>Tkq}!1NS!ZK$k&*i zppkvPPC}#jO@m*nvCJzF2XEGXEZpy_xzp{^D$aZPC77y~<4<$4Thwy4&UCCQ?N$wL zl?d8!Thy}gXMWDaQ{vzV422^)TbW&4j&o;t`$1zO^C+laeu=mTi+20d;Hph)dalvD zyiIMtzEL6!|CslrpDZPd6F6Cj*^V63w&}#ij(Qa6t^6@|L9rtvJtQ+fJwz)E5BK|J zcDW2GoL$_%Vt4lK`pG{f!M$=m`^TvhEsTonzV%ndg9vHvkiq_Kaoi@>3=qGg?KAZs zY=lEKwsr_3UQ7ClY&t{c5h~Tr4RMu}L&r!Fq%;a?mbm^u^;$=lMg(1e2bYh9H4=vc)8m7ra_3xwK zxzS|9GRZR&-Kc{-=Ug-!R6_;L;l0QQIdOt$GjrrtV^4=-C8Sgu5aq8IVq7dMay57= z#Pu@2e=yHgHrrE!n$n!ofwE~&SHZd9;LmLMGrA&{5`I|TL?dG68G9vH!nY`!GiWPr zh@U&4S_U$KKYf0OtL2Ry;fe#jZ)Y3})7P4{P1X~7nsVuWN$TpPR}DqhY)4eG-7S}} zqm+riwD3mcAoA+GuoWCfa4~y6jD)Eg{~ZtNay1rVH*6F6ciKy0G;zSPLAa%H*r{UD zy*N@UmKp!Tewe#4X`a|->y7$WdNsX>*~WqDfA&n?X3!1rY)fzBNNl&OH_En(IHTK* zjs#!Yc6#_DFGOjNWo;KKc|nrZUiY{$jaiaNo}ag4PTtE5M7 ziKYYi56lZIEb~?$rR#C)*or9G%585`;`p_=vA9&{g?^wnmD(|kN>%;EG;S{&A<`QC zDLf%y(W}u$iu6qhJDb-WJ;}sEAuNBfVJNqBEwY{QRtp@?ZGKs*jLMV|=;(z{0*Z&r zHgQLv$}>{fP};CYj;tV0=HTnjXp)6YeKNu*x}e3rF=!BXZ_!>h4Zh-O{m zy#XPjTkGcN^soDVmm@hF7TGgkuZJ_TwLH^h%x?d>MEo;tBE8oqAN@|3b#5~@&SB1% zFD!9X+6<<8I%li<2g}=YWXhWZQ^&eS04@S zZ)&$xPF*dQha}INx)!wxS9{apapoe}aQX~iwIt|?*<$!^SG!?L9JOWQd~nA_0XYM{ zk3S@WpfMui7Uy9chRGzG68($wNg>C#K4EyqAQl{l>KlT86Ons8!Snip4Ot|w*q?4% z<|g23B5zx^J5q$8@#h;KtaYT$z?g$#9g>ND z*o6WXj8RqMRg+3MPAR=;OoOJ&nqoKcSTyHoOxg^AET=AsFaLg-F?xrpjp}7qFIASU z5;AkTSTQWkov)f>GWZ0#KI`Ykx_CX!$)Wf&7jK9#m8z8a5f0ZhPq=(M-l`B%UAlif zE|I(OJS~ww!%lw$Yc5l>0dr}-q`xL4@cu~}XPfmKEL>`a#W;64Ue$q#TnpEwA~id| z7XE!Jl#8yN99JxC%pviy&36`4h?d+pA1m-(Q>TV z%;OyI2Si4em7=;k#wGZQCvHW_)*#wQwl9~_l~lcVlIM@g$%l8IEc^S3?NmQv0pb`H z+NJ3T{LPh%Hze^(WU9d(ja%F)p@ip| z#A;>bVm)wTC-K=bdt7J6QfAy)p1g_~2wl2XDR1_A8XQ~g%oY@ozF{^+E?kB-FJ@cm z7o6+5{|!mu@u6}^0M{oMPcKf}eiBic(vR2yP*C)xw0UjI?EEP}RLX^!+#Yz4CyR+f zdvtPLC@&Zo0sie{zq{V%`t%lN8Sd40uMn+EA*tylr#2o5bpGkHVB{6+SkzFVGrfmm zAW*wa+VzqOCIp>#&f&mql>a#jGBV$%3Cpca=L{^sBlaHcq-cIq;!B=MjMi$UPRujl zq6+zI<+{hTNH%w~ya1$dufqFn`@o;f#GaB?HlNPo$YsDgs=Yh^8vz3Zad0oXhE9^>j`lN?o9P2=e@^dc#VYR zX}d316=B!}{6O{2s;3&&j{taCzz_u@A04i>NpM?A9b&|otdOBn1zVmkz>`_ewaOTw zmaOB|@F7$$#i0oo0QT}N9V*#N=T-+OH{SSMv|@VRzL&3ZUN@x}`gpu?C+z!p6(Hr7 zZ~GsrWz7HaJ^V+n@MCZI|3P~=m>BD5TVQf(F zQkTg3KhEApWFCZsSwvMeFV)nNqN;B5L~I6#>t4E~qF3@#6y>+G|AXv-RQj|4^n8BL z+WY&${v(OpEkf%*vj0)(w)=N|9$nSjD{B^~{K{EQ6Zj$`lLjet4FFo``}eGo{`T+l zO2K}|uaw^Z{pLs83pu|q9N1+T@Hu+s9x;*D_wh`F|3l*Wy4vW|-QMZ@djFn{ht>7_ zynF8G^Y!k8J)e9L=$&@?3`mEj=j`$M_prgEJ09$a=&{MBpN~Lr8W7Mw|1|pJ@%8w4 zuK)Mc-PhCS-~IjlQ=s|r`hJK12n&wBo_qk0sJo++@dElFY3_6JCyyty20J_3O4S-* zFzd*h{qBKUN%Wv1o}qAXlKi`lzJX-W;yZiPbV$4d#bDmvgG*8!d}g99zj_1=UORU7 zDxsgg5HQ#_YvBZjP|>jJch7h!O;OTLUf};R-p#(eN?3%Zuj}pJf9){btZej5W9~Oi zz{nx=m-Q8#G1NG$<1kyjJ#ESLxe0SQ96r6*_W=~iJuX6(?U}fNPa|6Nz6W>O7<1;< zWn2=;y=;su_CQgjbhv$j;S_DvrSmA0k_QWt606R7f?2J?ZFi&G<;AUpCIbH*6|_mF zG|Z5c)OKjSwA@BX;_m#B1Hs3EH+zHqT73wpp+7b7XxQrTyg~%6ZIzbDy5@PdG9v1a zJEYPTEEc`B8e&3$$(pxgxHpNQ~B7wuvq5fV%-^`qwPUPqYJ89p|{=9Dl51b1RC z4xkeZyb-MNL1J+&QDupPN87!>Al;{K! zIBhO@@Xxu;UJm1kS2CwZEAF=iu;8$e__vMc0g63R8!NFO`3c{!g$&Z_al8Ek?sy7O ztA?RqVIK)^aXpujreL3)VGd6jd||B}&A#G%iM=2kw1|zpRw1gLYtxO2ru8GB+aP?_ z+6Z!5MB|bO*tH_*3UFQNWM$Y_1u%#eubB3uG4d1>A=MFqV`Dvhdcz5N*A#<;2J2Ho zy}EsWysO}zx)cRFeZ=sa%Zxa<>yTSM!;%=Cymav3A%ey~pax(_bE|gKaR$-6k2~wQ z8e7y_C-3w#lg{+Q>;HmYG-Tg>X=dSby9awHwIPoEqerr#y3vNihU`Ns>qb(Y( z_*2U+6L^@6|+U9-^o6ZT#v| z@yYUI0ZT7CxsORGFiVv!ndL{cOWPH9lP0H5R0%9J)|S*Nq&y4(hbV>HHWBE)_2|RY ze|pvyL#{iJGaZG%Rs@kXpzWTz43YI-)mfOEWl*KqUmFsiYzL{*Q2a%64D?MZqgwx` z1yY|Soe;5}oW~lTS04c?A2Q~8srDJI_z|>b*>+XFi1BY;{%=u zypXQzejYk+tlH?U%u`^YUKi>|ZAJ`~^B3^Tk`o9C&+vqTwTHfed(8t(y{b5+R8n)g zym)1)f_z`4mEJC(#0k;o1l*orK$lN|ejdMATj&%*xA;0kl?3gSwsvtz2}-Yw8zTQ( zUb$U@8D-OQ!_ib8`p7)q;W~#$y#~a`ea1zi2Zw8EbWN)5I-?6l8SIdd-IaCIi$q=31Sqs;xL$6Yqn=jai0@G!&3U;d#+oU3&&anH7i#mz;a-c*Gdir2H50_)~ZYyo} z_i=4Q7LqNi+KPASI9gFE;K=T|-mX2@7I73I^;%oBDRnH~uKEC=Z@06q5|EZ8;mSi` zW5k+s;b?7thEs=E42z1a|oLYb4Wf>HEu5{FDn)M;z46MSHJ|3i)#ius^ufO6FG)+PxbiF+B=p z)?CeHmXPBR<%O(p#*m9%ARAYtdBD5~YYTHK&b>Fyfb#xNSNK8%f=g8Hf=-bVS|p#yyP}aSGu@0`QeQm6nSF7S;`FEI$g`}FFYu&6P~g90*6>Uk2?6fntVXh zrmZ4|-MsDxe;dz$mLjuhb$j?oHM5HEpbq@V=8)a|p&7>wQ@B)=PL^b&cR@Z2Xk80w zkc4LfR~EIdBGIz7o@+ramWJ?o1I4*9Vn{9^Q@*BKf^q(VHFrNynG|knD;4}vGs>R3 zHXG(vFN#n{H=K{e`B1AhcCEHo!C7mIApQ(P)HcUjGa&BnkK09n&T1>cY-7i&-L!qQ z2x{Mm5l^Z>WzVe)?irpncWNKZt(SFA2GPwrj(18r%DPo7c#K~NRVnAPJNE!EjN858 zW~I502ExW{mu?4O9=BUxnAK@%#J&y#ndbLu&o-8&$+-uvYU;Nqu)^?1OVMd?h7qXDCImq<=$k|sfKmi6`l zWcH#E&I{_EdKKb&2vz%X3d`iKhg@WI!?SYDA1Iq<}GBzhF>3j!4^giNzmM ze5^|WQOh=Akp@UjQn(MUu<3cDTcL!q zb2EAKaxIGQG55%u@5n{qw^ue${lhP)cY^CQV!pCt2L35sKxB*`_tp)ww`DYSTzO7- z52SyX#b;pAZeXo&1NTN163?FrMbPbmN0AVY63SJYTuwkpMdo7UC;>(GUw@~<4noqu zOJ-S&P=}=S7Old`-1=CcsHw}L7}3uN2l=acxwQ1~YT=b6zo|l%F(}V~uzelyD?1oT zFSddI3hP17x6KdE?WatXYM^v=pX-rPBNt=LpdOjoZK~gT?_I?Z#094_lOVtjPKzXE zD^*UV!m@xtL^;Xu}HYq~cC1CGBS{TZ#`1=m1?is)#9_pEn_U z=U@MWyzwN9emP+o@qBOv^9pK(AyB~GNeJxr1kR+vG4EgC^H{PxPD_#U@AEhySV;Qf z(-O+zx-jnV&hlZ7w{)SFJ}s#tCeR^e1$U@unxJA~BOjY>-t+TgD{lvNrnP7BM3H+t z?w1(8A~KQHM3*nKwvHE|x5KS`O?WLG#eYXQD*h0gV6y1bgne z=#5%nb8hgw6=MQ3&naTVqx^H>3jpxg(gcVoDcYaVGkQ@)o}<6LtSa&p_RORv_EJ7xAA2J?^&UAX&v~UcQ_sCf zOS$*(6D)YUelhFZaI1r>h?wCtc(2^WZc)E~+pvo6%QF2tI=g_A=B*kaD!(ucuCtR8Q`umg$0Xf(l2sm68FmA{l4P!Vj*RAxGgR&vzg z3C(E>8$<@`7avHCgF&!hQf?PW9dUwx6Dw@tC4?P6JL3o4qsl#kzxtJs^k>kz$=WMM zFnD{-WxX5|OO1S>R?@&aUs|)2W0GcnMN>W@R%~P@r7v}GL?V@lU((6u*d;4z zqWaAY0bH})k2#9&!zhIoyDBEz_So>BF1q)Q&`GWVAc3Xf<`!!s&wA6>x)S`)gWYv^ zr*@*IKv^3L7XF}=TE+-_%81R5h!>;>GHN?nV`=s@vw3J3-7#mjLrA6|Log0a9@7^} zA;x;gv{hY2f@tHfoJj{|qT|URbJmcab%FK~1h7Got89)EhzzroI;9zttiNLgJ(1be zv?t8dUTDg;YT4H6H7{INc-w8D$@l{eah#;UUKdauAL`qe+wDgAZctn+H?Hv5Dw)?X zM@u%@q^3?J;C6LCFN0-Us*^l+seIa@*Ip^?#vOJJyG3rZD2g^)$+GdBJ6qh~L0bFJ zIQtDOio@U7BQLf!Qh#S&duw6S&)OkJz8rFvUY5Zc^SH2ve&fw(3Pt*u;L%!%YIdU^G zx%v!HDVFF$97)aZ+hZj)YBD@t)as_6^HGW;IK0?D!J^6MWioV@=ICr}u*j!E_fdWl zw>1sycGk=pYh|-$-VF4&)rIo=_OX38wGqzAWE@{%$6$9*KSFn@lv<`EH2gKw`nfY6 zoF&&1d%u~`SQ>_g8oKhYG0$QubaO}>nXys~iYhWyTbc61g2se6{lLaX-Sfkk`+HpP z&ZIL8LH##zYQ{Q~zG;8-sX7`rGho_Zp}S?p zl4>ACVVh%?s0HRg8hYUOL&eQm4ZnX*!`35#axITi8^!aGyK+HqP4+r%X?h7p*(6hg zAsBg~KggZj7FzA)Wps6{q)AYS=D~1~ENj0ulClqd#yEE>>U9~J3LyLk;hnXFNTA*f zG6$@ZQE&Gc!gr6`11;ES6U7#$XXJ&hR2tY^e;UCpb)7epslgU5eLEdXfRC3E>7d$# z^4`iXCjX+}lTBbm;ee9N&JA75-hM1zG&w-{x?`lCWP{YolZ_`yRE3MFjSvC+_K(X| zwco1=nq{k;{^+4@DwD+oNIhxU=^<>tj;-e6i_18aE(qg2XO#@U?-3EhadnbH>UmEV z-pcbETF=SSI}00M(J;PEa;I~P=e3P%tKU&`D@YyW zY9FkM?ScLD^F(Mct33N|n4~X?>^_F>Mm4V}$i#Fi!N)l!3&ig5I7CQxYuL!Z@z1WPl6WWt{FvIswZtyiVeJ4i- znxHCszByzB3a_hVj7Q2$to3FZ{VCxv^&QkmcKu~&bm4Xen!rPwTVqUer69|ib+(Co zaHFhf+tRVp4~YpQl$2=419Igut(robI*-kEn7UHC*nO~Vjbd(!A)Vccmb>z8A<$J7 zFqU@|p`;05C#3emilESg(C*0G3e-nejHgV(l10_#Lvh%-s7vq-L+bVmr*mOob(0qH zPMImAwt~(Q{HoVxFK-KRlui=f@PW9Gp%F!#d&$INQ*U16MTAfr4YGKnj zt6b$|Ho~Z^JIznE1k=rr51q;r_buVj(|TynAj$?i)vx%Os-8cTi?ay(X=UM+ zCW|X042_sFYX%?UkDAV-8FUh)OQ~$)eMlY7V~yqc=+ehdPj?G5&zkU%$6_#t=cs4O zYfsb3Q42SUO0xDl4K z@jY3(#HpfA8gI$UwNvub?xhR9!eyh*&LSVm?vSIsiH&Y>BM%oCBEdVK(P4VaiK6Sk zbIDKIg8=*1B_PimDdXtIR>xS|Kj`@EN_2BTpaUi!p0vm$@5p&!p0@Ox>Cw>VD5fm#9loP!7*KjW0acN>$;^ zN+RqCQz`s-iBuV?4~v$_Xs4N})3a?|>xq*qJDuF-^ip9^ef*#uSrB(-B>(?%{Ki2w@- z(7qGK?pd`VP!)%hm|nUQj~XF5x{1A>fE|$X+DDJoqY7%f#ipQ%=cbo?>jC4IeE{lw)|eGV-vqmDL9=k=Gn431x6= z1v&08nxnE2L%TjYlkG-?Wb7$+OnPwPgL2dqatKuG{WVjf5Y;WhbU8ZbE(dvT5%)rI z0i8Rw>lh8PN1p|~WT}BCoW}!}OPF!q5m$Map;x0Y2XU7nJ+;joJ`D#dU0YrH%y=2Q z4he$bD(55_`4a~2@x7_>6VC|eBx|Bsk(^{bQ2oW!lj0)l5_=2qb}=L2vW6F}%XD^= zDOv?)4q4)gS_`Mp$qOu+=YPiu-g@-S+-(nGW%$LxWBqb*PBcV|xRku-FaxU~wrT!=bBywxW?BLZ~P!uYO zlhTMM4Y0}X-es`K8i?*j9W5Ao8A0mT@YdXo6pr5`AaP= z85_q0@}+GR^MZlldmGQ4P?rO_1#7|qxl>W*t5TqPj)FwJ19JNA1=gBXi3o-g7X$2le!#}Hk?n{q;Q{uDwXz_O+S;a zZiT|cE9;ER+bze-K^{AuONb(6t{v|2h8V?`s2dpyJd%UXo!zEGl#h}u;|PPHOQltY zX6vLvluegN8esVgHQy2ge)agj6Q|pcaRfnJFQ}30F5D~b{aT?9lfk>Aicj`=tSdy8 z`==KPja!PFIjYE8GRnU?E6s_bv=)v@a|1imlIBkS^kqfd-DcQAT~gGVlMG@8;7tZO zUK*k*z*Yc;)$XJsQY7HLd-J1jZwQd|y#G_q(c59nAbpIf!2H}gpJOW?vVC>GW}CTs zZ^^)~WL5Dir|T7cegEObi%8e0fA6oW@jj)I5OAMFIyLREm0$AAaPMoFmtS(+K9X5r z{!U3TXP{G(_a52U@Pi#u!>@6N10f1%O3PP^5%ldb-JooEi|0|YOXflUeTVXRs;(@H zrXiJvGv^pdN4bJDz6wg;WP z?4!>>#dJUv{xtC1`lXT$P2zm*JcVJ+^dVv&h(}oyL^7Zwr$@V~kD|nwU`=bQh_~m; zH_z$*%%}z7+H59CA)?$@CF|Ckc{ZC!tYFxR{Mtby zt}Va7#F>tFqR(Y4dg5^L5Yh#$;i9rTe) zG8sq=mDLjF@dUGpPOFVIyr&^{CHJ$RtB*4T-q__QU`C$o4b7?{n`U z+~9nJ@cUwDaJm@W`=P)di}>I7&&sUV>g)1&!tWyi|A+F~S;FhSuM7Ww$3Mo8t$&|S z&+hLx_5$A?7kTmVg!))^7Ip$(-^QE&Fg+f$8^!mtC7hn07YGIX3j3KLmMiQXKF)UR z@^Sonz8-G~zv>AH^|da7p8VdIw&45T_fmmy!Ta-qGrxfzJD$sd0sdXSe&4s%qXPUt zJKl{#Q)nK90I_iAJD7u*L+2ra;&1QGAQ1ZIJFfSSz-`zIdaDGn3yIt!crgSN!`X=d zz&V4d6Ylz}i&qTK*=1{mxbFB#`^$Wv*$iuQ+@T)So`@6!saRScDa7HD2fzDy< zhBD&VAK*A7Es>hQy@e#ki0%sgk7(=zDin-9Ie-MPPk;)rP2~sw0bB4d20=8@c96tP z$I^f@_;oH-A^$y+PPquW%V|Dw{LfoBK;pF$((x5Rd7Vajj^P+H2Vf$NG|w>)^)V_TR+^4 zxm3H^T<~`wR9fKzhRA6#L1=etfBz~#AM2HCGqErHwOJ{BqC6}M4)lmP@@@a8B^^uoWp{| zxd-wfb2VK!=DUK|qif^n(5IR-vsqNgjJGuQTbsMU^_h|mC;Q~pSR2JAw-q@L+(yor zs<U4$uoUqy`-bMOAm+idykFlLAQk>%^85LAf2(2;7&}jmRA%9l8w z6+_F^m)7@5k4OvntG#op1cVF(E(Fb}f!+ZUz?&rK{iwSxkWz1vE7j({cBf(TcWHPK zh8;$iVN#S?ZEH^$709;Uj)5oQ%OiD&pxsuE^10n?@G%x1&O}{XcN9Dyv4#M zf;gXVq|EmBCRxvc(Ok8X~#IUTb$#$y29vv*kLbEUf zBX3~HzwcH;M!a^rKU?wKtMB0bLHsQ|Tpou^W7E`gdpxRzL!T3vB_;wc)ke|c6b`h^ z2TxG-Uo=t#_xR0m6=G$#z%FIWX277U?k3)TVzxOgpOtmtm5Bz#ZQbK6*owW*U|jWe z>ysgI=f5`BX{+YbrV9pO;7BliGV{8!Cl=;B-*er{g5(giKvc9AJ ze)}tEOi{e_-NW(JwhwE8l&; z-snU_~%?ggDfD zsnp5%KN=9udG(3Z)P@zU-%4R%1_?PD#w7Kk-Zzd5+(Om%#CeWVH3?I5GgK^mROTk5 zqKh>17`ow1j)^E(M&+6fD;_~*Km3aj~t-ZxFb;U-cY$ae$%tivx zOvBGLtRq-_KOwm%GqW|;j}__|kATmqcR-|&;<+(w`mYAnpKcdd^8*3obfpBaf8Cfh|0{GjFji2lK|0Tx3J>xF^? zyagxTvX+9g2wunD9x-Q^-v04g7N<6dZLp@#3LQa!iXCk{SBV?Wkp`wi(S^I$5gt3X z0-}ko>?^?suJHlNpZh;7qo{=;pO*``X?HEo5I%mN@EQdlEWHiPnYwWoY$+bJgsPDd zSU{`nzZm#@x@)BUUN!+pt4cPi;ls*;^r zyVqKzMfFs(biPw%hcP7j=vun<$J&%`0$+5!J~MY@6%@Nq zxmL5m&{*wbZ7>5H=i^PpY(44%k2DWdj`tG4?1YvpaQ54=1+wS8G(0jjqnMVTP?19+ zB!X)a({^3;oW~6IkZyqbZDKw&4Iu{Ur@enwS8dJGAYz9p;iIa(BGCY#WzA3`*U&0E zB-DKr(a0fEEF+ixjq-?_Ot2p{&iUBujcGzASl{J(`4M0(CV3$$kI`HC=UlWvaE+~@ z-ZJr^=eZTF^|JnP$nTOs9n%8q%c%lr8IL+=Yr}CNx5lbGI<$fCgq$`rrZY`;p~bfJ z@?$j{j(ca>HoyiEC~fIwyN+5;8yM1_K^2Hwx-z*I#>5t|2myFccOwXkox(cBdXsF@ z9#HH@QBG}Qc8q>3^_@%FUQJ%pmEAj;_$IvVrpc%HXEF(FHT#hb8nER`BU);?(jVN^ z$08X>b3RF0(AB(n^A4eiX{Eo{6?^kjLA?c3500~DdbV2Gh4E9$F2LcO`m$hAsyz-q z`PS5#qtfS|{n!3kUusd$I6QD7Mv3gHz4trt)5+Y7Um$D=A#@W7L|`fr!?M<^&m4Nh zs3#eska+;D6PC=wxv-d3TBc9I!c_}KSl}NPln{`qK)B)fk=>5XCEoYiy9?rw>U(^F zXwb0KmsS@QMQVOUb(z-hjF0B6iJ>LxFrcnuM#v9z)q=y)I}3eN`djFlKJLV2*6EZN zd6z#Vjp3Y+2S*f?WnMa~4^P?TRpbtx=a7!G*@ey6D=saP2+k^`rD6tMML&Z$9B6-pN#pH7jUcx-}>Jz*}Yd3>`v zgN#-2@0f55YgIJ{&T24F7^aRhzt<(w@@2~?>wip^1-tpwLGFih;FcD-63icHMM2(6 z^jiuftmIZmsdrM>l4EvfX_qFmpr@q{UzCb*#8U;XN32o?u`86vcI~i1k`l9+qr%$3KhO$E^@VxSN~${q8{-E&I0fxq zNX_1Mz3w)viHAJkrZ`9&h@aT8jv3?cx;J7t0j@%{wXdNfeJ#W75Q@D$-PI?dk!u`j zgyRF!ip@+|6D$qa0(c^lHS9yHI|svk9FmOW+R1yU(H9l}wEZ~^38=9dS7P1?>Z0f% z27V2QCBzREidRiPO2(TjfepnB;Yw_k=p{qT;Lf$`&WRuhNiPolvgnf_P&ra7D{VF$ zqYf3D)*jhuSO`qdS-f45eF&p){Ma0`{D-5-Tv||9Y}JUTD`;_0H`w2m*4A^mXxxI{ zOEhdYx=7SPZ&VfndkKsiQyVz)YWo7RF%ZKf=S10*2?&&}1P};*eJw;~NGGky->~2y zwYzl+qvn?1qH7iyYh{ibn}^v+Z4o3!_V;)}K)p(y*~lw}n^%cDJr!l3VK+CmB)a=# zt~S1Ck$Tu+@pQ<96L(0-O>RSwhY1Zq-L74lp5iJ?FDDC-bhQlX@#625UCHan7EzC} z3*&Yw=jz&C+4*;Vf>?n~406QqoHa~f>NvhRE1CuzrBj%+rda4*-lEbGb$Olb#}yWe zlLP4cF&LhVLu_Hn@6{B|nbDH|ffrmR9Ooz!^%E(FLgyBRlnFTMQA)VXwMSGEG_fVu z${ZaQW)l-DC`JnSpYHxDRqq{9agH|(WfL|Zo`wz0nt@s?Y@ojh=fO!z3ur9R2M(l$ zQhMP)RxEPZ}3CLqT3<{|yq5rFUjK6nwviT#mjad)E{DlFPQzvB}+Fwgy56R-vV#A(?-C zNKVP$s1lWe5Xq_9uq_iLbBRqwSOI!lSMmiZLN7v7ln%ZX=KK-qIz?tX!u~T67*G}! z`}Xq=vDvz^b@J&{!!Xie2D#x5m8_8vrten-EgFRs`n$x)u{4qMszo!CLP&({AA#Xw zw$?;%u+k*j>)41~nYKCfXA&~m6D3CO8Dd52{1;UcB|95}th=_tU&Il6Btw!rBuy+2 zX2M|wGC9yoiXUMMh{O#j zswd0%ETPNE))Sg)bViV58X0vhI@G(`9aWHfKbNvoN9eD@DcAt{Qhq*Tr@%O#u(RQ^ zvAovhElU`MbbILgO=2$sn%B&pN18MHAKYrn=!$1}ophn?ltjmdo@p znyCpRhqs_H8u_t)Phz~;h}yA|;fg7G5pYryvxdaoc3yqH!5xBS;GLsAxRegLL*ne2 zwxv^K|6&ZNjonV}lS=XPnUXV@iV_feh_6lfMQlR15LoMUXyUM&rpdt3IAqInH z!_P349$}jt*pU}|qE}j-I>GjAWF7NA$KEi5=1WJp#|a%LW|;K?f7#MB8m34z#Los( zM63}+kvZ-O88!EX5zRmd@yY8ol(RFiYxrfz6~DP}J4BpPpSD=B5t7J zq6Ud$&&(>h@~MA){64zFnjwM>)KW5IgF6=^YZFK`b=x{sT`h_D>Mls&y< z=WS5Va;j&M8W+pso{XKZ&fo#^N~_4Kosw^uoV;5|CwHxYpDbG(pi=W~VgJLRYgK4u zh1VR@6|L4WkEA#2x?gx>J%yUGPD$^up5~5O-&D*k~Wk<0+gfV#rKC39oC6f#zvjiqlHSH`N0iUVVL~ zBRD-vxxpS*#i|7C6|1`9nI%6lVxs+qu(d&#xOD)tuca(g`)BItYvo&$sXybZ#r;l! zpy#URZZTeqpZBC&8Q@m`2So3jo&VQvPlhGgy^*<9Y@wK`#xz+S`wL0{{}?;2M{J2R zXuybOT@$38m8YQf?a;3^1f^LXkFU`1O9HJ$=O0SNOaLiJ;GBBb^g0u)ODgRf!+qmfG&D)THiA6MxH90T#AD_$lmLtvwi=Oz9tRZ z{AV*6r>E*-SuG~hN~iAAY@cmfISmOlbthtp642*DrBX2^C9JA!z8m@3LL_0prjyOw zLr4J8RpL-(a@CWLJUXWaJ9&Yt(gZ+(@C!$U3E{pn_@UB-nj)RjsfP5@;CaiFpl+gQ z>;_@^NF%WY;zE1A5=cJ-QVXYe#Zy2bJ@Vh8$JJgmPg!lcFeE&8E4z32Q*`vN!3U$P zIj|HC=y1rcBPx#+4NOK(4bMmOQMy>vWQTSE5#Y+gl1ysu`e8uIC=QKVo*vT8ARV!E z(Beq7fZ}*lQj48a-NTyAR7LEuQB#ie^N_27pCas0hO0uT9XlCT(<90~N~*)EmpNb2 z>@lDKnL>T0CV0dWc;Jg$k@@&u=eyZ0uJy(sy!Bv4T?ecC_(|ux-KCA%nnYMcSM2b0 zQ=T6BU4G!?@lf6LZT`U%bq`ZtM;)mrOyLaJ&2WZ$cW`%Od!)ZY{jv1;A^|qsHe%vF zih7s8@@_qzYTT0@s+4$HaRo*-r|zZEC9Y-8JbTvhTDlW#aeqx{&N)B)Q_c=Q23Fu? zbPW4|oijw}RDek8J&*0Jlox*5HslE;E13b|C>$$`quZ4ddy#3f!P8zLEgJH6dKw$7 zkW@X1`d9@#78qOuPv#4+#UG1?3R*^(Y*Ul8Sm$B-*WAs7;*qL=2Z{l)!Rtz82>p~m zjF-QaK*yEG8AfG7>{h5@3&?t7XJVEP1@dD$lTs@MCImi{l$GxLm<@6nzRvU1wHey~ zj@QaE(bDA(io$rnapU<bkD?;InoZ2p+1}PoH{nb(=Z;X0+}q_IJ-^avQ%8XjixIAQ z+7axbbW9hQF^XKQ)vYAlQnd|0UtSQ58G4RrB*MP7T0Qp!E9fRy^0Aaqv4R!txas)P z%MD}K943Q!$~!nv(sU{N(F8rbyc1PZ5pEmLL*53UPTHDEJ2OVKI~CnkE4zcLllPEy zOFM}IO?PY~$2*YxBdKn-c{JtSS2#6)7Dj6Le7^2_#Ph}@{MK-krw`Wp`Shaut1+3%=lgXO z8PzbUW3Q(9y#p^iU6F<#4+PWm>zSfG{PTK&*W>evs{8$_tBXdPO}#$^tV^%(J+Knn zlki%xF{8`(J>mQPJhRjN<@U9;^Zn8CbN6ubb7Gs?Q_$1%`M7ZO-0J)F+HWV&_W2oF zWB-G9yT3+GbT*X8-ud}iQiBJ>K9n2fD=eR_jP_A zqWkqK88ie?x`Mv|?l;oJ2Y>msaJ12a=j;75G6G7=_r-h%VwsJgXL5qYdkLH^BX9+s zeZE@;wa@U-m>2zzb&b?|hBVG?He6kzgn+LK8jM5j?u=bkI>&B-tdoFhi0qNUOE9{j z2nJ)JKMtKTJa<1XSAON{P4#a#V-vl{RRcQmQ>6OMjdU$ed)3%^D z6LOluG<(su4Q@BAo}aWs9qVsz)&PV?ua9~U`Y2sZ&6cHjmuep> ziW0}K&saS43n0>;YRTM3zYbM58K4ak+JCRZiq{A&`e%Fz4I2fO&do#q_U*fGI62MJ zC+V1NKBU@N5`Xpbd2Z8X#c)4y_TD=Qbuny>`ojHqv+X=tSRbC4F0DcezfK^W=cf}9 z1#dJFYecZ}XbW-nt$u5U9QcGx$9AMMf5sc@FqUNl{=mTL_a=hy+9Q?c7=^k$5L3`o zog&o!quD+Mb?px5AgDKNT_ao747;FL3#!nn+4BK)=X4VX=o+w7%<%{=X*eOaQL;uw!Jj8v?MX*`@Z^z}i9sL3Pu> z;jM8UtRSgH$_EO4su&oVVKJh*F{1K$6t$21ctX1ZuCY3BU%AKTUILTiMQ6l0a#3sr z#g0K=S?#@j)YseE%6^?ST~trvko>F^)f9%Xj_5?BB{WbW?W;m9f?@{=;8gDiqOq!<0*O&Rje15Xj&jH?qZ zO>mD5qTuK<3HQ&gzbk)SDwg0&Bo5L7LO=~2P%!$oE^>g}FBp6lt{IwTL!)}CmKE_s?9(Fe`jtTO4d zfa=C*!e6+|E!UI%k4IwBjw=FaCqn!~{ z&0wl6M%6hBLu(=kKW{lKxrM06=BHhS@%@psMAY@tak&bo+T1f~y=AS+3|dU?S;1PG zi^nW0G42y*+O_6Onn(Mph>+gUOU;{V<-7nLnW|qsqCBDAsH{p(=6z#0V8p5W15i~5 z`aj0b;O9mg2~0qM-l0Kl3oYs<2h6Q&e;c_`XR;+v1ExUfEXa*p zhycwVn+2j~|2DOTj&Yi8dI5MVdRm_W!H9M>=Ct8JGP+QThg@bOcg zAR8|Qn!rkKwL1|iT$YL91Rn6nx*&k2D1rg0rsR`#lSrA55(?w#EPNHoiA*C_BOvH= zscohlzo7rht`~8mi-#)X^8wtBf+2$KWU0u!7K3m`?MhwNE!yFl%0TtzuzioX z)qzez%dl@~`08-g<~*+nQM0_<>O8Ljar2ynz97>yc^0Y!k=hNy&gkF{)>@18;3m#~ zXwZCXLZ#L4@~nCu^Zqs5U9?<4jQ3&^t#)w8dEwJ9H{IAQdke>S&?^hd;o)XPQ;Zv4 zs>$GA#*HV9h!H>A`&pS`>o2oGIy7s+2}Z+QYLP6_VeClU@4Sc=wSb?Fe&MzYq9t(T=0%=61@grpVc^ZbP-y04%Hy zmW>?+9rVPrydqGQ5on-2LRH(M`Jp17kouts7GPf!QVh+Jb6(q+)4-bq{sH^)Am&TG zMCab8OBh~cLU+90B?2E3q8D&9xriX}J}(){PU|DrAe&$tk{>E&iA1J!(bI4U>`iUM z9$jkqTS(-peqnle-xl9^c-e4_$7G+X5H1ia_a}S0Gpd^)aQ`b?u$1U?kCWnd&lwvr zu7&j5%{eBieNkSC8g8UxEUb$rNqoRodXA26b{y83BUa{t)46}Oljo?Z0H$^()hbM1 z50STx%}9^=xY1JnACjX@Ny-zKkhi|MxQD6oa!wG<()V!VnrS#3ClP4)M-{nMI94Yy zcviS5o~A7u=&E;ld+a*WHz>UT;Ff3YGMQ}H;b?4{{YU3nrGQwTZ|mWdwCc+icEhTx)Z z>>mLuZr|)PRn1R~02*!gw8nkkPEdLF5(j}V z?|&O47>=8*fp!Rxq?rpAVvk;VW#>Fj7-yRxh_+r6j6#?Hz6LB0o>8jFutlO8n%}uV zzp9{}>EtIjK^ZAoy{VmI0lXerXlh1V4GSy}ZOrJ8tRq@HnF%JoP(p0pWF+R@K>^f4QAiC7B1I`B5jJ(9x(-6^AqU(UxH(n} z1*{d}&zdv%PlfG`FM)J9G#TJ$SV~tncW;vQC{p(r-Z-2{dBmis7CdHc5*E8DYjC~% z3rf`M7q!l*4a+(SK#eT57*c0!Mf%$!qb0?mPqSo`#a=ReteVbJw5T=v2*Q3#mNhfo zFjRmflEm#v+NWZq!IKQ%7MwaV0f6US5l;M3ZQxv@h`xqleX+eENnenRx8shj>x8Fl z{O3TE1JPktTZR150tugoM?Ldu?!*ycO|57BW4jEx@QQshhO^wW0dCHFi1RT-j%^3v zWFD4(r)@oQOmHTW4~hR^_24_qC&4K|aeT8?MZ_OGMNI@d7hQeu+76GGvL>LvuCKpBRpLCn)gnp#6Or-{4 zY(~J7=JX0d2Yolb;gcj3GfDR8e_=s#h%=8?7d%lQKUtI!V`2dTf1w!D!~cN$Q}A&E z&dQ$3Y+-BfoZIZQ)QKc+g5x+xU6L1#9No{hX;G)u_3n;2uBv9Jpw=*RZ|J;%T{C5* zEt0JCvN*{twFpw)qyCB>sW_Wn*cdj^3gsJISe1_3(1S(8Qxw-MoW}{bckjaM?2t#C zy&pG;fyCF?=xotJa_Mfk-%L|oNVsG!r$3xqfFXBQTF*#dLDmtxexk6h9X_9AB_q~2 zswm!i`~-oApZX{Wq)Ffj;4^SbOSt96qUo$2muYe;YLl-7+ArgZ;K@MkEzZYszT2;L z(7fD;;9*-)V$nc41;RrN-zc1d;RU^UMy8!% z{SyvSHQI{jYet)qy^xTvBz1*8jJJ%LZ4r60SOVt|QCnZLjlVAl7iRsoq95fZWG?y7 z!Dc-=fEmSfbRw0!6wZ+SkhsW>ab3MWf&@vT{Nz&KgGwi#mgH&Z-15aDtJ{1|(Jv~! zWxFio#|ceKr+d3AMw8gxbvmx6Wd)zfE=$$*0PT)+?9#42&oL)|wXN3{$v2R-JNA0e zHgg;quwUSW&55)gY(QTCB(alC>DE&bsmw#y${VN$wfY3ahl+Mf{u7PUmFiZr@1ogF znPNl!4d{ZuO9r-ReYUf+Lqpt*n+C5DdzO~*_-2oW^@gV*reLAsXzNIDgoB0K-XZm* zc?NqkRDCTJUM9x$MNZirl|CScPDI(_NrNz>sp)cXc6^#OIL|%eTS(o{Z%kHhT4@R$ z_^b~Q+DBJk-LfYtZPw5}cNN7I&-%T)*PIZ02%{aof|-2XvpsPlbJ)5bL5jEZaj ze&ET)M9M^q_U5rUAgvs#Xp{3our6(F+1VRNpxLBZY2~E_@=w=CH!EPl&*f8QH*8FD3g=I_SXu2Z@;|MrZv4~xaM5ptTGq6tzaU3`vIO`d&@ zl)WrJ|38O)mr31fI@qiO`T?`dk&`B58zIy9pO=;wNXe(J?K1oruxWZwtpg06?pOut zUWGGqH$B!!^_=#kGVpyU4%U7U|q3e1n2u^(ussNJt7 zxd%_;>)q{eO3^=8<0$=)EWUzX45rV?N=#>E{oFVC6xHym;NbC10fxS_nCgJ0D^*;U zOF_EU=(o7wsF?XS>0&yoC{=2M*nH~W-Jh6K+F%v75JsxuuMYhSQRZ4(CrS#2Qssc{ot@J`}Ulky2KQiRI-niHIp) z<5dwtIAd_)C#H;>=>QefE$M-%s-_I*9bEKlau4@7S<5LKWxfhF+0K#{2e$ZwH5fWX zMZqFJGf+;YDkYS7n6NLyI&KC^09~u=97ZiNraz z_*>BT26fJ+&ScEtL(5L?Xdti1Lqhtg+dr8o-r-=X`9H*jS_!;?P&45@!XY$oE##A@ zw*$=>Ig7@RbG1_qFA8YoJo?ympqcX*sDWL78g!I{wVsbLNS*_(Uo-8JHuOhn>U{NA zDm>)_=wWPeJ{@kXW`Pg^8{S_**R`8c$-_~0%VpIy0!B#-#X^+}$XPY<;z3ACs>HB% zF!9=~4_CGA^ZT2yW!nut-jkk{k8OstpHa_pp9`=VaoH<Gh-=rL;!qMat1Y_8 zI;c12!!I3lyxBW0kD5kle?4*i(-9m&+4*?+lwSK^RmoH@I!46OV99{Vn{TEX* zm#(+|r37h3Q?uSoX_v(GS-erYF0Fs8`ZT z&G+BTp8YzzNScY);jNT8cCVxe7zelFczU-+_a-NF_86>S-nGd$eguUCA_wORf=GN| z6Sj{siKizXq6plRf+x9R4hi7o>SWtjS49Caw%M>r1Jg|wwGtoK!@x0_jm$_)Mh<(9 z?T!8g@{P$$gP~9UckY{r{9%UM>SsQA0vx=iZql#72T{Iw*%9Q0;{6#`s7zXpK^mRR z(x->RIbmGZXjx>JB}bEz&-R36ydrw1Pa*Oi@fL_R(0%*E#7^iydz4UCiQ!-M6c0+I z`p~lGHm#qps<>QtE2#|e0v4$ZgFw~+r!E~xFjCo)l3Y=*#&jufiM>0-QHvqs>uF+; z<>H8P+!+Y1srPoA+!oY5C$2ud9z}rx@rjcvHqOySdNarqCuGHz2(F|u;VDKI)k zkNIg2cAr5l`e0rj7+r%)Nm+ zdbm%7^ZqxGmhJxt(sHoU|4)$iN?W&vsKeTqFQ-4&+P{KCL?Ov<2-GST=aGPafp+#} zmz7Oq4(mURh6D6@aVAW2>R4}9Yk8-f>2WlYyBXO+;kjW2@gEtxfCc#C_Zl$I_p{Vk zKA%C^N{Gxb02$x+tr5QOsWW&y-_Kf6oOpC8?~9)=JxKY*Tv4bv-k%TMtYg0K$B$UL zp8SQIpRa+wF-1Mkdw#O0BwrcpOa69N_-dPvd#V^>+8y5R&w-w=XL#KnAC8~Llb_eC z9-ogb-|x3a)#n=7UtUAI)JiO!D-7A;LQ4+cvHQ0lnXD*8RVH`Y(n5LgqV$Z`aQCORmF5T{?RsvY4Oqw66Vqs&Rtu9yQuOvR0|iMi<3i#^8>d zu*ixqU~mtqVO~<9eJT88SQ@(AWxirD=q?#G9-azPwP$=ymqhs*h)9%aCaeHJkqh9I z|n`I4Dc3ezm@1jeRZFT3i5QT5-&;;1t3Iob%%W)$*`lfdLMq!UT_dz$1%i~Q%?I|f6 zl65bwG-8)akO=T=Zm8CoDuHJLKkV)g3E&%^1y0o2bP*0X!Yar}Y)g-TDYrnp%D^n!I9F=E*brdYVo#%#JFUdrNKq0bLD z5TN|(k`rieHk=StjByxNWj9A6AP1!%MTDazdZkmq;A3h_2uU*v z!zvpiRESeAOrAVyRF0I=E8w4y!&06|TrV}seiL<1WwBZ0b~H4E`)7$Yp#IvyP)7~f zLsTah{+Pq(V-s)ajEMWjfO`dl&1Ty7!Ih~G)b{}pbNcV2e)f=mwsh z_k-rTJ&@t`4!0Hq7_r4?^u>`~4z3z`43lhI@WfgRzY}^`SKtyPAGx&y581v&QzR&e zlCWh0WLlP9+x^**))YcVU?^Z>`iQ6>*Y+f$wnA&YhWrG29yD>hb_5Vh6&!rT%jhD? zEr5{8(^AXJmV8kMM?-KujhEB`y)tYxh-G7mNB^alZi8Bm`5I47ONnhn5dusws?llkV8Wd~*e-5_)>?&7 z?aqyLVTgNdPlOo=eADf6Z4{OActE`x^&t}R3S5DHcP%Pm@T2?qB@l}%0_s9S&CQRM zqSp~^kRvW~cPLvxu-=h<=St7a)9&jOU!DAw2pV%RQDw;u@=&Z32MI4IkZX_&{j2hi zd+;<@S{PwXTxRc@4&1FJ0?ai`3@bLgPo-xkeX~`j=#5bxPv{dNr>KLUW%QvL)k2zE zr$q3BlC1(;*$h|y(i>M1`+6C^^o!dwVmwkYbU}1(9juK>j!11R9mvP4pcS6(;AwX( z-Qe?GupFK)#MKbGplI`4aGbr*1s2r5OXX#qLOFD;!D7l*1e?If`{4DgDJP2_R~$S0 z*oQ_7^k37ND~lS-%B=hT=yi8Gt%|MB{DNO;3pdPyTj)s> zMOj-)rb%S>Ro}WHnBRKyLJk`25ORr~VWxdJ(b<{h9)))iLittMaBX}I^C<$xOiZN{ zqQPJG2$wh6<5g)rP__t{cj+0N$>IghWRdl@tT|M+iR-^X+f}HE#%ns%Etzo@mp3(@ z_1xI=mHJ`3v|@`Zg`#uy55UuHn}e&N(&B*Wf1W@)aLyiwmql7lsxa`d-xtinuVO`Z zziIJ{`6~!`&|Z`s_%N2l{bK~W+a8scEj{maG0W`SpC>2NHGjSA3ZfR6yz_${;QGLe z+J9CYgmgxs_RO&Psp;5kC$cTrh1+wqC1~S8F@LSd72m*)Z3mIXoM5VFcT>PH0yxUk zdITOOy96R@StrEBzz`L?@S8-*w`G{Y@kD@RS6LyV&*kH)^i`$3V{MUQ8%Uy7F0VNj zW1=+%ck_%HvG8i9o!j_RT=-eCm%ZZq_JqFs4r3tz@ClqH9lk?||io^XQ!7-pnbqx;M86 zWv;CSVL?kRkZjc@3!N~KpDl2)f?2izIFL=n?2Hnstf<&atyR=*$6Ht;OInICLu3b> zsQgV%r5ox}rnFRhY$O~E`BQFKSXq|V4<3Cj`xg&yeg+)VYL*JWo5|M{8-lLNoi#(* zS@B_o(YR@hVDh9#kvGw?@-E2q^NOewaAhWh$j81DfK!I7Ac3h8sy;J6x_XTQTSY3e zZ+5)@h}oGh3kZyNR7$yi0s&S^k6sKHTYGq*JXxs|!J>++*ih>xjyB@4-wyJRwJT&E z$n`EQ0glrasg(7}28NB}JJ>u2Coy2Ph5RPRT+GR3ix;csX>m_mBY3!J$u(|xK>hI8 zq^Xu^klpd01ClUehpm7lvQ`0rI?f#*jv%I-zAT}RT0q&HRwfu+CQRdPtu36vtRDwU zTR>NcQmL6o=&Q?Pef~(8gTL|eQBisWdW66|-~}^1Qin|4ci*$Xre;i!fkx%t`GG+M zkITX@K`Qe#I28}49+hOuYwC4vdD4))O%!);i&s`X6_gVIF-U`SL^lGTgMf!nh=@C(B;C5VmAG?L zZs>VWf`+k+p4D``K$R_iId^gT`KP*IY1h0{M^S*U$B{GY_`FB1W%He`Q@rMVXN|6) zzA+yw$aM>j=)HoxxHR(X1UpKvZMNwYc=ytMZh*pA*{?|)CeUE&G`WKeH@er zwECJXHuT$ED%aY}Kd#|F@a=syL`xm=!bO+)o%Eyt?wsm+559TGGzEeCjQ~LJ zH+K13r+ysn^~QudTj4IRli|}sJ^R8P0>hCa%&a)Tw1v74@LTu-4xz6nnPzOGNt+m# zsATKW^I8Eu2@-*d(>VKd9CHJU3MF(^Q1UvvtN8i)fU^81M|e z32_yvSUR^ciCrl(P$%;-crWdH(DdFe;)6*80Z~LWZEo^omx39haqFE`4G?LlFpSHp z1!d9d&FUa!%0)7SdMeC*)!oU`)+(Q@;rLC(9~)2EY)u>^Pr-H;7djq=%X-#XV)QLE zYig56-)&klHM(kab*h3F)~-B8-6*=I&D)tZRBAV?7fsbIcT}p&njgXL7f(J@M=XeX z$>2{02O^ajK>>@)#3=M!wqEIOEcp-Kf&v!SIv(^~*2qu_nyGSe8W*X!WqIyr@$2os zJ56KcVb+ntSvE{i$MBX-JYLKsZ{e1w;eW7nPs3#2e?Q5KUy;SKJKg=64QcITWHXJP4p0fbzMxVL(^E z0WJ*ag&)NY{=cCWJiphIALTc!ssPHzp@og3TWrw9u0P~7M0SapUq0p{y@;zO+h%lGp9H~9UIaS15z2NnkO$d97;JH~%P zGI=9E3g2ca=p%n4T$4P@sekFDS3zejxNtBQmSrz)n98>eHH;@d<$rF+)z8f7MBY%u z?S$t6-)xnj8(O#uIi;S}aS#ZQ!Qh%;8PLHcKhT~L%iyCBi#UZ5OY)wrPon>`fX9;?d>>0${Zv)YiP7<9<;#edX32rOy zw!cP)w)iSKR+G7Z_p91E7^-N)U6cRwlVR)Rb7+r@l@n_SGJrM9bl>W^-+`s=3seUz zu$b&FZjA#XuX;?-bj6S0Y>cZ`O7#%8?t&jC2rYoZ36Y?jnuV>xE zQPHuQ?0Wpp;U2C6`!l9fkYpAI0`qMhhEy$+hw5LfknUh^d_$LzH+<0g!PNSO&s;dR z`vzBo`_R@ik!!||>F(&QpqHkv(RUc8e)8EZcmo|4zsr|l|2l}K4 zUiCGfHV@3%=MLI}LN*wYMh=pEZ&Cyk4-2hvLW(KwCrcFL$n6#_@`w#7<_puIO_jA2 zN~|RXVi46OyF~7`tA{YZuR{X^@O9Fh5^r|~ALKgPBJW==+~6ipKIm2Gm?X9 zAjz>6M@*;?*7ePdi=2QdlcoVt>mfak$LKw^a;?$nAX66TKOnez-+uhM=4=`&ER#bb zuD^ejcmK{*P<g6<2Ym{;!=D5%7{gsPR~Yk7k2c_kS8+d8I81os85 z@%)Xor!6s?p{M;*UERwGhILELAT;93S?8#}p@kspP(>)QlIu>hOUl)a4mU9Ff8haf z+;!*&a9}w(;tXg1{K~YZN`(l=x*T$^V?11n7EUvlhglD*A9pn$^(g5B(T@+ZtkxvO z*Ow&#vN^Zy$`dYU05#<>i?tK5C9t0u-Db`Ft$2CQv7*m9f?<_!sktVc06QX9hv6sr zPSB3ZV-QZ{8M@)zd}#nV*J(ha?k}Ik>;|Rrz+B}zqU^J4k?2@=o0**aSP_8ZHx2jH z-Fh5lSAZz0?uarEYu%})F5HSQb^PVW3Wv1Ej%H^rq3c|Gq^G>T(B8##9I_2pqdk2Y z?1!mk_F~;(v#G!S7y-je*rCtUmvx3Tya3odfxH9^gZnCLP(W6!@bDsW zv`7}4ZOHn_?iP+^FC43e#&BG*?InJifoQY_TlK28U)cF?XyPkIp!j{w(u0JaEH%U> z)98JFUbNdLfUT!j;Hm4LBjI%lI#4#*Kcd6hJsqLK0JLpbY8TNlN1)IFj#J2^de4-U z;swz_UnAtQC}7b&;LO20n>0OBmctMm+Dx8q^+ z;U4?Qu>a1iIlrj4#cMSWVU$)x3J@eF9!8) zhIY@r_qICuN3<(l{y(|L9;STSu2{?pJHC5)MO1%hA~i9cM-i)eQgnl}m`_LInK$~J zw;`WLLMIWK$!^o7H&oHp{^6n*eU(8*Ut?A65neOS?faPfMke3Y3_ToAWuB?f;7h^V zi8dU3KC{%og0c4j#3ikok=7`UANmPbhY0G~dgJOsU4dzE6u9!3A!W;oBAi7HOY|yj zEJ zu5Ox`;zsU25l{6HqcpvRfht{>4O_NoL^0q#xgAetC8R8kN z-^aYr6jycWny#~QejL+`2{;4P7bkVsk%^OdV$`@U1? z>M33Dm8#Tr^Hq24aAf0C%x=iN(w>MBYQgR9EWpcPgqi!p)Z{yId)5)0Yz|bMQqRHW z9OQaj2IeC^l0=k`=nVEVG6nCGJm%RYiAXgYcrP)9!-HzeJ9;nS874bGsl<9KNgNc^ zQx7z~$OB6#)OKThl==@F-I(kalU=hkE~!6dC=E zUw@j5v)<(Y4kMK>SNKG)?I{bbGjerWNNAdbs@6dpp7S(y#XfM79JXx1|Mf6-bwlkU z|8|;qZd;?GJ+Qe+F*lSyNhQ6B@VNR;DP6e^ZL{t&Z|^SN=zms(K34T!xe8dBgTG+K zI`6<+rUzoeRRinLWQ`z6M%+C;lc6kQs4y901!=`YVRYAMK5BZIt2JejXpdmGsy-*i&R2W5x09E2KgDeXD4SC&qDXz>#KiSupQV$I1^kf*1Sc zHWA=_yzSEE`*4>L`vXKfdL{6`0rDLGM?jwG{|Dr^w6`iQ*&TfOd`0-cMO%IsLnrJq z&f2tua#I^6LVt8hxv&OJCTv;Z`})LLuid9oe{2R@(ZWogEl?(x`#hD^$JU{|`@*~R z9)Kr)mG<%ad_Nt`;N7vQfZz%P{8u~3_2>3=VI+sIQeNy3^rPubmQT$fMX$94;Opk+ ztz_hu&-d+MBsJ&sZsh0P?)KJzgPVI6nCM71WM%X%K{ko9S?8k`|Dt$=kw&|=RcVG z$&ByU&CbtA3*YCAE}m|O>k6pz^T z&>+YJ?jc~T?a%vbIsNTIp7cboS_paT9o1BCASRmd5WNpIZ`GiE5gUpcg!$*N;&S7X zn+h4Nx6t}GmH`Bh#4gDh3y<9e&X^p4>4JXimJRthS{GiAzWW4oF1o%pV;7a7W{Cwc zeI;d*Fz6*s=N|0;W9*xPL)mhnH*{9B_gNwX4W$Ul@-E%GYuBD`Pm6=*UsBKt3NJGD)3s!@^d%!JceFGA9 zwexlXno~e^V;8!oBN+_04W1347*LuNPZM)TEl{m8}(+ux-yd7~6SHZa9zv&mr1JzTpEm+o6nr?$ts_om4t-J|*saGnBD5 zHu&KEaT1#9!*9i@KT2;B5ahkN6`5kS$3X#4ADn@%dkHYpPs-Nc^!zu4~X*e zI&@1y0euqFf~aFwTw;|&kG`ib-LV;wXeWP$Z6sE9r&OZMIPp z$pHO3w^7q;5k%Zm@P1Tmw@uv2NC!>l7I_1&Iq&{>{BOV^>q%(1jXy2(d~>wi1+I|o zYW~U)vd~=r=fuAabRKZ>uNxj@&5L|U2)M4n_fz>;ll)3HNqV)-R{p2rtz2_YhCK%$ zKfk9`_lKa*zZHolX3GHKZV|_V_Kjxu3=1TTB(Wx;1NkxPsA4hYO=sOgj^T38cdBkk z=tn)_&@w0d*btzpW$vEJ<=|Dw=S5D4cL>fw&K;L8fvnw=1HfI}?(M2fKxU$!7 zpR=<$^zv{(D>>PI1~y@*rwyz1Gk+crk~=^F&w>4|{>kfk2JE5keB&$9Nty-7xmCLwn5b^=+cJwh=F&!+ucN{X;DiiwbVN}VO*22^McPHeL z*In+90U_JbAtK7_dTd|{{Q&D|60fXzkhtW0^Gt<&-5^>P*k|N^4V>o7nmoFWksT8v zrX02`^(Qs{;erLtL&E~dLgZLJ&djsYKzqL)dlWx$khnp{PD&wJP6<&21(%Ug9G03v z6aNSEB>BeVD9~DDxP+MiZ^Dy4$ZVlUNWS>_-CehH3QA|(>Xg&a}(x%ERWf##t-u6VNwiMo_A zLuKF<1sPNEZxU0wud|8u^+ZA!gUJzA2@vKl5J-9b@|9$bAVU5c39^pG#Pui#!$(z* zb(0h#_g#CG>pe^}Uy*S4;MKgCp^MAXd~ z;D{RqQ^0cwSuoyzx(o*~2fZ3Y4|O91cc>Ob>W(n^yUaMa2GnYMO0`}Ovs%w>njGqK z_n4T4_($N5*UGUi=`8@$wT90o z#y2?{2zP?7f>=Y4dHBARg61~-Qsz6B0>L0z@AgkF#TkkYl_8GDV9H!YP`3TkcmO&~ zLh~ff=_`o@n}Qu{#Jjd?Klb;B(CGxI{8JmbjuWxNcD;6`N=v>kGPc!XXKmQS9=v0| zv8J9Kk7{*|+GwlBVI?j)P2H7RB+X}qeGHQ^=Tr!IcOiIVCfNa;S1L>_f%|w!%|k2C zLp8j1*@&=7ekcdeJuiUuC$J+yRgwfMEuKRGdMYxXu0{9n0Yu&B8jlmlvbuD;ls3oJ zhZn!UnzB4&r~#JA_{Joy$_a_o;0>uiOd0?mhBBEm_p+3Qeh^^|@S&k2+enGUMG%7z zC~PITcsW*GIRY%h@a$V+J4Q3@4gqb~i;ve%P~IdOCBM=Mj`>fj5qG|OP;q62Wl$No zdAoit*tt_}J%h$L)U-|SW{eR=3d z5jH{pbl$a$MzM7qI$k|81-W)#U=nnM)8Ii_TAqJ^+!#C%SuAFgg; zL=K{HVgKzm9ksdB5JbkfjMt%4z_l@AN3&l$AO-JV8=pPKp3;Whaab6B^0PEL31e=X zFGojYlS=k%Mc`2>&~EFooneMQyx*Af4^C0a5@I(+5e;)D0>n4*yK;3 za(4Y9xshcAto0g2qQN}`%jR&9Lt@SsD-cE~M)T#J$_2Md*Tk=MUSZ;QoJX~yfK)h6 z+{6AHf}(Z_#){HnB>UD^=O6wURcxfq&UOgs>ti>IB4~=AxPlBAa-VID@XeiT8^kBC zXYO^UlIj@t?IpT~+g1NoOAGxL0{zxE0WM=ip>0EZGRr?UZGT&)VQ;xv=SI5HV1`_z zp~Qe3nEbp}%9V0O8x}ww60>1p=y8Te_m^R>rG6_Dv3VY!;rI#2``^T7g{W`rTqxOT z_e`c9UpVMp>>^jAaz%;Vi1la9KjN^%dY(o(7vl0UsC?95kw2qy91r=TIj|RFbB4NS zMzXis_J?K*uU}vL%fq(FWSIeYJD745=1XD;`AopSMTFV>$Lc7$@Ozx$W9MNArR-D< zYl_jt6YmDdS&oxzKUT>VBwD%2(4bMX4#tdnLS<)GWL#_*{UDvmbXaynsSZ~2D(2ke zkH@i(SB$u}{Gm~%I#*+4F4=#vm{!(?bzUAIi~{B^>WmGq^L4Ysf}visWa}eXLaIb$ zOyy<;P?1->seg(z@|e$l;F0LKz;LG8k*9 zUBN~V9&`1fh;g}w?Suyg`>%Jv&pYj;=`N+hT8^%aWVzBJ89qTewv=s!oN#;01iK$0o+Yyixl+LI_6Lv=I=d7VgHzW3oHZbIEG5bd^hU^_G z|F7x#+x)e%StM<7hK}i-*o%WW?n!eULr75{i%WZ-rsv3|7jaD(8h~`h>^C{1hn8$& z56Zjy*2Oh)&!mb2exlbix00pa%rk+NC&TJLY}+nb(^*-Bzr| zEBdGP=Gz<=`3@oUYvsOEZ^*xNbGrAsWVTYfZhUEwGvJw>k#q_QEuupmXHUN*7Lr^F z9>tpMNxvKbXDhAMdc0YP(NE2=4Vb*wE61ZZ3pXHY>Q~6i(YbXcwucBhi-Ci=Ujb|( z8x$$2{fj!HfISEn{uIXekKP*DJ zB!5pXZ5d!61DUN^$X+lTf@3Fhq2i`Hr+&d2D?XHB&OT00tCr7Ph^vS)*3Yz6X8P#H zs-@7$4UL>CR_In8MmV0cUw*=iT#Y7d*+_ zqzY~-dqk6UxwS0A7tpnrckC&9iIN`=h#2y$Gmum)ajvsxw}F*$Wp<4_zC#0N9U_sU zejUBmr<$b&0@CTG0#;9`AAngR)}+#bf< z8HdzOk&NW!^2(dV!Wx6FF>7)+nuxW9Z!zLX8C}09apkpR0+P&Y&WIj%$(lghZOHJx zy<|Y`F{8SBgx+EVy*C^r6{8P}BhVi;~by0U5qwl+U^xN$4|B|4e;4a5^QX zwT+;7U+)$8nX^y;D2UM%^#5}zm;<_-gis`b$mL9mu7=4wm z_0K!8zM)hz9PY7cTZ9j`Gf}G2Z1CvrtJU21Nz<#+L|kv{mfViiG}`Aj#;JWZU^{Y2 zIjK4q+cy6gpJWR6|2R=lDbS666W-J z50Tf*}u0H?vxlP{0E12{eV-9lh+T1K`7 zlb9pAHsDwi?Z>@xvhYCv9M-sPm4O~MDpRq%a1(Z)76hp6MOiuA5LJ2&|1X(1D<0z_ z{_JD(lq9N3Jo-x7vO7rl^uTK9h2k&K0%evCoaOR4#%b^wLX>m&*0sNdSRVLPNObVb z&1UHSw_`~MK97+@&*#0PO43z0ba$R>Qz&QQLSr}71yl>8`oh=YZffM+=7aHNcSvHVV#u}71M$Pi6nf#8Pt=W(?eV%Hd#j@Av<`BH1<&2~i-R^Atu zlfqS0bnMuQ@pLt{*R2DX6Z7Q9i;G-r8a%H~M^irV(yQqdH(HcD2l1x87Yh2EbO^cC z!rdYQLFgs?GQ_zTQITdM2j^2Scj_viUEQ>)s#{#~8PiM6-JKtcToi2XDUq1+SvLD6 z@vqRwp&;m&7o)T(tAS*@+?iHo&KiFuaUQ%Xj%1GD_iM&=YiOUi9atw%_(0%zAUt>* zWg$=D89?pc$veX5rNfKMHoyUsuU&JDAneDUzdAzts~l?T!|$Weu1|(GY4(UFw@MA0|j<-OD_|Y%3H{f^M}5HfdhQu1}0-W z9OG!sEFAN$i&!UaX9!-g<5;*Q&1>`n7m+?Yh_yM_je#-&=B5{aQ6-aqV(@-?>d8(m{!CiwLA72><0 z(}#`N{gT9O&FSLWAl}e-gVK**{$x+QlE-g{XNKker48c{|?k`#HSZ{566!iAt6gc%l8A zgA>-U^hZPS+}->ZHp7PA{l4#4!{q$p!}`8=gZ9DAij~2~jsXSd{5;<7_s0&X;QM&| z7p5H`e<@Qq$(j{U><4FNDNa(DUhXdEr*q)w3?v~);q+mWBr%NOXCc7$YIyw{q#^Ak zakBwOQCGk39)U5&n89h`WW7#cDLeoUh00p3pyt|v)%6wK&Ez-d-~~13f?;(=SM>0M zowGS+Su9Z(A;Gi@+aS(KfXU0b1vy880b_)3H?-Lv48nzygqs%lwpvOnK3Q7vx}T>x zYqtq|M!591BnlF^dB-h-1D(>$26~dDDcJe8;^>++!1v%S$UayLhK@!xq-q4r{ymkB zC7~@^#Shl=i+4!4f&?*-6D9ikvgaC@@-PLyVsTJK6v9}byat0KeNwa?(8h|?XWsx( zqjZys<44VNZvQTR@R(nZLG8JnG!!}rGJp?(LxT+!y)2%8sooOuB#+7pi1|v=>hb*< zrvr`yfsosirGWwDzkz83Jj${MKp?aoO|ub#0Ry1tVA8aapg?GGmIOVA1NuW?w`9~XI=xm;TL1$#yXhJ6<(Nw*zn+l(dV(+&@|*(}(C{Bm)B|XXb|^mL6D8E# zxhs++nJ$jhh3C&>5rp-1fIb_d+m>eTLq`N7%d2C7;yrB#!+9SQgFL zQ&O3V22Q9cW6TJe3x7{0vJh!C3`XfHi^jh_(@}~T4aR0b(usly`=fbr3P*F{kJ!5Y zdHw@^43Txjodb%7#=~R;^J2_ln2K!uROoXC!xW|HC6Tgh)2#}Fg{KE9GYpIh=20v2 z=Is0yJ0OX51{Nb%oLsR=@!J87giuN9FG}Ih%88w(lfy*N=}QO zo~S?&XwU+bF@y%RF=&)LGOz*SnG(`b8&0L!#n>G${nbp)#H+gWX3dTuZ5vW2DUBGd z8&sv)7kF|_j<#3XNbYb(Os1oMfmf#P{uBz4pf0%M011fU*kBrgI!aqk0j4)gZ`}LK z|3=#1-$*N5(g_IH?}B(Y!gMav3WAdgNmkGx1Z@?@L3m#rZ{q1-(fDA}fa(aRu2G$~ zOu0Q0r6lV-7VTIpuQ!qa4yK9$DrKLO7As;;0;(?3wkS3eggiu0!#e-yfv9=>E8fn? zf?O*-BXNGN0)eki9bCd33ew4}S^U7v0z%+G#Gs;SlWxDIKd)(%;hIRzQ-#YUN&%!% z#nS`@6I#uZ4GHd#xY=g%Vq`r+f{8Eo5neaYDFkF7BDT&zc0dr-{^!m}Q3Z^%SYr_# zOY)**EAo>))xfEfd`+GiUBH)m@R#)~-M}LeZ8EB$KhnHKZy=Icv9^I|2sS&Fb9V^W zepJL)4K_CH`7hv~8niJQU^^ZSjaY23J!(>sF_yzc?BR%5Dp9zlQ?S91Q?kLJ)6(K! zS=vFsL_k8a$Si-g+81dW? ztO`%Twd}&hd+gX4FcudGBapP9Ob6ca7rR7*E=B00#2z4NnGUw%*};2@^f%4IdsiFL z^6avOc11Ag*oXrqVM%a{Qt_Sj?BXpFjv#@|!$h%AAm}Q|M${KcFDPS(T@{N!N0uIZZPmGptRYo5X|O5o`gm zKa|jr2EIuEfMFWPw8ws?90VZLtlg-&N6H+5e2aloc56k@UVj#{{|sg|R?^ulo*mvN ztE?Jbi{W}?ECKGos=hOkTfIraF*<;K7%6hJI1MG4nA#GV?a-i@ce18D$_SC7>=OVA z&=zub45?bSEeJIcY{nb$!)Qf_>H{iF{c;t@Fytr_(~8kb4g$B3wPw~_&U`i+$nYAn zfIDfCvNKjWeDvw>2C|?ASS<1HH74l_I9gs6G4s0Cq|NAB35CDj@RN8TI2WEl8aRZj zzYbX=2oF~bb(41(1VUd0qa|vUb`Whg!jKb}{gQ?s<+|)ZF!MrkJBzm-J7s}LdN-gV z|HhaFVJ{dJ3}kQ$w#gWMcn~#F1;3Ai1m!wrtF(huy4(eV{<21Z zIibandwmh)qXh239ZTopStbhGn<#M$;z?9Z@Vg<^;=>&pOc)6~*en6(pcL3aMuZ4k*{vtMsrp$1E#X4AA9H@bgo$>hx+Gz^j)q|JMP3s32izDcS`uaUBM98h; zm@Z>BbDzHSZzDvC%?7ihCFZh~{2UjVbTZ>h#dMrz$qS3kI=6@gg4Bc0my!`KGn@or z4SLo@)#+N1R-$So=I&`A5X?M`Lr-*_y*(p@gf(NE1P~C*;FfY7EQ93^rGFJFtkVD_ z?<}&h_nDea-mbD3H-5+eCA6#oDl`qjhSVY4)N23|Boq)$L0P}2JRinDBCDBPZLdwz z>OZkGc`oZ87@!sS*Z@(rG@~z4>;SqUG*37GpE;h-18-$M7jh*)uW=Dp&j>L17X4D) z9Q}BeZB=4Ax@44;5}Cm*DYE7dg;au+Nx!d=fom%ST);tf&p`ST?i{xh!_O$5k&gl% z^n^JkLdL<&Q6scS7V!r`HY>gYi%cAr*CS&&o> zJ>~-=B)4+IbDmvw8gzKTd5GFs5`&;=K}L7mR(O~#DJ+=R)C-O3{e#j6T$mubpO4&9c)C4kFZ^U=d zMyX2=zqah-+`0m8h@?cN+#}Vnqrqv#q^-($Gclk@(ze1W_2Q~=!ExK-(##`5vjqy{ zN*5VsJ~mc^(Wsd8J452d`#Z4c5E5w783I+5kd$ zE=0g<{4Ofd^O^Oj9n=@Xfh^OeD&Hg^!twb@wUFlX5|+fu=vt7gBdW#6`!pD^3OF!X z0`|eR2L9?pL)r+;!x2NqRhHDulKh%1TL@R&-dcLuj{ydxyh-wvNpOLltbHZ*l!>A?T21X% zL*hDJgT89svlRgs!Cg(3!1(>_Kt6pG=6+2fyPFC0K-uQ)w%;fAam+1$ZWi0`T(FUB zRe6aH@;KpxX!CJWlHXA+o*>ndj6o&t%^ew~fDV-%({E@vZ@K#jaIruPkRSPfa5iqQ z5=7H5L63Xq1V0osPMNd+4E8+rt6pfwRP4q-yT7xe5(Scm^qL}NOJldlzhmPb?lr5r zx~|5a`cRydtW3g0J*l9508~^nIJ*#QjnJbCz8`FHXINjWTE}L4eO;z|6?5I<1$$ks zvqm{x7*IDuI-#En54t~4>_1%y4mnDfvd!TldkXP(gI?UDUN`G08k%uxMC|)q1<^lf zCnY?^!=g6QN|);ZS`^b2b@cR-BVS9zGGLE0Uu;W!g|pA33x_9TG{olq>~&h z2flR!kS9-4fl>;ce$MD*UV3SoH{qWX!gL?{PtvA2`d9}u?}v%!BwbzzqByN%k~5Ey z_sP#T$lE~!6LoyMcYbL?jR#ZAOoo-a&9V*l^R-n~-pFhQZKi ziPeDT2Cb%Xm|CGelsa`DG-8D9c_@%;@phA3^>#}T8#HUZy28FA{LaCl3x;wCUhl;7 z@YNIL7o)Sq_ldq#SdSr=-DEAhb|fD~*Ly#r;~g70XCqS9$I_+vs+aQQE*gYm`g6x4 z)W>4_S%Bb!AAI|VIC^FcmFwIr9YTtmc=ny~pm;pt5ObB?)AsUF{94hkmxKONU%@dh zSXq=(^b^Ao)<0oQq+#)$P%L`c2LVhu62{lXW7Gwx%bqNU@^8;u38V>vMmS>fVrZwDFBkBsHn<`mg$_v_Uz0GmReIiF1 zz79qS^?}aH9&*x0L`7z7$nw+U=A&XOW-emI@(t(_oGqGE%h#!IZ?Fw4Ba+I@g+gf4 zq;uc~yyKU7UchT@1cFg0TU*N=!ib;wfha*_cXZneP@kEl(D9iUmx~SSh6Pu*Ys-0T z$lE4H@63GTrt_hO&uK3lE}_Yf;)w=U(w|bRZsm1m!z$|m{BM2rfXk()iqnjKYey^h zrEmQ}jv~{%IW+yq8D?$0lMxqm5#!y1g*_2f8yBo)`B7QLps@nz%Xc6*Ydw+42myr_ zyjsV)x?Qg9FwGlOjBU(IBZI1xv^v)m{&8aQej<@t>6u-Eoekt){H8qDc#f z34td?l`T126&hrn*xDEFODGoMX*zqER<|}A@t57B_`*&DJ;DLXPXxgr>zfdYg`8k zac;@yu(arfbo|7xUH8VYAi?E89ClqLa$x+u+PHr4nOHb*a{5EU6cYqTP9`;%GCb zV5|`>r{T-g=;3cR0msms6-gfEGCzB>%nR}t{)tJ4SD&c!EePLn+T09ZrUffL9+T0k z3URu}X3c1(h4|x-Al*7vmAr<9&of?IH^t*jVFgthH>y8%U)y?q^ucHVDX-hYsr0{r zNYWa%!P>;;#TU&PUbEw*ZUdeC3z3PB_~-RjYf{x}A32Vab~3h`6kIpA(_IbTCT6L> zW~{h#-Bz*2BiQ)=-m`%%b-VCebXJ?Xt*VwhS z#fEHt(WDR@BtF)2_ zD6sUKyASrv%@XHg$2WObeY-lNlmM%UtpEe_Z54(uCMnH{TCNRhNepigDJnCFN?685 z*dCoWfw&q@7}8}dQebi=Wsf2i_h;HiNqy--JQUH6c^yMDJxZT&2%Uk zB4e`{F|<(IYAThtSc!R#!Hkf#oA|7f$26_)28#bR9+>)R-W6*7OoFKrK7fWEISa&j zp4TQ{SB=8udSA3=X^my4a4(EqY<0h*%DBp~Q02X~fqV^mPbi|Lr~Lszn)7|tCL7QD zyr?6hnFDA4BizC1TXC+_X{nM9-B^qUoUu58}ql z{=Ay!{1TG3Cvepg*lybQT~p5v$=XKJ%*?%QsrpoVj1Kg7Zi+WK*R9y?lL=9YuY zl2bvAF!SR7enfL;}c)>J+Of9&)@&d0{JpjJ=d$( zegzo*qTm;*oPZq1Exgv^Q#vh380BEXzPVF5-E804!VZEfZ|PckTJ|mZAY2>BqBjYw zfYuJg1MBuS3pK4#?$2yXhc#r!6NT?Z*#c^WQrg8W@)L2_ z=hombwXt@(i6|}>rtdP{hi-~+weeAcRqHdcZMr>Aw2i8*>;}`Mt+S%$6^!BgJ2|+;Z=>f=%LE?&AxtaZQ9%1iY#;_b}83t^VhO0HFs#++Hz{rU%H>C z(VJWz0?aCVGc{ES+4c0Qg1FZ{IZYERnA|rk4G?bwt;S>!LW{S624(u9-4A!PT|E zoJEHZ#yEZdCh=4*z*tqXpPIgufEGUHSY3;JUDXZI%&gyw zk8sIR!$>eyreP)}joyjVp{u57<+5{Ys1sXl6RdW-rfAY;aOg-lo#1R4U_3UqFD_4< zYh|;dY3J7T-EX3mGRdC5W|{U0O!Qrhw%l>LM-bbVVF6S45=5{lsAykF|oUDFzK`Tmoqtl@nZhIruw`>Po9YE!=< zpib9aGN{sPBW_%p*Vo`Nsnp7OOhL^{$G@<$gjTTKR8>M-*V`UI!`%T=rKTh$2UAt0 zxTUA?-l%5u5_9UpY?R{HQm`y)TAy}K~BzSp-;U-F^y(_-~t zd*2h<2yG)W0-vHvr_r*Vk)>zKz(|<^=EJ$w-cwS#U4_E)hv?izKo0CllLZKT(8l(6$0($rPzeQMMNzk_rW_g6k3HV^K;@mQU5cRhw0PD&7j_g~{OQ z%y+m+)A0}3f9j8X$BhEiKaOk`U5dLK-u_jpN!@!+IazA(?W5!@H}|{`f8IgUcEo&} z5?-p{ZP0NB+P)+2Lh&uqG2GT^S_NE&x!MzK(ui@dW!tLRI|L{8u+#l81;-sVK5h2y<#k zwRXE=mH5)6OOD^Js#qA8)EyV8rCI2R++0vuY*H_Qewx13zE*Q4*lt23n{xd!LBdj+ zQdarI6C7B1Gq}uI)APJJMB+7ZFiczu<)Ce7XyLuuAuzJymM|MA+3aa_qbtxnw1T{d=YRhq)oQEO95n`jtUtZ~ti&6V0f$Lh!X)eEjSq?k;I* zQN3rl4FRdQi7(Uh*u4hW}rOYK1}q}3aTae7R#FVeFVyYcX56BjLi72Ask*Br%0k3)D@?E+T+zJx~{)|LT; zS-&u*z}wX-s4hV%Kz`YMMy=>3*VM3j{=#oILv~fiB5n3AGrkiQH<49%C?G=Q?4TQa z(L!_Ox~LxXA0mI1!q_G{_@J|TWBn=*N;*7`izc7w{v>x++n<*~Mu_2}#1DnC)=y_UnQ2$^y1m3?L={af<;-jwU(;q~?W zcz^Z#e)^^F`+ol1zyEjrPsjfI>;3NiabJ3QAGO%(8U$J}pxLLbN7ig6+__(nxeuC$ zf*0n}WTzel-1S>s-@OmMLwM>$B*4t9bDR@^r3o1F>I!3ubI-0hXaj`eIQ^RFz6tK* z1Kb8OTK{xzQChNIv1^jc^Z-PTqMa=FB#}}{eu3=3;(UEwP>Uu{@v3{16-E8JpI=+E z82DBU0^o%CG`q?g*4>q?YCcH2(vKVohy~_tnJMq3UvQsBBKHLG-=qL}3a>v;|2}>n z_g4w1Ik+?ovM1}_WD%uY=tFi6Y}H-6Iy(-HGKo4frs>I&BK>w>Cq24mc!*O$h<=b| zs+&vFbPXqs2r9{ypQ`zP53<+dT{!!P3I}y%R2F$95$?1p)t!&7KJCC3jow2eNXKF+tM-Cj`(>!UzlO&ACbV_){tH?R zf)bjF&k*V~wp#jr4XgIDT|3pW(w`f6~IG0=}{JDXjC0@Dl(wpAw^hw-9Xe`~oLvV`gG@)${Xq_K+ ztW;pqI5Mw1jRUj8fY_>bm41GH5nDlZ&BO-ZZA7F&9P#~jcR2I|Tp+r;{=WgznEr2o zG$uxNw*N-0sl927!-nLOS9f*_P^!_53W)(mq5<_n*l$WmfWK!=M9m0I^7+$W=+!xK zP_y2KIT8D1?9e%3xLh$*N%X70$o6&VKGp>v{S_hWtT$K2C-;v|&}v6w!sB(dPp;4T zhbLfR+7S|m6JV+uC3NaWdXr^okihZmJ3X^wIma;D={otmAA>A~9*k=sT8KROrk_9w zs9F)19vH1fx$)Bz$SC8aUu3M=+4F6?y;teV9UMX$%1magtB#y-fgwQBrTg=cr1*H+ zvG&tLoC?DplM``K5=@n32+{%-8H^dx#=Hq<9Ho>@!j!9*yBTTwYd?z%AzQ)*Q3QPy z5O5kpeo-+aSiih||7G!7#2q0~!`>VmaC9O-UfPnp0o^&1&*IAyN|I=%$3~PTaV7uS zg1U@oDcUh2%Ay;$Oaf-*nT-6A=J4e5{5bHB^EAY)$(RxKy??>}vbgV$Vo8VJJ1Nk} zyNZAVAZf^%6ei=TS{Mvs)I}@MUD^^I-|$vH*V!10tZ-2b$-}7xJ+q=FEbz~KA1?&x zmbj_ToS^sHKRrIzw4bl%&-25$%Flm(lFp3yRv+FzPkNdgG5QPz{B#u z$}sJXw52rs1HY)3>SeCve&3tFEb&bCqlUtoJxPEBg8DW4V$D5BK}H{}lZFK;jT+{# zsxL(d+z1{J&fRB#hD$IJEF1I4I; zhD~-(J))4zWvti<8s?cg8oTUSeL{$J|b^YmTOXm*iAwduGUM3DR^1 z3gnF>C=3dOr%A2`yTaj9Y|7hr zQM)60LH;2UXkmFcLofG`^91J+tH46S@|e3^#6(E5LX&lfk>;j_M(bcxFq>v-Yy%9- z=u{Kp`rA28pxJrR-*G|OfQ}geFu*XRB7$eIiq8fhkZuSs$bRk)L2~yn68#si@rE~9 zQyi9tBspsbNQ!6*&F@P|bn)dGUU&dflV*^&q+@@KebfeJFO(k^%S0I>dp1kJNDD(2 zkSj35dCe-pF+bNlUZ1b?eSAI6 z9iMOSpX2?fdq`{WO0Vy0=ks@9=kiZyO`%tBULSoN7IvC2$?M0uZF0!GuG60OY3hUB|w_PR(#}9a_YQX`$ObNj*1pWTknI}Xt`i; z_Elp9TCs$ABKuu$J19%sU{Tzvl<+i5cV+QgM%7Tlpuh47o(&d*-PDKrEvoE%bg!h# z7>u?4LAln>VVlgM>(&0RAVkHATr;LLIH?aS;iX-gSm**Fl#hAP7*-TvBL!9Q_(RD$Mf$Fy_A z3@Cycm@U)73r`(Ybv%V)NzLE2nz%;2E}gcIcz*K0Cj&fovlAJ&LPO6fZ+ZMK)V{V1 zI|CeU2-2VykScs?ECB;cp3xAn1vmTQf3f!_@ct!5eP|K`;zU$}KzyM5G%*SKbne;D zi3qX?0}e6_BWu90j0nmMFvB8iF`7eF#i;ph+@%Dz_{lRy= z{r{VzW94y`-%5_=Ivkh)Q4U9wtxDl3vT+&af6Vi~`8U4g2H*aotN!(kANHnSdDM$O=V$)b zjXv+YuKJH3xy!9ye*52l&DVVF@4V?5&%f9F@Sl3=8=wEahkWH#cfRxA``|r){`1~^ z)oq`A|EnJN*0;a+%jQ40@J5&1t-b0SfA|~z>n}e4|GU%6Zuyg6^%pn(d&3*v{U1K- zqp!W;C+~WnPrTwQ?tjy}fA%|G{ljm${7p}L=D&aDqo46xfA+wyc>2da`TpPh}^TTibZ#RF@fBd@s|NXbm`;s4d&Zm9PPyCPje(4W=;@Nk3=MCQRiEsIb zzxmeFTLU=Px<~E-QZ47zwJ*=-}lkay!zrhea5R^e$l_V{ZHQU(;o31e|dxF z{ozCY-uEA#{)Ml5=u7VZntQ+MiI>0X;xGKgJKpa}uYKQ5+pF&JupfNwE&tQMz2yh) z_BB8LswdG73>_=Ys+28jCFTL?YpLNTx`idX8!#&>gp#ST~|NWD?7vA_!?)Cml z-tx2;|IROc{)c|`IluIjfBwo>jF-LZ{3kv4rC)Q&-~ay4zU=j%_BrqP>F@rzH~#Cl z-u$H>eetEg{9|wU;P<}uci;aTFM7Z?edq)K=Fk7=MK5{L{U803ulw%bd-78s_OP3M zdo_`Uj6XT|Eb@4`48RXWl#LuH@|QDy?1-w zXWi|2PkhGwfh%79+&}&Nm)_{V|L*5q@T{vo?SI|y@_Rk;T~B}6CvN(PoBifbvKj9mn`+Gn81;2Xp@4e6CpZUBOe*FV~?n`g|(Ffn*Ti^O6Z~3k} z{KE@B{EDle^vHj;-0lT$`{TF0{mmb{Vf!b4|JINFs>l4&`05*7eARC~_}_osOE3QD zYajkUU-FEfdH)lB;H9_v_4e~`_RY_E+YKM}8TWhTZ#Or->V+?U)<67LH^1bAfBu>e ze(6=e{y)yYe0byX#2fzpYyZ~&dhp+R%K6{%m!E&$zxclMzu*NA`i0NF&F4S%h5zY8 zKlg+$d(>n9)#d;A`A@yzt^ek-TYvl2FZ`zGf6vjY-~YefKfn5^SB&5Ljc@qQ$9(mh zpYyZBlmGa|4|>JBpYZH2yUW|(f754u@$cXNChxl7HBWxR177zVPyKhV{_Pik!H>WF zpa1=Dzva`O_Luj4&-Xp@=6~M5_*)-+;Un+8y!Kh|dg$FRf8=F9_Jg;-)#twL`)>Z6 zC%x_NuXx@2zvU$ly6UaBdHqN4`5iC#o}a$(u^(Ih<$IrS^)p{^ue-nVxu5roZ~e-b zz3aYD`Q-R(Kl$`mKl@S7`H_Ee-{sA}`?de&>EH4CtKawY_xjbB{>nH1gWLby2R`(f zAG_q}V~>8$hd=qtUp?L9N3Oonmwxuw{l(8d>`#B$`?o)So68>e?DxI?1CJeE`ybx@6Ce7rpZm!B-}U~l{IBDHh7_P_XnpZRycdH4V4X}^5YV;^_LPu}Ts z-*Mw--v5IS_^X@z+VIGSzUedW^W5o`cf0f#pZu(+KJq)KH+0YZ?q|RAqi?+6RgeA6 zSKaTwJ@ok>c)+K>tpEMr`m_gp_-X(3OF#GGC;p!gc*+ky`{OVAz#n|w)&KU#p7r|W z_rCTMfBKj0FJ1WOZ=Y{*i(mV}H{aw{Z@Tr{zU+_Q`lb&*>FNLEK0kEDm%RL&Uhs$S z{g?0kgV$X7C3pSSFS_zU?|8)*{?9+T^!6A2$}Qh^^(Sxo@xS`?Uwq0(-l&|9PEJRc ze9L1lJ)D2hLmqMIdFNkz=@pkh{&5ex^oql6Z+relkGuR~_rCPX!voL1=+1XJoPWus zPrCAO{@or;58iS8d8hT~-5zw_`Ct8{EAM*mD<5*@rQxsMwL66K*Tv_Zf7kxdhu>~@ zyYtS!%jK6{8UE{ChC`T6OaJvQ<6&HXn+{Rp=tK>w`I47Aa0zmJDz`(iU4=%4kO`Os`%ZI%Q5Lw|ld`rmoy z-{aDUKk^}Wy!=Ur2ZjZV^towiiQqe2cG=}uUU7I}8`pJcAKI*(Snc#aJ$mkr%L*psQ zvK2WuKFXlkmqB;k%HR}s zQezvNev>S^@j(AD|GVix|E#~yhi;Qaw;bpn{`3CmK>w`2H-~<+!@fPxKkJ`&hkmoe zp3HxKkGB&q2IpSPY3#k{=ClK`naw`AD46(;%ZVu8`d?UklTGB4`JcK;>a~! z{|s$UpgYDzQad+-+Y#2#9q1nx;?N)HA5(D0E^t_-kCN#Mk_jsEsV12-l|b1<;ua5@;(ry8e^H|pTXu1&pP4nxJ}bS#Z=^_VD)VP6_!aADV5Y1D*b$rf|Gm0t@| z8ruW?Q}2<+)s>-S#)4#mzxx}>oPU?y4d1hGkVd#ArtTqAL1LeZd&srw*_^xhsO~Lu zB7rC(Iy$WfnelJ-7LJ!{g5hftUyW;&j^1q9m&_D4rnB^B+TmY4-tR@Z$v(2{aVm}& zDp$$-OwED*Vd+eCu-}d_Q+J?$)<5qLlPAiZR1ejpC;iMort7tfx*l)$dtyD_RDy^p zkx_BFJPy{T_1KF>)TBv*TztXo&eDp?$u!lTYJ`@YAk!F)&h972_tWm?#Q6E>K>yUo zVzYW~Z_0}=B`$IZugoIH#SG= z=GdmERKbvIeRrg?o92kBVd(!H5}lOZoLlcv6-izLPtqJw9S{AVGjYukRr1jP>vIat zQ4~ggIBU~$t`Jx7K-ao^zu!F{`lw4E7R#gV*Bp_vrvK-%J4HE&^JDoS?9r)(k9>-An+4?cU?Bfe;hH(JtSF2#@~1x=pH3Y`99X)*QK* zQMk?Yw4IAC7Cv6<=6GCEdJb$Z5na{3mWpfVFp^$G`R-QiWc+cdGWqOO2x-P66-d~2om+1#IVWfX znst{ZK!iv_>~*c1^%-rwyQ11VcBKBa!d`Yob#m0Kjgq!%`Ak%4azu#gQ$E1m+bZ`? zi+gEZr{&dH+wsk9jHvvUr*5cSn%dcdmi3CMiCBogu{^3{sIa_a$5?A$8@eR3uQYih z1ahtC+8~T^oI=iEcS>!<&usN7s!KC4g4x$?C~!tG7)X2 z+K4Kg+D#{daz$dUPtyZJAb+#zTr-G+J2KD#y?vT85JI}vH=V*A*cm1el0fWuuc+32 z^?cc<$pOLE>-K!OYLfh?WG4QLh56CD(_aur7?`$rrvI0W5*I19h==Ji39F#m7H?U9Gp!t zEEjU@7RHr>pi z`+;E8{Vqv$LtI#)OM3iIR?qbYkeOAhC19+!scDqa}8Wfs@?9h(X5`0h9nCi z7=Qf+fqSbJ_uR_0nFiI-;X{&1kV3d_&qgN))N^`DN^6S~t4Raxw4-j7)7tK=%Q4i6 zM_<%Cwjs$Da1B**o>{Kfo9}oJ&1f-M$_l1`7u4=3ZY%E zH`_G)+;cU1C*O1?z_}96hJZUo`l02v075wF*;WYWQ+_+%5squXM!rpJ=jpOr+Y;~X zQQV6UEw?U6Q+n-@x^s-_nK>6vocD6Qt!CM?mn2Yy-D2AzLRRObjRpN%OSfX-{}Bxv zPVIa1W{#u&cAI#E*HdG94i1||(hIGPT?+o%Fw?K23G>$5mW+An`BgA4-wAW1=l;eI0 zC-)KRMQ2TjajrzW=QuYJ);dD&=#o3aDLsA1{p}D4xPG#Mzm zcYxDaTg?V_6Q9yku3&?@iC+;0hd!RBg3|u~HIICFm@*n@Iq-&a;2t4|IJofQ!w`e) zLxkg8Oan^elVc>F&fwd4Q69sX3P3&8$S;rl`Z&es;zKMpr62rPf?jQsP3~Rce;NV|l2c zbNvL5Xra=vbqTB9HLQ5_=PTD(Z;DF@#!|C{Rri`z`I=SxnpOSynuF|<)sKEM*IMpB zT3kXPqGAax&p)OEVRRw%GgkA^&o%3IJb-xpG`EAJb4cVyx`g-_6Hh=V)6x>ii?2Rt z)pYjVpyA?`VG;XOg#-)MeRt*Dm%C^ zk!fASYF2Gz1kfek8UA3OuIYrX)kIq!dHbMbT@oA4xu~!H=1U(Dc8bvdFSQt@xfC1tDh3R3I9+ zpy+6T7mHmrdvQilG%TBW=`kBPqL9q&%Ie$R(KiZ&Ipvc&GS1)!D%J1*J#u1s1+9}AgJK%g8` zn-RGC{$uJik&c$kC+mS(V@(fAVc7vLeS?)+K6tTK)@WY30ZWSCDoO2FZ8!v5)rPmx zW5y8r3b0pn*Pz$>Fu_FdNk`K^PEUbxO&_piF4SgbI9Ww{xt$npitE@wWiIrrp>jc z&9$1%wXh*ZWMDmg+c;QLa+=Mx;4R~;>c5vf7%Xv*HIq=32xp=DgmnCP~TxZ%`XWCq++8pc# z5>r{Uxec{xNv-BD%durL-XxiMU+8jhr@niLC1DlIGyp%1{ zZe_mF-z4uZ+T3W`+-Ta|Xzoj+89R@rj!mYHOLSvPt_Lg)npE9Q z;~{=k^_Sa3e!S>#g^GEmIn}=|-jbi{{YCwlOxu{qHp*Um(qgtgjoG?*w_m;bZi9`P zav|LneCyLVgZ@jN8CoJKrdtSc(56TD-$jj*-! zXEuG#tofWijW;?8x+?AZ-3IG2*QWWLK8*+XRVA)$*IpgN%c7&>^w@CIifIn(LQs?$T4ZH3Xo>9PL_PK%Q@9fJ=K9m|Y< z?raqhBE)&W^*rHXH9I(2OeeOeP7K#(ZDW!r$K#7JY+2F`ri%rj4w_?vrh;b8IS$}E zV(EwD%awy=>}GHjA$o~{;f@JESW967q{pQ{$+8NiqoxQM{{K69H_KivsSRCxS|pP3S(l* zUor+&&KDbPa4VZJX7ECYAdPAio8N~V7e#0O9^wj#6Ur<&Q-?~gOZb0{BxJbdcBLS> zI9m!5!i9)YC@Bb%w9N;$1*sig2jr$@wArWEf;9Sc$H!psI@n7IHPbtMus$?-uGjyA384XNCUcfyA=F5S=HPwEe1vot*;?d1K2*tBhAM6Oz~vnIC4S`wuid^AU}PeoioJ?|LO zUB5K?TQ@)9#r^o<*W)N~}FJ~RLH(FlevaYNas6|pgE z58W}s1N?r20ai5A67Md|Yvj9#W~4LKieBlMUO~tLrWK(frSG8XGoqwMJ+we!M9s90 zv~qu0fh<{Ow>d(RtgSdBsn(hs?W8h7>|>%^vQNiTL=88!0AvIo76CI3L7q_EF}f#L zlm=?8J0D`GV^m-bX<8sMLLd^cI`yP&lNoJ0*8+wS0*3gm`cEfRcgOfgG;;ukbUxIQ zgRABth@hnAfuN!N>m;wK7DR`NVe1k5SYg-RHg@rC6RK~mwU`IYrZrEPgu1mqWOFx^ zoEpmwwV~D{I(OqGzzHf(c}e<&{SI>H#yj+5RQeTNJn0js36i*CoTT${H$UJ~A7b9cu}rf&%V1*u^WT||{BX_(Y(9wRH?3xQai zyIOiLMlDH^vON9(NwzlZcy)M-tqrXbLo^M>5Pq+~<7g%CAnb}DMF;On5g$-(Yj4J*L950wpsMLyJJ$9U2TUl(v1f+WDt@ViPRDJg9(H5M;!;Mibd9?=RC z;G+C73mK4D(_T{6OsC?lXN8>vbb>{-tqq~h-+GI!4ZW=my{!#9wc4pRgko)L zxwba!lsl&%+NpPjM{MryR3^h)Z0?2{U#Vme7R2s1B_&goH?Bgy7s7(kmq#h0gMn&W z8$wmGA?i>*Y&~LYLny?RY=FqYgeoiSjpqsZUWgogK-!MsFcrRGr*b%zKqwtHc(+sI z3vaQtcc)qw-ePORPQ5I=#ny(MirMrnp=4G{4I(NZJh@}YbA{AGEv_MwP&8{jVte$R z@>5`g?a?P&YLjilq2yBV8^B4-z>;&zcF>dfx?{kYcz+8~pAQsWZ-t>&)DYHAv1BTV zP%UY_#ny_Mv_h}}P)4mfpHr{PhiPakqkbv!zLvfU(8czT5b4~@1 zep$X3A}t@7y<>oUg>%rVxtb2Q0jmN)$toOA4bF@f;sqawyJKK@1x>M@OYjrG2>h~= zoQ})c6Wn~qIO!7$J1J-9>K-m4P1jj0ux5Ab3We5s+>>yXYFzxJV-=lJE&hjP(i)ze${$8>JyuKI1?z7N#`W4 zvou3HF!yMa;bkS>=+fbM=lJu9U94qX0p_tQ9q^z&uy^OM3p;{|#bhT+c6_V5>VNFx zsTO55J-AFCpt~yqy7Ai-YzW)Nif|LKtx9lhpsPtRUhtJY8&<>nAl(iLR$au|ffRL& z*0=~oOi`^$b|9mdwcT;YO&Si}+UlU=MiBJx(M}KD3Tj)WPXDgopdzR-Vzx``L7z|p znsY_t$^Ey~C-9a&FmlI`JbjmjFO!_)m%$IlSCwc!*5riTZp8vBn!NSRC11oV(N+L4 ztPdpKCCfPe{N_V|c2)mUFWAeuoLLcFChzEgE4Z#5cd?)}Vko^_=k=;UzpX!Vk?ZLm z)H{LI)m*2OkI*=%IPD`&v_v~_z2|P?6u4D!$%e0FO$`EG?7v!Y&1<5yyk zLqAnyUIXBmKEfMI>&SF$-T$@d6F8t19XC)1*+=+u>C>{oI4@TqFdL}t>?2gM^x}-B zcn45nH+oqOlCAktXdl!^6!clFP7U{Qb(+svz|;F6-91mesNtQO#lh7nSsa>Qkeo$& zA1d0hI@{<&c~S1KX`B$O&H{FvR`1lD9`H_U2TQ{QV09s|I|IGb`?ccg6sw@Fao`72l$4TGZkKgk+Uwol;18RSm2z zRMq6>N1YU4b*@|Rdgq|GKE>53fouo;d3qll+_5?}gO00H0={lYk5zq~8+rx`u2&b~ z>PUNqWT694?*p_ucxOj)TIW-eWvX{3bo-Q6p|?H--f6v0`yoBH_C82^J@549q_{f8 zDtZ_S(MP!X8R%VT<0&&|xH{YShH9u>HG7PgeDHb)du^YtS6LyAiccTlAkv#4@Kb89 zUcCjY3)NdWdxr^px({Pt&)(1m)6fsSDhvrwB8L&`75fNoKLZ8VJ4)i}?6a=cQ*!L! zKoGI-XF-7Ndqa1|TtCJsg>v+9p63~?POCN>p%+Q-!~55(rd|~WlGUri@DckosI`8a zpxC50v8|_c4x!pCm+XYeFFEnElyY>i*R~41iVfLoYj3Dx6Ex!H5gR6)f%fVRC4m6F ziVYu8PHi)$aC{9S>V>5DX2jLmJG|DNamEu(eC1h4z}7Oo>JDjCat_N81fLN?eij6f z_8J?cUKIxf=v8s}h`keQRdEZ<-ROONC+ZbZuU10>>^M@dR>Qa0@!qUy10FJcoj)9G zu(csnmF4bknIU};yI`DwuIkllz}`jrGOA30gOb@O;*@)xUImA%vwfLf1&433eNO1O zl?jPTKp;)%YXwrTLV7DNB*4}(t(c1XaX?Jy>!VUn!A{pLAR(3<8Ge)6zL>r>7Ur1m zkx>-2f&i2AHD2-X!dAAO@|BEV(y2AglomhmqDpQk9kUi)!#aO4px;241H*xwxp3&M0?_YRj6Y#U!(@ zc}w5d-!0m45ZSivIFw1jgUA5k$AXB;uho_H}%-&<492>ox3%*BhRFFNRR-a|hROnsBCE89)m+V`1sJzqE zC3}w@EH@Q5UX3zJkZc8`!r<|Jx~vXCr}sjbFwEwLE;R)P71wkG|B>-;3tbC(Uvrq=u|AnBrdCO)6xJ2Jbe!Cr z=D^F&3uB1)kWKfs521@B(*2zoA(_%Ck!S}11Adv)kmBZVZ9V#AczU@g zvI$q0^4qYHnoT<{=f-AiQqNg+XM?q=@dG@e?rQLa8au!f6k-dd#mjWF3Bf7l zr$_FvIK6-lA5juDRM7|`42P0Pc zF}}+w#h4q&q|~;^DqmBAzSNWeNwR&1Qou-5gJt<3_Kwx52Y(S+cak=~=F z(Wj|>Mwa>{yUw%iRop!B5bWQFo2PP^{TK^Lv%Qlt)4nA<4^Z#(o%O4;_dmUm5owg^ z>6UVNK!C3Vv7P{XYgJB*EoJmzb^ZW;9gf_u!;yOxbxvYLL$z>`xCNF_=O6(6@Q9Dd z2(hKSB5=XVFDYk7o&}wIPfA>-FZRLC`x5LNX{v}l<;juAhQQba>19HR`-Oh8#nq{| zL->f?q}v{*mGr*(><->3o9O_v%=leCm%EMx?-@^f;MM2x0to<$SbZ4wp5gN~0#Mx2 z3?ONKmy<*dp3}~mPWjv&gFI_UlGiTuY4EfrGF~~{@*M5lif0(W)<@)NiC1VR3|Ot9 z$&NCV27~PkaN*tuckioLr#AuwE7nVD@e#!h&4^X-A=VuP*ltK~Fo*;w?qWFtGd3aP zr_>LT#^syK9pvc1J~uIJ2aUQnO;`h8V+2*mMIdw7=-1UY(4NK=L+l5y-TV{diFVe zLJzFdC-faGePZW^2_BJlOk9F3*f*QJo=Zv_r=bCmJHN}P(`%(75fSplQUPEi^TE^y zu6nFc0KM)E)Lyw68%8()5HpOMF?8STO$-3MN^VEhQVlEDY=9+J7& zWf$Ja)ABIGoejUsNt)&#>Am1ge3P1P{ZuxFZhb!9VFCydjJ(+vLL zgG&#k3E*fSwtG{0cnmYf(LT6z{pysFM#BPiTl_Acp7DJ0!@yP1x$l~12(NrNa@bRY8$ngOt*&r(Mz~WZGr!T9k*?NlwaJ zg?7<p2Zm%HqQeT z#F9d}k~j6MvyD$5>pW{_JKdhB zbFE2(!2EpBrJ*#}8n~-u2Pjztrymp5rG$j)#AA9fT7^|hm|4Yo1~#oiNefV74K}10 zA3DXRA(n_F6qA+z&q!JwlueTD-;@gBdBFo+#Osu(KJDt12w=f;g$bup>?9t|4+Eo& zau=`w?s@Pbmj;GqRK$ckmCfnKqD+9MTR?~)Ow5nP2P^vVnH$h7ZNpS{2P7+l^!FydjzlS2012oS* z@`aJ+Vs$elqvGdE_NVw`bvooi)!{(4&!?28LqeF=+5TARW=yMt)Pp%P5KX6gbxP^= zLbuw$7rd{DxQwvD>+RgG{_x% zpp$`d6%}q_rxramGkqvMsAOovEC`svUz(U6>0B5TBHs()ly98lP#WimB-zL5&^FpQ zafe!TB!D`bVF8p0*ijgx6p7G#VSpwbi(Myqo*$-b%oZW<*Vw@mqBe)t2F=O`6TzeS zT*kZzW)5KbX3;yEKI2#_h*q;sK(vU00@1L&`tUGA_1c8((U&nNVh-L^RBWxWV@QDH zI&APhC<+xj?4LYT!t46d(Gdo^LYyO`it58NaKv?Mp3R=T9<6=^&-yID*cB9s6(` z1CR5n@G*MV4B)@4J#3B;lr)%#hDOe(4V>hRZTa|1(Caxb|+I(YQWOr&&q zrI(b+cAB0F$Q^!{%i4Lh*%f(sZ+aXYeISvsG>j1xM<1VskJwR$-k}fQVq0OT2$O*; zzQwkdkn6PGVs9y-+k){HSpY;*gVH`0gHs!{Ae!Er<^@L|P-QFuRe-%AC23J@YlB|z zf*+F6A<>vR4PJDKcQP1fzDQGoYV6Smco|E87o^EnU)j_xs7!iP7=4fz$LeGNN5}-^ zxRn_aZkl;{@qt&ZFdlrE5A!mXFfYh>+ni|J;WzsWG z_=p{I%FGjS2KR=zq7rAMwQ+y&Ecl`K!rl@fu;v7`Z)y%Ljf}>C*~H z%9S-Wy@tyNDhv1IjK&Cu*|{S^LE6!T-n9YWB4h8CK=$BULgLcNn3#>oWKHh{pXHnV zH!=jJM%H%pqj!S<#>j3E)NvL{ws=K8#xUkZFa{7&qi-(W$PkeV#^~K1kZPH7qdvPR zwh-f$s74cIAWK{w6PEi%dViXH9(`aI8W~r4{s~ovOpSGJR0@0)^U#Cy7_EAi@ zPMu&X6qSWt%LmCBOOPBcLpUh`SL6_TU#(9lVxW7ylouv?CDWtA#T~3oKS`x)(*uq4 z33-lcDdPyM4>@3mv#DLZe%eXbMs}WS8J$~{{kicRZHvz>NESM4-q(Q8(t#KXF!<-cEmQL!RFCpwMeFt3{ z!>4xQBTxogo0TLgaRG85zBzJZ_3Cz#ohbpKFxQZDNOtDhJVD>Y(TCM?5MXPwgw@h4 zk|SWRZ`7P)b+(o4BxgYaw#$^QaEV3?oqUk8dK&e*PS_M=T_@%E@Stp>Clxd2i;!`h zwZ$q%QPw(ZYt&$A!M#8R&Id~yORzK~SqUhY5kGAqI3&p$rYx`$j@CZh*2q(~Dm>Xv z50<0U+Meh5eG=K_r#FPHaul0bF?0@tzF68 z5}P6X@r^~RXG6%{8U*N#Rlzz!N>RuW_kAC9%|U?NtGXj-+r;lGg#wCUGCGg7FZiH% zW}u&H&I(}`qYr2{mXJ`$WqWT74PrAvbl4+l^a0HrtFx_TC)JpmWiOK+U4w^JAJEJ} zfF0R|lwi(Ynn01poqjAD>kBCvHw&bn+65_z5z+}hEZSJYqJffyl&0YjLW)pw0o;`d z?ZW80esy-fKsK7C_HYyIsJ<~>4&Eu&M{)!82+HpBMGWI3wcvu0F|Iy8{&X}Z1HR+C zP}nMPwNh+U58KLjQk$uj4~msjL&B7Rn2#(m3N@%S1q%rvE64bM9 zXHn(*K{h^^+?c$-9MZ@Jv`t5S6;smUyGmS@TOrR=JB-X>`l%pK!gt^R7Fk~U4zjQW z>jLTN{b=zK#XC`Bz?2I$x{b-Q@#fuQ!2new17*5Mx+q(5Ww@83u-4yHt z0lw@^y#(w%e6l0nNoLGx${k9;y6-%t1SZm6WBZ+yh7^hibDvM&J zBbLURI9Cbi8X41>dmc)vr=gw+Im~E^$&VVEZ1Z1i^IsJ6rxZF6VAV27C1FgbWDIN= zCO9x-ObIZQ?#GMmRtPyGcZ>!4xQ;$VC*5xb{jQK(b7VUff_{nh(SQrotMEae?J}~H zY%xZSxp)@nH#?dL$4orY-mB=hH}vL6`Y!6Y2uFDz_H$%BY1R73Sr|u<=Eyd_=19i6 z)Z7hrR^KEt4-IxqN)RroW7HHTHGLl#)v-Q((gK_&noyaN=_qwrf|HC7km^~Vy|Xv^ z(1MHxMUO|k+42EbJv7KoZ@>;@{4%ExS*x?w5p6W!Dfqnu%|lp!#{G-_J-Xyvem(B@ zK1AzSM6{+`KvPrB6F`^w`lc3qtPj)bSzm>H%ASK1mqXLU(Fa*|tWPQ7A*?d`F8}@$ z#T|5I%~~+zQ_3I>k0;+mv#~VM3~jTbR;ZC({HPlfKyM}|6xFf5ihWY=!k^J8{Qy<) zrm2z1H$Kh7s%~FyybWkHXMHpwvA7ji_ zPlId+*U())?xog^nF#aQG%r4|351`#2e2r@ziWE{*-!diYD8|tu|V?_fw6mWcDx}h z)`h1}=y7=ZgdPQ?PsrmvUAUudS$Du%oZ~BDdN@#*i6826$7;F9Nbw`q}Z6_{A#Y8_j_NVsV;k=lc zE-4$t{=OM;wA%2_og7c9CQ5-n{blr_RyZW{!F0IRXlfR)T@!bQwp$ti2cCE5C;()W zd0YBNW|#}5g>Lgy2w((k(tk7lG=Fac3D?Po=$(p)UZC0z3BvKhVvNj|O*En_-FD-O zeBPd?%;k)kAWJg&P_7eCj;pYOokL5?JLSwWO}L$#P-G>(W#FhF8!nV56FQg~N^~qW zWLHG>GKwLx(TpwsaN5<`;df`7vC@WSnqaQyd^slk~yC3l=`vLy#!XLCyw9|Tg#ME`Uxv)nCni5w?^_24Nj5# z3i4%nhkw_qE6MgC4Dn%MC&o`!sBY-1o9X4;0`if}HXR6%2@;wE2Da=2ggV%(SRwVuNDm;989q&71TJY%Ox4rRkXaHM zG+^xO!=%#S+VIYb{WsLs=YD*K!7KbOCyCKk<$F=>d>*(oSrGPz(e_TG^iE6L!men7 z>N2BARU&OCEFmZ-pTw=@UX??NI|05GUURL?SHE zz2k4vFN@%+J!+w5hhJ6ViXx4$F%s9c0f>Pz@Yp_N=d|_QQ&G1mWkS!|BkZ-xukul* z0Xf5aA*70>G^O{V9uAh%d4DqU9%uZ!( z${1N}5U7R?!h~!p7mM1M#_(bY`F)7NiIHqIWa}v=Ae;7mDHQNAJ~*Ibb#_3Z&zau5 zSd4$=oavUD4}uw+NV-g`R{oeSeCLuL*eg;gv^wY;P8Q(P`P$X(T&Ab1+nK!rkH{FF z`X0jm?VCGUuOFcuUap!m2E*o%QN=;8dl17v4--Q+>1W(G=%>=_DHtrIRDBaA$=WOT zB-!4trB+E0kC^C9<-SiF7)dW4VW0KE3yC4MG|4E2XhH+^N0u65Fz^cYSs!AMrhU|s zB%`Blz#Cz6#HG|s9tN3dJiQn8ARj=F&W^Pt>A5R#1@Z_*O;|vXK6svEb#~OUQzVfR zu+ujY9+B>@qx-P*PQ!$GO3AK}w22{UxrDKi&E$jMQ3XV$gv0RS?9)9#E`c;Ru$ot! zUC$663HoJ-Jr zx|-RCr*o`M23dWF^;}U@CCMuLR&=(9iD7*QHoJ@IXS~FupBytY&%>W9@Vek`)7W|T z!Rx4x{Qmxi+*eF0@T`EsEJw7osGv;uZNA!-%px z!k{ik>3btItn^;UY|M;KtB5f4vA9UJYHn$aG5c_Cj@8*#p{Hh$0NW};3MH4o+@l1n zGCisCjORNrdlc0NZ|R#kIhW9FK)s&&!AETC&?gq)TcmXmG#Aa=I{s%`T*#*2r|ob~ z!V+3)(2H6eK3B3aMZ$5PFNv1(WeVU{ofTr>OjQV(`R$;^XBm`uTy?4k-2!TQA zsgaPN1_8>hs)6moi_?;c*$1|pOJF-7TTd0>BXYB&o~0l+6Lpr!E#@67*5>S2Y4HrSJj@J^q@QbK z%$UIZd(`a>1mP-Kn;D{4qe-@T2N*@ZI_e1qtMhs1>ecD+4A654&uA&lnqEFIGko5e z;fN$7)jJPx!9M#ie{%_xhNQ`pERhCkXpZ7k)G!{{gg^n&GW&3LGXtY4)NQc6l0MB9 z86!`!#2DC-&B2|@hQqKf$r%W?d=R;r=RnqQM#joS6KtZsagmNs+p)5o{Xor_;0BdH z=d&`#%^haOx=F@^k1;`3=OEZ#+P`QFwGP;N*@xAfIO8M3mu;V)*#2`((2Gd znb4H0>4`Vhn zHmX8vM{*ZNN=E`yNH1U__v{0ZIaX&!6%s%~tAkpa*+d3q7GE1Z>%$~KWhBspkgw?P ze2BDq-s!_6aCKxBnYW}Kqp<(^5NVFp(V4-}I|;xbIPwh9tPgJHSe@KN32g?9F=wDk zSGWQd*;*)t&G0??$z4M!+Y{Uw{kvA-OD2b;TPI;u>JkhMbwZw5Mx5U=n=>gDCl^t3 zc>;=F3{j|WOd!=ZRl0wDNClED4=1!b2poJkwEETQNEle1M8eQr4`xPuP&LQuf1n{WigQ_`JXQw#yVHilG z9h-+?7=}xp6)VBcxP)jXqbx;0=$ER6B!^*8O<5)Z>pofP;R?5!SGX0gUbrbNLY#e| zvzeh=6|tB;bOXc~hHhj#Ho;OL!);D^%LEYP@|xAzRuYD87#bvpQM6Nb(d0v~IoNB5 zx?yHS&R$CUq$w&Ne$BBu+xqm`4xk@#wu2#pID;Xla)CM}UUtcf6;q0bu>*Ak;3#Gt z9XPAlIZ|3kaQm=xa|t`Q73y#0OBtmUWkDQgj+&H|s@OStFXVT8*g5hrg;-`a(MS

    merZ@FZLTNAh?>m6rpj9*JH z1~u`4(dNxbnndefI3-$!K(sd4B1|Y3?!eV++o@|y7q?T_29HSpurv)MhFN}yA9d72!}0m%YQxbXdEmYkNFE(*&?>BB?kRaE`|-BRfce!(sc-9Gyz60Rj4J(H zlS~Zoq<@b|Ci)p=L_gQ?jRAkT8Z}376Y7KMQP-5p;3l;3%|A_*lxcim;un?VlQw>@ zU8saKeX$Q4H(Ld)GUUL?Ht*_

    *B^?~qdE8NOH9jkHUrzvm? zQkCL@q?r%B=HROB4tMJEfI-S;KBGVPLDl9GR1MTZsrOsv22S$68G$M9W)-qV?}r%5 z#EtFBUW}qg((E%z7|CKBV-!dx5rA&UUl6%MFK4!)!_06+`nkG6#^p(+hBJh3^4iQ$ ztO|QoAelrm*sBlqHZvNG?Um76f;1S~K>eY}s7pHy>O}H>LnrLuD%3|>I-#66sB|xN zXePqyv;^2E1Eqd(nPK|*>_exe;w!Uvr_3<*bvhyu40op-5Z)rM4C%HNB~WFRgswgg z3RVj_u=ddn7^Cv&XZ*BOS=c>&(6_k=BLY%IFwz|zP55amV2#NmBsHeTkfiY5)WJ|U zZI2Z$jFG8uFcP6ipN0Zyepj^vSRy)(`*ZQCvw$GHKizZ|A7(0jzhMEk_Xypf1>>RF z$l}9HIaX(T553DY*k>qX6a+vW^AaIUrxIV8y`enPaL#%+Xe2;*k1p$?w)h}h^%B@A z2TTn>+stV=yF@hAS+LjE-ocJ|Wp!P5)WXS)a)&<8a^j>7{jd`Nq592Gp`9wV zR7kQ)jc9}zhFV0P4UMCn-wst|xeB#VK@{Y(_ie+o?VSc`Htv@*_ZiZ?~)` zz;@cQ`mCcVPH8wq$zg-Nio6*-cUTy{mCLV%nr}h{(h=W%64EU|wZ} z`Z-HD_O=rm4GZ}}7h%fJ`xLO60Neg1k-+JWddP4s=FC3L{#HM#LB~jbFu#Hwbx}ds zpPy`{Yt%ye5&w*Sa&nf}DkJDAjY0S{QT!fnAl&0;J^RPJ9c?OWmX|jdlq+RK0h>g9 z*j;ih4Qm6(5(?h%(9C=}`$HmA3iMh4lA zOBSRB9>TWh8!6|Y(e^8$AWcXZiUz6P#HU;*)?-M(4wFNnn^+wTd02c?=N!DV!(>_L zMv{ddj*E%b!W|>Ajxz6d3eeIWKNO%D3clFdyHh9zA5souIH{PqUUGyn`?4fhUG^&! z7&BIqey)M^iqm7chyNb^q)-yb&(p97p9;s!PetIoDAt2n&c%cZDx|At0ZcD1K4{p& zz^fXPlqh0`k~4l+Nt&qC2_TMFEnGep?$LY=m$Z`i8%ASCDWPyL*Cm34re_!*DvgQ` zh?trney<=fH8rImusfoQV_0AK3#XD!nR`?(WI7bOe6Dy#iR9@T3}~9PQb^#$b#lx|`0n4k^Xp)Ni^8r4!% zE3ADcX^u2^0;78tA0*AQKHJ`@)uA-_1&@_JP?}?XRaIgXrsndcdWckie6Tdn`jmvg zf(f0dEG1{78EV{J53HADs8RmmXE?-!pYe#56Fp;k*F-kq9>hScitUdkh1eb}bm`C6 zw*bgz@!{PT29&WQV*r?Ze|oeew6Dv{C+|1Bd}E&(nns2_2kk@`=%1m3-_| zL$lNU40h5+8h&#GwOj-kJ|iCQ^i_lPRaC+?vJ{Ronwar1QK5=~vaygMatea*&8uOm zap|&v;LSb~7ls@Qg!&vJ(T=@+FDgTB0Mtb#^?GJImNi+FQaY&@TxWd~t*sF#YRoVv7 z+8IO0-i~oy$fKaeaPeV6CRZ(HkmCB{xShxsL!fCQMTKw)Pamv7z89>(hpk%})K=sE z!t8_m+gQoZFDnT{;AE(XRigbQ4RTPz;O)4yE2MF4!s4)tfTPOXv(BQx+epYbm0-Qp)rbLi&Whou^O8 z9AHBrlaxCqG7Q}h6-k)v(i-{!M+|Rmfy6{<9l(W6XDAoi}O829I^k~6& ze)d7ymLhB{6@{J?O`q5~)4(Ho<{cif?JmUWg1bvvbjoD;jD`Vf^1YBOFyUdDx<%)@ zF&0K3vMXmU$rnSQU_vmZ$K}P#_revP59+os#-~Q2ikqXm5#W^t43SF9 z&>}$+)Mqd8qO;^a(Nr0xR6~-?p3u}yB+0sRR7ld&y!2k!$bD$2rHFPI4EhsA-`h0M^r8IyItgV;P5bdX^7XAP)t~O6n(tE*y_~2MHx4hDQ2JDg% z$Anhz)+6MGvfZicF^(~Z7vb*27&Uevk#@nL9^)7j1GvU9$!NNjOLE~5$C%JZ=|D7q zT}KQ_;~0u|t#ebxk<|sL70TcqY=nNvN`Ww@1x`uyl$A@$SXmmD1!7d<6UyrWoj$-9t@Xr^*M&>+ zAnaZLO38*4Rx*iFNa^W}-t6>3Jl9IkiU8x(SOT7qDXeaR*?F|OppGTFbFr?q5n8AN z-_~!i@DcR}3m;KjEggwaJDl#Xn!$Pv8?H|V6aCSUo_MILz!glANUB+^9uRPS(u?#B z+*#B5T+yUweQE{-*GEd68BpH>=z!Me^sx2(llGAfyj_Vc*@xyA;;tQBZ1nZvml%N3 zFY73)mFd9^^DwK72V|yrAn`$)=&dInu)NFYS6v{ZaMhKqukWF-h`#6C9qQL79Y8+- zl3*p)DWeq!v#vbf9*92N<$cH(dTZ@2ua7`Q{@bCDK2j9lqNWP)5xEuj(~J?7iNneE zi)3aOaV45Tu1gaXbI?=PhRNvydhodTT6W{gQN z7lwt}`+Tc7vI%N?sIJ)QMXT4RU(SGHh0B>-GBlbKc5xqCiRh{IaC+x8T%UT4f{!R0 zJwnvhC7n(M=r3#4x;>)R=qab4t(T%aP4!qROdq!b8D%eAi<0Rt$7~2~cr3W^OFZS~ zdNF0uoe7P|?drrSlv)|ZtuPLs$MoiO?; z<3G`dXD=V@iIx<7e8urax!EH6FuUNx3{h9=!i_RWHeBW8ls7QhY<*dYxw+<@P)>h2 zs=NFIIz1oe$iZB__Z_l8Mpi=ueM*Q5XL7Py_~9l>UR>b%q{pQ(wrT#K))$P)A)*p~ z2|q5~A$>ekPOmQp{fKTr=tq`x@xhZk`XSGSL?0@rf8ZAhB&PSsxvyw6`X%nu;ZL^g z=8B7Fuaaxd|HR>;q9# zgt0i7lR!qw>(j4-z((||AbdpeF+B{*4q&lU%a{JL>Sp@^_b?weh*Yjth4kwtWP#$w z`T^aTZ<3a0eTo|!puA>%SxJSI7$Vwa$X=}D%vLGJKiTY^!8o~f_i%Ske=o4Q^!3cZ zB6?=0W(@gmpLg{JgZLKPOb0rA8C#hggWFNRdrTAiU_r#VlQ?qaVtz!WPhg_dM89kY zYsN9f7>?epdgj;6pBoK~~`xb*~t* zY_kvZLvO9kLyWd7QJO0bG-eBSd=p!dnM3vZ^zMhCOM3T1d_>vtscR>a;EdYqNst%T z1LCSzd6hOCO_#RNl~F!Hm(=i`2HPT`&drU%FBNBJrHdmGiXPb2ucF1kGw4?o2K}O< zaY)v96!pzuqPIqcu2D4GX@!oIM*O4nKO6}=0P5gF{tyW#ewY45OC{1LP$K4(uPy#z zY}Fe7s34!Q&C0k;D4G)gFbSCw)0;Cpwyr}mJKh>Anm6=%>qfBS(7I8qufq)~&QB`o z`Ki}u$3IF_$g$1RG$#H^arogi)PQB%(Yh&pik`t z`)=gcGaY5F-2@P6t}muDD6(RRQurl$W5J6oQRM>_QRkf)q3(oOAP9Y%gGXczacVQj zf)7^YSs!^S!_z8_%%-+O2jd48(Hi4*9*IbW77+_@8}?y~=&dIqWZ4@i4H;+`&giq8 zwW5nEyolb60iX$=$*eGe(HLaeene^SHVxSgxDP%=Y>&Zug=Os2rlpplw_yNBqI7qg zM(CJNOLBVZdJ=5omLotr!sp`Q$OJlR$`w--!FV>0r-HReoM1&%@8pU)sJM}y-^<8@ ztZYXT+Hx7bMo0If#7VDnca8%{sqva+u4q&aD($UTPQvV_xdn;y_v&Lms_Q?N0udK8 zorjgm{9a%}fOTj>XGnaD{Sp`!{jDf>$!9zrnouek`>nLdH)ne4yMCvOu44|B-J;$~ z05nW#B|s7c$|;9qa5dMk>h;+^MFIU&T~)Te@V%0TNuNTO7lDUCv9$aru^2+^fY%^zQ8Z@(x)Bw>CF(=6ZHn?a>BUix*^O1bm*gR`;Ys);M@(+o8h?G zIFU>Z!KDk{{V@qVaiNaE}iLpbp9W$IJ z=l?LE8*zek8pg=%c*5vaiuv612_5N|KB4Dx( zMksM(qEd3@SeLF|!=z;Csp9krMSE~q3DMw;v=Zoy^cd;4^#fV@1a0oh7MDIDk7Lv` z2Dcw4zN)ESzrF#dt5Xu8biIn6!9+fsR`?+iie}proFA3ii7cw;O-QjCqLb}mdqP*^ z_U=R$Io2oAp7ik%qdODOrMb;DA;MM@jx!8QqhA;=6Mk7!j}7BiP(~d&9=KX=oam*d zh+YEi6vp2ljhSCJXINd(Nw25jjl!$ZF3lS7Oz}$-eYV>HzTguTBJ}YQqdO*cWtSYX(U#c?mmAgxcV~?g zTjN+C`CPOY`goRPG*Lww-#1JFFFiZY1_IG9Il(IpBNZybot?aNYPJ$HO+#7{Uqo0g zUzA_JKHIMc*l{K!O6Xy@Xo8be8O5NR94MnavTqO%@Eg&tN@u9;*vVkQC>%1t&4F)l zlT~*4*T(E<G~wTyl=)Vr(%L1PQ5DH9>xq_<8-Te@6;_1ShV zA=$LP?Eaw+i$VMU`t2AoZ(t0jE|1)Z2k7feSg#rttaH{#!J}^vnjU>j_+<+iSem)+ zXT@-YGWN-U$DLI8TAA!824ka+#tA@a5_AOR`juQ(_ylGY;$NxQuNX12#tGU?m!KY) zDKV?wGdIgXiW=70Da4*UaVAQ5206XyV)LH_(JQqNZ zO=KG!c3~w_?gYPE9UN#X5Q8M^blOPXP zR0f3+uZh@Eb$p9>85IdxYn;~V zH%_=o!yuN5^#z=|p)xz5>C|u~Xu79M4a}FDpdnSTG1Mh7YVei5qlwqZCg*i?f^3k^ zYZdV}X)_ZMHT6dNOvr;qpN4tp>D5{AW|5@^#~dXR?>L|dwy;IX?6kw5L?Q!!%y)B4Yr3B4dDc+q?=n z!9@{owFsSFjgHSZ(}ms|9a{x&^-M&{TbYRH2kb`LIB_BMtJAlvbanb6JAFcKEB%li zQcNsDuDP|`)%|K4F)#|YW%z^bO#y4dZU-5gT9aOc9 z_?6&(Hb2i88u}9kf(U!WHsMXgbCkZCiIq_$6-J}nf>VQ7^!O(JMkARKC^=orj2_>t z{?F-(0Z*C|hJ- zE|dY=RyAf}doGlft7<(Ea9lbtq8WD{CtjsVW)2a3+RZq90(T%2)w4=0nFd6!j)Y{a zqgO)?fo5{MyjPoG8_I!MWBXqTXbQ>-Ijq)+fT>^K&c$&medXeq+FgTa_*wq#j!L%pnkH3N9-U)f~F{h!j4+JBsZHhK*%XmmpA9yDZ5$OMIC^c9B-rOe&AQ-()m`f->MnM;EzeEhFp zpNz2ybqmEFG?Ur*xWa#i?2zNppfhw#%0%p(yVEAvkn%4;ImXtB5~^qM&OK$S=*m4MH9$lD znTVF$d&lEm#j#bNdW!Ouho})J(Kd8MH5}-v*JmF?LT_h71;Q0sW@RIFJxf#E)Bxj* zNZ9G^oT|Ve_o%Uf$<(yX1d*0}xVA^Fmo+Ve^}=QqKO26DQ3L(5jZvap0DT|?6dM$Z zSt2641*>f6L~1N7lYJ2i1zfSuF5&Jj7i@PRVK7cD==x?MJX|UKNhDq>6`tvxC?-ma z&?5J0WK(wUTnfS?_MSJ&pm3bC6OV}#Q~1W1o}4*zcGhsBn5eg8Epw!~PjvYPe%yq3 zX=H`%D|d7gRo38}Ek(;5T?v@9wY1tULFEPpPsjt*G+<49Ya^E=Ub9t^OY~|y9+}93 zobW>Q0c5F)3{OZsrqy8z)WjW~c6I6j1XibR0PuuNx=dO2yLCdd+62BKPKNMp)&0X0 zYH$TlNasHdIDed)lNtW^wEWk{p2G6WBXp2Z3%kjlF=uVbA!l}Kfq{M2rfpP0qLseRS-d$xIK;H7&&K(MsLQ`yAxB_mN08bmc7R-H!GxPNVyYJ=UAV;%eOMe zI8zBUNG9^5O}nD^NtvJVyQcWRSfOW)eSs3SY%jtH?8LaJg26%aI^5MR8^mN^m*kvK`TfD+OcU z(}$hnhis!%693e@3Vn4X%xjcd`hwn!7miNk9(AAEKcOS#^1zTc`{I{5$zs%7whQFV zzS?*%UwU&EZty%KJxvZ|>DM6mh+1lkkI174wG6|J!o(~pj+o04a^|#IEan8m(O<8W zxenJt%4Kjslw&wCR ztF?i;?%-x>Vg@y`Vi7Zv72b?7suR~nfS+1v*&aJw+U4u(u?KML#I-rrXCJn7=o<(x z+;RyLvgp^uedPvU%i;j4GaOR5KeHYYZeuv=aprp)QD~)o>C`0HamQ#UA?3VKA|VT% zOh~|~NwAZUa)u|ZFH54;p&zkyl4pjIXJ+tY_+_hoVBBE%lNkL99nFr#PGnr0AmilS zO}vCWX#<;odqhAlzpJENigVKtb2P*nyO*~nxr6fMXoAJ8a311@wY+)lxHBk3}=@Zfc zQkMzjdHh<5ZtYB`A=D@k&SHKiLap5t(G;idT2sPx&ze4=Z{q0_y7x<;5Qnb71B^mU zC|G8w)jW{EN%}aVwwR$M*(#RGAU$%g8Za!-ht9ynhUD~>&c!KjWv^g5Ze(=@CR9+P zFCHp$AGc%|s!qrmwcV<;S-lJKCUthfwp};Uu-hZ-7Q##N3SUW04)kU?Fm&bwom}Rn z^EJp^oP!3cg2V%Zi9}S+*SzAadMLaaY?b=KkPu58L%O=sEGU$y?T+*|xA+#@A?@4= zr##kCdGH~L$_u=LTtw%bC{@oZc_&P@PB;XXUse*7w0jmVUBdFp6Ev!(FnLZ)Y7hR8A34g7`2_^Jpl5+P!uSPwN*s#*8 zGxxy=wH-Z9$QV~k;p4V7%4RAEZhbxw3z$B?56f25p5x@=AnzpO-`7P2$eNzjD_|D6*O)-iCZhA!Jtg-$R^$O8&u zI~2W(2bzJt@uwe>m7b(#I99haQ8<|yRP$=5(i7HaTZ*j59J&P?=~1j@SjwqMuy-!K zbw3D7mKhQWSS{T-v2OJmyA!^G6y)v|1~9?i>cqM^)@N(6628){8C=5h_e#!0ah5zV zj`lMKHiloe9d1LHb&M_({syzeor%cG6|i*Um5OGk0udgOS!`-G38fF66ZA%hgUWzg zZ|V=)FURl>eUCFq_fSfvilaLlj!#SY~uZ_!W?)_`?xz zyE?NSkw%slHWMrsb1_a-R#%!fhKg!?+MR02lsTbkgc088tsP)3JC%p zR=-T~2|I@HOU%iJU!npD#YbdR=Y+U*$*>t&q5>*QMxTFt$~IRM|EC?!H6RbGz9+}i}0kDfqw$e>@B4m;oe9E|H zyt2SvnYvW-YO>XNQq+0L?mtYhrxG8?2q{w2ka^VN1Ut)iPGnwJMCPSb z=}s|yLMFDT|0*8ROz2tW@TylQo$WB@^0qp7YdqgVK*s3hVjZxxUFV#^*DQEz3i>9e(E(SGD&>Y=n7P65kRr+xxeS&;=&U0!l0S>~19BPR;hN8(= zXC5L%J|!#7wY3z@rDW+RsPqYab4Z_1_J#>jIh_d=)Ko%Cwve)6VT1|O$~eQwxC%wz zxhqZySMG|b$0Qyuofx~Wetpu((a>Iu>YM;N$H(<^3@}Fz{NNGW?BsNeVWj(husai; zsVEmi1t~V%AbT{qE%=Je5J{Z4Z8#x&T@kVeypRzf5sL25oF}Lqt$B=FPFI&@dYqWO zu87$Kx@1axr0M|_VE79q@1_Yb)>H_xT1@jgF?%#YuX4lKDU3}iSFX^<0ipk$6SG&p zzMU&{Sf74!ghymBL-P$#cuvfog9I6Bj3bU&;g@+eXUigNP%x_R(M+El4QQzo7S}PZ ztYW7Lg#fuCk6D;*!U`1=QSofVLiCroX|rl|GTPpj5S% z@;`JkGDIXN7SMqu+s2(>Jt{}4^wmlo!9= z`j0sqNW?EI319IaDkzWMjQ+z3%ImiJcNLTeYGwP6Fl`~TEb1(UAwW#1mMG8EzJ7f& zvY{SpcqEK3D}7vJdkjQLtvD4d=)<1Qof9zEMU2}{TWTIac7jJ%ta=TQ7+9v-efoqv zqs()bsW2y{@Fb>Vb zL4vf+B^&R-FY|24LEyvN9P36d3@(x|4(+OjPc*>D3VC_s*$yJr9+u zAzeQ#1L^jz+$zR6;LOV22{x=JVdt=%lCV>^4v*N|mvY{u>wY-$@v5Enz`#W^1ID=J zW-wq?MeoEF_6(S-&;{j4yG#gu?wznf$H(P)bD8nNhhOGp?ph4MD;I`FLkiL(d+$UE z_C=H+=$GO^X6(eoFDucfq~dwSg030y)V*^sUC)5M8l_QUl6i(3BYs(lE_q<(1uJAh zo}hQmi|ZM$S3{OKhtn)QY?;I_^O6;B+|k6tls>qV>75|Bo}oiEWC=$-9%Z==ewmjn zC0?XAV^*PeqRM*4KUI(wfC4#BCxm13%e-X8NJYLG!(ivsGAe1Iu(T#wvIA~N-AVvA zWb11PQUE^92?ukmPn_pQ>Xw#$+={_9+m95|hRD;-Bz@?!%}HHZT*wHm8nqI+9Ga$x z1%ADWWmD*5Fjr1ipT&G8R4FHG?XjWeKtX5hW3FsAJvJF4rFY`EdPaxUu-%SH1C}J` zU)I=-zvnb~#+s4lX_&9T0#t72K(oGx`2rEyc`gZr8S}npy$KY^RjBrWE_+Om)H4@y zuW|J%`!5mHjb=y{#sw7vvRYhqH6+_GNeIJQT4d&)2K(x+VNgg0YU zK!nh@#+!4pqGQoFA0$i7cHkp2h^F>cn6NRCD5qYZUP6cql-CerOF1Qo3Z1wo0?Ai9 z8R8C^2)rAq?bq)Z@`Mwe0!IntZacAS`*zJ!^{=#o1F#q*e~I0fRQ z=fPB&yy(pt$DBTk;VU&hOWsP2!%>H^l8N-u+1<)WR)E{O z2@J_}jIl0zR=_86OqFR0Am6c#nl$3!!QVMu-GDq^{QYdZ| zDOo!{E`3Cv@ks&koZ`d*QRfk6z8?3cAKyFU!!wGBQ1utc#)$;-tgu3nWmnmex{DzX zoj@PY3M-7Hsjw2|Y(+OAXagpY=G2<1Ph3Dd4%KqGE%jOTjT2|&;qy)~km{-u^N;<4 zr(+YWa%vv##r&|s3VoKnU&nF4Ni)3@_~hX8UT_OkD8cQJUCk!$gn?^;$cw z^~pfChNTlqo;6@nP!rs*oWP{M1pLWJtnfhEpU5zVuxjrT%FUXywy7N4?=r3u^8sn@c+ zW7dd-t){3~=beAi0S08QP9PXp+@-=V@p>`*qUMT59NN%3kw!Gsvzp}p^n(^Q+IXFRA9+_6S?4jZ`8XB_-7l3^S2Pf{zK}8r@ZfU08^c7_hMvLcE zEJtvt8B9ddsqIT|D4VUYLhC}~S3w1KC>or&FOMt~eO|hZhyEHS_G@tuh*3`16=IAP zep!#wESvBQkCV%pF!yjJN_hsKb0{IeGBH({m7JhHPDfZ~L&(LmTA|+57OBv?+Gfwl zNN763TLl`7eP&ctY!iB8+l&f%45HF!I13L>jMz}GEqdSCY=vZ2mW!K6>oT36vN@ZB z6Kv+8qGFo}?OQD><_c#%R~+nT>CC4F2e46V+_Tcmxg!3aE1dZ(ojEoChfAHo39xg> zbgt04S<^Z^MDrI*L8*-X**iyP9`h){tH&cM#OeKaDSDB1x)p(j}?>}yfHdW&t=_=`@N@^nEGlQ!gU zoSN()=N$4!eFKMI*c<_-ud@_*yWG8^l<*2F8}7oKl(D>eNX=5 z#g{+v-j8|6Wrx)zocsrReEScAU70U+j$Io{W7p7AHAl2A`FXhGW-{ryOhYS|MarUAAac(p~uMu^|yJ@ zxiA>=Ke%*f&>0btRa<*=q{O`0W%XbJEOpLBZBz_K<=l9#IES|5#3s@t+}e1cIjV@) zo1=<7xj9lI_7O{+d0|B-plWY)0+ljYj?R$`vLllTp}u7EUokdceF|GYZCb3%;TJVf zAF!<-&8qMP>I~_t^D;_cL>J&-swQf5vy}vn+3=!6qW;?SGE`lFOLrz+82VVpIpxGR zBHUmw!JsE9f>v?v9C;b)$Ba5>MS;48 z$6b>Yn;A(~dbc|tPGZ(MJIb2C%S^F(09%zSYn1HBjNP1QfRLJP=Gp|# zQII}kyC`ZFXe>SFTs&FSaZb5xn6us6#Ovyu^SEx>EY8XCX3m_c31U_in>8;e_I5-= z#m=Hov+dQI{m81P=qyBH4I9JOm1fvxx6%~T^*^yP=BCvTxM!Fc*<3+Re7Bh0n(rCP z31Y!HFw`g0&`%{HrVY8H;u-9uK||1tH|K=ar@s{J@wDVSinSLj4f}Y_d1(w$hBtU7 zz%-+*G)gWPnGzB&na4M=&x*(xC!Fizk_8Y>Y%dK=394S_tZE`w1&cs(#i-f@zvj%Z zUtyWGFfCXUJvcGM9%k3z5gNU-Zl;e)dHzI=h9LrR4(W3dQgLtC=o4dd zLX^vaC95xRqMtp4)D+S;d&pP_XBB8H)h%K!JK{?n=MaY-hcb8T=AFit*E}S{m-z^* zJqIV2+9i>SJ1?3RS3`*O+0>E%CE|ory9lZAtThG8)Z|#?%V+X;VC+uRwTF<SBWo~iK#xOI7OUAB+16u_|+)YCq%ac>XFI)H; zyY!H6b^(URNu&^V<-&^%`~0?y6}9$D<{6+nd&gwI*7!t5PzdOla^vp!L;Vc6X2Uqk9V z-vZ_gx9RNB;NbIKPCn(cK2$HGLUEwW5f+R(2gG`)sLdqI$WxxPC>_3D;h*<%`{{d> z)c%rTV@7Yshk9A;W%gl(HSw+V&kOZ5Ls^{DGc2sI!apm+nP_e-Vvr)=O4_0%?72T> z$iZ)gTU)y~YJW}27xMI5ySHI$_r_VE_@B0XKeu}e562Rp@Jl2y{Ib27+k?@c#N$r* z>)d}U{1UGs!!I%4AAZ^1%yYQIpKNd5=3x)qktY17^(KKg0D3d~+4#%)X7&j2Pu4fH zUdBI(Z_Zo_<>KLxMkVqtV;r|QM(^4J3Q!TwDfbYh0NM8EOJI9eSm7@A+OMRPDl?=O zf`);iIa@zCsMxzHfE8A_3#G9O4TVKnM09=07%{Z=P*LG7_8PkYr81mbXf74X!WRs9 zsHiv-?=^NwsZbibEF;24M`xD`2NipbU0{V3hvK~?KDRY`0ow%*WAOz_Z$|_HG4W zg%w^j^gR(&U`meq)1Mg?${`}FVWlkXnSH(D5V3b50DM*s5fm1Ht~z^3cyzTQDhRg$ zxs(@dCqFuSNjO%xcg>LUaIaSjJVW{{sK90rqjN5`hl+|r@m{YMprS(SLPr&(bfRG{ zaOF*tNzTeHLa!Dp4Yk+7B&Ae#Fd-@sMn{uL&Weh?4koZdk&2m!&A7{$ZS~}Vj!!A^ zP_vzhxYrn+iMZiY_+>j2#lR>$ymhYO?K%F*dfMWRB>u^Ij$^kN{$%Tx!Ui1wWP9`0 z+k&~A7jTh_$~4NkpO&VCW9oIO*okB#l^~03g+X|Zc;2zXipXlOkqT&(V!18emX6M` z7`Cb`1i>}=)Y zkjHMrfK+I)VLcMwU|h^5&CdBaV^to% zuH-=!Z_a&Bf~$>U3%_h$cIf-i8kHKHc-IvBrkOWwoiG5@||=U^6lr^L2KFRO}y(ysw^)7HnBFIw!}E z9%k3raF}UhGh4B=3^+tXo6d~cHFws{9^MPoKin zBu%YJJ9NDf#9H!wSvJ(6S~WMSYwT5*IY3-@{XAZ$)Y1?Pa2Qb z)Lb$*0ZC@su^ej>8rq`wH+!_4ULt!)GSKXB(QFe!hw99Z8^S=sR@-P0f8Xg;^C^BavhiA>#1J83F%iL`aQh z?;**+M&xV_B4o(C|Jm)w@>-NWkG(3`zm@o?1m0UeFpfY&YGZ2*#$i(YlPwgF+jRJo ztycq$JfsLD{>hdQ;r3PGncxfJe~M@8@F!cUW$W-Ta{r#pt59%^Ud3!KletH3$g_v4 zN2%7F)Fn8Kct2+j!#b%egGA_3E3hadpI(hxW%lvN$mgy)RpjsC&VWZXx5?DUqrw^N zp~LWVH6~kg?@P5FHEXKbGQtI|5EHfBy4~&0yY#Y$2a{_?v&YWq#k7av0>0H;(bBP6 z64GIT=IHEIL}Ma@7FX$8&Gj$&i3+hv4A<0j9onSXyXP86q~eC58Ef<}+|=f()eV@z zaP~lQNuEFAhO8cVi2`Y(aE%lkq=o;dwOp@F&r#;xAix&h4whe^UBPglHB^ zK%G6JX!Ln?2oP?ya~+(rh}UeRrL-QSan)fB^3|AXarRoGA-UC*g}Zn&ixRHPyMkE{ZS7+ILcy zT;Jy6Q3%Bx7aX|7B$wQ+;>xxzI5Y_|7*Oy$Tb;(%1&7H}EEb);v(FH<->$V-8uepa zY%6D9(0Clg{Zr#=pMX4TtgzTtjvJsgViRiW3x0NMtT?f?p=Wi zt#UEl(#_x3|F-^o_3dz~e$m8ll$5)%#ie@(pYPPeVk!y`Lnk`$L zPHldn5b;}QBkP(gZ(2_Uvt^4@A_QBUj?OMb9%k2EdAFg(Y3?D~>>A41g~+wW8lN4m zyiLsxElzVnx)Jm25!!b~T2rIh%9VH9H&{m(QHN)<#+obdRyI#1+)Gvh6akTEw8n}o z2Q`V4vL3T~L}yzdkJ8p$rnj9unY3f>X`T5y$JQGz({po}I#jjzx{?@`sGqx7Qn1gB zC&Mq>B6lRb@vn!IK@Bcq-Z?0_1u49M# z`ilDpTG`BOT(rNQ%(^n-3r|_vS!D0`tc5=2<5<8xS2q3_x~iM#kzh zN3r_MAxQ8X?a0$G(_?vY8Ez!V-qW;z(CyIZ3>Is-9D-=i?JT3}o$L}~9d!JsRdc*^ zZ3@Kh9`X_hX;ZsV3wl4d`^=TX)=FT(!RX1fPL18Y>`TXGXk^d`1Xd{Ro{%PajgWEa zI3s52_eI5j`*8l60ran#REaf{DzRo#CDu%;#2OXS#oc9`=uE1_YRlaczafZ1PI;tk zJbv@i_=(>jDo&V^BERJ=PzHa$W|A=0OcKWGBw-L8!TUO=b$vWK`gZPsh|c*_%g{et zRhyh8&!l&(oZewH>j4i3GUtek9Frv*vuX=(Cxloive6?<^Xeum=cG(EQdIpHWR^2W zERDdf5$tEO5syQByN1=pDARN@G6pXxpP9Z-a)@&eKe6MN3^zJ_HT_R}SP)-N*6uI? zSVem9tnILyVgd=GTby%r_%=+LO20OJCRJy(brsI_`hiOkp=Ks)blB@f;0k@|k|sNK zjssnZrKplxZH9e6+FyGfwo{-oFV?8&r?Bh>`*R}r zs`cPmEGdg?`pAhl#6h^A%r_EukI|mH|Jf+p7|qpe*ALphVu=WPMEi5rlY{VI zz! zD>qhwI;TxOJt8!RR`2V^$D^}Y7vK~ycxGSTJK?QW!OX`|EGn4v$I}!zy4@h&WQs)v zNL^(uj;$C?)Ine&h4hPTlb=0d`~&DMupd7|DjIG-i2peoNOmNH@i9%TcF@8RSD4T? z4(ygt73femq}A{2!jFXEE)v$$d4Swh<>|9nsGz{l!TTfZ!g+q&2u<53dYr`y1eF!~ zA!%G;!g|`e&gVuDblgQ%;in~+pB`t{GXUG-PObIa7R+Bbiv3*PxQc(Y0o78;+`x0tS*$E@3XC*k%>%44Fr@Psw9yS6h*>NdP+6fL{KFL{M9;w) zZv=|KT@>R-1v)28N${ouJ9Qwl+lrmj&tkEF!dV1wHMqir17n*hk{oS{=h=TRnDzWw z1W!P?iv-u%PKvY(%p4Hfj&|WFnHT$gHlbn#@?yW`Xxm@B+YL!2x<)M@VKlpP@B}}e z(Hs1(rL@*YPkAU!MN=y<_U9JhBG_pPwZY;=qnl#l!Sb8j%*q7MTfj)RyfiTh7LGZK zIQ%oei{RM|SC|l3etjk%*iG z<)v|_Hn6a5%2zL9<_o(B-a%l60b&`yaXd8Ao~S@(&ljHZd|fOlRzb>Bib3#?C;9Ds z;ee;W0S#kgn$cN=yPpl`pL#`M*z`=v1lVRIW`g+{**u*q!J6)KHv zlXJKN*3{>-J-wJNI4?nM9gublh3P@>Hra?*daORyaqxwYXbM{=Nd*1X=-&Pdyt*%1|V zPQlpz&YHF`W3R~N4V_upS(EP6&JsF0sDh4qDiP=jkk>Gd1H9gLb(bq*fhlq24=YXF z^gE%I7=!={zw`G6nnllJf?=Uc~a*c474&BFROu zjAZHGO!ECHI*_$eI|csX+fU_k7D3VH5F3JWlJL@p%J~(^4qS0 zM^o&*!F^a<_N8VJmFgL5&yRQSFKm#xq-s9peeYH_L;Y?pHAra*9qof>~| z?D|C-Qe`LhkThSZUhY)GsCcmH>pZz-y-OB|m+d!C&v(jwEW%z-fmWt?pKCBo`O3)~ z+b$I=pF*6yGiy#0pIP(W^iin}6=xCfc@6=eiYpxzaAAox8E&NHvHw^=T=AoRpd=b07(spk-o+H$1HX#Lm!{ICDd zKP=FeVuHB8DIC??pBHMNk=$-HKEHr=%7V2iqmhBVuOhUQ zvg}!6BQwz``N)NeiOtQdZiG7I^dfi769LPJ`>h~77A3) z!n-{Z`=S9WLhLSS^P3T#piLXnISAANeOw_#-OLsxaSt9 z0M&=e`r!&|>9&;>CbX#2Htj>%>9|6+7{9{_34RWWPXV_?c!vHgxb&3vKvW4OdL8+# zodz|na2Jjir59s3izztY^S;`3;vdT;P-_0s9BBUWybFlVqDLJOd;alulcs(E>^|~e zn&-ejTHHqybHiHY^t4hVrr@nIE<{k)3yGOf_(4%G9LG`k^ePUAGDWU>0USYf?hKpBB+gpb0z#{r}5c`Ug7b;m`Wp!=17rX z{_J^S%%cdGyaYfPoR?HZ`1|VOkPtrc0hREHe-QAAZ+YPp{}|vC-#Wr4B%y|!>JDE7 zOkP9q7);*vkPg#9rt*Ms}|6J_gC1VsZ&@`o(PqXEYIi;&EIEq|8q z=SduB;Hfqh#+U+>JxO`;O`g*rgCPJobJ!|WR>V7Af~L#J4yigd`LU=cooS0{XQR@= z)sBpjpknvlYlsSi^9#~I@SB8E;PeTz3*`hBA&8Y-BovO*z~Wf2{-w+~6jw=bzxKa@ zP-4y319E|i#3pF!ix9tS*lHIKDxooh!ag{T)ojQ5gPN@f@vH2Dbjs9BIpVk?21I5o zALa`Yqg)7fgA7k&Emlf9nYaP!iYs`tjKT>5j&M*;eVT)6^MeVRq8Oh9ZRBYe4tFSc z`Bj9&T|+n=?kwSDINd$y?v9pk+Gy9`y_bzfl*Pb65nOf+!DYDngm)Cw)xmMBe{`%^ zcF~}P)R3CJ)6R#Uqv9@H3ZTjJrX?bRPi}BtbZdjmg(Wb?GCCu0lKr;1oi50 zZxg>cs1Sq{a?J3CmG@=F`tH5x%dx3kp628X$F|Rp;(4;a{(A5)!unDE%z1C<=U{W*o7vGHhK(Pbvn~Vo!Doe2|(#1>-3u`hmm#GbfnK z7)`%PaCT5^2o5C(q2o6R&JMaa;5Z&6GU=cC0%uD=%oq4&1q10_U^D#I%Vbs`2Wk zn8;^P0SF0|2!sSpB5<69h7IcU;5ZIv?^rioC@?yd_ogZU-o|%y8ttY^8beyX*<-CJ@zbRf$ z>+0tf%x#W>vpaTkUojq1L}pg#LvEX40Cl5i2U_Rx_bTzWEW8A;Nn9^LLNl$3RZfxo zwraqmkXW#MPY|m>Uqz(mCBVmw@i-k{V@JU2HO2EOo+`|qu>WU5O9rK)kbg-_&U}ra z>=KN_WtXPoBuuGO!sz%YtzAT<7S8=jT!Xl1&vd7W6TA{97!;C0$|p`RC?o^pa3Pu5 zzJhWuI1XvV={N~G-w8T91v?I%z*xiv7r5n4oFG@#m{P;>R0x#;ahNIc^lNPsRn>q) zZB;d9`)IWgj(8?wo(P5$Ii|jx^-;$X`@clrF>>uZnUvoI}KFpVt)s z?gbkJEpGS&i$P!0j=6eg=~p+3n$Oid3GZ(4 zo{tapd|brTU((V!#ehy%mV-L4gQcCq&%fuA%=7UQ0BsbpGhDJ}xP%{ir>vBDk6rjd z)`;K@A*#DrSfFyYP7jrX>Pz=$dpAITMYrWOK!CTwW7`sb@8Uhco@hqyY9)h$jPNU| zK1M3C)zeXqWkg5Eib?4UHbd=l&p#fUC0s$N>T*8qhlh4M=qA`N<1Q9HxQB%g)JbIo zY|983zhPQ>D!!a$G&x33c5j|3s9G4(h^aj~DpY6pu#^DODD(2V1npwfNKOoo3Qyri zIGdufk-xG_jO7NDs16iP!3_D`6q7(EmBUG>SqB+Kup`KUzZ=s2m)4kZVjOJLK@bz9 zBa?o##wV`V1}nUq_&qPtg1417b_Lq!%788;4@x_(`@IU$4FqcVwdB)?{X{~ zG+aRMzc@uv@pMznv_b%YLs~fqxPw>?*I3l@l{Gpq9QTTfvz00siJ&qvmFb;3tBtlkQ^2sw%CYzkgq@ohpYJG8>9=`f48D9#*$@bMTj*#iqh=#-u%Vxja*!J&GM z%{gvnX1S%|uAKtX`0ipwh5Oy<`~h?c0D$iZt@Pl+2?S=1m{v(TW#To&WSB{@11>y& zlw(yabWkFZy;7a3G3H&YK2VyT?lPMAs-xvyEE`aoK66VtG7dq|{0LbslQTf=sU4DF z3(dP&gP=kZZakzK1c?3QYu z^dGyzv%5EXN*Dz{rr6l|7La?&;|>}*Ddx$Tdv4`qPY(lK)Bf0=TP{d_J2c(^i;aM9 zL9FL!$&fSHjp zk#i?8;#@IV|DK|L>WGMyvdbKB}is><_;1n92`xgjk0ZpgRM(3(Trdq74BuRr!# zlXiwKS+TspEkz4*(MU5K}`!R=NyAU?wDPeW-I*jO5}Mts!XQ~s7AG8;uu`dut6aCe0T zXrt}5%}#;7QW3r1PvLkH{r)^5MR1r5HX?32NZLwElWIhz|9C@^ZRtAPcy2eo6->L3 zDm^5C@XP@^0gLTM?kVEN@BHL}dg%`!P%ix^j;FD!xbd{4z-#Ke#<|P=Vw!IkVNQpH z!O$YY{2n9B`yD#|`mXM1Q+TlAko@G%-F;U#v}w!LuO|;;d_8d-T}vH0ApFxdI}%a< z_?y6zwiWO>|7cRHwUKI6eNWqHYHIw=D41y@#~V`k5qhwxg}cXS+Mdu(2eETkiC9Gx z^<9|V(NrH5Ln_%XveM`r(!Esc?GuWz`t~4E)@@zYf;1(-`x~5ed*XP zO5Q}dnZ4vb?pqJleQ3-~+32Z{@KC89MX2sQhU&r*Iv1S-8?W3&9BpNG$M&9x;=PL) z*~09cW3DNGs+&&{BU_o>xf+}Y>W5?=^i zfhbVlQ&a{;G+t$PM;TCn3OQl+#IKywybMOr2RI!^Qb?WP3TJM>_bVhx@sKdE!UR7v zDnOY#YW}F`T=doobWTW0l(^sT)af-sy&e^>vfEhjIrF>VVr+(n*i%6`e>A&qxY{P! zOubi`7dm;r(8>FSPTntc@)qbM{VPE`@{cz#D9{?USTZjd*_c=1;3ReOQ~ThfxR<=v zz&}SXW?phbDk1&~26W6!3|9u!Vz59A ziB`o*Y^3@?2rIjAFc;Ul_wFK%HsjInXD9b;Mjr52ZCGlWL#2`G-?yz%rg)-B+|2Ez7EY^(qN_8ZG4kD z5A`aVW-rAzOS3!LWrN5v&0ca~OS3!LWdm3)&0f{4`EyTb7Y2`L-oWmv&wk62@wE4S zSnI!&KnQ}2e>CI3KbrLD`7x=6zAEb9F{Z3{Se;6i)KjIuJkab#y_uig0mV>586_D- zy;+#uUTdk%3fkQoMvG|Glwd|D1#P0hxr_sy;O~%;H zG!Kk_ytkeQ68MM}e=ML5{_$ETfywb-Uf)idDe4o$KIddFXWq>7OxfMX=pVhaK1lYL zlzOrsa9imfH#1LfL<27HPd$xitK$e{>B9+A+M-J zE9}&9i>RJ580Q+Qud>1jn$oW@LZ-ks39gH9DKJhVRWvI83gb9xkl^r0)tRw#6p_Hg z$W?g29Q5P$8C>`xi51>5YcM<-{@K;s>P4UqAWI^~$dC?gJ+Y?8v#OEx{Fg=7)uDgn zhQ|nu45w0S4@P)}+lj+P>C}e?vL6VAo&~@EXW4 z#Y;NO>Eep0#3x4hYluBsZ(7}XHGZkEDC)8)B+|A(qBS(9*&GYJqtREz8T|r< zYBi9H7o(w-1}a_+y4%piA6R}8j$l~x7zoLE+*4iVGy$gFqN1t6(}-=F7EiGa*F2uD z(YdT)4X0<$k-qhW=DjHh%*sj+YQ^czSE+QtY~{$1kshx9Yu5Nd#+-uP95P5Wz>bVs zY1)-l@4o5d-0rOhP6f*FNv?)2BOGF3dK>ekQc~*di|-DV>8&$GNnL0WYrwbC?xPCM zph}_&&iIjyAyNS@MMplCqL@B;^t7wjkAAvQ(qGyF6zdZ2U?69T3e&8c*I!(adaA!T ze{}v)Mg?$jXS3T2JBj zbN-QyZqxFq!0~y4Z%pG=KcFjo@OgiJttZscC&0AM?#|C zv-%Nbz3W6Hks;&?pb{Foc%2xxw?!7sFniSC7DmdXYld}}aU@5>uP1ulQ-qjOwgr+n z8GclF4*i5FKGt!71nx-@8y5{ml8Qc74S7kUJ~W)iXBH>Lk9LTcxEl1bHhsnhMQv`8 zQ!?q&`llxah_{2AG@QGvIb`?RNLUx@adLW^+pJspb5$)Q@owzckbI@AdWBT@QHK5I+Tw-O+NSd<4w4H zI;uW|FjgCTh|yOwS4%U>NP)vf{n!nB611zrZxUkZ1a7E)1^Sdz#I5J~xOx0EG}_r3 z)Rk!7v}{Hn1|cCNkbk4XZ+v5h-z4~ZNicZOPzmR9?)isGKb?Xp9Vu{|?9zFm*HDA! zQema`1d%x}2cAo_qXDbIb4#<^w5j`0LH`;&w=}!s5FfkRd-0A?pu8V^0ImyS5BQB^ zVva+}`^^9GIJ22;a7hPn*XJ+i5ZFt7BW7xaa6qAmy>B%-b{YTSknoCw_e?VWc?2q(?a%#IN zCbu6OW8)1f9xb}mh1nfdvO;U3CT z72>uZPHcnE0u%`4jZEf3>84~9`aVi|LT+(9p$%iYOA&KhnLTm23c`fAi-gH%Y^w9> z0ON2+Ev*4|sB}a}SAWBl^J~Z5)Q+BF!w@qy=Pn+1+VN%h>y!uylm9U>v5WHT;O0Z= zK9gNIDS)zd6~f`6Q41FlvXoVmm4{CvY`_h>^bzhq;NHrNBkiCiwz=$L^63Gamusg0 zqf1Fp6Z%@S_YlI4jOwNc!lh)5GS6sj}X0vUMqK z&XwTo0NRA>Noc(Q+63b;w8@+xz68sOjF`mJR*jX(Cl?^7nF1=T(O0#L$6`pitwBiN@&T96xLWFlI!h07%!ba-&31Bo-g{j}k+d_wnNoOsQSFovZKHWCl_ z1YbCxtli;JbeE^)DNNTV(oBtZY=B-%B>Ohh#P=IYek@Y6>B)@74!nb2B?Qhv|4HEW z_MZfyAXMO8A%oI=nhRmh)Np{`!b4le9K7(H~gMJ z47f0ChjsKQWw$2&9SoM5vbtgC9h3Q&A`o=xrkLpK)pIE@b7CoiH7R?R2$J(>5;9|} zelwGxTQ`MjY9{%cm`O+AhJtsj3Aap9jPVq+Bk*h{*2`KNly77+_3Uhtaz~I*C94-K z#Kh92h-vLvl#ZYoTq9^u)tbI4>i2>aIFFk<7VBK5kUn(;0%puumjEgQ%8K(OEPc@D zDdI!%2)xdABxv}2PX$cB)^!sp@RB@sL{-XyM^fOp4q^|;seAf|(vPN|_%F>5;~!00 z_{V!qki(5E<@}AA6KRXi6SHBe(=u(j6d&b`&WUS4l=;wm zO$bqoTUuF&DSk9wzWTr?6rM{B)UTM;ULuoj3d|9CH_ z()ZCC1$?V0;y@RHFlNkF06+q>wL6}Jf*dT&=fu07IBjO6cc;F`4>|nB&=Ta zW)D2(gdtA#E?b0T7IqqC1N1A5vH{>5=em8VH<&3zPc!ZCJsxIHT(_e)dl<)I>`R4& zia^cEStPjbNN`=04FEe$ctp{|dOwc$uzo53xri<;Q0z?jTKwv*HOYmw5oE@y4u3CM zPtQ@(TJI%G;IX94Uw|ojb+IiV2Fz;`QXjD3?a0Cg-}v}yQy}8kbmk<78MATm+37b4N9am0HkXLiXL|qOnHIsWg)_YpT*oD1 z%?edoNUirPNn1JwawWJfC=m-vhD*enU8oo6B1pBci#x$}LGfAKg`=pcBs$1W5$syo zh4p_Z30Ns%KG~wJe0sPMTQrxBE#n)R6f`*h<+Ywq>(+I7TDQ`VWCJq3GPpdDh|p$N8I##qE& z4qN%&`6)PBdQ(r^ZO)MvQk>H13OWVvS%k=du5yEoemBMR6dXOPdYQ?gj;42_&rO4J z&{>od{dl3$i--#U<&DJ2vGHHLn*-@b^x+!1bF>~sae;;AWHaH!wTi`a)=4;9t@y7M zL8S<1FHT-!j0=Dzz5+u-&1fbD6bVUvW%zELB4kjp7;HQNeH=xME||<&IqYU#+8S5c zpbiF5`X5+(YB*9N1GT)#lOb{aAtclMjVdqcutxB;u}Cr+o76MCF)Tnz&sOW+&PnXK_V^4a3mb8oHKnq7 zM~Q(^Bn*3zMC}bYrOUYl%zXD5dl!{z0jhqNlUO6k(V(Z4BTpQ$iWT5V)XxZXYZtoNy>=+8^kg0{@Qr>P6d`scNJc%-f!pWA|2rdIc zQG_s8)@a+>Q_DicC(CeE{(N$(Xe_3eItAJxn(JcUUviX2r|`HtFGSNb75yiHf$cxB zH#535p{z|I)((pbf>smfgB4`gDe_9)O9d4h`7-^sg6mlSNpKnKKM6EJ|A`H&5dBaI zPtnKD#a>8bxa)(NQfm!?Uu6{%;ZNyLMn-C$`>@P@u?uFTjyH!Ldy?Q~W47<-LujP+CG@(wTc2hXBp&_zb*GG3AbY30~8V zjApb5m0kt>nc7$4>K%m^dq#31i-hr0r!#vr@#xbGm8Q?B3{Vjzyb2~ZMW2K)It6_{ zbZG!rt%$U)tT5q`bAWFq!ci$)IAts5AJr;JRz8wJ=agS)^6DbCiI{kKn4%Arm#0LR3>xa`%1W78C9 zYl~p#wF5iP4ld!eMKyAPm>!2?fmT`7NW48lwMmS0W7XWXh}2$(9c@9n8IPuBKYla= zd~xLvP^TRkReurDyb3}zQvFXjZuDN-e-emm|49(~>^}*Fwf}@}KbjDmGW%12y2Cnx zlC>kFXcfW3t3YluBo5R|zw_W$)qi5m=5Z?GOcCQAalDKf8d(u%_7bP=Kx0&1zpcRa z>^})S&;ApBaa0F<{wUqh)>PCwf+sU0E4eQMnyC%<=mrG)O30p*Mt*({G)+acab<

    y2zu69A)k?@i}gMup zNWB#zOct3|E%1cM%XnaD0GPcZ5`P`{o(B3P6iD>C0OKThg9G)JhL}fL1lg}+kUgw0 z!F3!(w=2XOU9nAee->n$+KTKH%0L${)%oL&o&b76@e_buAt>{$*u%Of!o+$;J?vnG z38lv+>GUo>2;17Kg$N3CPN>r}Au>_qAE@DYlOOEAOlfTsZ&F>8@;i;{#q}%XdT}!a z8&!3KaT1F9O7KQh)eYuKoM2RY4aP}ahNB8;{WwvDH2B7Gtv|OiC9?~&XQbYk;M?h* z?ytm8^nxymp#6BDpu%c8hmR~8B(-nF`V8B+J_8UTVez9vZ7@!Pk?w@`yc3MX<+)}8 z5*5*cH79Ibt3x%LEUXsQ&*oK&x;}_rkb@iD*e$;aa~Kx-V1>zT+8i8p+9ow0G8YPJ z&^|wpu#^*$D8V7r=G?JWm`^RMAJNf?2MCEALW0k=6>B(bW4tfq6Z)Haid!)&h?QPeECxF8`$wiGR4pk>G!zgNlVCwqfCjx4qpU5eh!B zHjk)-_lap$10@Oh_4%?2>+`)u_=F6GGTZkLmPMo+QcWx6x8VDrus;8i0-ul`H(S8V zaZ zV;fe^z%Bc+7yO2JTpulUJ4Uh;O-*5i3GoS%fp8ZIHV-OQ;yAv;g5TIs_Dy{@kz%Z2 zM+#dDLsQnleFA4su)5<1-PE%QS6DQA`7;gNAlQY|z?UHTXm*N4I0|wRRHnog`ffgc zV_l$|>VpBDi-kHWyRg@Xd%YAN&U|}Mp}qcsRC8fH_WBF0atnJ9Z+(uU?iy=Xi2A)zZA1jkE%_BDJjN{{@J>m9 zn*!9p^Tom;1v&@)Xo1-nxUcD~IvQ-Py2h{2Iml$f6*{+{O)1S{y^snG6MmtSBXz4D z-bB)xKbM!L0Jx7dOz^W)^`lPXOe`6%yBJxlpzJsISIv(K&#K;|d)usvj7pb?H1ux&^)I z5-YRuk2ils3X$<&-VmNtrQ*M|2o3*uug6k?iU0CmkEQ4k{pGE8Bb>??W+_m^KibHe z@~e83DAsq`hLtvustN1B*=e}Kn}D5o8*MX=bf!c3wkvgW;gKh`TUB?)&F+ zV$w{ptV?AV2{X(|k(v_@L)b?_y55jdSkq>!tT7|!LDxpq7`8A5ZA9fIOl!CN6U5HQ zd5{;VHbT;`c(z5KkoYyi3CG>{exD zOiSf_&wt!EajJeZ&##nvkQvFk!t@U@{@u=Mq&6G_DFw>Nur({drcSDI@sE}a#y?(j z*h*NnZ`zA4|F32awHhFW223}t$Dxm*S?!b+A@DXJL&Q!LU!a zH&wO5%->>VqskgHZ?}tmyrrBEmB3T1TU1(OM&!5*p`m2pxMn|VK8xB`Yc z#a*WtO^eR_6Kl*!Y~~4>(k$&pREe9d6~g%)Vsp{=sd@}bcc4wSCDiYoZbPW&SttI| zMy!*z@9KT3G2v)>$NotrCzgxXq)AyK{!7#FmJ2cXU#w5G4eJvrl4m?a`!IeJVbFUm zmJceekpy+lVD`?l9|~hVtw*Ayxj@IvtNUV~-8mZtZ_350KovUjySrw!3tN85a7F%> z`clNrQul~|yq2KtMn7&5@1U(LR&&{g#TbykgHkr?qf7{a-}^1~@aEGNR;6Bhsk0+1 z6;RAO8J2;0TT8ugBQ-hodqAB#t?=R~J+H9KO(O%h@5Qnyo0M6Ie1H~hdz#<{PZ9km zRvbPbg|cq*)ecnlq4|H!8Q_QwhUHH9N z#$q3qu>d{|WVGM8mC!@gOWa${gVBMa2`H>DFr@wZf_r5DiS;9%9$av-ghR1GqT_=o?7dhxqO!t-2t^@s*oE~L4^<3n zZ{-h0hpSaZi&JH6QxqWYR~W^|;TvngjzbAZu`os9ETZT*tT3UqEoS~c=rBOci=`_n zyGZD5iO@s^xLaw0?+$K4)hMXm?;_}A3UY2cncl~_qq8+F6XWQ(x4s5tEwHqZj*~JC zmenC9uovrB>{4+cV|{}%(nyVjC&Ur5cRCe$@iiIdDd$-=(Ng-mK{fmqGTXI8~rb*m; z<&b&>EQ4OqiF!+-yf=t@h4N{G$j<@#+$k6idoPwc*ae55(Et%#t(Qu!5pGt9)m>!9 z@90DA;JK`d_DQH=5ej~>Qo=6f2~tF`7de_8J)$XaU-=t_+36yu$xCh;G5|-Bza#I& zXhv8&V1R__kD~tlI6+Z%FgH$Q{@m3SXbO-2`Yddp+56np^`-&sf8{JJitj!@_*6`f zfWO5FPE`N=C^gt>3;fRB6E4J&2zdk@Uy;WgL;pFHwkh6#^70dAF4R)Q$l zuL$1Nb5u}^9d^MWENzJnd;r_qKlqii;41HCcC5-TG#SnAT)W=tM2}ZQE}s-7;vbDd z{Ns70-K8E3|K-WT6NSsJqtsR5A1!*oKi+$syrI%xUZkjy$+|QMB`SNjPR{kSpfnXrLKJ2Xad16zgg7|-$O;Rk>R?!=9m?ns9lP*C_eH0$hJT^^ z`wQLQU+BJ^6MrMneJ#B7)&wkFtlhA;iWMp04H17xvxNADh(8=Dq1;1U9*#ufFf&OF zJ*S9E{XrCQzla1$eFZx*zFbX<7ARdH#Tqj9c*$i8SO@IdKNt%tmVVePYjh;-qaHux3c9b;LN1OxzBu&##i8#n4t*CK zx)#h^y+0Pq8|(sVPYGrOazw(A=}>DV!r+anSl*ztMr)L)yn^DwV$`uhB72|I#nlN% zP_x^W=`-doX!8wG0(xJx$GBicXL@+}wT%SbxN(iP9rt~&>I&J2SG0+5d58Ti@32dG z2QrQVfaV`9{mU{sx`V|U1iQd)BVlZB!%xyYy~cZ&mHrd!tP^!m5R0V+3hN_ReYU>9 zg!Wqq+|d3LN8YJx8aU7xTRYJe@h|z(Dsjuwf+XMu4`c z%{P(*buSW>cUvDZd&?FuB*20jdl6p0cT+fz!2SM$n|c39VEy|~qAMQP1+pYKeQ_+as_P-E8nLKDIsu1k`cMZyIFuq-eix*9 zhCWfMeNP|08tN5(R36S0_p3BrVTB3tj8g4k7mka3{GeqnLhdVc4xY?lg$bkMq}t#5 zHMR)Kuk0crDYiA;O_{QapT7v$NznvWDR02;#f|TR8#gSf^5q(qd?cQlMO%<2BSg^! zw?AAbcb~|D?n1*;|IP{%LKIyzVHb`NoeK0-MC0!Q_D|8-aXTry1y$uNKIwJ`-5Z0^GzAj;BXtKdqRT1!vrFtJVR*RQ&2${c@Z4ysKgC)DpH@2| z%!h!ZOc-DjVrjtY}bRiKx{K5Fru!aFW!CP)eQ7 zJTuMML$nO6Fu~YSs~H%_vp0tl&sxZ_KMOkUrhkpy!F0w?v4BB8#YE-WJ~?Dlu<)&n zHsWWi;zVar+~*Nd{?Qx?{?Sg6e>62{_KxWlpJGvgk08S{+Ar$T(=$Mng%96QG-Rgz zqFy>Mj^{FBxKMUiJPU!y8#-f$*-x=xz(?@*89GN@dSLI)MeaV}BKK(!{L$W(x+ttL zVdJ9we%OU)<1SPe#liy>Iwx#gl;7X)!pZL^rJ&A&ADc&K;phY@%s_%KwG{YAVC>)` z_i2FW(Oml6(^nV963iqwN|6VOB_7DGgh`50Av2YVk;tHUo&$38B#k>N4m z(=h3kv-o?zm{_7KaRa&%93Ca#_cY|>d(ek%rx1Gk6blf1q*z2oA4UybV1)@6>rQZ8 zlzb0!k@hpxzlb{+sCC$2;(Br?*zYFxGlat4SF)-R zq5fqtox48*KsQ5U+lo&S)=!X7(gLa55uJv&GbIo_+-PS?4YvvmGW{xR$D1y*0H$nH zvBSv}4wuO;4eeIElQrCBW$|en($EQZdI-yWrZo|qnAAtGqIPHu$21UsWoK!Py!<50 zV+b_p1(0wUb3+>f4REA{s}=$ca3t-lHHJjjV_MI_V@P|gX(L12=u<3H@R8yN8S@gh z7J}WI)t)M0?*P{Pe#O8kld70XNR7?@KPpoa$h`Bm4=V<#%;R#H% zt#SPbLex%yHm_JD;L}Ypai?07p_y;HaE8kKqlD*5%_Tg7;?-wb9K(^O7jpX%q^%_= z>iJ^jflsTGkh77g#1VsGXkvxNU|O5O6)WF8-_RHoA@EeUA?+e?zRQ$V3_PN3Ux_}? zSrMzh25bEYgxYces_i0%{xj}54vHf}Mc_vn!^tTsW+RwI{+R+6l?r+jbN}Ce{C_k3 zz+IT^^r)WNa9-5m=ZH1VgqEj(GES8^xkV;82?AeP5})8i<&)S z4R0#`T9W{28XXzG$5VAnleZl!6~Qr=(T<(Y#Ij=RzGGGTPZ1;i5&UdsUqOVm-@0ee zcl5c6DC)xcg4=q(zQEG2A zML=|c%#ni%D@@1@yQiM_0^=n3+wL|W2~fz z1bKr}Q-Oc9+X4S*4_^G^eFSgS1Nfo*?S)K5^@)3|uZ5t$PZ3o85kPB-yg?)!7$9N( zq8#Xc9FqgxjsT^ph`KK9l)=L@Mv8KvVHch_s1%MV08)vApo}x;#TCGfx=<+`MZkAY zL*mS~S33n7g(Bd&pJJkNw}dQ5sn2js3C3o;?TjU&1m%9NsK_{cdFcej2+cO zhg~EX+awS3abusP&lI2=ANNFrqs-oZ7pAs2t#C!yo6vT|kd8TiD>!`K3JxF9t!#5& zEBqqNKQFMH8i27Crf&obZnU2YEff*lAAvPze;Cf7&x3$e7i#y2Tx4|r^018 zGM~_h;EE;2U}8A#M9d^AI}YPGB79;68Y)gT*@Z`+Hi@SEsRFb`u=PhE+^KU4US4vhO z%?{EJ2l?F23*Fr!^7%7HKEqBE?rzlm6UMRbE>R4*ZrZrrp_qewZfBwB!*{8IMjGRa zVPA=RB`1w5ov{93ugFgk`TQxYFcG1ODx1Sj6JBnV`P`2a)gOm%5?ses!VOiiti`8@ z#4b=Z%1?$}BzS|XgqvL`@Kh0rUD-u~H_n8{j;e(B)QGZ(;TxM{x&E9Oo^PB#l4Vaz zys?xQ^(~yiu9}1TrW_`^)qpZDqP{<4G%{@2x@xp#rM_mdLGSs^X?o5Z!XxO~93hU2>-ej@md1ZwO`HZrwVHXK0iZYd9oP>srGL`#roJ{5Q=f)S^ zX^{X&irx<7A3;4EwRNI7FCxOJzeJX`qGV_wLgK2x$$sUh|b|@qH9Q=|@BIr)=NylVJTY;~2?E?w8((3b`Idus5}9&uUs*G@X2i!w0$k-O&zy2uChTxhV=)MM~@C?{U2U#4)bw5$`BshzsirOl!Zs;40aF;+R!c*i)7? zl1YbS1t83f>OG9FE0$e78oYHhh2l>E*+%@??=LW+{U?FT+kX;RqW+U0+Sq>*gh~2O zoHW{X!;HkEh#fxi#EQ~rVTB34V~d zisXQ#ZBV zxbW@xXfsxi`;B9{VDj};enJsUevHB7a0Dbfc7u40o5RF6Q%UBK?$dT?yl@x$y;C{) zQD_D>mJoPOX*DZUPGp<0db+OazwjyZC}P78L7Zp2lRaTIoiyC_LTHD~ING}xniMRu zB`XF!ig@y4j3@68KFaWgZ=B%3g~@<2<7o4aJ0QK5?cUMm7g5*87;pE2{ zPTmuN(|676h`5o_MjQ0rDO?!&daDR`v2pe>Zb}UsOBiI%IiB4^qRe2J%M(i#`zylH zD?3eCORijOju|@wA4NQQWrYc^ILbNh>C8FDW*1n^=O|*%3%f8iktw_CM?L8kdvRB0 zw>Nfr0YTTk2nesto{*Hw-q^QAg|wRdj#P=KD;o=tpYrxa7f$6!pWx*AM@xa?AMRuK zyio_J$qY@$-SuxTK?4*2%abINEdqNdN zC7%0nqQq(VCh?dNP~R9|8)_XaG(^*79{KGcg70D)|~WqXte$IJGSa z*(^~xeMKO6Pax`V>uKTbRL)-!Fx^ivxkiK;)IF)_!OuAwiXCl_VAu-3{^goIa! zok~WDx>w^y9J6*QqcJVb;i%-dYyvgLh*NdHbfVO>@YJ4IPgn zPW%wybw+K6b&!!}Bx$o7W2=Ka|0of~XlcCjkx1n$y6ua~$Cx%sch1qps?*45NQ+qY zV~kY?VrLRoyzE_CBZg0=7*nNJDr-!H85So2mV6(KA{D!Nm*|*?EG|wy%)TM2{V1Z^ zOKZ&75U$oX6^AvW=`)!tOH{oKm^72@v2c|!EuuSC1U`!3_6l*M0%o`odwt(`>~kk` zjtsP?MqVo*H4exMyiL1>pIG@z({4?nMY%8yg*}>Gi*d^g3Y5Qu`~Sm#93(ZvC;nX$ zKJirneB!%&@QE+1@QHQz_Cu>YehB{+TKR$s>$9kckN{9+O zs7l{}w0rh<&NvkKBKtT17I9Y>tX>)?fE3jVjp zBy=Z7Mz*J)bBPF`*~k`_`0yM8yzvOE)*>vgnw=f8kra3v^a6S`GH8Ia2$?>Iy}NN= z*5#qu;RYq6jrQd{Q_GU|fzi;4Yip|Q9HN_Ma!xpL zPpBpf!C1;@qZ5qjyvow8SfO`vHn{G0Q`iRpB(J@K&<2&Znt1~ri?*8wDSDwb z|7h1+%e3&|d=}Bwr}RnATwS+>;0G10fnou&0KahsA64ZPDevUo33(iLLBmyS0(~}k zcS`d2gzw-K%cg24sP&3~^0Nb!6DRrV4;wO`MPzqB#YAR;V%f+6iF?VOFlkQyKM_;O zOi|Hy#GLIkAv2t%@5CB`8bQK4e&fjuCcMiTjr5?SiG;aX0Xh5zELE4oSCS=E{_)LW_Pz$$HD{|BeZ$4jm zv+UEVWy}XZi#@5&VNYu0sDzw4)uj(r8sIGAt_v#+^7mmEPX0b&4V6^RP=$^L5X>}b zfVMqzObUE{7QxJ?;A%52NRYOVM6i#|lvj-Qy$EKmtS}+?PHsIVNTNxa!rHxKdi8VL zo;fD!x7EjG&mt`O9D;uF2ok#GaQtS4?LUjK1aRcfzD#}r2d?OkmkR* z_njMK_Gb~Nd=7ESFB_9d2 zpO9wIJJ&A>#kS9d^#uX6etm&n=s&Su`nh99%~=FG7q$=>(tdr`j-I=^=S&;5JL2@V zn?B!m)3Qs$Zabo4h&HvLX$LEI?$Z561C!l<;wUzSC_Ib6>@&YUer5MeWxv26rxLV< z^J0D8STE=-BC9LANJx$IVtxH=Xa>K)2@CJAXC&}){^4ov^Twi;=M;sjOs+I|jxHQ< zUV&2p-z0>Ti-{>kcx`$YUqp!o@oY!NvzX#W6@6ZBfja9=WRg1+PkG)-CG8!f2yMnu z6v2z-3fR|f9zB^Nj{1CMalUzesW!7C@<2u#ZOl=F5)afp)alba@7EXbL-_tpvIHDKXUIB3)s^P-} zy}&7u-s8j9krsqCsbc{}o4F9sa~1)}r*tJwoja+L*_lS~%00!LPQcf8U<9TJQZDQw zdi{kJCODj5f6ZB7o1U`>Qm*VGVH$&Gy040Dm!qH}8-9~8GyL?Zsj+Kq{Dp~qvB2ls zGh1k?9bw`hywMdQ(&w;eHc%saK<)X5OS4&OC=Ta;FtQ+yPH<7r*RC``5%qiyQO~&d zAl3wXC)u%khjc}mvAXxB5ADd9OHpi1eGc)txc7ub+Y?gB&!%=47>k=CWdCI`_25o{ z$l9UN8=WG(ltC4kZN@w}Z@t8t=r$F>$!FK&no9Py*ofUAIw(-&g^SNeKAEcdrrDQ^X$;5EQro7BO{L#dlaA2vo_Ke&l^wMmW=@3 z)D8@3$||?$-nsZt8X4Xjt|C749HTG$Z3SAo|AdsZrzZPP0!`X~VlS(-ONjMdMT}`- zmw_|Vuh06aHyKep-6hFLbJ!`wsy2nx}=|Ad85!(L;AX}`a~kLo`$7Jw?P zA#z^k8?m?(PmoQit@F?jL%tgJax}Ew`Y@Q%?<-0rfp3g_^9teouOdwL>R_^T{*M0Q zDL^e>#rC`X6wWOhHkgp~pmi~*cg|Lsse_=?FOFlpCZ+}iaIOXct+2$iVL#abs1bNg z@C}I!no+9ihgig`2x_gImm`fI3?a*CBl>s>>3N10R%@E+NpzRZIC2Um_9~)VuQ9r{ zCwNq=0KReL^n(H4s|Zi6tS})&wpIbPp~w7GnX!0qjqZG29&)vn_2`Y&RYa~{W8^9v zK|%xAs$^88aYtJ>ZKJCceqn_Pd(WvLO1kNsQ2!KRp%oe?%y9(!@6W<^>01c&rgkxN zOTVVGP5hwQ4>X!nT(P608t*n%f0fmXnxu*xe7{l$N2~>&_*HCEOvO${w>BVnLIVV4 z+ra!qwFY3W;Pn~4Nw7NSgeZy;Kml(UQ+Tp>OwJPtGXSz*5x9Ddfvd3hgb>+07Fr>q z!(_&hHujuaL0ww1A|nRt_@8a|Tsn~%~~;2Uc!Y4Z>Plo>~xSK2{9rtQYOUS9iL zrZ0N-MWE@`O)+t5Bm6%QA#;BvlV*<+{hlej*^v-APO{m8`Lt8u1$YWm)MwG|6q)En zl*j^vvK~1VvQ_*%3mbVv@KiR9j0&g-BE1?cHYX_wU*9Hd5F20WbY|&puA1<5B(@E_ ziqK5T4bIxDs2oCn@SLz=SQ9}nGGjqabnw@VQ=o&=8N{NTgQRfK|G0x-?2FOZ{teSsMDp9J=y|0M7<`%i4VX8B-owQGtT{Q97x z5NE%@2rUQSI2^4i9Z(u&QJm837R4W7g+cTIzA=vt%ksgN63DLC}GFl2=3k)T;=kt?VKpgHe18c44i|x~pWI268P(L7rQp$Q!IM;RG^*N9on|gT=aq zwxeA*()2b@7Ix%|fxw9Qhj%d`Hbw<9MWZSOBE5$*$~*!j^`v7!k|qmvh6V?wi29{A zj#*W}P^XzHhyY2j3u1M%i(Bo2|H0^Rzov5pNP-n6E@=^h2gXUT`r)uTwP?UIEt;*u znI;^ns5)c6Q^wioGd)%2P7!Wh;LHfY11og6?!+wBYlA=2M9G!F zEk$g0h0Y0n=DLrX6DUmpRyeK7;HmERV9ScSd3yY#5r%&>ABlblDxQBlNQKJ-eJ|^Q z@W-nN`o6}XZ#b`neAzmbRN7jlD^9`4iZk;oWPH_3t6$_AO}}yE>rxl_BIvt7=LnG0 zp9KSwG-uvF$eCXN-i3SEmv~$KUefAU&vmIMjUvYS8pDENr-{q{m5^lyKdD{pD|R)M zRgEmQBg+EJwIgE)t_TpnhK-LQEOsTN(!#2!HY`>?yNbZ>!U`GTG?Td7URd@UF<4g- z*j-s+;=*#<(Eom`B&sQPQ){-S>@yzqo$%srYfnEqzpsb_uh1|dgSVAI0_b9%U=amg zS)sk!e{>@M7mc>B7m+U_#L80;`TXO3s(BH*SKFR`$|qsOY}q1A`4YHqhLM&Zd+(ws zI$Dk?hTYMF9?+N{JJjhGz5gKq_Pxswazx-0>(?JTJYR$vU-|Xhpl>E55krNlY3@+2Ml#zc_jENhCixsW!*R0dcJUp%&Vh zTv)^z7Y;8-4S@x6YKW%bjaBHbDQH*OxI6{9MDvV|m=A=^;&+#R1v>rvVVcS|fFaIWv-`JZ1bp}ve#}4=JtkCz~ zafMcHsop*s#4nofUIOaogKPH*#Wq9)aM9`ZR3yU4dBY7RbOYzv=oM}U21BN;ZJj&` z*_P%}>f!*g;JXMozK4Kg*nE&2gx^@bLn{OhkQwtlN+kj4I3+QBmF+o10LyeYpze25 z*gOf`U_!M8`A0a8wf{sYaIx+pJh>;-Y!?X!V6`3q^*8`NmKjHMw(jM_aQ~pAd|s?& zpU#=WYa%^hm!z7C;QwKp88!S151yC3@DMc=*VUA7Wrcod09F`e=ioPvcNzxI!C{qFU9;B+UQ?o*sK5{&eGKMZ*fM`4RNv?MW=>$N$TP zc#{G_6<36K-$MX35+Na0+;&zwE~>H0U4(d7R+tbgTbX$|?+cIe3wZMV!jolt#uD9_ z=y@00AK!v?4q`fZObJWmAlnEYjh1K%{#Dwqu)>5Ta^Po#?nB?E2exYflL;!2iSJO&| zW%`R?%azt5aX`H~Mf$2^5-4~^V1r`3Ko(n!mw=L3hUqRgGQJBdOk7wFht(ArLS`H} zRE~)h+&3Rn3%KZG`e4DRy9g`4hy9E32om8HTkm(F&=CZHsJd6pA1kad5nkb*urtro zN!+1u7s_A}m0qE9!aCT}yF_Qr3B{XKp3Y865c!+xl=)&>W%Z}9iLeN}eA2d=e>AP7 znP0uy-cwkw)=}x8Rgi}S0%H5mQpPxzvb&27k#A|UoYA5|9ulrFVeD-G*@ZlB^bd>3 z{K_s8;u-Xx#hqF+N**f2dC4Q4u;|y^5>!8i6$aTk_>H}Gk$bJqVkT(c?;>&E39@r= z7sPc+a!DPkU9jkn)W!F^NEn46V+MC&gIBs%C#7io+Ab1Cf%95srY*=mft@7C#@&OVv$)ZscEMK9I}DCjZHKAEmCq3fI+k$XeP(_O42P}xO->skuMY^%$U z4Vu!rQ3n(Y0TlK@MKtHfvHT=BkBVJpMsj#>M>rxCXZtM)qKbW)H72-k`Eiuqff)>P z3?tR;Txz6B4f%Cavxk4QJ_-Eec~_>W84-w`z_;*+sMq$FH*6^V(fOMN{Q}IvlFCGIQW5S$Ilsle z-KC9W#4@PBt9F|a9@}e~!X;Xr%`$r&xoGUj94^HS_=kr?y>(!r*sJ@Nasd$=KRiB4 zBkHI+{|RvqN+E4Qy(<)JClp8=T*~_O5l@=+ zVG+8!Sk|DhJ~9+~@?%q`d*=9hy#6Zj7tnu8{RU!sLH6rOKkC703iVb@C1nCKOdq`K z^(SKPm+Nw1-soNI3V!F;7iF*Y3$)p5w89f_z{R2jl@%uB(wYofp?Zlb796OoFt8Xv z!-Qxqj%=QYExo6(_pdoMD4Fy&`fVzFNwBj`xLTJJvz6~+xr4%4L|IY&S#ZfDtr4iy zYM;+~Pht39)0unGdzTzoVZzXG$9S`g4~CYDz0E6hHusX1{1yz{PK(Aks$9x^u;PB5 z_qUS9EtNF*f3b;R*G3w=^N;r>O4?s*vK)&2ij@#(Un5r?4lZ!{;2XyZk{br>SFD6k zSz$tigUaZj3T$O`VgU7wR;+|j*hNs+2vd&`R)t+yleDfss49!)4l1V{1QvQ}+7kR6Wlr_u*vzSQrJ@+fEyYk}p3a;( zrFnH*FmJ1kHoEyZ>h!H;LHgyUpJ?wvu8?)AT-IQu8 z)+x9J7vGMDx+XPtu^fr=FfG>LaHMR~j*Pd!BG~>OLfMgYjz-(C@3@RM;%pBO;I%X- zo=_=DMRYp>VY99W7nhp(l|i89C|%5Bq9@+KTIe$4i0!=7X=EVlFOX_;OjuI(E~3b9 z!DpwAi5xjS`=NBo6hEz8j>7CV3b*PgToF88*t@OSwNm{V)Ta&aIXc|0_a4;j0_DIp zyUgjR*W-ru{GAmh;vrnKORwAcP3_BZ)=u>xR77^)T?c9Ehv~eD zG3n4YO+m6s^tve=tXpq)IEU1bS7o_2xNSkK3bQ*Z_f*-b#g5NCd1rffRPL$Zvr}a5 z*Oa$;uXOHrf5Y8=ipb@{-Z}4e=B#s~sOAl7bK6BEXobbpk34VK6x5ab)!^*R%D=*y zoPuihuENW0FQeK2?O*@HfBbKxrlrt8(>L@VZ!U;b1K|Jtz8(sko&O>!AP)ol_kTQe zZaZP6fSV|g^hHs0?Xhg36r)Q_KqQ;C0tKGB*sTS zgzM>td+o%keA`bA`byuYpG;223=l#ENM3^v)1I0DKO8NMeYMcs5SXC_mvk9SG2v)i zx^X2G0*dSuCaHPq?*?bHJCS92=R@*V6-It`$A;ZdQ1zi?nWG<2?{jdhngxE#KN_>! z1IMSIW)+6hHtW$fE+NApkCL?JKR+5N^juh*msV6%mkrk&<_5Oy{fGZJN~-EV@fZM_ zL(=+Y_R0o4pG}z{I0c-Lw~E?Q(1npH?Ds{i<+)J(Cr(7`hSrd@3qHUR8z{-kuP=Dq z>(@ude6|JW21FhUkhlhWr7btrpCNG&Qtr24O%_dn2D8?oxU#+=RNb#HN^pX2tcYws zdmnz;erllA$|jsPov%7}#(T4vsU0Ezz4ZL~rYrl5Z# zaTxm1v@w|g0V4B{R;`GCG{>EPG}Wy&HpNa+re+#Zsf97*5r~iwswmG2#<70W_MmY1|I>56iy8DG)B*cpItY%7@8@4Hq+7_tf zOtdW;!on_s=L0y41lQTFYV@T2K}WULM!LjN31uD?RqA&dr3S$_8Q&qn8(jKm#v4uo z46V=k`-W64Up?yB*Lu!I?orG0+lG zk`K(~=)(n?lG4hHm%RK=Ielox2~l~ZeixkjqR$Hxu4orUBVO1=g6Fv|(R8PdKHT6v zi*~`=9`U@gu!UVDxX!lXTB$Zle?xrue6&Kx6?sr-538{ZJ}9(j!}`8N=}2nQ;#E-~ zZ5d}iO8x-$bA$+AnQ0$ILpE$T4PqX2>B4UuUwu2#NYx<4w4)aDe8NQn1k^IP0p5ZB zN%7j)P2mJ=`Xh*nA;C8ZIgQdDV4TDSG%8sH<0QO`sALh0lkfqYw{ntPysXvmzrX;K z(}~{7`&|V6t$>Yfjh~f@#pAuXhU+cuBB8^bH{}hh`ad&PHRS8Ah+bd~`QF+d#4X*u z+pW#YAl}hxh+7)9T>&$yGU(fdCrCW6SNMTi6f`5V#fU!2#uZjbahI7DJ{)C^#ULM= zj8^E_xCdJLY|mJ<4`ip)S4E39?2`>g5HuabZybB^IWd4%!@Sat{@RO)x`>MX^y-3N zT4zTYmE?hO63X0pT_djtJ&+p0wnUADnTSgAz)l^;zSNUZ4P;x{MO2cfUm=&|(aM49 z=R;Vd2D2@#Fmb)T5?se6dGs!*iJD+3Xs z)KzGT%JyER1UG27Rs~#YFk0GtTH{AWhhX!bT&W924X#Wpd?ujKE&WGh7efR{7pAX@ zan){$iP;OfYN4nkME6b@46bW5GoN?jUg0!wVwS|47*H{T7e_WIjB3PP&DP&R@RuXOJV7xUdWaoCkS<`2a*~RxJK**e=k1? z26sv)tve<10N1o+?U5hq-c4mAs4xKT1E|=hFv2N`GmzRm&iSiIJEZIG9FF z8`_1-WlXi1Ew8jvnSZ?S)ViV9)|fC(i&HU!dYLFXGF?V2=N#vQ=cNU=gb#I8)I0_s zp=x+u8Z~ctGOxw-UTV4e00j2-Gew*#HCI_<;?lH4y@Wu|IF&i}L*?k!(782YC+9(`BAC)|-GNkb1JI zf>q}qjUxP`89hyoLzAO;U6Tgmsf$78eSP678hVYV%FM4pvuWq;qMBM`=7oK6>S*kj z3M))o5i7Q;tkJ&SQ@3rrLQX3HIBX>dcIK33bNNSOGB{?VMpY=+7jGnSCM7){;CsJH^?G}{Vj{rspmy=gaifo~95{wCSbf4tte3({5% z-JgFuau)whr?%6-@t)jhWOPGo@NXLRA<#UbaM?50OsDX~=cD4QHIR5|jZu9FU;}=@ zSAzM$`n5D?QI{9!_{j)nCOKgF*lQ-y8ZQksRCwVjk!>e_|MsD{(8tuZ6RnS2CFNwwzTR>8X(;C=3lk zR4WWnTVo~&%1G!bXFK^02VGEcBSrI2kiIj+*_`p9{Dos(Kx5IPOiA<8OAmdY0uWNm z&IBDD3@fb>=txa3er=6Wha>R2F6(zu{{uxw{ug-*TA^bmp<;=e9N|W+-*s#YNFP0J z{oY10epe=`V!1Nj5vNsX_TLbEC&w^4w&&JFZ@7Q>o?t}Jtw}hO%rU(i^8e-^Uc`ks z8gg6cb*@O{d^98Kump_2i4>MJiV@iP7?B2@Tf$cTq0rsgRc{!ks~tl# zKI-E~%0}@Tnl$l`_cHJlk)gl5yB3|KRz&_a=$fB;IRcuZ-2?2%uvcojGdV`3A*5bL z=612#UR=aQJDS{SAMv6m%WV?Y z{>>iP1A!+CD$rllR!z-D+6p$9kVhx`hgb%p43wwvYb#8MO;l$AcIvn?2i7}UiuEig zN#&1hO&C9FBm*l<@U@c`bDZj4T&!nN*afGoXkNwYgv8NIlcG4hl_`Xc*gbkHQ&4gV zlUPrxFhxtPEjtbWTq*n~nEp_l1f1iBDxx$R|AWz%l`~P8Jt3Z)exvDw?bM(Bj#lXC zs258w+cQU?Fb~wjx=4g(iZVJXDmDSfWG&}OkMq5MyA;bbEK)ikwZep51=}zrz*-IG#SnAG17bIk;)4s-2z)zOiSm5xAy55|Z`V`P9Y|9ysSzY0^^$8;D9nW{)Sjv_d{n~&#&HDx*zrPA1nyUMn(&gN45NM* zPJ+>S;8mVvyJjBp=M^=^ffZUCd7jW4=HZYL&pWE^X`)R3xLtu*wY6#aN7K9f!*lUT zC!n$`qVvhNv8KuBgs3(N(8rq3i|QzYPADSpD=SP$lT(}IBJet_a9V%DIl&iRPg!z~ z>Lwy!c%=xhU&i2dID&-t&*?x)FqS(Eiwup${*P+yM5h706l37WyDQf(X1Sw%MTG2!EP~SW< z-pHoFK*gETWH)tQq|B$XW3(T6jnMFf_-+0TC@ri}Cy zbO@l{i>Tve+()#{JuU~{e`1sum7rTtsET0X!uo<3U%x(ceWCSX=|GvUctkIfm6BLl zPW2H{L>h1Z1`k~hHmkN#!V*>r;RzRu#B&v`pklRtZ z0v9F`5rnUzKkZLVF_S{20|e`up}$oDRQXZyKRd`({%Ut%y{%0dl_JJ=8RJ*`V+*cS z{U_!|MJ+qklX?+fTUcN81lcc;QT&>MDpy)&te#EN%EWtu$}>}_;CT_!O6qfD`C)?z z{b!#bskb6jqo}PqzHPMlE{K1D)cV9To8+BxQSAMH3NFN{jH&Mc|eh z6~UDSG?OTtgN#<>Ll5W4q(jp)Z62!+_qopd4}8FW!4(a@F;}#0JFs-rQbc(!V+1A4 zZgtdlVzUw%txEYfLMZ@Bb-1)a%nGSB*(JR)yo2@|w9m>^ycAoK$Y{k4dQEnDWQ;2m z@u15XYYF?Zs(ZUtuFVwt=;#DNKI-$jcT@#aK#vj`fl+2u!J5$6QBeq>PeQNSE&|(5 zbzQ(OouXyEY%l?|DI(I)=u#FjiHiWCQbZ(u>Rk+hK-MqYcNJ7AB0CqsY_%0q{=Da) z(G(aTE8-dZDV($z*kHm#i;7wF<3v3W;2V<08Ns7^6EKdwj1k4q(oZ45o>VuJMGl!j z=PYO9eYuExTm*-g;moL@1rQ+!Yrr=N4v!v5VVne$a2PdYa1TDQUf6l5$Z`?4Sy-R%D#7|lpdHl(pP2W^jV^v@q-$NFiLuip z_EkNs&)4+uiO-|(iLdA36MGf9sK;f`#S}HG#R2k!2*Ne6Kqp*7c?uB6qle93TVaCT zIF>TwH?Fv-Wcs4aUZnHv30kT70-X~a7Zf_gvqF(>!EYSipmMrBhl|0eI#zFp=|un%5R)zYKlt(H{m~-D{Fle)THi*(!jA1@ z&&wbyuJkI;Hd-NSq;&}UMfxOkW^ir7aT1!1b4#_HsxCNdgOUEuP7^vasEmg@b#&$j zgDYzh0$n(-;Hn2J3_8!@Hwk;X+Y8x6NY-9<)*?o_veSgl+#Q{Hd>~>$wKaZAc7huW z(wVqU^ZbR+goIZ9wG}3`aZrg3c3}&#ZP$f$m8qJ-Z|x#Ty~GtJ_&G?B#Bm(|@ID}} zE<8NaQT8^uw&D^^;kWxO8->?iyuIy(Q~8_55bcL|N56K=AEe4GHOe<6b(CR^)NtgB zlCn?(6m8QGR*bVJd=gs`Zo6(QQ@R#`#cM|&Itwq5OjAG@U@ZcR`zdT78Htb(;h^Lk zj1#0f;x`G0$|fW-!O>kQqI%aM+7wrqa95m!J6a(;tjLTb5mpWru!Mj*wN_U-eQOao zTwsZy${P|YAv;IHBjQ4AvpcozJjX1d{Dj&4%h8#FzGr>-JRpdeHO2TUPwDt>&jNjb zB5-&WkZusg1Ud&r;P9J-SOtaJaGV752d(3998arb(~EW5qgn|_fno{H3@WMNE{HSD zxnpI$wTPasoV))l11q#;)V7;yI)n8rBCHE5463N%3KL#aQ0WZEN%-oQ<+_`mC6F3L zUn0+S+&WHi%e^8_PG~za3XYBv6hG-Gfxh#PcBAJXuhtT{wVM4>{m<4Sh$zeo^@Ilz&S5L6Z0|g_H-5{u>{^zir{kUBgvy?j>&1L zx815(y9_sy8E=P8jcVGdMB%lF!d?Z$oZDE!eRKNgQFAOric^2VA_umsXKsxN*Rb`` z({#L)4J@LyOLQcaH4|hi=x62RQZG_Pymo1gi7Qd-&^O;m!a<}Gi3yT853e^x-$4CN zQM1Yz71*Eq=pon8`^k!4?6i`DC)aNv>}?27Ed*KFkS-I%I{#=7CpbIH6-jnae1r2wh3_&lZQKEJSJadB6xOR`y0FH~%e&K|Z>J8C=uZ>@<`p^y zx!6c-TOy3|oYnJ65n^6iW5QFX5^h$3(hD!>?;?P_w8n)0Ox3RvOuL$h3+1b;9Hl8j z`=4Oij77BtuxO2#P$tAHdZBLvcIs&L7^xRQze)pkvQ~ni=O50q4a>JW^WwA3upu{! zMbLs!eU!KeQ_UsIycbrdAz0zWul<+B6ck$pK#!)Kj|#7qMfmzUgs%(Y>~DIdog8nB z#g6H#Ao82PPCU@u8#{&4pM1F~vZCzKj*OT8V$*JFuQGCqnjiL1j;=#?ax~>rOuvI$ zSq1lQhepd?M60iY1dlFJ{k{Tm=syW=S^X!0Md&{X{I&j*Kxg-#1RA^lB=AJ~PXe9V ze-d3%;G5u%4Bt2xiR%NYSZlG@_BsT*gS=ayEomE-Dl$d7E92Gi)+S3=0T`YF6FOPI2Dflh^YtRothDgI`|;^&{?ZxXyL# zQdvK3w94WBtrI|ye%B+^DOAN?&IRRQfyl(Y2;yI-t!mZb3cfvMSv{9QWzZDy{r%pF zyiSamH;CG=2(|C0m?#Ins~Xu+Sx8OXM*QQ1H>7$E-6+J)@sIa)QB*Vk<&C4YY9kyz zlll+*qwzTZXpaN@`mXE~w3?0Cu(cu7~f8T@oJP>e(BWR5LAH;INd}`Iq;Owqy!C*L#1?ZLVrL(qIl% zC7(v6&c)ayg>STWfnPmKt$06R^{pam@K%cdd}#S#LAGYt^rNN0!ZHpEP?#fHe0 z6((+v5n!P|3yV$PsT?H+W2QwvJe}}bySIxkp~5)IL5A?{;w#kA*EW(|yq6Y{@vGpj zGkSxO@k$@k-qG!zRzz_2?)4&Os-lf6BHGukLE6N|S@6hC1!mN~W`RScjSI6U!Y~#* zLMz1TL$cqZ(%+Ykbp*2zpe90N>J)2P7lKl;Pze|D>#Ov_OU-T#J*C8< zK`f%vE3+qJU$*G@PB}Q3w_F6D7giV)9S8LuAzyms`LPOw9x333d@CZyE4xU9L_gM# zr$D`;GjnxS(Auq!1?|=9FBo%u!I-jht=>rrKoM=lhRfTq;WD0}jf>IK07$`B#3pZo zBF)I4tv~JfV(MFU<{nPJ#lcgK-ez3&ZR)j70Q%tN(P=*|j!1_o;1c)1M#ooW$ z7+?$HX+ujiJD30&?dv1(0;4nqxKCRVS6euO2w2n;!PZb`K2$O|!)aP4N92~=xkn`U z$K&!nC&Yj89^z(y4hwaTmjMGMGJaUt&O!avAAu7FBi; zYD=vPX-AU9yUF(KQ7Vt2h$-!-n5gVC5n_nYP(3lvgv>-}C>Y0+87w|aB|nQS(L9rk zg+3FE&1fjg5@-6W${{27w7h;ru{~!PRA5UFg`ZxcR zem9Es3aJ0^36k|6+V!G6DgtKvMgLjrfBnz2)W4HH=?Q1T^FKYKe4{;@)(vp%(F@$B zE(a`eWPM%?BUM6w|Ki&t3^)+jq{eZAgUoQ8MWyYOdV%+aB6gL)?7X=)`zA{_3g$r2 zIsq1n8~i)PgaH`%rrGa6XpAg)n?%XlaYsKFS&TGuLd3 z&Yh3C<@V3PGTLa1${2UOTWN!hTMZR4noiG2#WPGt(;0MVXID%*v(x?=z7C>?$|Fg@ zhY)ffi(CB5FS9drZp9~ND$>oiIQ!rCH|j;uBt}#5#Pau~p}wACwn4|Ro)|qRM*Fqd z6NZ(6k(xeKbq~a-0jw%w^!Es6^l^Mq6&$2i6~9Iw#{^y*?tKa%^d+o`0BK1<4)TxY zJ@Aj$EP80Qow6j937)b4znQ$!#}u)SZpwy#1O^xHE=6SAHb%y^4L=SELtJ1M^Uv{+l4)XTI6xVrBFw6vV#Wca zho?mFv?V5@Q^Dq%w(N*7TVdkn-Vm^}Z7e^IcY3K%SP_U-pmf8j&e!O8U$?pi2#WNdSoKd~Ym8zRA!D1MTAq8G09q84D2|FJP()MpQ#dl#?=Ohw^q*Ll znMi;>OA$#`SYM#2`}GArXa9+HIVnPov791?s<4G1G}5onx`h<{MG{ZJldtIibpc2Q zU$5|mOKmS)YIEUI#CYhSO}pg!qVG9>G`6C6@gmzHeI`sDfhT&BGr-%^$?%OM{q+0+ zSCwK9)2-`aN{(YYEG_-?4un%MIY<7ba+bO&W`s(JzXNfgTQ0`Nr_iJCSC~)$4$PXZ z9@22;r99%(;r-}%8Z(fc6kHkqXaZ#q3@ySGo99Z63(lix1WIHPF0)BCa}=WlZVwzn z_$Hyu7Dt<@`mnO90!#O>iB0md^&uPx`q_%8rmdS|A~g|^yC)QvP`4{YsVTyeDk~(# zHB)X;GC1tQvHgd7v}!r=-yP+Q&I#FfGPbu93quRtMk{<|zv}@^4f$TL`R%H@y(oZ9 zPyqIHQ3*`3pso@SE;M8Bs050br%g}_86^;5(t#@yN`P~t)h?*373O~wJGE|Ir&fw| zc!5@$0!6Hdo$9BUFlUt5-4lut;g$#(WNE>R5pycj*%4v3!h{mwl<}FO;KXjT3j`8v zMU+^D&Iu*JDdW>!*gL>ZZ6Lu(C_=$1yGV!(Hytx{R&U}{sO785`dh$@QQBUN(k2lz z@@E7h$3I%&)=ZD(_o#{I#1r*(ns*%_QAK?@E!5@2o!{a`o0MT;2ki|&i!!Ibv^6^c zNxX~{ad_Jphu15CC>I~TNnA#poOKS_A_LF7TrXnl;`nH2bfAlsMu3;6J$}wgXhHmnKSfBI8~g+J{`x=3FnSBsfc!}>@=YhqAm?RXGY1? z@J+%(M@h#pj>m_}iccG7DlMAljVPTNR+!)o&J5NZu3yEAO-u{t&N;_sc1^=shRx$B zcbLJAie|Iul0JRWWYk~%{Y%SW(zBi_$~eUgzW#C7KAC3oUdnczmQ;joQN_-z1IFzp z^v?9_=oGT{((_>@!lcv2Tve#bsBW!a-slGG6RmB}E*nf9)u1FIjK)S$q9UtlqS0+_ zrXHQN@((!$y~{)uIe%+~QObqWIkc>%6`YgHe<(B}RWO~*?(Wc2a5S_MaVE-0 zfPChDOpmP0N|3@*O$!dR@CjWNnjw2`#$x^0;I$LtAJ2>NbCT-J$YloIAfu(W_E)HA z4exAX2K6MzrEZlo=5r!LvQ0ZO+y?g|0Bx7{aVgc1@J$&IF*6|!aNszxN`tIwbO=t= zN4BoHiiSq}S%hU#rH()HKM9INopKs$JV~6FwNA&WbY~GWRav2R)sG92>N47h^h#$5 zR^_pg(%+11q~KK)v(io>0!MWcCTc{_mDZ0};>u_{2~l(dvpV;N+o(_@zrw_2)JZHq zu2b>zOv^v2co*c*dr(cy^Fevf|3n5ns3MSO?|?irp-E^JZWyFl>B36vGUMo=TrzlV z--roLaOJ3)Lyb+x?WB5jVA~vV07=n)W-FAC6lPCE0B)xIPx6r7Q{c=|JIW!#DWYmoa|qp+1f?-6{>efB5Hb) z6aAZgiVU<)z_U9uvU1Ogh%thk{h`@JTsg^pX5gcIbzpq^IB-$|BHSaVUH3dEz(t(V z(C8%<;aGbEP=zQ2*qFU~oRpb}8)Kb2;w~-GO<6xo=EAXP3RD_JI2Hxg(;PsdswoH9 z@C&UF?N$~PL~x!zOC#}poq4aF82R#82YN5!o^}BiHA>F}A>rvdy{z{0#M+p90{|76 zA-_ZqBXFKK+O{GtZSUHd5#Hmy&OFlb@zEWAtceVioPKB`G#GB!xzf^#658 zkhge1kOZpZZKt1GH*b;v@kJyKFhWzbJ2cP~?>Dz}l@({wQkAB`k-=o-W#BwaWDnTD z2eq6hphU8P6fA7VX!0Jhp$~h(26k^=*ug<;FkuIHH@k))_UM>nkBG9~D!$+94jcsZ zL{@hgECXnQLCsZ1X^zpP=E`c{FA;S`EyMmCZLtq1* zaA!34v1Qa~d;>i*$QIKxj=a>h|s z91(KK=}dbj@RcJtZVDxk>8+llOc;_S6CApe#uF^xGx!!wBGKv2`F&`S2>PS|HynbU zz!ED;dq~5HpiJ4-)dyEgY_fMv7Ql!P5~GyZB+kx^jPee1+)H~*BisT#<48xJU0{BG z-|9P7-qnl>i&1$atXApG91#YQOQ`Sks#QNk;M^`H06|nzWOau!_RaROL!PmB1W`$m z9rkLz-Q2wcwVpxg^`DMI%@h7X$ekSf}t!=oiQN54a599CZDuO8Jci*br_WBe;? z(YBs05}La}=RLQsq@t+Vuq?W^e#Td(L5J5Z!YdRf9GdX9`TVL^v42qewoQzc`A0I@^hOoKR@ z$m+84mAu2YKpZzO6w;z6T&qB2s8@f~ zoEcf-u9T6GLVnLtZw_4^-c(*tk~HvAzqfX$qq>K=T&L5C2&adr+5T&W-8NV zN1yzReHG+q`WO*Sy_C&NyNU`@_QHxkcr)Fd&L9BpoC4sOF6g3O9a-hp%bY=QTV(Y< zu0@|G%6py}j5Oma%SK@JezNz8eq&_*agAM^>F-zXO%r-jDbBA71b)AI9~Ps>ilRLg z5YIT@>$^xQ?hhg~`A4Y`7FOoJ1Um(?~D&-X4NKlr}w= zfIlPIFJ!448^n%VaGXI%(>aASF<}ma*ncI%4jIQHE6#*NAJ31;{s?(J6L`4axhxhR zFR=)%2mR5QQI063?~j%kMVFCt35c|`D0>BHk&K_xs&a8v{TUo;bvAf`1)~Q2(TGul zFDLwrWp222kL+qDQ3j&~sn+v{T}TjJb_%4+V@mpA-6wj8uo+#>mr`OJSluvE_|i5onB-mglB0_YC6S&Wz|Aecxb8 z`(Wz;B!`B0TK%9TiV>)jTt@?9b5NXG?HXP@E42tbW}&`lJR5CwTQGw$}0> z)zwzGoajI@7lNBhKWYeD2jd{0l1z%SB+zBPwk_+Rl`adA%j0)a8#m*-A8U#ufEj#0 zr1uP_ZSymZtX|(b?8FJOr(UA?tdLqt)%9UqTm*Fn@o(o8|Hi~Sl99$YI1tZ)LU3f+ z*#Ou8w=+8FCjPQ-3u5HjB^KUg(2R^3Wc@K$lHPh3XY@K6u#F6;d!S(;znkxRDVn`YxSexWSR>-GDvy0 z3-w>}kCz(?;i47`68u!cOIxz-aXfU*UcwhG0&^}#A1i$Kf#;mvIRGJtZ%Iwb%NSZ*Z%jv(vP=dF>> zP$IfA&;@yQHq+j4s#ehisORfv5X^ZBNYY~`K910^pL2rxCY7~c0%C3Itbh0J$%`^&=@gVHjE?|AwL4Sb zqB98ig!S^ev%?Xn4WJ-=;C-xv@9`Y#EP;Lcp!`%AW<-CIT0(YBMXEE;PMLY859;PA zp>oJGYub11IK`qSM^rCP6`ESkQ7?L_+v9Q;k>+cTA3a9wFrv6eh3Lzvch(Kc8bx%X zfg&e!gJaR~0=L-rmvZ#lWskpvVj4czLSQDkIPhHp%+!GiJkWDsqwfr@O-)cAEmD99 z)8%1_5&hfIA(2nP8}_eecOJz5or0`$5pOt)N7y8Jf?&Wr4@j}q_Cu8iIj%Q%GI+p6 zxOVz^I2fqHJM1%Kw=UyaLa%<$LumX;=h8rxF7X9G+){H8QiTKROPbmyj%_A_715Jrd(I)E&+Yk9n%`51{cUhgIC6G&9p%uX-=1pjcC1SvUVoypVePWOt0k)sVINidcLgzIfyD&P>_HT=NbZtiJ;xmk9;TZ>;!)kxPo9Yz?Ek=ed4sk zk{LB`NCQ(s<_ZGJ0y|6{daXN8OGRpNt9kft>coO(&(FgVc9(YO&`YC$>v_2f=~}`` zv|hR;ApvZcd^Yq_b+?w2jcZ29n2I1JXI5uM3CUe7_i)jr=-G7H?gL9P32Cj&B`rZW ze?Gf{Ft|%*y1AlY!{Vrhx$?Fdfkvz#_#sW#s{(@M+%P3mGOf);m&3aBU0iX~RW3OQ zU%UJ}G|I+a)lN~~7Ug`6(gdfajsOHwx&vi2Fxayt^bxq#dQ>*n8YcrW{30XL<_oSR z3hMVebeP6L=UKW%CtR=Qvuc%i1<`M)4DdSARC%>BpQ(na+aXsx$ci&bu++R7PXX(} zpqcP9oGFJ;L2%dAfV+%ZHIk@4#rG;Wg1jwCsa1!CH&X`c3L?rb!Krx++Nchzr9IVQ z@hRh;$1Pm047-}quCytzLxe&rIUMw~C2dNDOdS=}qY72J033IgN;XEA7HOVZNgXpvk~7q%tX)v#;=dW1m}oMQTs zFHGr2HqGgWk@ZL#r))wn{BOpVEo@z1PLgQnOxY6HXVIQ>3R(yEZ}!VUs1qvty&kQH z2P4y@GBr!MkG5m})g2Zfwdh^xSHkXU9%3E_#Wq36RD_2P3(z;x1)sUX4TZ+B_|SjK zgPyje-J_b3*6Z~(BS^n~vknFkTme2`$m^{nq3>yn9dccXtT^)pmY(LA1cs=Ny+gr$ z(y{cHdJ7N?RVRlkEw}_PDQyx!mM3nx9NLtMKJ*STr<64%8QmFwjBiYrAiVllvmsle zmo)K3`s|835=}>FemNBNa=7YLhp`gGR4vhQgZqr3r}cu-h9C;!tba3Sb~C7Hc7&SG zZj+rVJeIU~33y~-7=3gF=LBBUF?wXkZpT&ghN>tYZkuwtdBqtIt<$My!kQ(Rn806Y zfBQ0`fG`^QoMPj6l#s`TMbi#Lil zsC6rP@t2Ec0K8f-)gVjYI{lkDc@>1IT>=ps9al@%K&jeCdY#&L^}T5c1~kyv_*9=% zUy+ViE7F76VgX%wNFQixOM0)YKppVMz#zO1l`)Cxyg#%XwyyJ7f}@xvN=gZJvxIS- zZ|NIE%IzbAYiIjNf9nJZ?BSOHI!iTb(!-k12PiU+>_q>mh4yJKO-))$-ymFWAL&xS z*q;gyf`BwYRsRx{#VL+@__P~L~J9Nl%-{l-%vy_7gVgn<5cF6OnQlgdT)YC=VmWO9o0Q&x?taBO*YuyWI zhlV`ADs8=-Eca_^>A(74`}^ULIEW1lobsqWc*~#k;ar{I2VWJ)A}x{PmJ82|;8r5o zX8aI1a{5v8hIRU-7?hMr6l7-lQNQ(8XdxyfB&V4ERerPDGkh+UQ(r;g9{Rd_eeS6H z3~{yhRv(3HlND!oJtcJw_z|7%jW#{_XruyEp~Ham-B!S79-?z)eAVxca>3`(m-v>7QAZSd#!&MQccZ+5KugTz@T$z{OFZom zDzh@?silZg{4^t-j8)Er{+Y9IT!=>9p@~vRT}K7ud(itK<}?FmF~}&kI~?_cplAAP zMQV!0XOaGcKXMl7OZ-Y&j4#%xf#eHz=G$zChHI+`Ys_Uy3ILZ>A#q{|@?Wa|lEi#^ zrur{yxM4Eg?7xB-(Q7{3kPfc*O~+?9VV40u_uV9}L#KI{_+d+asx}D%6e?o@ zG1GY|N`v={IS{jzs8kT33^m%+vWfcz5c855gZ-QN4jTkwUUMKO(bWe72^!4uvvNSz z3FbvKU8)@O4x%it42&FoClaIcGq%-G9eSicQK0GQL@|Ck=Cu6#vwarr519kSKLD!P zW&HvuDm;f@65@2`9V{TxyMv(3J0nb8M`QIqdn~|>f_wx-Cr*C~B#1eGfzk}od?u?IhvB36i!~#1y zrAKV^eRw%26gI$)Q@WhvavF5)RpkTQHM@&r?hwtklww^)?(#ARB%M zM;S(TXlFQ?3Wu)u7)_*r4yr4-gDBDn6%Lgg^z&y*`wQKTDUGc^y@N>82o-%ac%$bG zt-gdBTk4Rn_fQ7`y`~=}aVNwWrj&9!cZQqIbWoWp0f~APq=#xEE6CHh?j>;6XfP>T z?g)Fhe-FCo#WX+TT3rUx__lGs-{k-A;8?*su)1MWUjDKoZ<`&eAxU)#plsb>uTqtu zVVzDgBSr0}8{iIqvsn+qAMe2G{l)wFaP2U@00l*>#Pw!*DAV4@RgY@^FSJAtx0;DM z#Z73?rwl%Gm>mQ=qUj?z<5QwO@BAqEE+XC-p98D+K^#mIJLVt`GD3Urie5Fk;tpaQ zBdhnW=-n6}BX0}JSe*hW$CmCfG6gXGutHiKH`~k%>6hJA+QCq`E9vcAZ0Dp?JJ3L~pK@-%}^?RSh+wvc}~DEWUK4I3QW$dUdIg#=Alq?+R%|E4%b?Z!`Ha6NEG( z$K?%0de|%y+1y6`UZUt!6zE^Q|JH}qxrf>vL^K9y9{_SmS`r|4l`BoKSw2Bfp?vNV z>-KvdI`k_6SM?56cT(Y7Q04`b3Q^A@l4M@clj(=?u`Y=ghwnj<55>QFcT30WD)Ah|CPrvCOdO^)Q5d!auo@<=4yO~wrQ^1y)FnQ1$QPVa zhjv5mQ|>YX_`0IpdJs4mSiNr-kJb4DzPxQFV-}waKIIndoz`3o*Px?Zg5H!EPlx46 zWAC3Y-goIW^esx z-ldK~IX6T3J#7#^h*6F+@7Eqh552>;Lv=L|f&(L~4?<(w;ow6) zJ!6;y;8)4T1p$N+Dh8<(+M%JgXb4U_`~`>wV;a**CmE|ZMFFuWpM*2zwU*=JlyMY9 z%qT5Sl=gA!_Hb{-dkKU5+txLSy#piyM?U3`a;O~zLeh-5kf>E6-y*MOmT^YB}y#k>(Ua9q2#V6SnZ-B5(*KiA z`ZdrJVfoJ;`Ev`nMoT>!i&JcuE$8o+Se>fFocA5M@9pLOTXzstglfjW1Yos8$E`7S zb?I7)kh^Yj8#47yO$4o4ro+q3AqP^0LY&DRqJvNh&w zVOxyP>AK~a@MI>>wht-!HZhC{aK--QADRC2m*Q1K*z&(BUPVY&wHi=0Zjmps^>k}} zcB}&Yi>FPlEGwWg@VIZ155aKNkXmE-n>XwmOjl=7GMxR+K)EM~VvFn$24iJ-`swPZ z4`(py6GX8^cIXI;Q#WjN%KOfFm?wx(3+!;vXPZuWFqNF2>95B7&b8#StC?Q(*(8zg ztb-*%E~l0LB4DwObqr^HmMAUudyh;M^n`e66neKhx8Rny1xdC>8A52et&- zx#)8E^S-(Fy?;I&aRfnZPXi;v;ab)YOrUG|6P)7LF0pVygXZ2W^L+*tOrS3TPo7;j z696rK+10p?$zfa4g!q+(?3;VzDA}VuLC9Kw&;2NJKyb9EC!WlBSX}+njGBZ5<#Rca-^JQl;coLu%JE6y0BgsU0n2PWh&M;ow1 zGa*(8@ia>;G%R&1UoydnFHSD*dV)~5$POLx#pAd(JjONnGcrshv*0Acj1g{9is)O7ffqrT8eQ}NN6NJ4zG7QcWe!PzG<26jr z!(cV%#7^r5b|+0YfL^&>ajia-4`! z4T<*8d?G<;UW5>%{P44FRH`Pgn<=8{pG~=mAO!FcI9aiV7Lp7oV9NRWeuApR+c7>P*@s~z9SR% zc&ejX-T3~2J$mfJs3%iUe+ zHA@Vip=Ln~iE*P{qoNAY6#Y*DQysG?Qj`CZ6E@x1e6tr`w%7aD?mK45{9;i_1g0N3 zUx6PI>ElPmz?Z{R+dv+cE5t`2&ZB{C>>tset zr`t#R%RMGW@JFB^h%>Oiff;W1XPt~nK?ZT2f&C3kaJ#?3rM`Ux=C>0rp7Z6)U}}Jf(FK~QFeLd@slMPi z%g7ELqMWX_OLH-ZC5X~KJ@vVGbT)8vv7p#*^F}~9+M#jzym-V1K!bm3hl3%0B+mxc z3|(zlo_~Q8ekxA*kvX^sXDUuuY)}fXDo*&38La6q^<%U^d(&TXyw;gDwZkCl^${59 zC}-84;9$%k^AH-hlIPJakJfVNMS`qpZd~fJutYK&5rm1Sg(R?t4&rHn_ngI;M7zU( z48{!dSy&p!=!qvdHZwrQ2%FVXYGAX{gcbTa5Cq0XcIXL(3=e|FMZCjRM<7eaa$XQh zEjZrvBQvI#XTD%9v92mlCdgoqcBkH*nw;3u#{haVhWsY&XL;OpfP z;y{1KJW+rONAxwiinUZ2$RqR*Q#LAPCTDqpUrS56;wecu)QCv!Uk6dbfF*j(vT%Y z6Evw2o!zD=<2RNWQS`#f4lFvwg$<(JGIf0yhRR2{+Ys#_Zhpo?q z@F1K!4&vgUIWC?~$DwgX&(8zn1<5AlT<^@SD-RObp~Hh1=$zwHpIU>!_6QFh9wec2 zR`%Iw0(o5AO7F>cxj(|^gwE0a>rzm?WrqYqQ=~Bhv_L)wq#spNOR{{X74c29fc7gXrc66^`iSaj18K!e}a929jZfR#3sF7?k!b63Av{ToO*D+aZ70 z6TU^2FgukmWR-HTjvq2;Qm=*Jj3hHSN%IvTvd7#QXdBGoq&veK1T05Z?-d@+3)JfI z^!F=}>BQb_cNKdRY*r5XCU_zH>x&OV>b$+D8Tvar?-?CA5!N0=}cDMk71yb3^xs zGvo5MnVuWLsPr62cC0#%iWqjdBoV9ND46x!=nPx?2r>&SK3vo|aEH=kPB|xxCV`?r-%xNo~FLd zR`P@1W9jM1VOJ2c8{vjSPZLOHMMXdM7iapaGmYBJAHiNo-3Z6h@_7Vfp=XSX1)6oT zMOs}Rvqgfb`3VuBmboqo2B<=7U%_gpzf>b77+Y2(XRtxxdkcw^C_q8 z>Z5`^dd88I9Sy3c_c)^8)cCnOFZGFRiOH_|)PS)e3)%W5rOmDwKLkzHt)>!WO9-~1 zVI~3_r^<>IM83WP`tpQ4M)4g`;cOj)pw-Cgj#wiV->rhOtIym40mmLD2yKl};fOVi z;yXa|6rWcSlaWQJsJ^#O|9l12r)5=5)qaBr)K?&a9*Hsv{Xi+((IrCHqBI)_P1nV3 zyxt%Z5o2@yN=qy(bgJg-R_7Kl^0q*nCFsf$PnZxuz&1IoUJkWXE~r^zMWDmz-iFat zfZ8_*QhWnDbR;uI9kE;YavRZvP5=i%iV-Rt*O$~0yAw7Qj08c7fgO%Y?OGlhrFM@_ z+~$*=sY7+Y%_Lzs+v;@%y$bg$Gg;G*Qri2Pz(trD4u*oTz;`|(l&Ck10R}u%G#rFY zz73oYl;#*jivVUe^Af>;yIEpk3`UiC#00|_+#6@cgTqW)CaiYoFb1RYIikWa2DiGM zE(dWcqZ{C}!x*IUxlR()C+{ExF~H|hkLs3(MvrO$n)v>ic@j1TqLNAV^93#asOCX1 zc=(Gs@)X91jX@CN_X^;~6Y&^@fsalJ1|g7dJNWVy$d48Qoe~V9|Jo%Ms+Q^jS0VUo z7z3RW3?lm?J9HR>)O~wNg<%YIN-&7*i%{V(2B}%~ii+Itxf2(4s|!N=0%YV)((64M zE)?}p+`r6{r@h( zPs+#4Cw8{hId{$0%d6%C?-Cr<5JgF%GkqSYji!Q=yx0g>HiI@+GBC%6-jA zxxhfF)q@wJ`LIVm#XbsuH+3b?ubaiV7V*}X2fVrUgvWOfQ~1s?g+$n>O&LD~jnzlL z(YFWeah1PR9xSp)N73BoshZnTBQQ+}=Hxae9E7aOx&8q{Jhs47IJc#C&mAF*Z5AmA z$zzeUzkikE%s(vjBP6u_{D#Mq%Ffmzrs4T1`jLgtushtrrMzyod>_A*J?lEOcc&Tv zJe4*xd$p!42Y#;j#V9UBHF}%m!Sbsh^!Ljfg?^~$Rp%Nqso1WcdZQH^iZ|O&UwB=* z?*AF)8x?*iy=3ZRki!`DedvO^jWz}=ubWZdITZXiS$C2G%XdutklYD=NbUq(vvQ?Z zXFe$Hg{MMx5YOlO2bbV`Y8N-7_1k+<0Xo(UmA1t8=tvlBqvmg9z&?fn;~8$)SkQh( znC;0KjQYP3A)XS(%~Qi@wc>v7jdec;!3>?Pr_^sVdYj=}L>qCIHG>*jkf`{N<$Fds z{N!s*3@3!1T|#WCF5X%W(S`oCNo;-iaNJiRPRvGq9vZ*DJY$M+Huraawzif2pK z;J(>D(x;=azc!J9{e=QtJfE#>wugndF4nj|9D2qed9;L)#BJ#tFteVm&^-bUFIq5^WE;}lFw=d(ycHWSJmCBY2l@Tcly4pv}t1yh=SNYVj6 zBy(HXW9Tf4!g6@FWT~-!Aq-|1?>0j)%+MjyVu(n*^@qfTz8MK8d`aWzHwHMx>MenS zB<#ff!dj_Iix`CTn`4G&TvFu1L-KE@ER;EvlhkEXqmly={Xk_@nK zjUj|XJM5Cr53)sk1Tk>z@hzakQTB*vci5tSW?I@I3t$XjO#H!ivqG>OrX@HwjA3GF ziG|x8dKh}TsT@+?)y!B~tV@)ut4TT(4&Y-*RPZxfJ{Nx+(e=@#J+VWT zO^Ts;Lp$tl@mT$2{={Ikk<}Bpbmhkr1XN2nPj@)JW8-l{J2c{)UEQp+JVYfks|ehv zAer%_03-`Bz0j&OU~FnE-kM_+kI<&^1It4(f~!~E%42BN&g>T&)IV_=m))8cj zoz%eyFCP%d*Wnn}6mKn_X?@*09chPz_Ee?`Okm>~!f)d(`L4qT(yqdLf2`5z6N+6ORhjBTqRX-gf5zjfq7~B%9&sN&CL&sfcG##Q|t6N_TBOKy} zL+T!fMd~4KI8*ASetgGp#1Se+khb=`Mjhelnf?Z~@9GQdvh9H3;LAK-kW@p)GLIL3 z$?GGCEGSv9DSt=AUkY5dFizjH;F36ci@}HS)|~J1xTL;){Ihf8x4UF=+9kYlW#PdIZG|Bw$?Yxjr70pY0>{>@mYEOxWR;%@dj>`y|` z^*iKvEC!b)CaiYous^TE{v;G#M}@lN#~`&4Dl$HA;A?qAgPI06vsxyzR&P56?|Xcg;duCwFDM<4XgVvNO5dph`XXpskD<%( zvu^o^vo$f?F}C|-XUpC@Q~r54hKu29X^DltZQl-)kg;<;8~AHb3^g0uqr)g{-wvyg zv2&V`gL*DtW64NI#OdceSIqWRemSm6TR-{W*)eF9GH6T0r?MT5U@i%9>0f2DqSybZ@BHhg1-iX?^#f@M>kA#D-rn|7@DZ}NA){>?0@F-R@m>P}p3eE}F0 zMI~>R_+=||B~ZqmGWOpY-WV_@b-v^}$-8Zi>-XlVF56PS{H27XDzJ`PRkprF6dQLT z0f6>z=6akZ@KP($PuRV(WeHW-FV8-H3Cy(!v%UiChsqCUjATSWiUF_$1Y_CLH{(&I z|Fb_FT_Q}4xjGq-X-7`HxG7Qmh#^masJ9*r5%QnfpXtANe}?x$zf|7eD&?)E(tUWQ zVdwoB_cZjhY4`V?&ub=Jme`hXT!aIV6*-0c!wkotgT4bGW)2-1t{5V;Yl${|6k33^ z6wAwE6w8LY7#vM`_|36fIpR?-SqNOU{QYm{&l*QUQt z7mJvd9=&Lo!9l$c?3l~g!rJx{q*hN_Hls{QkU-cZZ-q!cQQI#;Q5>StUoWwcAiGnD z5+TElznrVZt!c5tB0>%H5|WecQxc(k<~5<>2mnfevaIO9dhs*1ULqEXx}GUkBsZ&2Z#gm zm_hJjWQUIUKQ)r+Z^eoVSQRDVpYMy!<`M;=jJ97A>^3rLhi2|nJ!5GKcYi_Mam@7u zsBp-$4gFy%`eq}Ld3B)-;vEAL)%O~CK8QX^o`YD=$m$MxwmWht9y+{ankJ@Yep88s zAm}qfso{S&n$rLex{7rztDZw#_^*l$29_jQXKeYi9ic-Vtq4^)5#mejbS}*L`RceP0sWUJK z07P;cGRyhw?rB-J>X!w93%^`(hg-!RqGwg{<|eH3^D-_9ouTmfY#WN1f@btwOB3`# z8DTI%3FInOXnc^AEo;ApS99KA3HZ{4{p2VX_T9#7u#{X5jZJgER`;%iM_4}7$Eo0k zvR^@O*USf8al_#!`l(h=0@blr2UC859Xd4D01c#qE!traV!8QuXoCh=qWY;#;32hD zhBZhsJX2=FrU+0rnUZQ;D%x=qv}3QseC=O?_>`i_Y)Ov=x%&X|*lASru>~QPTVQpE zdft5)ckIgPE^)8Mp_H+kg}lzz?I&mVmLNWT1o;l=Is(JC>@?F4dt4cDi$LoW16Zd- zD`*pD$U&t|eVl>SmA(gUW-|m7OtC%#U=bA8i+ss_lFF4I? zO;A?tgf&a@0f{V|L98B7J>K}gA1#K})yM4Eyvbv0=1t-sa;jR}znyCjwk0k?DPOb1 z;tUg}s9&8k087xPd4^@!B1p`ZpkIVzsUTc#6SRlNz8H`woFVIB5OTOR6COdJ^&tpL zC_N0Sdb7mp4Erq3v8#%NCF;{Y!XltMhKT}0aaa65DkT)7hW%xAbgtTsy~6eZRV(zi)ryE znCy|Z(l5ao`ykj1Un1ND8hLc!0WN#&}7O?H$iE+mk#MOoN=*Zt$sIx=Y`v#G5p*=b@W`H`=0?|A069b)rnMG7uxBV zURvE0f=IVbKw_f^vfQ-)?VtYTpTEo|Z+o5}RdE(zoTYBydhn2m8spH#R z5VyC@aC_=>`cUyaPEIWS0!O!*I6AypNoFvkGn=2N=o$o}q&v`3Ep-=9L)(IYxGk_l zhXJrbl}xEoTzg*p=|P-p;A-lpVpLq)^4Tb^Juh{)Tp}uK#y|#hW@icQsabBB?f7++ zFrquvkJ6`fC!O)bxMT`X^qY^9zLm?-%-+nl7LBE57f9kFY~<3jJ6z}P@SVndfb-%D zr0je~sZkYBBv&)>;s9z7V)phqW{;R?sXV7B(Ya_L9Qp{SNfuh&q4LI11F)WQBzuN? z%~-E@n4OI1jF6`@O<00T5%%B|$iNYdile-v?inS{pn}rr=qMOG%4|eTG?6W~QZZhk#^BFVy zAWduyE`p*|`A5FwrN0#KA{;bShE4wx&Zo4pf%O@mHb@;D7lBmJtR>-Qlonc3#?-;T z!%?YpONBkBkx$vEHa>3-$@V3r(KuxRG~!GJKG`#h;?g~c9o+?y>aiQC>{zebgoQ;C!3qw@e#LJXeDQc#;+-`O&V9tX@!*TG8a#+em*M5S%M+e z2{zL&7v|J%%g=@=6>6{C*4b+lc*y>J2_ZIkD4R~)@CKg*dG2ErSzbSBh)40^KYLH%r0Bj;U`|rmS%}EQ-ldd&_$RdgF7mvZ|%yc zl%AfkY^n+XgSf>#K&c}_G5YUcxKxvM4B{3eJ9H>v>c6kmVCP9hvSLud>Ttfjf)jTc z&ZpM`-i5glOsLGkiLJCGK)}jNr?P#$!&9l{66T|I$L(?KDFSQ|jSBkfJUJip3y9@j z2PL9KZgP-46WD+RF@XDQz@Q?~5lk6H`e1_EVM>N)J1ma@Rn(UgFfY(>;BOeG$!o+Q-1m!#Pz7}7)ubUEy$&YLIfb){$v7T z`e6ph7k`o8mw0a@K&~*$az>i3C(n71hOjdgRYqhsqfp76BOPkY(*W<;)(2-4qKT(h zzem-@txq+oi}7)Qz6kF@kX>Ylj_it2jElrSyNV^A>({4jPwHSvc>Cqez38w;av)5A4yQZn?g7EvbgWo!l99 z4^EN^?xfFO^>kLOLUR9M!kd9$kfV##Dv-QgPZ6S@?UYNkw@}fk?G; z>xcTJ&J7(U@eg7^Lnq?!Bv zgv0K0tSZ@#)Cp2KJn)6{%uBGU!56^;_iyIFIs>W#A%@^yJ;?|3x-$slp2_=inr6M1 z3Z%FsSOf*uk;Zkd`w~EHTs}=$?|pNf>mG#l?sHf#OM}O_?S^qvL&nh%BNjVG_UJKg zM&aB2awA7{p7>*X^pvHcucE_l8HH*0%f;+y&hh66>2piZx4I`Rf!>CBsPi60P*Qwe z(YZp6&M)6;$U9n21Zkco*-On!g~ce{M%NwASOlTLz=dM7!<=cm_&_AuM+V-mePj@8 zwT}!Ut@e>YoZmh&Fc^@%Z{qV^?Ty1L^AD2=`z1$?)g z6BPlW8$LiyTavd0wWvZPcY#J~ z_TC471`nc0cfnbXVnxynhcQg!==2UB6__nyUF!NA*dYw9Uj0=iTuZpHVaV!eK{Urn zvZ$AM)I}hO(nMDuw}kg@;zgehHV>=%MT0;A%PG3>X3ppZF^#(*?_8qQd!YBD@`+2} zs6|%}+cjMumCspX?UX=%>Q6o1mLqWsCWMezr3R{TjOV)kZM*iSQJ z(D-6UbUCitX*fx@LoM^GZ;A%~^&^n7{?#n>LBt;B%6NtT!@di@Dv=00;o8m;aKcY4emMEqhAU!u*lApV@iA>?Trhb36ngRs27agShmEu%)T zJbK2VGoyhT^d5)!9i2N*heFZ+C*zzV*5T(+7S>^eKO-t2*el^bdhdc!ZS;}m6GRyX z&V7VGYpF>1vlSJiu^03nhivp?FWwE&W_wrs1W}I>ZaAcFH1>ihbr`+Ta0+^l!!#w3 z%<6P{zzOC?>}a8JKPfK>J8{Ury)G7oQ-C^5fs% z;G;&nzky|F9~tEF+DE!H9!4-R-bQvk^9P2M3tkiwY{4xPBiTGH0gvjS8{DJea$5QZ zUu4=xx;tiK0bjv_a8THZSJ)(R&PaIk`Es>^!P2)ddKKH|b5jlBOSdeQhZ*nT7m&5SaRz15=4) zhX(cKT`#7LC;>=O;*2d?M5lH4v_ppurCwi}ho`dULGWsThoh>omWolYFM7ss$0v6O zmtD>HY+37^GEBmjLwWp=VV51pHojm6v7(>(j7y>v3fryzu*?TBxt|893Iemn^-Hi_ z4MI)ZB^G{ZG;x@iU|AdfeEV5K7nNEyOjzyEq4=rvX%$DM6zB38Lp?A48ZNvI3U&q6 zVrpn|$VsrXUG2}Eu^qk>%uZ9WyB_Ys(D zckUNo6_?0ECD?+Q_1vgNZN`Wj4pZxjOGi|GsgW5b@3E6Ek~LfzEY5&n$I_X zl=>{eI-1XA>;LKNzbvG8lu;zw4eyC6W~M#;2Q#VDJIsc&7#RUYc1++hf=@;t{cedB z6C5|&!=av5Iu!NA#Hb(~^CM6zkIIbFp>&i`nV!!|jDyBpV8i7otqF%H2)Q}d3L-u+ zq}zJ|PPyDwc#tx#Jrk5=ODoQVE$i~}X{NX0A2O>E7F3{IIX(PE@NxaB%1foVVzz22 z(fi0K+NwTg5OVX}h))n(i82~5&qvwmR`5pIX?n)tNk_fD=siZDdoy146CCgu;f5p7 z?R#56M;K%!E6!x0NT2{NtNPWz)WTY(HCW!3xMow{L^3*A=AH+t)d z=2q={MtOUB#`62z5Bn1YQ3fa-4MwINI<#ig&57RQaB!DHw)>t-kUQ>2EgbO3cG)1} z7?{wSR;%Tt+%767eqY{VJ4r2(RkAUck z6|u&2rX@I%31SZ0B^L46s8v)eu6?Vhv_lRvg22Ad9N0&zJHDv&t)eg{i6INJ;!F`# z*v!Y2cht!$H(LHIk#gfDR>$NBoBLK#i3yy`UE-pPrxV0ymC^i71d)|sJkyUH2Bjai z4s+M^&k|N{+6Os+p6BdWmzXWh^PDL4*oRT`D-upe8g0})ir(XhrAIxU+V}K5o{|i( zF$tnBKl4eRw7Nr8Q;(;W)lHq4md`kRXx~*RaYGrd)fKF2M0SZqBLw6L`M0LKrZxD+ z?nUSFUBg1>rgyXaFT0-gD4=qa!uD$ik&iT+ND7_HYSRxh8+og&R1kUkkrAdI?Hl!E zB6)Lo@W-K9sdLgw-bVe6+Wn;dM$7j&r}_X>K?D z*IxhapJ;cb`o|bI36r?7NnAqqvq_hZcYixrSazrm% zLSZg#!{*2V)JW|rPe!(6YO)P89?zM)s6Bsy*T!ox}EXa8}SiU+ek-5qy2p-yH?b2+ur5Jmv z7BFg}|K{*;Pn%B=WBw6@cP0c(%L>tX2F6f-f++8HiKP;FOruq=pxW7ff;jKU9zE3r zs3vtBdYUQLF^}|09=tNE z*8uyVFV{i1d%MKSc6cfyFfn$3{u10mOjA= z$Ps3b25~VVa7)TkVfHLt;n1{cQRDCrFuQknm>J2XipzE&rpKu>z&|prJNcLDgKGZ; zk@Vz)>ZD^i4*W%E?y#jVXDE)0ho1$_%$Xzi5s+NL%D|2wb9{P^tlO4AbKMcM&dbIk zg#73ecx5>w9HWw=Ri%vP)z1=3UU>r9elXUHJ<`SG2#)?m8$55t4N%Dr^X#b}09w~L zPey(N!4*>35FwVu;F39jQ~uoY9$)CGdO*Rk!AG8z4H(#;BgEqijlu!U%T+?V`t9>K;85ur_A_SbtfBzxn);|Mk^2<_4Eg&T(p^17Lw zwtQi6JISk+Vly#x+0SKvlKxdGC>N2>|0-u<@vkakS%}w85k^#HyOKMY?y(!fS1zf^ z6K9K>_LF}ok-=?{KD!>l<_?EUDt6rlJ>Tt7ChL(akEY-Kl@Vih>F#?38#6?x^;88Q zkLRHF@!Y!l5l!!o0pn~AQoJ^kBW2eDXX~j9*dC9kF=_*LoEsAobjA@vJo4Ai90IdH zirGPr9oeHNI_swnVUH@P2~M4kh=2MluWSuwy((L?D$wgQ#+)+iis_aS6ap-sb-?%8`tI@!R84V8VMhEVX>wza4ciNGhzU z#TbpAS~PPbYZ`3D5TF(g$g@XBB7Zl^F?O`VU_yfa&3|kt#qbc~kiY%g5xeZ)4hxTK zi(^lt$vq@*o^R}!-Q`)%bC#ZO?7Qb1`<~h)tTZ0>-t&+VEdoc%@|DzlW=;)%C4Eca zrevOd`cbb8)_`>QXmw%EeI;g#Y8zfoc8z;Pd}tU49@CBaF$*ye{Gu~mT{u@!+Hu?-JBGO#=R zjDx=etHbYcaCp#WhTr4h@xbEnd%$HKJpd@qW@44%vdlzI4Rmkjx!>qswopc83#8}B zAf98ojHu|t-BZ!pcd@!<3Zy$mM;K=~&|_ioYE9Uz8x#}f5a>ZO8G6s4zKNf4Sd3KN zWOyuokHcmRI!*I?99Cmcxx?>q*o`y}X+_td)i13zC{N*M9DGj2Da-vh_&n%9%lmQg zIh8{6T0md!(JW}81%}};yYB1&ERabG_OtJD- zgNb81_{TYr!7BY-O{*B2W34A;m{`1P3fRugLmjqmDC=hJ1_MeD>qjO zM6>?$8dPgA6^W(h)KlIh>!psND!(BTYH;fCfjVh%df+{GdwnE@&sx^o)3bEs_XvbRq8RE1AH ze~G|>`)2wFh@14wNI$Z1@A$#kxFa|6i0~uZYfr2>D8%4XHQeRFUA2#3N1$WcL4{X$ z1U!T83iKYULgKhNM;mPE6QE*HAi+B{JkRke%?RGp{d`V^7pov`(6@o9Ftq2~`BoNe zIuzkE!auD|r?%p&)TFJu*@q{Ut)8FUrfSGn|m~B@g!+=GZaIW z5*g5CBNY{(NIM{p!LaH|P97X~EZZp=E?H2v{n4?42Ac*Q)22Zzwhl9s>Qz=Ml8QY~#b>%osQms+9i}^VIOuk`@yGvVhcHXgY8hGW2_dJIVti?`q!)d-izLS3 z#ST|`A$hFmpkV`v-=JXwKjRSfK?MT8$6?h|{ekA#tG+BRn_U^lBu#nxH*;7T?9YVh zmR_TmN+$Z%IcCdm3)=a-<3pR6Vk?!&Wno{Z$dqvh#y7#C~3nnt3QbS~||{;*Ma;oDd%! z{%rg19opxc$4ef|h9my~9~~ZT8`PyRv(xusCA1hMsDyTPAO1Zd#_SXfw&Ocpmam!J ztJiVqqn6DQylZv5wawHaZKmLOrGHZTk#8L7M-7Li*^6Sx{_?z@W7(q4xS)%c^lw(I z4&FATzlz5aZ>}%+scuN^@uMcZASV`!NFsZ5gaEngN4H0w8hk99=NK`7bd^cckmKWS z32s`02|qD5NV^E%QF%;|F?9wV$XIoPtv8Oy9z7-~&7E2LB%`tkEo%AGVTRMsY=AOB z0YW^*0;6UqY)g%1C}{G?A>^`wz&}7pe^o?lNwzPUFEc(?TiSG!IYiXcl|>qyq#xCC zN>7hYS5zt}ziql~2Z|}O*uPl`#_H>y=BGO(-#k?tTk5!?_xPv;O|Xf{F>UywM9vXk zTfJP+euXa=!6qi5J@!{?bi3g4!euKN!(K}VnIw!g;hu@mx1G=PVUY>85ILkphs$t# zie|P{HKRlZU=6O0UZTFWSm$WRw@1%C!Dtr)5C=P#U<;2BA3bq^(JlsP5_Q(W&)t!; z_Bd&yk_d1RzI`v-?ijK!-C`j7e<21d;vXLbQ_`UqF!n>i#v_OH5%39^Co)KLZuA~6 zo_TNtdx}K%=qU!W8o1zEp_E{ip0f@w`=E4q`IBMK29}Rtw~r%tFmcs`ZG&k#>|;D7 zN84aRw|bK!oxFK!gSNr!7`2>75Iu!8+n_57FE=WH$@(}ic5fdU6l1rKz=CU`xw%oh z2*E7kvgFdb_dwz)3w{Rsp&Yr#%TOF!vIYeP?IQ!f&_2>7yCllMJ?omL{NJA`hO-Dpq8NNynisFW*~Pzz8o%5BgN2loMb zrcVnZd8*E0WmL6^nBK%`b%)g-UDoM6gNU7;=@a|Mee!u_w;wTveo7rum%tlZE7d#$ z44)3=CIb>>G(<&KNJR*V-Wh)^Yg4M{M5U2yI&<@({G(*@PYJj1uQGXt&!U{d8SIX7 zPMbQA&$4dtFVFIkw*{FXi|E6B`PYuM`VW%NB?n{uR#-6mR^UE8H}N&_l)k) ztwb3;P*2R3Y^x81OEY=4B&wwR0)&TdzhTlrVdP(QO{r(kN}?tb5H3k41~^!j%BQIs|duBv4Va%Yx@PEv)67esyUZ!5A>P3 zZa5&GC?_a^b5T|sT@VK@SK8GaAp*u#K)bqU6nFjAE0V*82Gnjr#XOU1e zT6a!vB6#jA>-TGE8T2pZ9rib=^HRFA#P0uohYl}uIYN=tVN~<^;%>5Mu>V0o<`cxk zsw!w@elVAm&%z;f23!L;2l|#GJD>R!%huKVPBsncnj;-k(vN!Ik&Y1fi`ka}MuuHm zurI@z5$vv1%m_8oGTdl!3Py2wu*8-t!4B-u5#f(eBSeKm_)}}lPWX9Xyzn+C64D(Y z9k-Qv12fqgXSDTf3C&Em*Gs?@P2i)o`xke7!H4&6<_l&JJAdY`0zNTzTzrg1q}TVZ zb{O;^{v9UtiQ>=o&6OHL@9f+SYg1wDrwL;RfqX$&f|r$OH5g_C+|%lpFlZsS&gXAt~;3LM)Lh7H=jlDjdwzFwc5b5=oMdt`?W*FWg_%2YVA5QDL! z{2nNyJ}=ZSvLvjGjF!WEfpDFd!}X8wF|9lsol`GNPhcuyC2D~)9gIpPK97($M1?~( z4CKv)cCJk63c_WWrrPP?luie5e}Z66KdkZysEiVl;H^a9*&ZPo^f6`j_P+9h_h+^Q z{Y7Ah4v#iyVoFqGfQ!~f1&ap)G?qH?lQEiBtM=$fwOIg{>r`Rr5`M1DN=`OIoR(qW)fXvK`I>B7Okrb!iAf(>_{v!DO?u2<#;C0S~&)m&4&;w}Jo-gMPU3IjIgab_j)mYQY^|okY+}`%fYjdT7nNPX2hF-xgGN z=`@g(yP%hl5P*eFxdZ|8>qSrQW^*p_%v#;2c96uzp+KpFr{3Z7aOf25GJuR_Vt~gW z4Vn?NXgPE!)qr$VFn9&|y_n^6nkkWhl>)rj~`ElnG(5@w+L{WB8A+7FkZ6mBk`yQjv<5r!qk(Y~UxBuJ+gMG2095j}s=>wS+(GLvVYMRQ{n?SIyFJ>syF`1q%`UcmHbsP!#NeaL!@*Boz)_ zPcr2MN&kUKe zGV?YAbSQn2<56>X&tQ{-)4%#)3@M8Fsd0IHOKV~c5(<%F{(MB z9rjM)*|j-M|G~^|SjMVeqigRC(VT3o>c^+rqd-`ot9W5R_%lN8TQJ*(5?X0^;E7ZR z^KMCKQ|W`U>d&PrZ*mWWKeIze)@@W&LC0;V)upoj!Ojn7fX@!K8WmNvR2W4S&#iKY z!QK!7Dn>;Wv_nI!Zl0BX<~9s}L|O)uT1lP#r7MJeLK8L<~Y={%lyeI2q&LqHhC(DJ$&Va8oq z_H0l_{_P63P`EN?-$|L{@|CMjR=4GCFglmahSmHOjHJxvm2v(vM(T5Pf7{sxLwVI6 zJxXI#H#`sbMn?H}ID@{gRPOn))m%)|4)uVC*1RJpkA<6!hM z>y=UO@S?SBo9?`V-3KCj^b|axm)<%rm^*qZpZ;!~n7?vIfZ0)NBj#uJXtXG)jOU|% zZd2J2!qZ@{TuAwc2yt9pz*oXmly@&1h2bZrq*wTJ|yc{n?JjqVgX5Fzem5 z$xiY#J2u1A)Fv6Cg~`H5UyJl3yQcKR$|pjNDX_kBe}&oVibK^5;TrkgvQ~-nqV8UrD$RF9E!@7(j{+0@(#Q9adn*bYI#8O(+r-d-Ix?x=o6-zB! zl-T;6mr2^3wH`leO8_~Pr09Z??^TT*U~s1VHJ>R@)c2|ISK$KXZ2>bQNciFb^VT~L zh;HQM;e%-St65^9=%Y&*F`@r@1SW78kWt{jW5Q~OeIEbC1Zn0^GM9g5btAGvTP|LG zb&*lZ7dV~4rIAj@VP>o=Bie`&6-!|Huc;W_7+Wev)!_7up^SiKFcquLOuwhXahXVU z=2jM(s4(Oi^(90_mXMh|n+8?PTC$quE6*jp8PZ>JJdu7>TPs}+@E5bW0Q8%)UP0*o zCBSFTebFctfALYB_z`Sva5b$BK%kiqIA0|=DSt6zxe}aaiG>0CIFxwQk+2n_mP6=|<;}B%WI6FXiilfcs1E;U1wM)tM9RMvQr>q(;V{&uoDT6#_eS z#F(khT=Vc|G$HzJ#GGSbhmK@;>R{OIko&vIsm*w3WW#F%0JJwq~?$Gy9d3h`Isk~hC@a68PXwMgvC^rvN;rc32xecv+c~+J1 zEher2G7!&s2~MOfF~|Dg%2)06CxH=mfD}y|#=JvLqy;hA zEfW^^(1c1@Dw@NjbZs0H6)Kq&oM<1QBB2siR3z*GiF(?hy4Nh*Gt`@fpzO1ZL&~b> zk%8BUgr0@n8EZr9oo>_jOwS&k*--mpmq zN<6=rb74z#tWsG)4!h_wY%K~4nXX`3sKKaXkb0IDeQ+qk%jQf|0AkJ-g8hDge6CI=(sL+olTQ;sM85Tjw3tlt;@El zWY7|3Z@7+%BF0eNB9O+Y_N)i&rh*9AO8|f_Y3XCT?Npy}gDB!lW`O6_p=eq4w6I|g z7%5s19NR9ja3%?@vndE~!#~d>m#jXW1J8tjKZyX2s8yk5C?R4&CJA zbQsDZgoxi{7_>)y`1u894=F2)`D!k~6-2ipahcxgF<%+>v{LU3PSVHt9Bg8P*wxS; z9kJLpnuJTonCdD!LKvZc1tG2xLPoGB-lJgz9+fO#g0>CcS;3%J1%nEuo#sEP%5@2g z)cWa80b&Z{+P7?5pF-NdFEWal6Apo&#hL%W9(&E-H8yC8C$^5G7-HGGJ_S%n>V;w7 zAqp|V+ie0yU1M1)``Z}UK=(yib9M^GmqQ_}BVUct#8B`c`Pr_zEZ}J1F_G^n*c?K% z_)U(y_cj7j@tZu_Gir~@Z-R_3oj`&+DccDNpe*M7i;>)Nw1xms_=p+VK>;WPt~0pX zZizO3S-XQc(>nufOI5e*y{C}7^xPTLIMW`sVeJx&5Ppa+BO&OD1^4eAfWkKTM8AsQ zDdbF;OAS5Mg6Mnf5Y&Xj>I9WRXm=3J8DVxpcrBI5Q!%)WX5;d)IZ|m`szvKq!u^%* zATBh-5>Eig9Lt04%SY z*_v{RymQBczwB5Rystw{73!`P6;A0#_Q2^!zKrM{Asxh)CB1vLBW3;O zbFxW8QemH7e&_tj9fXD64J;HC=H>b&lm8hp-Ja))*{OzZY2Q8dXvi!Xf_ZREozZX+z3`uir`Byd zp*(A9jXToLl_Yl%tr|KJj|=Q(0Vk>9zEF1%aT?lVpCaAW7;kyq?5s_zES4}C+I;a& zKkC&|0H^p%#Z<~EB!eyB%HC#CZth+pyp%nd4o9x|;|dqoi+{M+*c}9~-U1Vqw7KlO zi@85Mq2>;PHQOb6GePv(MuHycbIoXCsQ4fB84U{-`-AB*)SC8Z$FcN?;aM?+fE;@e ztQugkeQBlr*@l50F(PAV5Rni>vj#}8<6_$1Ag{^K^l8l<69<`ySS4S8h(T79cWAge zh2gq`VAjYE9ip7lj4O@kpwI9j=zhd}4&FZeDm%#2F`o@_2AY<47|f*wc4#;`xFuRW zzb)+K#IYp5l|#Ywqk6jvBfcw)7$bRbmq<=dV8rQ1y^I)BsBwmBM629-rhDwl7Rn6` zYf0Rmb~w2B@NG4S@x{!OMBE^yLb5Q(S@JU;KV>If_&pAPGQb@3dmLK0I}HDzHxsV~ zU0G@TpfeM_$4Z>x0zy*1gsS&n2rxG%owSaU5Z&>cgCW9nZa33qcohVYyn0f{nWp^h z)2oW0Qai#_$~6c~#$YF}Vhpl~OuR#&yIxK(CD3|eP;lyagbIhM3^IsJsUt`lU|IP+ zj$mexVa6yHiM2YEPtkK+UfgMRouMv#kR;!_TOo%73TO6_P(dA`}D=C{q1&@e6) z2Yw3<9PY}%CT4l2LZdq)Drak{8=*ikJ?`po$YDw%b=**?yycML-|x^N;e!!NBvFG5 z5A3#Z&KMvio5?~Jxb-jbg;|LEOx-$T&5~T^Gy7CSQ@Tuil z4TqJT&vd8e+M13Qu#q|VPR6p{KI&9*5rA~*Frd(|qnHdq9wS39XX`6@5fH6MpDyF7 z{i-~F5Qu#@Kx`0b-fLcEhJ$$Cc8P^TT#nm(hnB?=pj#>*!K#u{A3^@KF1kE?B#7U5j9mr1U2bF)s+g{6>_=@4O+C)u`HXu^p&Q?4y8r& z8ENHz)aTD2GWeb%gV{Xw8IaF6kJyyA&G>4SNy$8FMHpVqRwW46y#@d35$OS-n1~4A7FD&zNY$yfSpV=OITrL6Gk~1^F`VeG~(_*eESQzSf1>K>22t z@l|vQeN^_YK|n4n^6j{aCZKH3dd`Ifk-&FghmHWL8{Y*UqBx9fQrHRF5aQzVm_E|#qa6E^3TQ)#ybeBj!^3G@oBo1mic{G3ZJ5> zs3EJawc?U*fx*K8R)DfluAME+4S$`>xWC!z$|eYQ*W)k}d~+434?vc5$_B{tvoj>; z4q~A11_OOyMz@h>{pf;{C6ZDzYF2;E1Uhas36t0f(ud=w;8^XJ2@CUXpdCM|ANU=F zYe!ahg!_ZRV9aO30qrW}4Gxx$P~mVu1E?KSVFZ})Qskt9xa|NHBd8s1aRjwf4;do; zQQxeC@a_;H4kv_Rj=kFH5{+dCgnCPoMiJR`!syg8NkKcqa97Z^Xi`cfRP^;-(bu;z zzZ%|sXV5q1bT2%LGF4M(v^q3Lpf?(~rQT$?#?Qq8>k=WX3Hj-RcL*0c|M%hPmv<1P zeNSh7D+(PBaQn8@`Qiv62-A-2v72%Lar&q`=r1EkN<~mmEB4Z~EazWp@xUj=9y|ua5wats^7gpF9s4_UT}}uxu<4;kDp%;XP}U#_KaUXNDHzEhH?2Ge zcZs~0NN8;``~tCilqbRG^d2#~mV%_2n6N1rKOvvg2`42GL zBiRW)wR_INY1 zv!R~(4%_$E6201M;;y|WZs|1vCoD}I(vMo1SBDng6{mg+PF?Tu;I0ezvgMrdxj^p! zDHg~PWBOs$S|PILY{?SmtyE2>Eqk&h8SAG>MgJw%^xqU)8H1h?r)Ft0o9q2n3fgq~m%0?ZfpQ|9rH z2Jj8!Q+*aje`C#=$z~H3*`udyX-mL2%|}>rKBCx%_s||a*QNpRjWsO+-!vf)m;GTp z_@868N6}A@X*KG8J`dxdP*C{i2=Pd^r}Ag(`qRUYJ?tX!q5qE&GH4^uQeza~d>-y2 zk4m6Fw?~hoF=}HzuafLwe}ssNULMIds$)K{Hpj`l&P<)*CBQiSyqf9$6NA` z61Ivm|)zzE~bm;QHF&y~?>R zClf30BG`W)Wk&Af<*&KVvTK5I;sVF%31hbz1in9lwRI8Zshrt7r88Sj< zm(21+D1!#(tUX2t^J7!4FxbD~Y5Es{Y1uR?YltQIz8Rc0-7c}@l_$J6+N5KT?A?MG z{Lmgf;eD#%S(!*s-Wu$PL>Ys(W5*@=kMdg1yfHD zY9HF8C%k_R&-dZ33$kX|8rGS6PsN8n6(26blgwhphYK6DHH2AKA=N5f(Px;8i%XW* z{M!6-)$fyG=`&iDcbbk8RwC>1@~MIMN%#lbC zO#ei{^nLJ+<>`Bgyl!@k*3HX=dE?bo3-e^m^z7AILVn`P)gNYfxie0aC-xRy?zi+}ZSx`rZ|U&OUxPD>@5$7~}BdyV3djIJrrd zY;49orE@Ku5pCvE?yEl_zV8Pi-%qo|%JihlowX1d8moE-0SmkkqA?qmdxXYzEK-I) zh>i}i$YTpUl{@=xxaNyn2|Pg%b%YR4<<4$Y?qF&%-?-KQ!GB3TM_?23SG|(k5)Dp& ztqI>c6B?5YN($JR3B7+q<@oc}at5xFH30;Va)mh|{U82gZHi}UL;J|U>b8#SU8WMspNz(P<3AEqcbGw??Hg(h15vq@B;0X~eT8x*Kn19tP3f z&m7%Nv^#7&NoBBV^%I3iy!tO{?92hqcr$y}V8eiCI^UfS7YeKCI=(qb4+8xos}E9| zq#zDAVU+Ej_>Rk`v$|?1a}nU7!xW5)c3Vn~n%(nYB-9f``3KHoRI*DubhwGsajugn zl>%Pklz)8|sa|OW2&iBd>iM}?}J3qtNAXW?)_S0DDArz(hBwmC7(a<(-oK~h^P zJhi2Q2w(bF6$!*m zrR*MpxcmsE4kvdT=H^rd-9c1-WQPuOlWJR6=amXjJ3haBl@CJl15~8S*5wWzQkSYv zm+vv0+{JxkW#=>XtQl+Rwvo*pOl$q(mQ^ns+ls8H$Y2b(PU*Ui)7-f8S++tk64hqE z54aW1Tn5_#Jku%k6pp51R!!H%b93cwGrn5(+?*YMUfkst9iA7N9%WIdv*VdChY?5} z@Row-P}NbVxYlfrs!Zt_!v|eFp$2fR1;>mCLqO~OF|*qaj+TD}0q+SKM%AlCyTb^) z4%cH8n4TyBr<+L-DIcNKA$6&|bR~7E*_u8t6b~^KK{R3Dyo^W}U+sAH)fZMv4s+Qb z!dZd+rymxk2j@kfmfj4)o*5vv5^wGo;QKr`DjRJ@Gq;S>r}1)&{WpWO|Ii*CK6FcU zl4_6FH(T3xIRO11;A8KfuWv?H%dyN@)QgN9J)E-eH~+|J5k>0xa)H7dM4BT3m^{44 zm~G#V8*gqir}lV#xRCSB;LaI8^l=3C=&&){sM?cdzqbXKDw%$RNb?A@jamv+T+!zu zdEJbUmR#lH!X#HE{1YN{jCXxF#(RSh?l)uCeR5^=o4YQ~fXM5jq*^xix;VLyKKF~b zLJ4EWi8~4Ft4%Hh>#aM%0F1@*#u=J;XS|tm`IxJ)c(W#Ks%2SPehT80ir?sr$7H3K z&CW|No{gK_Ol0R;BC!NZe{eWBCShPp!-H$->!VRDu9zDuV+t%j@Okb21`%WX$RJ>B zAL%bZn36_c1Ktc`{M{)UNtt%>LAcmHGO*kIpayA*c7KKu$EZxj z0m@}$#8W_e z1SvZTMToD4hGNDaS)e5z-nhKK0@BiisiEm_a0K>S@8|#N>%T12!a!y~VCcFkZ;PEx!$J z`FI6<+n*tOh#;i5U1H$^jdrsjkTr7&RkqKt#!M!*7mIL+zwGg11V*)^N0C|Ryzo}D zb7$=J8^jU6b7*U8ic?vxUj4&ku;pztoj2;kWy`%H@Eq(nh}lKMGw&sBR7*_6JA73d z7rpXlqY_tI%kn5Zms_ZtG1|E73xu{mLbj<(tcWr=GGEwZa6XQE*r<4x_+uF^9?ShM zfzejXE-;*)K^#g1p~deUTHF$5)aBkE9{wS3n;pD9o;GGT@xWMuEpiYK{Lb;fL?BGa zN<&iVZ+`@AwU-D{OZuzL7JO*G1mE_9K-pI?rXDpoU`o2xdDfG>Epp2Fvru0Bcukb+ zty;vq!GXrFplMwMI_zL-hTJoO@7+NVYh;Ix``l<;ImxpXC2|@68$=UFsBqjAjh4c< zYCR$=&V%ebhdG(!s2w4S;l(;*+OOnXN15X8?_?P5p0cm zJh$p;w0OSN^rLq~Yqc*h2M zIm=dy_|Fn632=mpMgcu`$TzPgD%ns2IR>bKAWXYc=Kg?h5a;*Kaej2lR-F5=AlZ*-)9|R4TJd##%O^ULNW|-nSyb z-iic!1qs%h3-+2pT-+;YGEdxN;0kU9#gVrKPN$t|`I>mP`%v+2aN_XWEU^#(1783F zIeW2$tr~}00ei1GDHsH@wOImGl-Couoa+RQtM9dQ_F)MZvK&Sy zx{$A;js$|}sNkV6ZxD8e2Es{1TvRwTGr=qL4lzrIK2qluXHsULVHOqKmP~LShF!BL zFHzyfr?3j@EY>Qmm9H4-$H24kEij0adj-bi;eCRnbbQ^EHCutWt#4v7TCsmMS6l^w zX&9p66{^&%eI@oIOiF7!QbYCSdmQ=Vgh^Sx$HZcdW;Dl&j_upfHedm){iNT}3mHd#UmfRIa*8JTm6au^NKe*>J8-ieofG(tlk)05zn%?}n z8HL6*x(+vf>u}?@4mW=5aO1ZQH!gaC5Tye3%0YgCL1uCtW8IiRt27lE3%qsO50OQ{ zWA%*Y%0B8e3XLv|2RXBn+a(c7FreZ686b z*vS{omMmPI9dM`r<>daJ6gV%|EkWOy&+jE3OLJ+O#c1iXLJj&fhb^ws@CJQ?N9)L< z?_D5kh4N5j3B+uqnJroUEgDli+nXE~4;n@P;)BS%-CrNRV7Mqd_vHY~Uo$6#7EA5! zD>O0eRB9I!tA8_xS+TjN*hvxiwYM?i15CwITupC_(v{6%M;FC! z=XVSdhUcf5k5-3C6ouNhMpOu!{`}@-S{~8oT~O$wq?}w zy4}yH=QTZJ#80~lWtLD!OW#eWyPuqrh~Wv(?>U~3=yKS)R5HHgvqLsUh269thin|i zeSmug6b=OKj|qK5KPL_pmcTV-e=<~Z_&u?uebfP*o-uA3JJnf%_SHqv3MNdD8;Iv% zB8C~nR+L&sq zSK4?wwDGjOI2Cn)ABj0LN)3x9M~;i2033T}awroUZHl)Rey#6GMwv32>G3^j3EJ$7 z(6I&EW>ZtO^Lq(|Q-UZUL6@pHd}FHc?O0E>BiP}}PW*a@sdjiJqoWq$tv;j*-;N5E zP+UUNeouu%8&eB$y~7Xnlm?%JnV&gsk@(}#bE9?`1H0LxEHv%>+zWrB8Uvsj(IlOskF&ru60*s1Pmo z^Cw4-RZn%eO962B{#4Pb`GXFWOhqu8AE3f<|GOPAeyV8gs30UGc)N;Dl-2T6k!odE zXECa1ZOzVOC@g^Fd=^3P5TF8@vZMl1*YTNv1x1EuCPnHK@!*fm#y`|A17(_KIj{5? z&%|+}t0L#-mjFS1yzV4dY8<{~Os__$q2k-n5@~8P#x$US4YF7yUQU^wMlmBXh{xo1 z3BG1ylNfB?V=z#Zmq-?GwuENz&svLn%&0jz=?1KTk~}b&t?hE^qEp%p?~;GczGI-rDX z@F$bl*iyXJ{lVsSMAf54=)^Hg!l^xH+0{%3tqZ6*2NQ?EK~M}Ii>>@*LKf=%I+Q2Z zvv!(6m_;m^?9_~UrQiN74l8Bb1Im@MD@QP_XXQ6JqPJYn+Ob3xGQ_~BU}5$qo&eM8 z>y6IQ>~v#@UJ@GoLuN@wp(;R(jn||l7IL|L_c<+4$g%GdxNX=d!D}ZQl^tvPk=dSp zSl0%$^=7ul#!q4>)lVeV(_FLrc`R$6=Ru1q_VY_Lbt7X~hl23rL%&7iq4JNQ(SdQKL{SNIrF7ME|<6Z>1FKnL)a@Csb z2a6mRm@WS6nnyGdr)c!T_lM=cQd4W>*m_}5c7FA>qXR$|ElwE=0iEk5KCe2>pf{XC zP5Go8R&sNg$yAP|sd!Ye!4i&Y1V}Q7u79)QPcoe|S<=!zi*1QNsf4UwofBm+hgV2Njr|T;gY$|W_Lh_fYA;S9tGoIUFO`BdyRuhtKLX+(M^#9ril@cgJA zi`i>AOHS9w+t#c@I_j@g!8%(l36YDZ(tk30HCa7kT_LhRcXA3y2t`)Fj(*f@5g!jq zV2Qm(TXXcXAnlYDXFL$a-x?GmwrQ&+XS(D+nZ0_(-pq)Oy`1RUmQXNS0sH<@uN8YO zkAIWXl()_3tE~G8vakhP>*{o#_+ zlocK9ZD!43o94CkVf-SdJ4J|R_6j5V&6C03VsquN@1LC4N-`ZD|6_T420O}%9`Y|HxKLYHf?B zLJmVorX7wke0B@M%eE=Jj1}K;Jx-{DPIsvB>nSUG*xTHsge*fcm0G6%WcF%u7|dQ_ zM8A1<3QI^5tpH+w)N3J`#t4P?;SUk=wi$iJB{kSOY{6DJ{t&S(C%q71igk84M!jya zkC4;D^FQjfVx3V#@X#2o@-`3aenPae}a_mAqV zSm*c#WQ=`)WU}ThL1k4ke?qiV$THZgR4)A|ZsHYt?Qo30HEcmd$~Hx$kj*?C-_iJJ1cvC zLbO6wr}+5j&#w+S48`8e2rZc?@u3xh0FG@sF{)aHT2)|u-YTh+{D|SSFyfo{x5{7? z<~Ftd=Vs1=LN72*UF82{rWO;~6*lzDWtR{{ZERE21~GTwvs&gFbqkns&df~;KjT1U z?oS8@=Gtn@D2FWusbR?#HuTJ8hp;Trr{lxEf7H(~3@zsd9;i)Sh&uv>}JX%oR5DE3m@|f)2LnbRjYegZpVKxyJSMr9qJ3(<-}Bm@DP^ zCDf7uL_O)Ov@z_9Vy=0|!l3g;GUUIQ3GP4tKmYsx_kaJ_fB%2~!+-qO|MlPh+t+{h zU;q7o_^1Ezzn8DJKNbRgIG|#G|JqAEJP_RFpR=}p?NW?@|Ci@Jk}&@INXH`le}323 zM>@yg|MTYY|Ji!t|Leam|Gk8*U!MY&`V_3xr>y&ta{RB46n1}oN~QBhN|N!5;p4Ct@Z~7T zjHB!i^A_Yibr4UTxlt!=NLAw3QTBDz{?KJVN9_(Rbq!yKbf!itM&TdkTgm(7%Uo*F znEx5gkIMfG9Vn_S|6KmPBsITaJLT`?e9qis3FR5(oK8s<;GfHXFReemP6@j4|5=yt z|FVx$5XxVt#2@(o^6v}ZPBG|Tr&tF3e_6lq>n!{_WoXmaDRtTSe>ta9YD2%yGUwtf zd^>AVnUs=!ouxhfDOFAQ=dzAeRp6fsA4(t0v+(iCUl#xVb;&0!{J;EnSK;3!+5E3d z($4t*^6zsR5C5Gc{k|^A9pV3lepKaTK3|1jms}^luEL+I@aHOgxe8xUIwb#H;lowr z<&qk=udB%GRpjIhgEF zNq*hs+%dCF{$A+8ER*ujvj4k4m+nH(UC#F|bfLAnJYVzzV-)0{r8M*lz1Pb>m-m(P zyvupsh2C4LAHMFQA9tZ2O)>L-k6vlz|LZ@C96UuIp27!o|B~klKhTIs{<+ZqNIvBY zXjb{VjH<>zm;X)x?O#vf12B*BT;T%>KIESZAD+U8r|{t^e0a)vKgAwA<-DIFzcTsq z?_Xu4ApT$8`xXdD8LadrlfCd<(VsFN=IbqbQwE@X)oBj3E4>UXz<*cxTD!#7-mtY1 zEIwU}LBbEA6yI9wUy5$v3u^sKu_pLxn=25%@I&^EA95i0mRR2-&^A0%Xu`+H`krDH z@byf@1wZP03d8WtPEH6v>c1+q;LBWnPmvP*rL11QetzM@ksK&~)PGe(1)r%Yq2Kx}NUeBO(2V(;~tQnio2)YXe2MlQE*tRBH$ zZ1Glu1Nsx{b=ZPi5VwvaSXq$RE}B6xH57 zMYr*zzNfMd6EF)o#eX46S9#vtFV*Zgys1H}oJ&H%e4Y#f?DW@-7-^&hb)P%njCLC4#j$#mTjV=V%&FO?f-6`L9Z zZD&31vmSR1SGF3jY-c^wv!3ZywHwo#WQnUv-BqHU#@)48h3+*K0pYM*Nau+zP&$zuooV?&5p!m%`q= z9^73IuKM-uuKc;HsNYr8t54tV;^emK&GDnKuKIKQrELDGls=Wx>g%_savtqjh4YxC zQGb*dR)@bm_1vGT1y9w2r#SiTsov_TqW)9^`$#(IYeP*{S)!icQ%xl*Gs?fJO8u1U z#)gk5@~@DWtUt;Qk*q3zshfYR`Fg7$y;Z-;2=A}0Ofdf1zl-MX(#r~0xzbH2{Sdb7 zwOIvz$ma1w_JbdCrf^oW4g8QD;z#{g<&^h=d&HZIdcw1b3gbupuZnu&FLm|esrTxs z@uU8$BICR_~+3K;Tah1i`>N!wUmG3okqg9A}YlpNkZ)Qr*9*r%ylcIWu;8Q*4%QiKJ8%MTwLY zI?+E<zO|>(>u@eRX#tD5(eD2%HJmVQ)cz+(<3r4EH)Z?mFhundK7eko3fyqdOj3t&`Qk6+W9eevdid~-m)$@`lM#AQ8c_=dqZ z)y12fzRi;N`AtsWW@cm*&wz9}|Lpo5U`Tye6}%>qP(TME~p(AHbi>^1C0AHUQt^$obvQb?Sfquya4gS_U)3 ze<*|x)y{{~_)yz?%tGVYB|l&JNaJIs8!#hGtpXMS^Lc(aUwn+Ehi({BH5kD7bNl^c zCe3I40RWa!+kB{PJ{%h#j*Sn8gzkW6EeC*+yp{u)5$~sh`czQlG+$qVcEa~Hyiy5kIiO8PIp`Q*MI{-2 z4%!modv9A0z_j{*TRLU%FbHR&_1%PQ?H^K{jxyaDEz#kw+QuPDiA@J3x9o`HVuFYRuWxu$}esSRpFoj{Tz;u%{{tK6>ESB9605igL>c_n? zGIZ*HaiRyXuzmVADh>9r-W<?nuxEVE;-|?PXW}FRuClri@cRw(St+jQ`?{4=|s@$4qT6 zA2Xu?422(~`Pnra(Q$Y18b40-_^xc!KGhGv9-FUZ=fi>RB+fTvg?`i@e$+YyUR=Mk zIX9X_H$A5Ma6xe9B8*tS0meo7;<_8a!ZyKa+9|AZaIVDmAC_H-gPEUmaAy6=B{@OM zBWI`4moJ6sGzw-o{qo!SQVo8|#g`*Ne?6HsY|8=gtwvRHoA2@kMHWp%Q+ z09dU9tdYrj#b1p^dYwF!Y7e*rA{07!;c z$+>=iolvMhUR{y{OwDt=l2@aa0hU-;V@=KL5C}W8bF85NU(Hm4r*l|-8XF0hr)4DU zdHVeow@CLgi?)%WbKL9m7=Zx8AS>P}Jf94%Q-3AREG(zY=tCxlk%p`6SB(BCGun@N zW2B0~Iygw~H{YFV+4Y}c^E$H(nBmKvcRbuPe#kzzhJ-VV>8AHt7~=UDiM`JZLU-BL7_P7GeZRUW z2JlyY1^UBZ^@jsY@3@uCPQsA-p@#f$JiB6Lj12L5w!utW9}3fzCMMgA4Sm$F`lxZ+ zOvgE+ftlg=IST|lIzyqWNK8L}rJ!6Yve)4&>2XV$qa!0R=RsUV79L}g0WL<-xr%({ zAo3c<9Lg1#Zu*+_G8X9koFi0IM!n%=hjBX6_)=YbDc&zf@7LH89B-Mva6=oDcDQhX z$tNg1ez|k$d7Xw?WMK9#!T?rbfF);uMGqhD`al4DHFG6?GV2+3z*x`dC@@PJeD@Zf zFBgo3X9^%Wvt`CmL`jI5KE*`aZ$8{*el*!uZc%K+BARKdfk zIW8IImf6#pHV)(!Lv^U_Ke&zUE;e_T^ti)u`1sU6p)d9FT;$@jTffue^2_JcuY2lO z&*`zlS3c_N`u`f$?xO$txrXMmE|gzBmqcA5|N6Pcm<#AsXSD#ali;v@Jz4O$A=5qe>)cii4L$9ut<2m%td_tnnMZc@i z<2m%YGC!VcZ0P3R&!OK1yzUX#@xOcyA1;1>`5b;+EFI6GU+=*2oc?f4bv%bJod~~t z4xg?OfB77~_4&By@pd)a%AAvr-<2ih|PF!=~S+^8Jty}OxELk1TsoN#<@f?}C(){If#+WPZ<2f|V ze0X@4X8w7d`C>nZ4xMF}=d|NGSC8Q3Ib+ymus$50x^j-^$U_Ip;SHGfM(=x)WIsoD z>UH#~+xPOEc63f2&*592gD!{5bNF&Dh$k!f?$`ZX^?JHRN8Ase=dn|a_Sn&fx1UQ7 zuq2^^P6qZtUB9 zyVvI$kGhieB>(-MYplJGxA*#7^m<6!V`A@P7w+fMW$$D6>EFISr@pb*^m-r9vCrIZ z-p@6r+(T+ zKc3SEV{^U#@;R~_+sbYB>vQNIo63`TzkUuMqnF-CFTIbx+0SWz^v(M(pG)Vv*T0`b z*XSXS0JzU_eXeinef$z065P+}+u1Gj0Ds@IU(Pee9d#Id+a)HtyK$=ZurFYu=CN&^PwY`{={>@pWFGL&w-To|(8j$L@I_ zJLi4Yx7X*$VeB7IUGC@f@7O&a#=Jgfyp6r%w$y%3zmG0`Kb|9((WxHo^qj|jF1|m; z{@Ksfu6tekxoibbhwSH~!!5D>Y&y=mqYAd}@F?l8pVH=Y$;?=j<2m~E=kPb{x{tBRuFvU*(S@Eh`k3|KJkMjcDqdrD{G%RAau3%nTz7DP{Tv?0 z-}rHP&KMXy=tl5v9>U+w4UjajFCT%OZ+qpv>J^V|m|xYY+^|9u?Kk=bmKyH)-EAHtz8pJ;c483qShkbM(=Et}*>N`smlsX>at8 z#}GZke|-);ql-MZ@r&pA8!CbJH{=lyBMkR*Xc>F%bM({a=%eE~cA4iQNf5qdae0oc zM_+x8eYT&|-q>lMW2f!s(qqOde2#tgIr_`fCnVcl?TY26aXFkVnGKli} zocd;O!4oaNey+Kbw1G{B2SE38(d#*w{ao#MPIN!lw_wnP$49SE+x^vZjh(MKu;S^{ z>vQNH-Q?la>vQNGokUKl#qZ@g^voWFM_a$f*YxY>$Z7TxzDD=#=g4Jr&)4{>{`zy| zFgoaK)|dM^e9ijuYjn`{IrWV0`8u9U2YEipu$TQ@--W@p`#JI(-D3>y^=Z5D93AB0 zr~Pbx&bpu)YF*&@sQsM2nnOfi`5YfN*F>$pKAzK8_jNp{zR@MzsI&Mxo+Im7vyt<3y&qf0L)Atb?dQ}x_R3d0 zNq4d)k~6S|511>ksOMD!=PoU|b(ivTwF$6<4X{QQz#^LiT-Ln->z>bzY6H?VquS4V|E0A^jpsc@T^l@S;jobMfsjc&k3$9F^- zg)l22j=agv?3saCAM_cp=CLn$WnawK4Mujxmf!%pHP3Dp7-`;sZOzwC8QYp~6^y;} z4KPk=qTX$E+&*9w-3BCMK6lF4=mr$sm=BaWF!DZMHKzq_bOSaz)&OPv`3CHZS=mrV zP7h!yg7cSAVxBK!zHTD?CI1Gn+4=M-Y_l7%*)b(3b71V%(GcYQk+Tgb&RGdjMtWuq z1V)*S2ONxKY`{iGt8n;oYW^0O5yaST9mcPQ!Mj9EYs`)Q+o>c*e&%GSrL0mcf)j{!#6Z$RGt!VUGL zpKNObRyamKWt6HPt>K`&I%<}SSrU*I!_ko z*VIGSl|{x07;%zO#a9O~d>K?rJ;T=tur23(qmzi5vaLBw3dRaIFuh@R5y~7G+tM~5 zgUL`hn^+XKb=859P-p{L-hlL|DU6n)@Mx|RFybWz$uv5v0t(B;tPj9Q^9CeUWkBkX zsb>RC&sk3uVht|yrVw&wZ_KIzjO}Ym7{1Ia3DLMP#*0@6MapcpsdyzuON8VhL#!sr zvpVPmC>V8+nOz7nm%nUvO3pkI&dNU(Yv&D=#{7%x;O3xdxO7)Zn>X{y|uN1JhiNS#sR(Jw0u4_CI z&on!n{S27aJuuJDr|V9@G)k6*)lny4Se}T)v#5%RB`OcqGv7})c&r|b?W+t;9K@>; zgSm;p%qaKNJs2t4fE1|%O=XOcVOzfkNQNsW&-7EF^xOdRCA_E=jmP9y3fKh~DGx@j z>OfK+h_N$WRhcx2yc9N}o-*|TuZ{|T4QN;y4T|k$?|cU+L)T))kn;26m10o?zT5x` zLB&TBgkkw7fGarCBFwMUl14HRf~@Gi1Ekqio9%t^(o9(CuzUS(&nt3pk2 zO-4xxnFESotXuW?vH`^~-e3xg(dP3&J0V-vJg#3bGIRsjsH-|-eEF44s5yz{AGvP8 z(V==Y{}%bztoa6TkZJ?IX!@N1TUTAas1r{>e}!j}SH&Z8^(0aFL-ht6XD;Sm4$XN3 z9E2o5r2eY;Rqc8LM&xD|BY^I}jP4)`-=81A5N5`5esy3*sd)&VHIS`uV0zvI@02+( zwytjV@H=IWSJPvrJmZy(YBCZuKQycO4D%)d&QbUPMq)&w&#%VoOBA7vYO=jywXNDa8xLuwL~EF2zUdETm>aS}+WHM( z>nb0!^6)ELcPVKWe_lCoHXzHhL(bJA)94*Ajhcjj!rx$q49`VVcsTtTFr8~AA%1>f zh6_(e^XkA%=bCniR|jS|C182==>}9!9;e3HGT$YE##8tPn65P40>3&ia;oX)!E4IM z#g72_avA-$0r^q`dUpHi1lT(+n$4|98TnF6dKCk&Bb8KkVnKXh|lB%|Q zy8WIId$=4@B?kh=?x&Ku9OUs;8(Kz9U$*oCFYsp=LhfhvP-XbEtfmMvFh^7 zOpc^rRbm^EWtVWqT~JuUHXuD(F7F$VLM;~)MziCmKGZxh)Ph&G?kde_3tlPJ4Jb_4 zZH8b_SW<5QY1UwQ-+(l0u)Mo&I{^w)JH(1uyPS6KnoCX(fOn(`P0cJS;mjs4FbA!_86*B|C@D9q1 z5N-hHT<;QN4|#fLfRl~Z-M(xzLpLZsvNsbc7+Z4!G%YzdlFTr<0~DUqowt|qD=Bhv zGq8hKa_?%&yUutu1IL7@T=HO#IXfA!!7E$efQ{;@GI2VEZS)4PQKvFvJouH}vH?Zs zoM!Sm3M<16%vWd-2wVFKa|3eW?DVk#*>QF@s=LV1+XQz)1NTEJ4qeZAtQk{!T zBhTeBc7e-IV@h}>J5E#PoadE%IpG+2!Ylc5Rx#*=R}%jtz`mHX;QajHLcoc_7!wXm z*rzIZGv4z``CI`ty|E?Srz7ubdQB&r zs&oxA;a4`HW;IUdt+&paquz|>a9K5xCV%j|5tZ>G94VO&H}V6_Fnt1!UkRwo z%*)7iK-S{|z)X$2vcem{3RPfU7x46(zzEp;2l@Gd837y0!K(u!VH)n zKDG1zB%n$)bmhqy6#yx^0Tj6#21cqp-2n<%#b@{mg_WY3%S_q4vh^Fl*0qO?U*T8w z^EZIn?Q;W?q0#%PZ|^q&2~!ms%)((X3Hx(^n$(*%pA3ij9`FlOfg1F}uZ~yBSxssn z3}t@(N^R>+pQNg`m$iOBHF}Mdp^T0Gt$>87qd)&O06W+Dzz84svU9J1TQ25s=g8k! z2A|F%cYqp5hn^X4`MG0t11cW2(w z&!^)~fMhrUe(9(3dK-Qvr{4h1awhTTfT+B0z_y%u%zaE@dH)VjEKWcM9+9kmhUf{f zE4948eh*Mk&P1kQrY%X`fb!7<_x529$IhqsGoU-}JnI%)Yu5DwW2&@$9WY*wz~wXc z{00<^n@L`vKw(+bx#AT?ypka&fiJCS^X#!Yn0W5X^*3SWs z!dGB*9A(x(J^|yf=X|s^kHP@6hzGE(4cNqJ4$4^bXbvz-m?vN?Z%$q>VV(h7A4dVN zY<+YI7&#pq8jOvOdfBth;%Q5qYt z$3~A*=891oV+c}aSSB{Jtr@PL{RWsu4ez4xFi1F|KOc4s=Az6unBmm?{S+3Xt~KC` zKoQ$gvl7@ejs6H2-VGC@!k=Jf*m@@(VJgb!?+-MC=iy(HTf?6Kf#G#5K<@XI5Y@L~ zV!Tr1W2b>pu0H}~dQ3Qe{--eGd*$LGyG})HNE)vsbvFCJI3zb<>*FZkmSIPty48?0 zURj~K)z~y%DTEuqM#ptP;cqYpJpyW5HovEvX5)+?CV5w-deb4V9KRco!m;)!BN^WT z2N@S&Ohe+N94#A=R5h#7a}@sOmF%c=jj-ca4$%$B&Ug$cBRe;M#Lq4pg@27v4I6w% zw3jsB0Ma~`E`<-w=tw+7({W?zQpVN~KsC%-YYK0`dd4s%*31euOfi}L)h_`Iz*Xi1 zOj}rRzWOa-#uzq>KOe%dBQBWfFQ!6Y9l%I~DZ^Jk0Mz0r_W9L!fV^v78yrYG3)du=eSSfBm;c1N< z@khmqO1b9k+%x&M(Q5&#PmG|=o?1WjhQ{hiA zlB$B|wr?91(2728$T9Gb2umrv0VH+&#}qy=4tD1ULjfrxJsVJBP87$5Ja>RJYlL%4 z_poyVNRP9@ab?e+1tflU;)pjrFiqHbuoqi1*qsKrR(pv34)F6+=^LEL$hO08010tE zFkF#eIsC7H>f7K%F5o0cR~$WtWyRNR>Od?QnfwUM0mVIde)j zqLo*2reDk;RbJV3&en#c@=Ef550FJ2ZN{%sp}ab^8_3FpZjU+Hb5r+p_;-M^ce3}M zZz`1d4IHftIO}uc_q4SE z!neS|;04g0FftayN!~Xg?-~}|B|h?TnQ8PaKewAUAg5Xw-1zO!rAN;lcX!XL8^A_g zOByMQjb|5ZKr*x^xVzh$e+!U!oqF8nZ9RV@pb%Wrav8WaAAs_4;b|-{DJo?729WnT zGeqG7Bkx)zT=YGS>Kf#J?+ZpwHCSFYAQ!G=x%%6mAAsz*wtcw*u3L>HCeeo7y#ZO) zx_Qx-IRUbx3G<>=asnjGC9PLr(Ws=}0QQBJ3)h1Wr>=In3|x!?*Vp)>d1BBpYYnBk zfU~Brrbg3i85mN`(qujnLyEx+(;g&f7#o~<0<=<1rnUKrBFBpk; zCgiGb%lrheo7@6>b&}*_Z|kuy^t>8BPNtxPLII~uF72M5J0-quz=7o4Xw*3whot8Q zP^!*^-m%WFj#tXiIn7vg%1EKhX(Q90Pk@7DO?M}a*dE5E5xK~FINN|!JDC})PTj{V zNppUBbrSj(IHj>V9z^sasBtO?2KisIzN}N1JE05 z82j@HP{2-02CY*@sX9@;-T;!S57)qUey(^gfbr~jtY%0Wy$)vR`4$+$jA!RpSIiJ* zgga#p%!tk~c3vHr`LK*t=hcB3sd7#BlKjsA33KIWWIDdN82~3h3Z2}HRj2R>^EZKm z=3fI&WyY$LB+O2^0cJeEIo+KAiFYaZ=34Gg0xt8su?z>L65D`{I;R;0PvPU0qH}V4 zb1pgo_NjBx+Xn2xH3gkDQ2l6WAcN*ftmb&xfUYt{(;c8- zoHGp2=a%&AD+jx4F0VtQu=F@p7|oC4R|(w!O32CM?FNtxXA!dkP_y(nLm1Z2E4%JT zfW$kU7~hX0TH?P06u7G=Z)@Y{Qg{Q{-A)|_=<_S-aau5BpM-k0bpt3Urv(G+`IRI3 z_W+4^#xNY83Kj2<0NHVkW9>;eB}x&x)sp&r&?^?$@1w z;ojhKsuZJZ(BN{CG)l;Kz>HRd%lXxTkyzb_MwwGaQEgy4(EC_26Izb z`FsZ`D5oIrt9v%i`wZB+(~Du*l##*j07-QvVt_S2my8W44d)pnt=Whho8tsHGF_y+ zJFA=kCGT>>NNXxoP`?LAvyL~fxT8XecMdVqn#82a(4~bT*SwO#8$i)Hs~B?4uOxm0 z66QQ($Tite72WRve!@;c?|RNofCIp}=-rv;&jPZ%=AyGoD-n)L)6r%;HZ02hcYyul zs>hh^=R3e2bB*)v+;al#I+r$H$47J04wg+Zv{_yO`Zvw-q zSL;#X1>?M8sP^-R)5*8M@MWMjzZ%JZ3)s5z%*PdQdNG)rUGW)!Cty0o7;efas13{r z@_IhXNZ|&g#|4OY?>(OYTX$M8P@6I{>hA#QQPY2HK*HQ-GKQN9TdL>5UM;M_ZiF_6 z0~{tBkVf5MMrc!5QEfod^l*JRdE5c^v$Kd{*wn1>4#1rqgRY;AqXw|i4JZbERo>f2 zVH>>xY}ARtfa+(j?z;t)m`jq6?*Jv{Eb`%;aRQ{!Im3(pIE~?F?dsq|UH>ycv8e04 z;*Xl;UG?oPf6sS-EV~2Zm46g=w5Y6&+2)nqbOT73tAmff6;Ot*DZFeDGUQZu)W;1V zgRU|R6z3d_3@%lD{+^1z`JP-c7${CE@9Da4foay;2Km*DmlH6eGOC<1!|Tt0(NkVT z$j?U}pDODUFuWR+&cUA1N+)1?)f)yWBZW7Bq^g=fe+y83d;1`#iKJ%((xb9AOr65E zz5#hxM;jl`VI+BXQ^WXhUfC&s6*!NMlFAw#2AETm#Hy~nuaH-Els3Cz;k=USE1*xw z`wclc<+xL!f8GG{s){#;oS)0j%!Kb4d4f%_BYO)U)ksl zpj4d?3_<5t4uKy5(yT%^&YS~fO6&$uVygJh4M?-@C$CbZLO+@fNUGC-_bXD^vGF6| z;Nk)}ofwPG6#xqS29Rav9`9x3SMufZ;`0WOLFXQ?XXNLya{x|4UfswsJqg=@^f=`h zrcPnIz)8p}A9>~2SQEqf11)*a2kIPQJUCY(I7n{*NprF=#G7A9$OaUZmj0)9{Ryz= zHSj+*@DIR1?B^3OZFy}Zucoa#V8q~^krbXrPr!7Gq1luD`}4e8l{qSLkXwE+op>M~TEdL--yP`oZUyw;Lm zIY@2**>U3XvP*t-ypk_>Jd8%CjJWB%U>1V_-CyV7 zUyb+h=cQF{;HdHdBz6=rzY;TQmy_V~F(yA4DcXPxjUuMZfsxqJ$h?y28$g;zM^pH~ zD40>rygD$lGY%hK9hifiKLw0JfALDvTR=`n*Hh-e$ouGeULBbAsew5FIUTLdE4kQ! zT#O>7%-@C?Wz89UdwB!)@~CghNc;vQezZ1aX9E&H%NEM~1S9dIvk6U*_!~e{N3T=(z&Nx2a>H*B!gxkBMc>@wQixkQn7)c$K&#MC?&9hI!s{3A ze*;M4tZ^tTjlTsrqnZxkh1)fUp&LMvJEL+3riGQg6RC*~sBne=Hwaqz0F>D{+9)h$ zmNvvP*@Ux`=@EEk*KNSIoVd7OY#QBwqMHQ>^&A)pbC%=Us`>c_l#g=}S3p_j0PHyD zBJc3!)<0?9fD}5ta2d^1xB(k=>M(Nx0bR;x?0zs-IA%H+`C2OfJnpLEWu=+(fcP(4 zQ?r}=fLC(10U1(jKdG!YppG_s0Rd%Fy#a-%{v~nkh(X;-T39hMG%g|H(X4QsJ76UB z2CyErBq{!;=HCL;lHTDF0$(osf3KfgG)r17RYWbWyvt%%xsdgoG*l?zH zHGcsW$n>FIe*i31g~mGpL%zulcy(Z=Tg-aEt8XyFD>Zuff^vcYrKAACPrp zWaxZg_5>=F_$%Oi;El>eWlHLg07-R)Wqt+f`R0{fIomZ9J}~m-yy88~lo>VmEuavb zSBSeFv0MSC95Xi%b~;}(VXpJ54aknmD6eehR}$}(<1Ng*Qu3~qOyNKrt8Hz-MxAMh z6&f;b0LPD0jwu|dSs89X(K+Rqxq-sU=K!39IBq_zI|-S>ftzA&{RU7_E@U{#Ydw#^ zS(DX|mL~ItXX1Ko-)V_scT>~fAFvN+Bc9eBO0&B{c(L@j&fqk~(BndZlL2D~M1u!bv&oY(RRPXS~Fj zpWBwRib(=^HI3q1S{0sv=~I^5zM5ge@>a|+$XZ5>fVvigd|urEHleP??zFItYH}Mf z|MD|H!qmP7%JXw6)MhrS{l$oN0DrFH;b%jbW-x`s%pmc~WFpR|FYW+a*H|^^n_pXx zn!_+~UMcV!z_yli<^1iI2-ml3aQ4d`AZKb5W3nkMiyM$em54Ff6jo*%kXOy#7d;&t z&_nTZ12_aUalOwNu_})ZCLi#)xMM z`>AOv8?yXj$nqJG49#gHl_{f~H=vy7@C)~H`|}$>cGM+ae$21Fc_pXn8{?Asm3^U_ zdDZAV0Yi_W$0SOaU!8yvongh48NQ4Z=H~FxB`07AdsR;u{7d2E=LaxdV5l!C7-l4# zfDyv0rq2nGLM*L%bHpG} zem+{^1a#}?QC5`BD05Z(s)G0#;86CP_om{PZvjcuGBN0rU)j$Wz{pM}tm!(#H^B@U z25W+uCN`j^c-z1T*oaJ$ksO#A0^T0Xs{=D4_a0zg+13p(>=+!$1ZopEfPA?i^CDk< zWuw|5Z@&eojJ*Dr+$xgs9ndVF$4fD~#*1;1)Ff#)zQJm7ZTINPhQQZ z^`@4*1MCg8H;vJJF-G$Qs2tyJ06SAl>1_ixpZ{Ee^;$HB5t3zS zTJu_5FeAk~V3;-_kix_C2^hH=2S}M=+F-wz6EJ*uXDzR6eGXlLu?e^MCo=F4UfI?S za5O5Q1IjQyawXZi3hP}xbpmGK7_`T)4vej<%e)8{(|>yG1lX3VECcc=EXy~50@u_s z{ElBKmJLXc_LbMQlJUu2-hdRUOT49(!jifHDOBHhCo6>|!~Je!^>`&cH^2=4cYQ&I z=&=xzRP~LQv+_#9T&sDhDz7AC19p>}7899w{xXV+^<@}t2a-8 zq`GK)-+(l`)jU_7o`zBzWosxI3&%2jhO)76U`BWb#etb-y@?de@M?4%m|^h*%uq4} zj%;YQbpzO_=HbT%rt6H3qaIsVr5e?SBf%y#{ft=S)kw(DH89rW-mF)P;%u-U^_|y- z^2&N{fEgXeo>5q_Xfk;vD6gjHPk<6rIU0gSVPB~nKW+eJs7^E%4VQ^M_#GheE?Ga+ ziFbg+>qGZSP!iHfhN|$x)$9bNorh$Vogt~E_TdWG05iNfR;j-G&~fD*o|KXN8^C^6 z-+id&ZU7aZab={)a{#K0yv&nVHmWi*W{g+%*iQiUl<{EX+>_=FIF!^B#$Vy&lEMwx z;VOua4LE-FDt)-HyaOb|wW6U~_|fJQF)$0vbkhkK!n_HTGDFxMFobzqD1{Hq$oW%S z?gR{l25<4J8Jk9NftkMeRPmeuX;$AD>4kq#QdKjb8?Xu8UB+zjtD`Leb<(FM+zF6D zm6L&4FL!{Px_RflpSUUQiw($^W}X*-QrJ$>Dl_DYS2nSM8Fk*^Ntpwq5Y%MGXHiDp zuYh{XD5{qepfp?;ermbh0g|eDX3W&f2~Y^?q|Xf~1hv%XcYq^7qt1{k+LGoU0n)6B z^J-7(QJ4!j>&T*X>Bvtv0Z)J|sv`}$ZZa_X%pT=5ISUxu3H>W~19*e^AaRWFy z+%YsTi(kp2D%KDyyz7qN8$d2p!`=vKpfbvS3wIq$c;?+U3 zBU)AcsU>*=q(@8A5Gyj3O4tSzua=}?SQM7j8$eREB)uDyUrFi>An`8Fy_ECCu&gs6 z7tR<)Y*9uoG%`OoAYu9&y{4024Pl05y?p6iyaT3*FHOu7aMW`JhCxHFXhMuC-;gU3 z!On>KS_=OBsTJ$%Q!}87;=|dufD}0&7;DAP4?-@06N4dE>>$n8Y}6E(875wg$$rs% zD<{BTsq2kxqOjt;0j$|+z}O~!H3M)1uE4zplbtA~s7Yxo5wB(h-2u|0iZ{B5UrEmm zpy<@~UUA7jn9@+Qf879*s){#&h@VU92Bc7pY;+HWB||m*^&`O6Rk~j{fQ_nsjqZ8* zQX_gTCK$V0jp#+0ys|Ad;@1XjLe=PHn*7Sqy8$`Xc>Ov6{f!3xym$rY8L%yNn}I)+ zacJEDerW18@9X4OQg{HalD{;0zXj}NRhrjyzIZ$5E#QFEKK7bU3d_X?7KP+{UIX$B zto{OX1y+CY>Iy6w@@lmOu;c@9w6(g4EngcQ-3G=A$BG5Bgm4CIVzzO4^$li8gE9@A zwPyXOwI(m6ar~C-Jxj<~zhER}j9xG{`yF8WqY?Slfl)%Upy!pCQI@a94V?iA8+({n z2Sy5K_0KCQ+<>i*vZTz>=m98=v6(4zVC=&&p2-GoA8x?$G76P45;p1+jD+0)k}(T< z3Lh9-pXEER97>~5IU*oEqfo)v`UY%$9GH}`iCNBrIcgRdt;v}Ko7jLXkB+2_a^8SV zjP*&G1EYAy`sCGtk>xQ%dG!tEAoT)_K7KU@=X*eQMrTv_z&O}OXY=a7DAm!&ypoIq z7&Xjs4Q03in;27-GS<8Sr8;VuGRknYFBnC)0VOtSm@)@O3TLy3)bo;Y12~XIvr<@k zZh$7^tZ%C9=$mm%a5QDaZ~~_NC)KV&GZY?q7#Ra*$TwPr9QanKPJEh89$pQxUZ+V` zd<)+Iwxw=++JN<_$&41E!s(3@Fun0KJ2{j&Fw+UfnDFYr$d`)H3pdHzFU=cJVyeBT z4a|@<{Dhw$7)e!=J#FA<{Q{`uj4|OTk@SqM2}XK0pfJb!q|AYtF=apsuMUiI9)~8c z6y0}#GE_%CsUtU_jx=b6b5PQwj(pmHWT+9JRC`{g`D%m-fE22wyw38~=#euZr(^B$ z>cH4dv&iL@e5o+JeUh_VcEJYh0(FTuR8m+@H(;Z){-unqZ$Kf8X-FBz&kdjumIgZO zfcnwW0bX%QO^&iFFy&}4A~vZ$VVx&h>MtWD}UFfy&?GO&a)O8U@J7r-zQ?ynfa z3=sh{P22$^S8k+64*&EAg%4n4W*`Tz4$R2MAPvsn+30tGWN1-CkC zvGp5Z9_*At+?HT$@@ z$C?FHX@)m&s!=XBU|XsyLl-D4gR>$Aqj1aj1BI23 zddu4jWc(H-MyS2zu!xzmn7&zl%j9$sRIla6A+tPqD5`w}ux`A%utjTJyEKO#-1iy0x{YgLptF?`?c=fJH z0C`mr8z#XkTi3cHmC-P*+A|j7^#s`AvnJ-1!W*9;7`s=%$Oq2yjuef205dhvsSH~-ROx5gtf|Qv-;WdKXoh0!a zkTA_o<31=X8Q%f6KKoJp%0|`EUL(lSaa-Sj14nDqYXm8LeKlVXN0CQ9s%CHf<5$w7 zMm9v`)!X{cfRb0qayoKqz5$fR95SMwqpfcMrJ>q2R)nAb`jwj0FcNO9lCTXp0Mw)$ z+!^8zz$G=ONaod#0LQb6*z5MVGwb@w@uMQ z&LIZO5F_E3-+(l0!?W8b&33o5ir4m0j{|Z84mK@#Hgcw(aorM+VSjDFQ8)Wjlu@cT zfP^_ad9@$ElGF`Ip{6{pXz7tur!xGq>lI$UUjsub4mZmTsW{3mm?0JakFT!4(1R<+ zGDDb`|8dcq7$-?1d5CG5UiKP4FcNq22h4B2E7asZq%AT0#sKn^bB>Q z9@WDJN`0&LVN+WQVEq*nsr7fbk+wRbOyx<7+wvTqs++l?+1)v485a?>7NrY67rrz z${d){0dHCcH-NT+v3x|SPOloL2WAGT;dx*r!-@Ru&jC*V2KAwvl=BUsz%>!xob2xa z`@+fo%{A%?kPEk134x;0Masy<4dB>t zb}~wjUrC|fM`QBP__pPQ^Y$aa0ia{@Z3B|wd}WXyZ5^)^rqh(yE>h+oRlsS=ix`=B z91?mlCr0r6HJ2>c*X-qt{7zo~B%th_9lgnsnw7^5Ak(hL-!^ctcmbRgz3q`n*1_%^ zW*{Q3B> zkR+DgPwfVf3un+b=gT`l$?H`$u97As>;`c7yZ$u@lV2S)UjV0DgD^3r{0^LMjmG4a zLwy61>SEcjObRGqJZl@+%qKfP6V^8o`ONH>BPHBX9#ZDLka!0Yj=WofJMW zL+ZQ!;}bBX8u!Vs4$RQ(jgT0YlIpx?NGPvn*ccKDM&dUxk~dnEGT&h2)OED+qx`Db zIjgj4YN<4DmZa1{{+|MzIK3khYg%HRCcQP1S4!F`(3nzQ&1iksaeD%knbVtbr`%_* z@buumyQg*n>?mh7FL31NN23BdZjC9$-nTQI`Ml(jR}$ugXS^t{B1j5b zp$8e>Hz4m$CWfEB8f;#OO`B1a|&A^Oj zV?1eem4wo#TZY@e1nk-HLLd~@~aW%36Me8AzqG1VM(0>`CtxG1zcJfM#|cK zy3)%L!AR-`q);t7F{fvpU6d}JZPY0>O=q3}X;ia%g(8Iy8ZUsl)}U4V3sSAF^>#&G zN$d@vI9+ZS>dLQ1+x<%d@~)~j!WA!x?5L`}k&##S#@`K4KB{x?XrwLs>pS4!;sER~ zS1U%!lHW+a)cwZJ@=Cro;Luiid&MJ#?VSxss><6CTJj`W^9|qta7kcLEx)pf4cLSV z-WwSyEbrd|ibdW3p?mBOkazuL2HxTnldu~=3Y{N5HXw!07#|yuFlP*}ZzQvnV`BqK z%o)R*9Vt9|{X^sa4zMjJ6R%x-y#wqxXBESKDJ)^mDn|SAN(wdiKfVK`*}2GwVCqrM z8yFcH2>kjl2@Hcq1k=_G2?K$_4Dnt931(L9bkWH;~P*+J<@XpoE^N?@%02qn6ra%#FTNgY{1sl z{GaOiPp$PkK*E;8>OAL{;MbgQY%!VRl*b0_I<0&|iYaW@sq#NJAhD`^Z*k;T_Nu!7 z^BcfPz*`(~_)E|KV8H%ydhw=5DD(rp0qhNTXpAgo|H5JWBfx>Re>7Ft2QM1Io}z z$$K7O?*JQhQZllb!pAE|l(UMrI#R}7{tl3M*E~iR^Yi1CTCrwmMwp)~gd1RHT|%xe7%bcJVyQF3a9L8&E}Ti|Hz0*sAHPS+&{0Gr*w;*3`Zus8#A0Jc8bh1{_6 zG1ev+3;(TvZH)?{<~0QVrvXNjkr!7X{0LC;<67b8>pM6D@;>K`cy+}njWK9BP#_tj z|G?PY8?g1+1r&NY7|!UMZFz0e+QB4WGa7Vr#zdF)2B^ zVcj=?Vi*IG!q)u_Fp8LyANJ1%WN};wAU&h3DRW?Kee^FUNR;cSOE6YAb{d%B z!YEx1myDM5{yH$z#0i*weo~X2faxD&ayg_jgn5+^9#A4_xWu#}8 zo?x1ub7xkYt1}HqeLDft=*RXn>q*K;>{uO~s2M3f`AH0LZmpWH*8bQ3_22&c|M&m; z%OC&t|M*Y;?JxiQ-~au8`^#Vc&AaAaf4zYLVFncs0p9!>OUw z4;aM2t5FPJ;MFR93cQ+S76M-F;w%AP?J_9=51-ZUd??IOz^h$+A;7C$W-87mt#+}1 zfmgfCJix16+#$fLT_z&n)h?q2c(sfA2VU*s?EoGDSG%*Q!sh|J+QsmFGYXZV1-#lt z*#ob3@qYlXb{TBIt6f|jz^h#pKk#Z7O%J@s?ap2g;}CeY%RmHP?J^R9 zSGx>F;MFc;5qP!BU<6+6G8%zby9`I*)h@&F&3n8Uj=)RK3`gMAF2fOcwaah>UhOg* zfmgc>N8r^i!x4D3%WwqlcK_qQ`*;85FaP|X>yzZbSq-WAI{&x-@?ZbUf9GrbU;g?3 z{Lg>EAgsTqfB0kmMM7kL`iK9>H~XLd>tC+L4Cy@o`sE+~Fs}2Aegi!UWnTfM@OB}#pS50GrG7OZFNQ$m!r7O=;Ctp)(QPmT#nj0ql?SYU}to3Ia}Ok zba6TQ>x?cgN0pt?#pP(SGrG7OrFKRam!s3p=;CtJ+Zhd)+@H>8_)mUn_2Iq3rBSA* z(ywr7%;^~omtMJbM#Cj{_Fn3SOYS_rpyASh)N>{EU5*+&qv6u{(=!?_4KO{Ui_6i6 zC-hr!IqL9?E-q(p;fyXWM;V^c#pUS2GrG7ORd_}hm$P$lMi-Z3SDn$tYUNVG}Z2q&uVQ103t^jIIxG%(OGQKESce z&gl98#~3@K>jND7>x?cnGbYyw{aIX&m32lJmt$C+(Z%K1RcCZ@Ii}PZU0jYObw(GL zV?3SF#pT#bXLNPiEJ)7i>a?+n&gfP%%P=^hziMcX9dt(5&>VB;jINn`>TfLSTX0)#pM_=XLNBn-j*}EKfqL`EZZnOn|r%7iIobSl(4od zbc%}0#|xcWlXV~H+0{GOT?CH1=jh%EUG@o=T!lt{dTI@^ti^NbqWkgzK0OuP z7rTm^$qSt(5lhfQUz;p;F1F9pQ)`GTCB@~%t|HSE=!>O9-l;-gdZ+9YE&)mApNq>` zy`7kUE-o*26=|vpec|%CxV$J1@>CW2(wEQ0<;C10KUJY~8s+|T&=)I=ReGT>T)q^S z7p26N>4mJ9mlsox{8xp( zaM||B#lpk8P^B+iz804kWy%HYg}!k4T3lXq?9*#;d9epcnpNn_h}jTN7VNp)Y;; z2A2kYpFXLwPe_KDAK*J&lAQ8_hD(FS&y~QXapGq*TpBEXM#CjJ4KH=WrSapZ(w|Mq zr7yo=-f;0u^|=~BenQu%A_ZMg!h){Q*_W(<3cc3dr%JxM$?Qu^?<$>K zVj&hf`x4b%=;V^2UFhsf3WC1a$OOL>I{T6{k%dk!*+VOIa{2b&rIX9Ik7DOCMRVy> zp_9w^QZwWR3c+$#y3onx`&Ti4nb0{23i@J}bJs?plgp20=Q7WKzE>At=6Mo@7dpB8 z`o|LN#kMEMb)l0>_JIqXTz-9a>EM#wj@3K45+JW*5tudvmPK)yHUvgN)t&1GX6WjM zTsJW1R;Q)KftR`Kju8vGq9kpf zCk%o@$9Kt8Trx@9hdH-PCzpKgRXY2UlShS4E}Wp?emO=DRgj2GP0&2sAJD~o+CHGG)6(|AXV#P? zmz?IR(#hr5KNj<8`>;H%y3_W-Io73P#IlO2Ce!u-UE?He9~={1Iz}w$E**WzSnVdG zFF}`J)Ap%&mO=-YpsAZP36Jsy%{bxszy-}XVHZEp#3K|s`Vx`SJM1$@X%2H0I=F;) z2xMnAN^{Vw(8(p|iwYfm$*x|P4lY3#foc1IE_Tv~2O7b$DkdtFs`+CIeV7ME%J zfG#f6DZr(oO-XP`d}-GmT!QY>$t6bttM25IV}PL3_8}a#C`sFg;M9^}+CBuGR^4g) zytCO==;%w(MR(dhpo{LbeL$DI)Ar$7w5B__1l@E8mjsJc@1*SmnqhC${V}J3MxVT; z?E|{FOxuSjkzyxpAL1su$r!PqyUFNF(A{M8CFpK4x#SkUYBIUxnhMZq`*482x*=^J z4rmu8Y5Rb#y3_Xg#0DvJ^d$

    kckankAF8eK^EiU7Q})Pp;1`bZ`l}x;Skg&_zkw zJ{*27O49b>cBSGnZ69t?>e8Wo_@auEw0%GqCF%D8-IPRM^8Iz)(U+Wxt%01j59k^v zY5Q=!PSKsV58AQnPTL1`$vbTy&?WD*eLxo_>GwftcHPmJoQy4*r0v65)?z+wA5OM* zCDE6lo4^>cpo_q?eK@UIO{VPwy1F54pD$tr3LSk3x&)iH59ktX+CHFb*r)BoQP8eC z`jQiw#eDjGzTUfc()Iye%%|-Gx|k2Y5B}Bi61|1(1G*=#@cV!+ABXontHKIh?1b%8 z=n`z$K7}s9hV28oMHPM@JiV=}!uBb2)g87^p{wq&eF|M%hTjKwaeq5u`+zP}&U6Kv zOAbO8`fbl5(4?aPKR6T@zjycmUkv}3Du5g4`)=-VXW z(#YNcen!`b4ZjbSl$ycC6}|IOi@o>Q0cQW8_KwW_uy2&0knuGR~4%>%sq`Y!o zC4Mel1cvQXrK`!XeF|L?jBVsXmjuK1DRfCNY#-1qs<3_7_oy|A_m3Y0vg==CFl-;z zFa42(?E|_8MA$woYs$hi$HcB1k3*s3yQFl{9kvgZlo!#On0#f{3>(Hd)3eAVm@r2s-&0?+Xr;{zr9`ksDv$rq9kk| zE?X&wgV(F?(i|8qba08Yyz34wah#P*!uDaas)v2pKI}8~1e3N8=o(dN`+%+{)Aj*f z?1bNk?WbBAdSCly=c|^6-pqcW@j#S@NZW@6P*)OMg6>LU#IklNQKjwk*3N&tC6Ag7 zJH6zcwhtzDHJP>#_HLJs5evHHowg6?Vkd1MQet%_(U&BNYPy3ZU)M+S zk+u(+8~BPp()Iyef(^e9mGr1e+Xr;9leQ1}9ZG^}`+RUwFzB>>NU>0*W6uiEx2)g^o1|_Zv5Xp?$tMfL*17OVA~% z@cZB$EdQXHQ;yzYQCF3u?eq1~l%(wgx+sY~FTRCZ&oe$BMfJtC$Au0qzlioNba2U$ z?k@evC5P?Hg#bAZbr-rzKlUZZ@k=AKCmW?1vW0%^OAg?dZT}IrPn|CBN*=$ z=bf;93S9#tY#*%Ha;toV->1;k4PpBfy4VT7PoYaDVfz%izJ~Do6uQ}ozGSIVl!Wbr zJzdMrkFb3}x8exf2Xyy**go84RsIum&K#YFSzZzhzYnF$yoLBjd4p~OW5ja6t(XtL z4@=k9$l>>4yp|zi)|yR88zPL)XcAplr5|S!42!buO<8kPQnxb}`tiG@bbo1K`xLt9 z4%?^D)oJ1PDRfg3-zCGlWDYBtGA*%Y#*Xg>T@+y&Z%^%u+KQ}L+Mgs*j$f-1zqwEzYpiC%WN_E&aRuY zBcQ|fp>)|N=Gr-xt}o5ZI~(06Gd{!bL%2+7HdF8H(yR~){Wz0Qy1sd4`(Ov(e4&#| z68084Ml6+7?}Y7Bbr&UJ`xLq;3EQX8#bx+?uUG6ut0iDs+mtp%*cj@oXuzfJ(nw_wHFyzYN@ENub=yK;X znjd=y)2B;EU*c2fCZjJwSMP-12Sv~_3EQX8C6lmyK==3#zYh-gvcf*Y_F=`{qbh8l zLf5DY+lP6iG_o0o4#Bd7?9##I2Oh&J9bAI0aT0zXLZ8Z8j#2n1L1ySi$9&1GP!der zhYlzSrtJf|=uX>*O}Q=|I(F^sA%RCqJ{claNpQ)zwWcJv1l@JVi2YjnByAtiC6ly$ zK-agEwh!o%N!mW-lc}#EZ67v1ite<1z6d!gba45_QTswCm$uX5c2Xqk_ejhxk&3xKEpo{LbeLz?5gx{ws zsoqK32Xt|nwh!pyGWgbIh9l#l&%Tg#7bv0f;G+330)I9$EKq0 zUNo74X_qFfx=JUPL@pQlal{hwSMuhgjk>u@wb02W_6+E-eW;}N(LKh`r`|wrPO5iJO zpF$TU;rA(Y2{!ybpvx*S;nyKS&`n@+iSMII$9KsFX44&g3AzLuwhv*0Js`sNDRk8x zwojpp?l|vL==!+B_F<>47QhUa=$-a|n}uw1*+F!z_9=A9By1m&Aau`%?NjJ39p5FMl2Qd>`>c%mVe1 zgzW=)Wh3JY&AQ7`f-m%fuE7?z50$if4BLm}8m%G1_9=AH9kvg#L&;_zIs^ac`JsF%NboUb67q;xz{i{ko&g6wCQb10 z1U`F|by?%HOW#W!Qa-uuLki%N-9DuNK6|x~De!S5zkJJ8fB1li#4m><_~e(bx$(&_ zpL64rUy>6xKKbQ?ZhZ2KC%^F*eoJ9OPw-3F+-f)YWjDL)NrQ;(>@FXtfEXp^*<*eP zemNf7{hl@v_*FjmB^syuF+4(?a~pbsU+}AZ@C$ymoBa0SE9gvqdn18~Ir^7?jqb0s zjYwVH^`~)EDXmKmX&n)>(eh982>hx)`WMe#_j?*h;Je?`LgLJP_g5SX;}ovr1Z_7eD(a~e$Go3FH(ICtIjq{#%n=}DUjeDf6!BlZ$%c>CSeUH-+C%(Jgw489bwj9!Q;sou&XaBY{oBHGXeUa{*>BMN+v^R%Kk(6{Od ze!;i=(~bh)atkLCDG2JY?Gt{6$A00AV~>+GrEnCs+|rf;-{sSo;0 z<2a#w$(f1#f-ku-u_eBi_Tc0D#noKxqPQ>Ri!T&S;5&j3eDM28hKnvA{R_V2%=YDD zJuB`6eDJ%@QxJC?{Ic+G`qRDw-}I+_g+r?8Pfrv08n?WCqz8P{pS~vWO@C~(k*A@* z7k-uX^!H+}&0`&id#A<&zl!pl94>s?S1hi(-L$X3cRgueeX(`Z^+f-YLwc1@esQpO z`RHFxdX#=+OE~Ck_YL^uw?o^&NB^SESG$k=k`SWpPt%JkA2LF;KH*I6L%ZPX6cOIe z$MH-$hjN;Mf8@9DEw`|*3g7g^-W&KO|FEwLzuJA|x9~mQ!oDhekGHU|3g6=`?5o1} z_Z#*V_|`L~NZs=3%|M22^4q(C;2--J=jIx>VP6%#N~8eO36DL)cf~TmO^JB-&l}(o@)1I9A(UG6(D-A5M5TUtwQyETIl%@X?_LmdIYkve7U!tOd7k}UF#7u$e!@) zdkOoB`g=WMYT0x7?ys<~s(klX*jKFe+YT}P?5=0oZ>FL>@c8>%4q;#61z7zX_7(U= zf7n-~!szw8scU!r?@8Zw;gNR+g%=4Znqo# zi^6Js81@xMs}^5jUlo3pkMYcMq3aL(im3lJKEu8$e2-mtRrr#p>30IBDX^PMI>Mv6kpYbivu&-#h&U{fm`TeR5Tky#*9@WMNzpVSZeAriY zgL3l~_ElYb+UwuQ)Wk$_Kxk18#oPzG9u#{HA@yk>4(#_7%royWi8k0^j35{8!wTST29gO(ws6 zRv&!w%ZZ*YpZu=%6no_%2ZGAGeDKTiZq*b03%=!(_7&B4`LwUVclorhIN#ReA?+*9 zlB{}yU+}A*;Fr@4tDfL@9pd3&Y4AJismyFm)|IwPGaGB+SN$=bIYH3lGwmz(#hd=L zufR9`;lHXooq8O`-e2K+oTPmPzQ;-Uud00aW7=2jyf1p9f7gklis5`54{Xe?c9UPS z@Ygs=`-<}2ZrWGiTW)Dzv9H?SZ}_k9w)Z@qxws48^n`syo{Gg+_^%4zat`~7#5BE5 z$NYWZx9}~W@Lz#ne1&}lzWvFW6c_yJ$Jh=8zrL@qukgn9egS97gC0)%m7K%A!i&1} zeArioZ+XUfsB)k8_zeG5;d{Oa`-OEWZuqYX-|`Iq75JrBV{4F6 zvcBuEuL|GaMc7w$N5R5Bj_1O++`_)9y9E|KkK?)UHBLD7^eBJuRevTUukuwt%ZVu8 z5fR`Y^%Yri+Mdib<%KV~Wu9_!+4OqzCHz-~FZwf6IZ1BX-sa@VBR%XWFZzRD)-_#E z*jJ>#S#k*bs_HV5a`wYJQMeNsSJ-y#b4zdfr>ks>idfE=pjL?NIJCn)a!Bf zIioxiZPgR@73G&62>%t^dTp0x>g>Wd{o%g?zxWON>Wy4o-7m2}Sor>q!heOe-Rs}X zpI!K-KkO?aoO&IU8MF)E<0tGZycmm~u&-(v+Hwy23j7*xVP6%#`3n20@Xc5FuL|Ge zJnXB&FFK=tS>H82>?_D$<1OqfGD)>vk;$~#CSBt{?5o1JJi~ug_?AQ3SHuOB{g4T@ zDZl2mw6Dl0(fp=;1%C0B{C0K|l6;1~!oA(!QTVS2m09B??JMxjSK3z`&uMznz5?I$ zq!}`xX~obIGUGPo zTMx5ukoC77&Yas-zWSF_-C4f%KxW;3({G{s-`>OCQxA0$aY^3!M z`wWl$g=4SV4f~4RBkdQ>q}+vH?LOL*X!$Uj!3{Ug8No8PdnaIdx zOHYPW8nY!8S zUgIb1E3!tlJx0iK)YE}<93G7RWgxbE;`|k6LeF2BuA5b8&+jY`qW+HM!CMmji~qdq z5BrLG*7p+jRpER5gnd=`)&t?cDtyZ`?5o1}I1l@Z-Tk(2GjBKe#aGx@;Ftah`wIM; zkHWqJ-}}*c`$InKTwf;d=2XEN|6yNos-V{$nZCR5Er;-56~5&V_Eq6q4q;yr?`nVJcNB!`2LQ6#)7T#@e1E55U$MK~ z`<^V@LjKDilF7U&-|Ozo=3V$2hndd1@FoAu=Uw=cKmN;Xx4)yz=uP>S4}Q%o-|NK8 z=}k9Q_-UP*i1Hmf0zUceB%s{2`)FU0YN7p#nb*7UO@G)|;JaV2`X1ZG{aNzIKbrWq zuQIncdEVNug||G*_xH~7IPu-@c*`&N)o$=hhNqgxGr>2*yw_Q1@2Ce0t;>hLB45y| zC;8=ek1n75F8_9B`Q~$}*e~cwewhIqpZu=MNjhE!EPMyN`5=q4Se!Tux^cqw6Dmm(0V)VEAZX#Xii|KKa_7&kTtN!G7?O${4Q^;Z2)tMZeT$jCnk=en)_c}MzgM)9s z2d4|7{&t zY)99)Vp;N758FFMe`XBFitY7FrVIz)`XqCPgYSLhOd1Zp<&#;%v4(qpmgLVt4;D+) z6Z}%X_{zlL)YI$A%p4BB=Zj1ojBA-G@Lz%N`Ilwq zLp_A8w4TgF;)U<=6aK5hcRz-GRbeg*|Hv=+UU%UCh;}=<9>;he^%Y?&y{^f0;^bWI zI31S3QO`Pmn+e4+pI5)f`S!xs_n0Zg!MDAdImJKzaqaJCQgQG-Pi0nd@IAk<41T1O zz>(71nO7WhevO~7ufQ+4h5xF||E53uS9ssrKFr+W;Fo>~`wD#fwOCFEohuF~(~IN9 zYdbdci-T|bgkyGD&yqvAy-1b9e9tYp+ELIa)|Kcm`t6HA69t-~!__nt*`#AVD9>RY`4$3tj zg?$CS{YAJx9_gtRq&1$ye^udkE$8rGfnVQa*jI$#^*K7+98rJg*`faUesLc*zhPgo z9AA1q{8!+I{`h`Lzu)s(*jFDMd}}=x_Eq6~T!npA_~tk4EAVUn4g0F_wJyWH2!7Z8 z5%d2A-*OKBRn^n;e%M!q@9!n-tHLk7VmyN{zA`C!l`p=S50jprzcMX3<=gK>80V#Y z$vG2~SNZD4%uHVR;x|*17ryw-+~kEXewp7c?H0exR~LNq8~&@Rr}+*03Vhqu=;^3u z`2#aUIf=E~51c8=3*T~x{lUVw9KwGEzU_bXR<_&ccr#5o<=Y-We_YD9e8Rq>e2>G- zR1UuVy?n1x&)Uc5drkZrKe0bZCh?xvGFy4!Yy4-r^1`=#;`~+NTRv%Df$wpW_7(UZ zC*i-UdRh)?UvXe?l@ETIeoJp>)^ZX?u5lRtD|SQMZ}}1XgWy|FX5w=2ttT^cIrz4_ zIBotYXSPRre1`vu^6hWQF*-^S7^!JpC!62=pjvQ$tUeA z4&pVP;lHAuCC~6*6@Jl~{Bl6E>yPow!M*;j)4pO^-{T?eD-Pl{J!xN&B4?G4@yvm> z9&c%1fnViAKZEb_6aFiXpY%E!ts8P%>(ESRUgcY!Xd|uliCAZ9cUihLjQ=elUwjVxopBKKyGpm@#erIE3)gSr_{Hj0r1z-GT{&VW@ z@tFzG3t#+Z2K2%=ziD5AuX!hPpjY|&elrPr;p_X&Ea-)Ae#3tSzWvEaJLS-RhD?NB z<(uEMufSLT^3`1GX@1kbqI~n4_7(W%H}(gs-R3v#EAY*4+E?J4-?XpTz*+4kzwA^N z{pr7A*sk(1p4k9d<&$4d0Chbvo=J+{bf$g9vEP>764gHLRcD0-R+jn1J)Mx*${jAKM zjvRVDg%|5lzk%=Zlm094Jr2{p0^j_meFeVxP5TOb^Og1$=cbykw6EqoRc2AgJFv!Q z+E?Hg{n@{qK(6te_7&xu{`7rG3Q#z8>dkU*T|VzS6$pz*)DO{wwf3Zqt8N2h>W= zX!t-<3}_6Rxv9>~q(d zalPIsI2S2r+o#!>reX%eAl1*gB-K%eoy-fe9Iy2EATD< z^k0ErbjJ4!zU7wtgW$Vg(ticM=}-HLYZbfQw6DN-yJ=s6@A}ieV%gDhNc)QIn&vm{ zEAXq`{C?Mbo%z{WrL^6G7K-nEo%hHL?W|H3ooQdOebMcveT5^f<&*Xm_~t9^D<+KY z-?Xp5H@|6LfnV(=zv~=hW@?B2UYC8PeFeVdpZ+WGO@G=~DApb)X+fDmw&MUIJ5%hEM zLh0eOuQ>15^rU@-Lui!`e-4hHmUG%yIBZ(ZxjzWL>CgQ^@T;B}&){1QXWT48S{nGJeCR9EAT4^5 z-=23UANB_2o1V0KKX5ZNcrTK9po;b{C0c?Y1oqAwyVJ>zpXdGXaBZc4LA)cE9=>wOxZ{9<7? zKKbo)p0u0&%MCwWKKr-tj;4I}Z|CsbE`wD#bSK3z$pXMv=D~3b2oAwp> z?yt13z^{6uf5EqW(!K)U<1pZa_Xoi*dXnG1TZeRp(Z3A0mVchV;uu2HllB$( zrYG$y&i6JwX9w&j`j73n&<-L$X1h!n4JlJ?cgs|-HIGx*hR^2Ew}Jr6~5&V_Eq8g zI}Q7)@J)Z%SKwdE}=n0wuinZLcv!0H#$C5QZb-wpiZ_gm$Q zp3L9Qeqq_?;In_*UkX0^xBaEyvwu4e68Plzwfq&}li$8=4=2Q0{n&F{_aSid8w!SG3={qxA}_m?S*f?!oDhe^A-N9!Z%-GUx9CZ!tv## zr|kqzlV0%koo4>_s;B7>`>OCwf7n-rZ~DW&Dtyx)_Eq7V{;;pWmp>nRF5|iO-@#wT zbDb{*f8n>zA>bst@Z0k;2|H2_y-vye?L|-X8~&@pH^1S(Dtz-B_Eq7V-`F1nU+Yll zyztxeW9DzK^38AfuL|G%hJ97|?#HmN3g6#d*jI&be#5>heDfRjRpFc8u&)Z={Dyr6 zzUPa~-wwX*D53_UUx=_S`GkGNEgI!teP*{b%J;rG`0U@lUjTf5za5_iKEGca$6bHw zD;&p-PkqJ7(#EHL?)=--pZ(i$rr?ubZb$EWay)n3I-9-8FFUPOKI|)&?`>yd<%WDZ zuMy>wUoKbfdXnGvw@^O$?f5eA$#3VW2A}-0;OY94Uv^#^pZs>bC!5&G?^<_o5G45G zYRsx9>?^KL?s=cEfyeSF?A9mYzv8^h(v#u8;=Ie!Z)snxxDVP5e!=(nO#6z=b^X1k zeFeVhN&5KC zG{51$LY}SPaP&mKkdcpm#8Gm=7r!_ZF8Jb?1^fkH{IWp3;EUhP-(K_-znQg7t9-zWGY~3VidG_7&SltN!fY<)7gm(&(3ti-(@`KEb#A!+%AX{?s4i8T_h0 z`j=xhi~i`}bv}(Gl%cP1V|V$qufR9IX2xz{Oz23Yrj+GZwKH0VYG3`v-1s7Pv|Sk z7hjpbz3M5xGJkvFi?7VzUijiG^S2ki_{#k4g|B`jdgwxD^&{b4f&Wmi86+?#HyR*ne5|2ftifvC1dE9j6Rm z(Z6i3b@{Zf*hcI6)4l@V@=5y&e9I^OSKyo9w6DN7ziD5AU-U%(g70yg_7(V+f7(~z zd)%h~ii2iNPuf>(-z|LDSD1CpSDe4XnruH0tHsB0yYl^#yeIp2*~zRHqdb8PH6GHw zBLB&vC;OL3>Mo!C+vh5&C;PYWMdA>8e7~e2X};3F`dW5x=5Oa5YVV_Qn(Kjn&Xu

    gjnT^S6UYn=}v zD*sVmah|p3*_W`d@T#P4*wNuqu0emKRwdVMnQis zu|N3#k@e3xPyz#Eas7B-cqGkA9_jUZfkI(aZ`6rLd>AddyKKD7#>)hu)_p#$y&KKcV zhEp%$SHRu+Cj1Jx-SfrvMaCC_dCD*R3eONZ{}+CR<%;`Ft=|sZt@9GUvSp9{EcsVB zZgu`I=Yxh*PT^O;EuRP5Ebsia<$>#%#IJBX>(*i6S6Cjn-$9jBul;dc;QH~-U%UqA z)2=cDi|RE>A*lJG0TX$Rp~_&SmoVVf%Q-|<`FS19|$ zcmlEzs6Z^!X9{aov}8*csJ zmV{S+q~SPR{293GU-U)T+vbthZ^!X6dArtcxAIi3y{uOesBp-BWPE|U_TKdwWvj?1 zwSGH}quuWczXHy41g+l=oadxkzuj;fFPsvJeV7jkT>KgBZ9Z!KcI$_F3BNL&dP)4s zaN1w^74l6Pf7ANyQ7&&Bk4nk>#Wvc$kGK`?l^?@SIfY-L+!xmwt>2EXm$Sd{E8twW zae65IGv64$E8~my_C3P1*Y=ht30%e(+e({92*>!f=eP*JigJ0sXs`OZ^CPX_j`nWc zg$iiB@w*T9BJJIIpVn_jnL0Ngm0zJ=qLWAb8942r{0cbduktHg zq@$lm{0dP>*N^fm5Muhj@+;u{`Da_-g%j;9OU=e!Jl|URuB1aMM@ow;OKyYW;S@O<%3wZn){I_1g`nz7oGOocb!i z0#1D;|H|4^UpXHH&iIDbZwJoxQ|h-P?G1lSPH+5*IPK%*SHx)_FTWyA`*``4;f%*h z{dVG%-^;HI=RO**Z~R}sB~E#~{E9f`@tzM7r#xPMMV#Z}gnzsh2l?MVxwh`4w^cp_g9~r@mf(MV$J2<5$F~ua{pD zr@mf(MV$J2`IX`P{!0CJ;?&p6uZUA$FTWyAeZBmOIQ8|$uZUA$FTWyAeZBmOIQ8}N zE5qG9^~SFZ=e}F&w-cxQUVcTK@_Ww*4d=cRWkJNxS*HTQ4A1un?OCS+xMzJPPJO-c zE8^7G%dd!2UoXER&hho~E8-kqFTXOJ`xmL-PMrOF`4w^Y@8ws9yLHveuZVMez5I$e z_4V>A;?&n0zasAB@$e1eP9D$qmpJwH@+-r+AIJ7y#tVrZwtjl~723OeKfKZ??Oi@R z%C!jY&ac6u{czX6hhHHrneWl#cRhTAxRYP>MS>yi>E%~w&vzVp+t*0_cH-36n}0=|`YOM&6F2)^u-{dFh4?)6 zQho)T_Edg_<39Vo;MS!4uFHd!`t6V(4?M8F>Wc$u;yQm(A&0o?>&^>ME=PZtaR5AT z=7&>${ z2O%fxokB0s7iAIIUilSp>Z|+;*R41%%CCS^FXdOjsh9FAlsTkdDZfJbK-a(Oi$J8= zS@{*h?M{C2XB;EbZpyEK({9SIfU|$)SHL-r%CBHf+DG{n&h_a3%CB&I=WtoCaLvWZ zBl_ZDNhgo2SHPV-sxK;yn|-|TD_m!DaZWsI=Utb8vmfPGIFEC<`176fJ5-OCe(<2F z{jTyWJb*^MlwXCr^GdwmBK^4YO1#G+INv))|DrD*GNL_|Uja9NkoxVggS)qmG(m6w zAY7)e)NjXiKgW}$emim3zs%n|d5==R-P$vLBK6ye+kBDw?Zj=qNd0!=Hoj87ow(T< zvr_fqIXGseA5ML}@hkRY_QWxpUwi87Js)Iy^M7QkYJ0|2a2o4}Q(ui=fxuEY*p=_-$!Jt3hwsrQokMYyS#d--wqsw$l1S+FW=9y>;mcE@i(d8j(+$a zH`!=|`4z5Paa@#NVS>_b%CCUaACzCg0bP617Y;@F zHGYM2Sogc4FC4_ya~z9$?FO9wpz$lzFQUH6uYglu$6L^y z$m4j6)NjZ2UY7^bR{0e!64O4)uTX}^;i4~aCy)3uaN1M(6>!cw_gFk;rf`KT&=K zoc(M33OMCgeg&NVqwy=?^dIF{z^SjsuYhyBlwSeocqzXE&hb)y1)Srh{0i3!sh9FA z;M7a`6>#dM{0cbrQho)TdMUpGPQASM2XR}^-GfH;U>PrW4;tB1ez?<1#}}ClHjc`# zaDL79%C92by;P~+Zt{@-piGtiF8PntZ%2F9f40|2q&@410+;U*3h~lD-ux@;hx`ZC zCbb{(H&isFp(AiY3vyp(75(fAcERM4-KUje6IDZfG?PuGv=3*7Z1`XY~) zxh6>$2Y@+;uxhp0c{)e8xBCa2VIM_B{DLjl~&Ck;3IV;S}IW4P&sd&z#d z=@sd%&%plO?|SvMe$3xcu1orH{*QaQg7bZOwD*p$J=aEkgxqp zB86WW&hZs~WjOs%&Ib*rA4>enaE`C=E8txBP@PQd;CLWz>H6W+OZXM)m@ppzuX1?X zUo_ zeBTh4Eo8mI#Y)$Y>Wf0#Htxc&T3aNIxcD=6^bS{jv4duNnZJlX(;tLi;q=9QcZ6SI zcjx*Meg&NSaa3s#efd5(qQt5%-vKdxRJqSIcz!jPzB{Y(4`yDzu?3%|m$ai@RL7Z1GC4~1XZ zwBxu7zp`mZI|#qRv~&I-{K|0JQ}`85%bY!hUjgU2Tcq$S;LfjvU)jTnw6pLld>y&J zKpLXgZU{J0FNt5_>*&7M62CIs^)LR6eJ;mQ_!YjIjQdIbcKez#&MEcViJSeUemikn z2c&*Gar<3F`@MRhf71)me!<;+YN_9jeq7xlsozfA{jTcEcc9R}_%oh=bn?sh2zkgh z?oz)U{k!~CjE>0Z_%NdVg1fqli1z#8w*E`~cJ%M={UNQ>+a837a!ULPY=ilzC|@Y; z-90j-feP;Oc%zhGAq+{oDZj$~O3JDH3b@T*RArI=-FFsgor1gd0c8*s=l&X1G!?%i zkF3vdOec@%3rDbdjnflvKfpPT%CCUi_gd<=+iS$+2}lo>e%w4lxkJS{kEDJ(`eA)_ zyR9Sb-981?H5KRg0;{Fq?%oZm+$hfPxYTdQ@49mq{72fmI$+3l7CeIM6?OrBIOnPI zE2KSgo=W@*-s$YA{0ixZt{<>&5`JX` zocO!KuMB7Z!mohyyMQcK>EGqwB8ydVo?{}5Rd9Fz3t6m+-}znd_*#J?`m^vW;Ecy2 zi&gq@d8)`_^~34s!mp4<;l@Sym8Dm3{tCZBx&e6zvRJ+STSYP(7l~h4K^Mv|{0cbZ zu5b(K$K5YO7ONl5^-bbeC_uuvfz)ru?LK#ZKT7zO;T&J#SHPWK!mkYHIw1VYaQklJ zo{Gxp#!L8>wWmFWUl~rlBz|Q$?J4mq!|AueuMDSN62Ah@eM*$@E5qpz!mofco-g&= zVNZ8&7g@ogFW(nygL@l_yZIvg3jHuI3->Lwy<4w@Us-_-+F$sU;k3W-E5qq;!mkXc z{e@o{PWubLGMsi6eq}iAEc^<%`%VeJ0`9(362AgY9)&b(u>&G+=2sHGvcemX6Q}v! z^%=PBAAx(O;tuMBtcsJ?vf45O*~a(@b3^$oZ0DR9*{-0E@w z7k@^90sgM=D-=ku_$1n^zN`-bT>KekqurEW;h9a^LHQM~lR9}+U*>Ds>)YP-4bRQ7 zz49yI^b_S*cy@;JD8B+uKU97Noa3nc3OMDL^FiFIb>pb~3OMbl{0cbjsr(Ah;!z&u zSGe%a_R6oqSa$`pSjHD+m|Z_Iz9_@&`VoJ|_Lp{3eueEX?WX(+={(d+`4!T6I4;Vs zfV=)>e8cciocWdVD_k_B{K~Jey{7!iukdU#$3^)Sj@KxU@~bese8}Gwe+KU45q}0w zeU)E@@f|eCFY7bnQLZ1=m+u{5brpYh@hjjme}Pke~e3f4Tr##B9fOEW*UjgU1 zD8EA3fbuK9LZUk5RDOj7ZQ4iq6~g?kf6*83oI3ese1V(%$d>o6SHMkvTv+hKt$&=? zDNg%H{dRdSmK;HobItZXmq6|QUZcP0M{^xw{v(2wfN`VzoZU)GlZuKK#~BaW}cKJNP{ z_1j_paIRz6y-Iszu$w%}uW$|5{6y-vqaU}>M*WnE(6qAwEJ z%%5>S;O)oNkpM3GB2G(tD!)P^o6RGs-;Qpva1)pD1#asPs_4k?@_rC-8DF$_{foYB z!|j|1?L}XhjdoUk)fSnVY_IyVt|R&peQ|(K|CIO@wnuiq1IcbOzBrKQ?<&8F#0_Y+ z7kz=d_M$Js@RU>e6%L?i2jy4zytsa3e6ii3{K~I@J9$K31iCmb8ovTgKT&>#?GF1< zeuaPy_?hEq=AR~SIsFJpJ$9be$KUk2{g7l5;m@GILE zP)^}jhEq=ASHQV1koxU#Z^y?F=JWWu;gnzESHRsmEc^=5A7?k=SB5)zL|+ter5%J{ zAu8n7TR9&D?(8Z23Q-}8Z=2d8KkE|$_xdxUMdS%MpON-%zmIbgKiu{2oxiA}OWr8; z+p#P#uN%KB`iAm-Uf?pm!0De7zrwbO`(>%$Zq>Ei_d@uU;rwn2ze3i68%N<+hI76M zzcQTTBJnHW&Oar7WjN&*eq}i4m+&jY>9@kK45yuiUjcXPr|>JV1h-xZze3e@@;Aiw zz2k@r`mTQ&U*NQx@GF?#&1>OThI3vBzY2vLa{fyE3a{cheIi`RjLO8+ii2No(g>r0>?)t7O5;HobcZvL+7%lZ;%ullmS1aQ^Y zt@Bd99rkzYJkAIFj96;N1|BE=Z;^hB0Ht^zBppd^S`Xb!O z@fCiB`f-dmBK|7<;ADgS$oQf?$5HqdUe$HD#ILX{SzH>Q0U2N5HXjkDm*3?(P4?MP zoZo9yxe?rb7ZBI+!)XWMR|r>-&q)1tB;z4Lobsr?%rk*JGQJ4#a~y?V;WW{Wi|{MV zIyx zuERKu5_w!)0)y9vKCoOTd?WjO6A{K{~SyYMUEc0U4#S316YHxsy@zHU7fer5eoFX2~)Q!n9H zhEp$zUm0%u8eAlk@!~lta2;PP+}2+BmGwh?g$CvL@0N3$l9UE-2b$s~_3vksJ8xPZ0_?4A6ru~Iq0k`}I zv{!vm;F7rN>v%i%yP_B0k48VLFEZrWkLrt!3USpJ7t9P7er0lU+?8Kpp|$k~*W*ulN=xZlO*1z&A;2am_ zS6CSMyAr=b)|wl4?Zuzr=#*3Wl}#iY7v)zrF^J3f0(Ww% zzF;hDull;U1mYatam0Bm{ZRQ83g2?RE5Aaxo&77n0`A(Yz7afsNBIf)UEWg&MI6Ep zr(Y?*!a1z#U-iASJ}bX+?_?nir~0;a{;&KB?P-7IR|sP}T)w|ych+0wS7DKN+N-{- zO9OdSU$;NSepl?k`ZH)R`r>%X$s^+n-26f6x3|VHGOi`{+YP7RO8s`j$r}+R@X7<+ z{1#CHKiuSz`t8;a*Egx(j%scolx#2h0=Mx6fA{u}&$anKqM&{_^;Ld__UvEzRfLQ8 zVtQ*oPA}zGXivSAUq#@io5`d6D#CrQrGC3rujBU`%Y^){`!0jmE6#imEFXS2^;Ld_ zX-B&$ze1XWt&>u}9rCcA4{#Y@6mp>5lwYBKyX#;48Mv(*;8R{Xfzv+9uiEk*Ig)K7)^A640@pXK-wvGX59X7%f1F?2`hfZ5hf`nSSNJ-T4{QB)WPS0w zgWHtS4+@`I{}R7Kd-7h)4{7i6xKQ0faX0P~zd}|Szek7?`?a_A9P_{rr=5jgSwH6g zm>+)a=~u$9ti8=gt>11q{Yv;1aK=fHeI)&}{s#I{eOU(*xUA2(PtEZXeuZrWc~`i^ zuTYnq`+{)cSHKyMf?s&$!H0qUOZ*D$8IRKX?S|9;gWxQoECY<9XRcv{0cbjp!^Cr^;Ld#XMd{o+wr^3o)W(@oc2_H1)O$MeuZr) z?IZCk+?H|Q9pzUj7tQt(ze0P)1GRp;;rw0YSHN9AGJjFPiQ^*qSFpPq7v)z-6X3e4 z{0cbzQ~4Eej*Idu;5IH=za7%^`-oE{@Av|D?S*gPSlIkW>$gK&u1i|K9XQu>yn-bC zqmm)}k?$|so1dVnn6~FSfGP@pxY=3jx8rxY4ru*$;GFMTzdanw0Q*sXg=uZ$rS;p< zp5H;O-wvGXZG^&%lZ$%RbRJ{*81(}$Bmcrt2_H^Jm2WG57NwOPvuv@ z&2RDbk@k*<nxP3>kyYa(0uO)tE{c}AReuZ_!`LpmVtRsw@VRs|_<6@ru zuJ9|o1L67?eg&Ly7*yeqeo#@F{iwb!PYkS8+Oz(QWwR^J^Lnk{j&+A|QP5Uzdn6#x zKEkiCzBu_Meq}i4yYMT+X$Rp~z!_IWlt6!%`#VGl1n2vzh$@J_h;-3UgkND@WBdwq zS^B|DHG2xb!g@p=sP)?oryYb}VLc+R!!e1s|2yZfIIR{OORfE`@T&;q$#Z^5{0gVw zZv7E{WjOs=_?4BZrk#af8P547{K}5Y=vTt847dKZemne<^G@rx8*cq*{dU7$KQg|+ z%?`N5>9r4Vn|E5j-TE=V()#U&o87d2yWwUBt>13A*+J{KZ|+;IQ>fESJn^xO8FIV`jzr4;FMGO6>$2M@+(}^r+t)P0jK=RuYgm2 ztFa4s?u=1!mda9Vck3wjqr}I zwWmELeg&NT3a75xkF&qt4fex1zQV7tj<|U({0cbvCr)#u9|RO^ zJ_^6W`r_;<=Yznx4&!#7^yBV*S0h4qL$0o!bEd+WjOs)_?6+*OZXLVH}8aB8P4@b_?6+*OZb)H)JymkaOUy0 z6@Jwg7x-Lz^=DUiLhH9%d+ICv%5dr{{K|0ZEBp#Lc{pwZ$#`LbHop~qh4$_{CHxBC zMe=;yM)dY`=l(3RJN$4br|66J?svtXaSh1kk=Ad=@6!LZemiiEqt|z^&{)EdtVRztGcsxRLo#vzROGp0M`QGSK^1J?)T zSC(O7@+iN;NiNra&_j(jzmtkF9tjE;z(q6@`%1j zn5F+HzXDD>E5Aa0c#fCyDA1c2JLm-K`tXD{vqaP~2Li!Tzp#17iT{W%Wj{Tb(N99+*X&>cR zNLX{ftNOb9RfHA1c0hQBej@QJ3)@)#TE89pJ+7Zxzuj;f7p>op{TSotTEE?Jn@3u| z-Edpqw0^tcCa2bKH{8i7`T{pQX#IA)<3&Dz=&sno<+Ex1cI=lJSJe9LhMPZV{dVk^ zxXx?+cEin2w0^tcw43rP5KZ%wD2ZR8JUw$P9GGum_9 zC4Oc7*mp$hw_{(*`K9&S+hXHR`ITQ`uk~>Wdu^N10t^aVh3cn@+({`VgJgnu)$^j%CE4jvVVL-oZm0ySHPW|I==2+Gs>@M|8BiieuZ!p?XUdm zPQFT%@+;u9v+^sXv(Y}vuYgl8jbGi#dqLGrk<-eqkk)-Wd}M+H3p@<)h$lz*S$Ipb}So89zaL)t7buY_}rz;r9->>dWsP zaMhRRO~6%Oo;LwkeRU6xufD*Ye@gtya3`l%U&A?G!mki_cJo5`mEn|M z_?6-8U-*^bu7B_N8qV<*eq}iAEc^<%@j6^1R((-$lel+$(cbdC(O&iCz8;s}yyJ^_ zx_#Gxd*?5{I(9w_+&g~_ckR9N7r33XqrK>h0+y6h_!Yd+jk}x=0=NAd`VoDB)1DH) zvi8(h;#cry`+ng%wdjj;BI+gaD^y9dxE9)rzQFmr!mq47e^=sHhI1T+UjcW1DEtbq z{ke5U_!V%=Z-hKDzDWC`J%wN4bwKA=62Ag&@iePK?^#!YyLCqRmEn|M_!Z*s#xv26 zj4yD?BmBzRQ-0xBhI73Ver33mQ}ty$7QZY0jPnTkoA4|2WARU1i&uTg!-4Dg@?0Lc z_%lAslwbH2`nU5zw3qb?IQ0^Kh4TsHV`wk_jPxSWSXXaf4SAS;SHEe!Jn+OX63+x!!91cHoxhgMMUu zaqQ#zk?}K8W*3@)i_S@y=i1)JyplaQdP0D`QaXU-Y#v5pmHMD;WDxeuZ-o+F$t< zaN1w_RT%RaQ7%R1FL27Q{0g}HUDX#46`P#Ouh8DfBjXF4ey;oqIQ3P2h4UJYi}EYr z92ezRz$w4-D|haLGBAGny7gK471~pNq3d0!H^%wH>XV&ka%3OM~o`4w>5LHQMM+Ck0-@l|%; zDdktdIgZM&aLmholwY9$1MQ&v%Du~jvOTIV<3+$#-#g!B__G=aITZe zuk7M6+sph#*x2=>`m#O=13A*%R9*zkY1KYyEa>Z~l){IluPi57=(`;nY|872Z*@anbtis4`5RqxIW? z)6QDI-O9#Oe&tudDZj+8kZ(a=s`c9u&S%^}>$d~9ym81W`r_h~>tFN*PWvdovWrsI zkMb+vw2$&DyC}u>GQPkmkMb+v9CwLdAu2@Pg;P%NxB#d862G$cPJTaq$^WrU_3MZ7 zOZ*D`FkY(l+YP5bOZ*DQ5#*U#za2Q^Dq6oC(Q_w{#;<@oc~swU%ZotPgv?)DP^14S zzXDGC$oU|C*U6*&3h8X@U-=bq_OJX3IPI+b3gs(kALUoL$U%QleuWE3^atfv?!Egk zYzt+)SPvYyjxS!OHv4G&3fB?nx5}@O$WFbKU*R~2eyIEkVP@J#`4z%cuDz_!?mQiA zP1a{5w!400e1SW8L|;o>FujytA@Q8{SAK=?FxxA?!Z|hjSAK-&KAEoWHC53Tf=FAMt149AD*E2-{O%whJnJ6vrMU0Y`t63BoLavf&!JFGt>13A*-h)WBhQKJr`B&b+_m?vSHSPc z2_A&=+7qmYL-vJCm^hxAl9Tni-_!Z>g zdWbNVUwh6AiCaEC zg>mY@ppsgQH`GsGhAI96Yemii++qHhX;hY!3uMFqB5PoI2tyd`csPgbTh|>^1 zoc0%fW&Kco;a7&!uY_L#ClAExt^M=d1gp0nPWdH%W&Ln|3BNL&^GM=XhC4a^^yPjw zRQMIzlgHv!WtE3~3~A+lIPEF?%KD+4!mkXcoD#n>oOTv|WjO6A{0h+!@(``xZaCLZ ziC-B`Kau#A;ZAf{lBMqtUlYhdqQ`vbT60`~5QTR%vA z@xx6o90T~_=2u$3-O{_NkGS}=t4o9SsxKlWY_Iy_K^o$!FW*x@KdP^b+ao}! z@^C#zAWv~;Pvuvjha7k1SI8@{bwKO4BfXA!DF`%3|6mksuln*n7y40s!6?{X^~F;J z#8qD~3gW6S-^s%571b9d;H|y#D+Howf8|%e>CeiqfYaZUUje7S%CCUaf0SPVr@qRs z5YTe{tG<|VlwbA5j5A#M71A3izw#^KlvDW?9v*c4s6VsbHTu`_Wj!>&I=*~Y9k`A! z4o)bijxX=AqP^;iinwgA`mzooepbhq@0$bH`OCTuz;*tja;o*O{0ado`oHokS6>?K zRbRdr23+-Jy#nB>ZzTCAcBwL7c;6rGRbSpeg*jDU-aiGd`r->N8SNM8yzmF^$(F-?RD39vv;vUGN(e{k%B8x_G?$?k-qd0jZvS_?G zHtw8v%CGQV66b~TD|x?g zQho*8>81Mey?ZQI;?HPr@`NkD0&e4__1p2RJ$a7SZ#Ufh2gk17aRF}QqV?OYz3Hp< z+ktalYyEcM{4Q(#cHoRFViw5ny8RTQC5n^ZYW?;o)Y+!|%CB7gZ7k>VJwgYxo5rtz z({9SIQ0B+{N9(ua)dBjs)^7*S^m)%xw|hrAcnAw(}!`lLLnuRH$=SAK;;*py%S z6>#>W{0cbjsr(8Buj#kSuMjq)J(XVpr#+Ql;ry55qWlWD>qqpBaCvK5za3S{$cHfu zUi$#2{K~H)Ts$*e`4w>LCFg^9{l$%!@+%Yyq&<~iAw7ZmD!;-xDebKBE8tE})z|ST zt>13Xu&}-ID-`~t{K~I@b3IXh1>Dw8)S(x<@tsiMvR=V`Tzm0nS9cxlWqo#a%Yn=H z2!$AFH|1AI)1cjyUs=I8lT-N>uBp+U%CCUaKFY6fzDfC&U*Q^!>tFQ6bs5@I`4tKo zaQ-U4LKxM_Bl;qoNxd|F1>E%`^A|XOSNRoij-&D`gfscO%CCUa4$7~9bKWVxLUZ@K zGQPmw@5=ZhEz9+<`a1rs_1mM+p7UDy6>!=|`4w>5NBI@fxG2B!E1aLY_Tta3jw0y1 zj4#4?lt=j$a3_!Gi!dJjMEMoMa!=?&IfTFiu!8(cEip7 z_=lTkv635xj)kS?P$;Wh0lq$=e|$tw%7))M|L~! zJ81oO!_5v_za2Q|7wS5De;46K*Ix9+K@s&*eueFw!$n`zXDFZ^n4K8Q2L3+uTW6I{1&IxVo#Uv ziqmR8obpTl735_8UWD>1;O=)-U-uo+`t5j*jPo}_`4!T9Xiw!=z$uUNE8zTH2upKZlwaM+6Tq`EVjtGqL~uy;#h2IYto#bkD{;J(Uje5dD!)QF-1Q^t z6>!=|`4w>5NBNZzKFXux%lFqHr+klaZq+XTk>|$IFX0%DQ z`);k@ZaD4l8^0n>|M&7M!x=Bd z>AA||{K3nw(4KWT5gzl5FLC;bmtPU59lZR?aPnJ3b>w&5d6v{~XM6gC_k55z?cj}H z8Sd=wjb8z0-2lih`r@J(=c$)p;k3!+lcO4pS5Dy6%ge8=hHRB&&#h6G;{ZD5%u!62TnVC`4!qbzJaKhw0ChBso&1_ zW>2Z#PTcH?sFzzlltw}p8QAZ zw;N6#j%p{`56_pSe!I2j{z&S#181Epgt2A*;(XA)UsAu_+VeXu_1lS?KezSfUlFJM zz2}35bKap&t;pYoaTS!`Qk?5Hz7C3$x8v5i;4ZF(D54+E@%8d6$b$?Mli$m)h?^gx zKB)FXo*?zx(Vp)(puLVSOv8RuUt9<=+#A0_KaPiByDq=W`gLfp`XZpiepFvnGA6F$ z3(FH%e}?6WtG@2LjNQ7()ox9*42AH4huda;g{y-Kg`$=h)YLvWX`g4gQ(aLVtE zU!i}OuOju^iPJt_enp&edgE7yleZ(=R)3egUFx@6d&a4xe!Jm}^B|jA`f+g{WK;X$ z^b;??LO(8lL+ZB^=lt^WE8_GkFTXOJ`(>%$j!n9||A?w$UU_gnMSt+}D{Id<40h9g z?P+Ik{EF>qXK(z9IOSJ|$dt@0}*kkWsYUm;P{$s_)Z z1WzZA>dX3mVaWOuJD@PM%_HSk=!d_n{0ix-w6pRn;PeOOS4beG9lYm*u&2A%i8^^A z4-7$hbbMX@0K#P2-mP!SudwZ-Jj$Cdu&pk_}EVI8ier34R zOZk<(Fva$&FBmm(9bdeNL|n($onPQ~hREsSX2@Ff!_7X(T2!3lf@qi@ZvKF1m>+KX zO8s`zm+@Fc!=$~-x0L$rXwUci(2wein|bVC^>zCiso!q>aKDKxNBLdW8^rBb)i=uN ztNbc7itC=#Z%6;A@MiLO<5$FOULea+f0yfw)Nf~d8(*p4PTa;9VOGC>Xb0t2kcZ=_ z{0jH+&94xa_4b3~9saKJE2Q&KFXdNAG_&;$VO;44iM+%`U!0p$9_3d^9HajzzXI-l zSM&u=dn&(j^^GBqj4y6PQZMCKNH3xtlwTopmGUUR0#13n@hfB{B4gI{^~SG=+qx(9 z+lf1Q#Gfr=mhDwvWXuwm`HPG@C%@{86KZR({K`(ah|By1PI;7H*$Efh>-f6+i8%d~ zaSvx)UFx?(U&mv?rnEiRF{$5<_N)gE`Bh(c4;r_bq#wSIjIZ|+;IQ3P2g#&i_iSjGp92ezR;VxfM>bK)MJRF+x zh`u=PcKyrvB5cF<%CC?f$o9&wfKwjjSN0IQ{jTyW;PeyaSHNj!@A)9)clU{;emimc zgYql1r~Q>*VcDQRX#5Jx27g!i6&@;Qd*xTaX$R$3z-b5NSHNipGAnx%G-<)r&7P&`e%L@jwfYY-2GFWQu*QZe~n+EAL^_83OM!E_!V&KtNaQ$ z_0{+l@_eYT@+;ufSNRoij-&D`r1`LaKP^~0&J#;*|Iq~9vP0#1FEUje7S%CCS^U*%W8sju=Y;M7<7 z6#}BJz3PjrEav}uKG@dXPsg#V=LL}1V1I=*-joARr^E~hqL~b zUm@^Dd6ZuPr##B9a1EFGYWxb*0jK?yUje86m0#V-e?y*# z*umumA@4(R<|m_CyW&n?1*p4a6f%*9Rsd>Bg)n>;IjXPoX{7z&R@ozfU7?hK$>eW`ocY3d(ju}iE%+cqAzfci}EW3v^Xxx zuYf!GMPC%Or98^7fOA}wUs+*XlSlcL6~-m5`trSCv{!vmxrpsmU%nfQ_Ns3in-{=k ze6hWtz8b#*PJNYM0jIvouYgluLtLKBjsjtSbfKy-PS4h{TJj$<7_?7x9zXDEum0tm;zRIs~t=#pmU#Z`YBqG+e050nl zaMM@nx3j(JEA`tA=e(2p?Zj<-rG7hc8(*p4PTcgB`t8I`U#Z_t-1L?D?Zm0C@+-(` z<16*s*`E3;ze0QJtNh9m`q_`4KimEk{riotor?k2^@{JC1K0J6@i*W)fB9|;aGk$= zk1`zDYhL~gIjOJmE8x^u`4w>LtMMzlU|{kqzXDEu^?VRG^;Lcaoa3wf3OL7C`4w=E zuktJ49AD*Ez^SkDE8x^u`4w>LtNaSbt<+cf6>#dS{0cbrRelAW`YOKyPJNYM0jIvo zuYgluNF+;8IW;ZKblH@RZVp7rij zQ?1yt&)|u}$MT;K_qW zk9*m=dU^OH{2oW6V#~(|PmFzR?1*vopn?op!ews~}y zhdip-_U(=;y@ro{dGg5C^)OQ55fEs~kjb>?6XS=EHQ_6^d}P$<$-^hsYx&6N!IOu_ z3?Djf7(n;G)k7j|Wb00y>P?zFarodd731E$y6x%7mtOp|`4?|YZMMDs*)a|04~yFJ z*0y!scMLl`cEpGgy*#yoOk)b_$90oNOs>-^&rV@`bWYT<92 zu0Q)n^?-nJZ=Z_zDXGc!`vM9(1!N4G?OPeT_004yE4=@fW-Nq)_AGu53M3DyqsL` z+gq#76_g74=j-_i&oqvGVQE_BM|Ko{Q@ZfWdk6hm;>AjX0%msVvijDjU+Y#%Dmi%k zvC8}2D1P|l!dt_C{j%qlGxt_3Rkh^v6}o3_3>;azN!K3&{%-m7XVsso(qQ_5*Z-(h zs(o(RKFKwjKDp`sLqDv0^n-|c@5g^|{Zzg8yY=6-wBEA?+oq1H_v|~{=1#3wChzvi z&H)vl>Krh++`nH2x9Z$wYUddvl1o>uS*G6QfaJ~Sec!kL|8^?cpE(s#U4f18<~M z2+NpJKIhiqzy5gUuOI8)`tk8Yw{9H0y`}NVk^y~6-BYsWpsw}$H3<8#r>RCH$wjR`==ChM}Y#BA<%ZHEjICSLi_A76zCj7AN=?YDs{bX6z#N)Pfl(fP;}R*-&VZcPp-RAZtpGMu;iot4-Efm(yw8aqh|gUkereGWz*gvx5M9m zw|2muFP98>edj$7l?=_Kz61aAD){g?DEshqy9OV|Nc9fJCBZB{@tZ7BY$i% z<&_KXC4De=>2GJ>-~Lzo`1EnVd^zj)KbltPQlj#a27TkoWqjHu^!AwUFNCB{sQ1r> zrOj*H9#;0v|2|N!`s-KX9-mu(<--Xt-}vp;KZDi;l#1M3qWzmCDt8XJYgnm!-YgR~ zzGRK@Gp_C}RkLcjizzi41XLftw_IFaxzu_UN+$=zqz69LxpKV{_cg9}@A}TAx>POM zuGOv22UdSGx$&V26I0IBt8%E)pDF)l1T-#RF=c;7`NkE~QZ8ncZd{>9%J&(8jVm2V z`7@*B`tnUuj$~9^UvWdqm5j3ME4-3&CZqEDN>@_;&L}am{QW6mIW@ydJl>_<$g(SD zRL^KQvP}OO5%At}XJ%B+2>!KnyBUEwWhR&Tsq?EjrLLFG>O3x|-1RcWonLPi5LkM~ z-a)NO2bRg+JHA!Pxuus6x~FE)!Q?H2YS*k1lAJo|u4RFl$sZ27e_7=b$;$^-Ul#Op z^5=u=iM6@bUt}! z-UD$}Iwdd2yZdI~p5#yRYTc|nEqQfbjhjKYlAHbd$GN>#OTJgN?0?dOwnn#3FIB(Z zT}R43*{4}dbnioDK7a3OdbuGPk&Wy8*|kE|N)ytnTzv51x5_u{QlfiuOym1{q)hC5 zSA*z^Z&my-y=bI*|q|D8TDIzD4}pH7V*?ibLc{JqmFMt93t z)2H?N$bKc8R9G^-NA&QFt$m`_cj#AQL;0ttH;H~aV?&?t_3iqV+EC$#>90gj$@rpA z$Mu~~2E0-}eERnp2m9Q;{-L)jhtF6M-8^GypQh`>PnLb9()Jl=q94eZ->1>~(6>rV zN%^AdPZ_`Wsj|M&$x2s({+IH1*W!#@IRPWl1QQNMPWT;hxJ1E#l#em3KyobX@U zO)m9Cg`cL6jea#_S5C)YJ6#V*DBp2H2S$&}*qPJ**N)dq z{9Qh2dZ*}@GCs*^`)m8_rT(r^Jbha9>lw{z?yVY_U4HKVnsc)waw~tmxAL;&$0BR> z+P9@uQ2W6(uFm>2yUwzdOL=j*l^X4Bc5Gj#WwVRN*MGNkxj`kW|7Tcand2pTZVqfZ zzRAY@_t$ z9ADwH1}|1@5%hM-(f$9;`*VDm&+5NeVN>9cP?;j<(5}I3O5_PRXdKy|B_c!SmtK^*DCA@d@1FV{Xgav6b9W4 zd9Bi(pbIH~?7xxsPhqK>5B^(zTHwPetM`AK_e)`=n+^Z1I4$VQlneX+$h%Qk?q=}6 z6>bH-p7Q1X3weJOR=L^e-%7WFZl`=&HMw*7x%JAY4JtoBw`%*lW<*vk`QXCQXQSbyw%oF)@o4-qWC5{Ri8usrTWV zX(PK=t?*#GA@v3yh-ubfdd$LiySHf2c2T**b1p~!8C)iPdiMv{wR)=bLuvO!rv*1m zU)24fbzx7HeQ3^G(MN*sO;79Ia9x|H%6ypCFM308c>0R&&DTXdRqn$%C!?k)ZDNxE9&QW4_z1aeaTU&+q(7-9+SSKd;4`Azb}#h=H#yJg752IV_nnlgYxHJ z@0?ISEB$=;y6akgUnPG*VCS;+XQb~tRCQS6Hi7repWFG7`pXYB9v0T7?0s|QMjs5m zJ3aMKgJEsjlv$qED>^ecG=2G@X2T-dlv_UMSoF`qmC|P(sz0pt*3!?XHH%&v+%$d3 zp(ew^x0Zc=&c^6d!L`!o9SRv1y0y&dw9(N!g4?IBJk(-X+pXnJ&$$}y3oe&FF*qBemP=d zxzFdEi~c>hO8V?W!IxYASvo$gL-eZPmg#RFYI-^R&$97zc1NENuA9E#P@~JCf0p?x z?X~DV!4IdeKGgDZ+ds=4?pmVad#%zk8mGM%`AYO}BLlB=uJBgOr|;c!|D5mF-#z8M zv0?46bh$6A^1Mg0MwUFXruLQS_>&7l);u;c;NCvf9)F~7PVMz?99cg-b4`;C?{x`# z_0E;n%*@$8vf8%B{R5lNU)s6nn)h?Q zA9>%lX8kKSU+_%lrfZhu92t4T*$a33)vChpMkue}=)5x~l+Mg-)TdJ>X z;@YH~JtH69_Hes^2i~mQwcOh1ocDfhH94|f$p=zLtXZ4$-LEw#H)~hrbt)Ywm!3n}+gt2O@`-ah?prnF z+s(h^R=V2IS21y3*1q#Y{@8pYx7^iWUxk0>ChglZy+yKyZ#v|Uy1 z+d02v7hNh-I2{XStAV9krq#%vbE#qBqPT~4hYc*-a?ab?M=#x5n1=PU&A>9Bq&=Jc z(WUUh6>-gXM+_|Y$($dv3oZo}&Wa1}5HxOX+kNj`%#RD*9d*9sxYV8dU$``;a7SGG z-5t-D_~Xr2_qV@vUtEpdO|i_*zp*#*Vpie#xVpPrp0D!9f+~B<=!57B0Wp?6rtaDf`l#PqKf!RI6|v7Uf?&e+%dtTV^`1VmdGMW!NF=kft(V=6OHXkzQ%)~PjPftAiXYQY8{yhEX z*^0Rp&s02J@oZXd+L^S|X=i)n_BhkybdR$~a*v!ja{9>GCb_FluR1$0ci@?Urw5)r zpL_ny`P1jmcFOH^rqk(8XZPgpIkV^Vp0m?(r=6L0dfM4rxm&O9t$ccL`yr41w(NnO zXRl68ocq(@MpxH$d}rm>ug{Fyb>jD}yM8wqd zeXsfc^_BEZ_jUE{_tp2U@eT1^^xfrKq)G<$K5Xg72)ay>FK< z(f5z9oNu=8QQz0TM!pYxFZ+J+)$qOTd)D`(udQ#V?^WLoUlrd1-xI!XeJy>T_{RDE z@YVIL_Pyl0;CtA&v1Zj$U+rz(J@Eb+U*)ylQ8Teuuergq-h6QA*01`s-qL#V+|Yyf zUYdWn&ZX4BLoN=vICOXG3av*6*0?n1KSTd*o!a`b)+sd~d}Qup^B+t7>w%(1AxBHp zPA@gJUgeW1QR8QSGx*g5k+m!D@6v8-RO3fC&X^kcK#SRD7yk6039aTwJ{tV!inUwT zrmp=k_^0oVO*l7U|Ag-+9GP%t!odlrCLEt|e!{*9-%U6?;q-*BCj2nrn+ZQn$ewUw z!qEw5Cwx8O#|hs~xNvRnwVZ2*uH{}kaP8!^W7p1I+kfr*Ye%k~xpwf{scXltoxis4 z+IQCuUpsy6t7|`8`{vqD*RrpjxOVi~*=t`f>=sb6{-BZ%_9+=We*Yu6sWta^sapE6 zVZn{-FU_dX=s)$(#Z28F-72PbwI||IOHXeYx&P6^H&%CVu;|Tz2dma!*lS(YsPd`l z6=rsC*sp8w^q4nuD$FQ_Z46I*w;p)bn?`cr6+RW7YF;A|k z`Q*EeyS&w)N457;+r&J-ruLJo)_3mLph>kQsZC;@UUUDGE7x~9+2ECG+f&=c3|Ld= z$<-q}hc&pr+NhYJYbt#AR`*6Ls(q7MJ*MZHd%s&TG8&(&YQLpcj(K#=-QO)gRPT$b z15(Gvyt<~`cZ+}Rc0J_ps!6HSVqPB-&^oPJzby}}}u5+^n)vL`(ZFu0R zA@^;0_qi?`8$46(qtx&N{f9iTWmRtH(G4Q1y_4Gfz%xT?ZCRPy1>b{eyHYzI7&xTv zmerA+Yd5G|ZFXw#fhRB4obYaBmv3f^1!nfYh7D;v&+8?rd9hg_2HQ66}rFq#$#{9JT~{hW3@rr?wW9bc+ z&s%rsxkVu>*Ug!{`1E5{4yR8T)*-*)-QAa7?q2us;%RLb_NrfMUFWo6ZI*Zaxn9Gk zLhfy|q~Bxn0vA2_RHL9ay;iL2_Q;{e%NHN(_H#&4di>$nhE3ZV@O*l+nCc;O(z_iV zGHe1k*`j9MmWCWnAAWe^u=uSdpI^8!=9!R>(w{#3%CIS*Xp1*?I~7upKIL%2u%xXe zPN$EK$y_+^aLBN}ZB~wcB%;v^>CF#6Gc0y%(CMY4AKlTYefk53dk=fL&5WyEr#9TR z@TbFdhCQ*h#_4y!cDZ|-#kIT55BWNM=-~;M z<0h7jTKH~E?~o7D`yL*3c`{hu;&;0p5BVj1(&6~auT3oRdHRbnEkfQ-?|FFm<%uAD zi(c%uDdflW*uzsUCrpgq5z+6idoxP+ShwiIdzzGM_+*>+`+WFTk5T>7D?Zt7c%Q*X z)-`L=wcCg9_G{6k?ULC?dj5CqpMA@$pWg4m4XvJjqe+i@*QWJtxPDQ;hc<*gJ*!F2 zC2NoLy?1?DzlIyyJUw$mkEhpe=o`L%MZe}7BA%YTq2~{4uk;OCKdWDGlXsMn#(;wzt>HWWqgr~CBpYK<9 zL(3l)TzMiWqwG^N*6%x6^_9lqbMNmxFXNG?mY;0=N?7=;`+Lq?d$8}_>r*kE+Jw(s z(c|&8nSDdoFF)Drm5A`!D|&vj_UFEp*3Udy|CQF;-{{|?`P!v@o33ASvdJsq+h_If z`SIFQeQT|scQWLa(CstN^cb^tN8k4ASDtL~O55$T&-DClt*>vn^)pUBc%{{pH`?`h zVD0?Ajn*$d`OuZHDYM%3T)Fmm-x}-ZoNRcd&6Js6^cb*q)7Mky{&vsVsEFVlJxBkT zJ9f)YLlY19=Kgl?+4ei07=0mk+Lq#>{WI@vx8#{o^D2M; zVE+$-+Vy&8TenAlZM<^v@ov9l7Ujg}zczW=7Xbs(Tg24JoRiZnf5_wsUz8rOs71H8 zGmqvB&!0Fs{)>_W7H*1pHuIyLr}JN#JmrhB0~T-U_G4y2&XoLw$w^<7_$hsC%m?4i z%MY2{x82IIkF@>Zg`DR3&rFW}BIu{3V;|l5LHnEs@_SEyx!sK4yT1DVuJ3-zuQU0H zFKYbs&hODT-v8&j;`|cW3RUg6tWMV|@6Y}&JHOiX?(G)W>9!#A>ztwa6RyW4lBaALR7SA9a0lLfMXsS9SX~^Ou}S`SI6ZODK_*J}{ zWd4{Fn?L1xLPDvmh38|&W$w&*A%D#EsR`w>7N76-N9K*3#Qdb|)BX-fO79d?H*-PG zqxnOxPx!lZ(xOh?R%d>j^K$;A>+ye=Oj@`n=B3O}a-PkPy*}mdvPp~gbi0uGN6xGH ziPw|WC5E#~3O)j3b(zkGet-(`vyP3!h$=7pSb`LAA2{JT`~!do$~XMUOUQvSH> zul`-Gc=4@nw=-|&Jl{L-jdwTSJz-7nW2x=O^xhSEFn|1Ay}w`n&0|qRS8kiMcG6-* za_3C?Xwo~Ac1@Z+>4QmcPue+Y!K6vCCsWkDVF&e(aLi?XmM> zKaO1)n-x1Fc5Uq9*iU2U#C{a}PVBDO*|8tQz8$+Wc0ueXv8!XhEJ!ZMC`d2ZT<~VW z`hsNzpB21Ou&&^(f^7wJ3pN(KTd=!edcm54MFm?6(h4>dtSI=RU{*n9!P0^q1@j9w z6|5@QQ;<^dUcthGEd{9s9~LYx_`G0d!TSYE3bq%_EBLrzWkFWKjDocViwiz2m{agk z!8^NV@A_cZ+q-t|TCnSrU8{F}nV6iIk(i#iIq}WJ^@+<8KTCWgab5cp9glQ8)A3-( zQyq_YJl}C&$L~5G?s&T6R~>)o_)W*3I%an~(eY@8!7^e#rVJ>!+;jtP@#Bv(9FH zo%LhZw^d9ZJegI*@cS=~&Xar2R?XCml&TlXNiYRMPRJ^GW-XzDqisbUNv) zq#u&LN%|=%JLyEy(WJ9UUnl*T^lj3G;=RQ=#fOS>iw_i^EIw9zu6Td(_r*tw&lDdl zK2?0Y_%$TriGL*VVBEokgYgFw zL*habLgGUbGvhK7GUGE7N5qXt7!f}r@#nao6Ml~WIk9?N^@Qs2)f1P-ElpS&zclfg zxMvcciGL>XRNSeAQ}L$~BjO?wBH|+wcf{>T*b%=YacbPugsJgU6Mb>M1Yf)_v2tAH zgv#-i6X(axPnaJ+Ke2aQ?}Xm*y%Uee9ZxtOe>|~8T#JMj@huWJ#cfL16u&8PY~0v{ zvGHRQe~kXnT4-voyY3!T`jKIamfsUnF1U4@wXHs! zdt_v<^a`!p4Q(~};IL*P`(u{B+p9%L+r_gFAH6*E&(Jc8oq2rujZK%eP@4o^yJVhp+U=L z^$HG|H|ki};1zB1dxd63otQrA@U|iSL&q%J(W`xC#}g^}hb9kc7kXc>8ktQ`%*#K1 zeNaN1tYznW)y-^qVnP15frHAnnXzo&v8p2)ht9q4_}oE{v{``a z-OEzJ@!EvWTz;h2(9F=#Wy_B>8xavYd->60Lw^pfv~1?F`XgF@`o{A|nhjkV+H~2H zV@*bce>&^=qZ@~w3azzl-m#GXkFo!bha-Cbzj31X=q*|jy@jxdE+@6Y%9`P|>%@AtUxd&VC-J2Pj_x#pam%j>%4d2C-d zL@$pxTQ|QJ&&nU;vlVHGT^>EQzJ8696*&fKE%!L^7~jenYKn8BUF53qG0AOh_Bh#E z8S;rcqFLnZRta8&yI%a>4jQ=md`7t;-mMY50S~>n-yl@xG>=!{0DgWWm&ep}frXcH1V*X9muI0`&kp-2Ye6!5OlkroSKdoDy$odhC z&EJTB9~KZ$yOH}>4T{|vVQ|G3q|+(ZnPPCwwXR!xINvGj_6rnZRs(-D2 zp%2r))W2CcU$|O;E?h5MEWj2n7j6LOfGYsBJb*qZ*FQIKwrjj|yo2m3G z={o5=>0;<)=*sWR@1kAjTd!GnT|ZrCTrXHRTVG$7TJK&DU4K|dUk_iGUGH6ISqH6K zu5YfBu76!uJ>xjDKchJ_JZp_w!Sf+IWSdi|D4b#jS<00}HAW5MsgdQdm9h(|*cVJa z2La{4Q44r3WGifqD)xm_EFf#SZ&4F?w0Ndu?QGsEe+#Bwfb8UIqt@|^cq~|`Y)Pqr z0#tS`)%l5*3_QIl&VURnYoi>WdcK8mTRTaf{=vG7>P$5YqYUd1o=N2LJHRKR?@zev zhn?|rBhwAD^_Fz?fx>`aF^2iVORt>jspu_BoYeu;xw+&0d%(*&#PSno+2*GovUvNb zfC+U!m&u%!nkhcy@b+f_N9%T%@tx(H$v$L5`t*U|y7^@~XSHUk54n*31>jK~Y#AFR zYm(*;0&H`?t1Wvs)2`;Z^fudksDms6oIf-(tQMU7@U;=I%U>pJCRj~B8T7Ra`YyR_ z=Iqu?vYL4^bZv+89b;Mc*aD?qr7;W=+bMp3v8?J#A)dp~p9CDL+g`>ye&Psb_o8LbH+^@S_#zOhxq#aqNeSE;oy3u9IV`X2;jvUke8sK8x(K6Ao zf-iYT_U}GdU`yTVGQ+XDFLg)m@BUNZP2KG>#y7O z0dTTzf0^J|{+cW(yQ|L(SX;NaOn5QozEx$z|$e zm21k|oRI!*;6~lqGRd*xHTiA!eP1ZBr*31J=~&~M`Zo8z-`3+}q-fS#(X@Wiyao?n zz8EieOhwOS(fEX2`-$N;QIX92OLs!*p`Tu6eBst&NtYfH`}<^VFZq7p<^5vy;xr*v z-?CBP)D}yhZDpq3@}Bt9mp5!=5|!X7)@EYj%14r!IXbkvkMEAvCTC(z}=z9})1lzRM>|F^(GU$gA_u1UZ+mzO9T=7NHa|hM- zZQWnD8Lc_H5{qQ!4vpU=o+n-bkqQWf+d=psau6|i%LZpdvLV=R%i-n7azy#9E!-Aq zi?F@jgYO~t5PP>&a4IAfg6cK{o`K9jWZde*^^y7r{o4ij0&)Sda0`F~kN^bWwi(`x zY(_NS`oevYz6jsjYxp(t8gYF~3@1hsBZzO4;7Q0NMAEG~Tpg*7P`{mkPar1{6SsVD zJ|rK4@3sbBgRDW++`7VDk*)~W+f(={@)U7;%Lr#gG9nmn3*ZIF0z|>B8QctMhA_Kb zhp!{o5$m^7a4Dn|Lh7~~-i_==bl--;Ly@6~(Ax)iz5kE55@RnUMyw?!R{h19`o;Yt z*b&YWKZl?~XFH~yxsww?{xQkh+X4KAKN=*4Zv6{xE;vYe2LYJ)Ylwi(o zA@dmi(ai19OG7koXKshfWz`D~Kp z4-PaE-h1~nltcP6(?s$gMQHXNN2ri=4AW@x_Ru9c{1Zwd5R{HC9MRbRcKI5fea90D zkd7@Jo!s8PB!EZXJr5P=i83GI-_E?`hNs_gg$nn?n2*+OFJ98a6YtnUU-v|BjJR#L zT#Cc<@AyJRdSW+5&$e$aao~}6EDx{3qNGQdwv#W};i-3=4?jZZ~Iw72HkKjkhBgD}yJ)9m%kC?qnyjQzZ zyFYlaeb{@TddPUte^__`JTyP}K3qQ#KO{YjXBew?}_QfF@UIDoFikotzzM}6e|Val9vsli(jr?+IUGJwaz-#!kWD41b2s$&8aG<0wO9A8x@+ zF@>SP{OlEmJ~LSywkNhHmM0Dr6N(MRg5uy~;$!1u;p4<(#$(50#p5VrDq|~SDdUV_ zj$n^qjo@%$a$$2}ap6>9R$*6RRpB^dI$}FwIpQ2*9%3J29pcbo(qYqK%{)oOPD}+ zS>*m+l;;^~68=!sb|2nmsk^c$ZyxCc{(jVDAJ%5EyHYEU326=fV$@L|(Pp{33M!OO zdWwG&b=!xr2|9o8&m%!vfIk_v-$$@ncCL(y5|OUspGDpD;cS+iE1{w`q}})%QD=Q5 zo8Qh=P{9<^`ghE7&v~9d=dyavxALxo=Ea+LaxZ^6KW80`Z~RMPTKr**FYukhXYy_N z+AQY!=j_OLW>*QHtWs#6VrfyN{-h9y<@i)z5m#BvnIJlc1h!ypZFDrPQPpRBNlz8yv$r@r z8buYJaVL=vC6Et%+Is0xFDjqMrB41W;q^fF7LP}>sA3-X1o?gf!9euZbC0^#cP3nX zcc*3eEMUuyphtw{`meO`;Hso2QA#Grug!t z><8z2{G5ogKb*}JLCUJ}FQVVmW(Z0E-;MlA8%xvTEYTS({j5ftDJTV$8yQGb;!M>k zFI82`&JdIYDvXS!8F4n~?3IqGWoMSCB-Mzu@BZZz{z9jmSSnOmH}}qwt4w9QbWfY0 zvTRP-k+yR4yr4_gp>%oXnL~|` zMh-vk7b@k1(w{SA4wa3n#(a=3`pV$a`58I~NTa$jzsnbZa&GDP43z`8QEi3qdQsPq$cIw$lxs^DXXph&vyXEZ*K3tZ2Jv-_obH0D`` z+H%SZPu&U5{S>d!fSpcHDX|_C89ol`6oOItonlXcwpJ54KF-V(l~LeMJ<8GTG?A_0 zFi7DZ)!V7^6mDxr{LR90@_i@7o3wRcB5W9ZBU7T?oJsq z4*nGCQI(xCs9-=_r<@sQZHmFD(@qogO+Z(t>^g^Aipc1P9S9T<(1FU-;57%xN8R!P1b*7-gWD_ewf++-hm%%I!0%4mFLM#$1rJ1!ej&$c(x}t+(bI zuKctK<(L_H)D6~Y=ax(>Q06adnNdXDGaV#1Mq2m?Gw{3MJK8Ejofz&HXOz;Z#AY{;0_9@k|WV&n-BRR7+nnnx>xYcy?l z1Rq#duWSUV)>_~?N`sAH154_amaCn$nz>ffPDY4<-|AJCA;((RT(@cWBj~$Dp6|t~ zpJ^p=4W(_P67fnsmBk==S`%FRX_q5dyTzVLZPg}PHC&5nMRa910IXY?*Rkk};SkCM63KuKP=Q;8Tx8x{}gZFeU!B}$?_|&K3jVeP;lBQx+_92H);~NDAaFWgtn0)Tj;Y*+TH}d&a>N?-R zujjH4d3>7RDCUDFboRjnbJ2&-ed^lZnO5=XWP-Wp(hs?On%Wgi!8JOIVEVblLpGm= zcKP2`t~xDX@wxm%KA)C$#oyplof|ODT;w4O?0eul$tp&jWH9?&D(W|~F;GDgT%a=v zrk+bUWQElS%6CC}Qn=5h~tVa&7 zR0sig>ui9T=8_NDVGT(6`>If#9Ra zs&WTe-qM2{P_(d4Lt`A(yr*MZ;!3=UU58Wyf(%`g|n27s)6>VjWxz1kdB47N0qRdK&Oz#ZewXk4=NR^ zf@lWY>1`uu<&{e-K#sl==vdM?y+VWPBkJ_EYEx{Esg1)c6fRW&wcMKVDO<;e#^se~ zE;Rs++*;l#D#wJzpDSdjKBW4g1~R4Z2yUETp>u&WtAD6uO)f3GmQ)HZ9Z)-p^HJH|Hlqr%t~zN+Fi`BUnS-x_CEXiutr)x~Q~r}!K*8%I|t zPpW*?I%9@up^iO`8!Jq_+_({%Pl=z)3dLbvpwgmA1~D0ApTEa$z^b%x z{zCjFvZhEpOY$$CU~j8M@D#l&ZoMquUjnFX*eii73PQ~2A{tfVa!fDGvZ80Y5tXvS z69dG@St1U8^ z<331-aRusi<(Qe)f)?kT4w_(Z0!_OL%*@@2MCRxZ90IMoKCSC&Eao1J!>9sPy3*H; z-AY>KR}W5L#Haz9x^6T%)$!L9<{IeN6^k0JWj71Ae?wrQfngyZr8JpJNfu)NzJ*yL z-9w_Jv?u2j4@zJHNW+jkDYL>NjXCy%R2U~xHzY^Ov=B5oXLry56GNJW6iAty7xB+g zA0)t7k=h~I-6rOs+Bt&*FiaR}9FpH{wo&9ZCvuPr<3;L+SlA1s)_qo}i8QEiPUGMk>^0KpJ}=a)r^tMc{~!~_jnuo(2{r8jZOpkH zw7|rXruPM*=3zzBb4&-xFm|NQefEP%7^r8?{Gb*lg8Xow|6ul56gDS)Pzd8k8r8OYzjIre%sp$i5S!HCh99Vl_X9t*xNOV zyrE%8R9CQj(f`-VTezL}cOs*LMoH%M>R;t>gL$AD{^pu~{D(Cv>N zQ=&G{07*28iPnQ2+fg1fqQE@B1dUyy*I>YQgvWHNjR~NJ#vsvY&}TcwW40Bz1~{eh zOAHze*$%&$^0$!y6wqiS+6{VbM_Yf|PJ>rs$@4kZ#WF~g?HHHbQZSEKHQKu0dx_RJ`uFCsrA8LsQ1o{H zy1QH!k(Z@;7Rhb@C)B^5%sf#)-91HF^Iq^o?|vs!CjwjYJ|m3n3tYmD?YCXRSL~a1 zpKz~nKXor~Uw7|ze{c_X?{x>cZ@PbV*J}7^G{s{>1xUz}AGfmgK!tN=cz_vz(JbJ& zr)@w(gwb@hjXnUJr8n+q>w}8!%vJ*z07qFq!h@;%OItI?3Tyow3}38Mt*ar8YIuP(OzGdl*JM4LT#fZ)30Ve?aSzhA- zd%<4eZBr&Te1Oa>m2u#nr&n~_3`$1^ptRy~pS?h@$hK*et_x_%`Y`UY=j#>QHoFEq z1>9r>jfd=oUVaRilCWU}Bxfm(Tkm;XMg`1B01E(3_) zMS{xur_n{mqVjjcgoa=$Hw5Gz_b|R;1gr6|etdd=3eU23wXRB&5Vw6a&u_u%??B@W z%DQ6IlRq0qB1K z=g+SnTA;i)qkISZ*CR!EImb$^soZE5Lc5^qlp(yDV?ExqXLJd{T99-4+O%YB z#oLr&Gzy_axhCmNE5_E4rUj!T2+@LqQ)<)lij_-Kv(YMqVL{y~vuSn3`lRXF=oW&p zAdAYJT6$x}(3E5}1R+QHF=;+4Z>;m1CXDtW1Pk&_l?#FO7s8p;fP1?7N>LSI6Kpgd3s=yRwblneR> z$_52M`Jhrz7N`J}6DkH}g$hG?p_0%S(AQ9Is5q28g%V4P17Gng2i?zN|2e8AMeE`u z4pP>V%j420gy`hJ@w~@F!pSy{HQRfS7 zJ?lN&rZI=aqK~-st$*T+pK}yFZ++s}5O>UsTE>fi74zmE*8_;2-?BY<{@k_oqy1B& z!PdbzIx>%du=%{10H(9CODVs-{9!dV+G&5OFyZ;B{SWebKKW&bQ4B<`mrjL$5~0Ul zE)4)dLn(CsLq9@|JN-zjznLQSxl~L1EltKhg|TZ9(n#lrRHP-a~r>O!@cn3_TVGp})3(A*YpN+}pU4p=KBv_wb?U zXseYlrc;IW#r!fBYkhq+dF4iFXzCRYx`M!+m(Q!RqKwr+^*X79Z{cXkn5IOV1|oHX z3_dhqLUV*_jckjl1HAn%#+H2RiJ3#) z(986LHmtV#&!e{=7q}EVzR4S%JUzoD`b7BUm0=>3!j4fhMn&juQSa$mz*^5=He(^b zjIY;%*fkZ<7Y9V$fDelZhH07f<@9ArF~W@Lh9d@7&ffTq+X@!ApHqGgv4tbnrscAz)$IN9Bl(M32b$0vgTYM03Xa(_>fZE)jtrb3`p_u za3Z%k#3ig4)f1K+fqI+|ry9uRj1G45NT=W29nk;X=`M9=ml}+~Xtl;UR)6eCj+}=o zQ;B%h7G;OYdvPvh?6QY{%#FgLa0@3lA_eH|`07k6d~GI`-Rw0JUr>4Wl74%UP2axc z?@G*4iFM#h#fEt0gpqpe6ib$V9BrIaE>FM0&YU7*vmGJ$It|5W?jQDy9$885K*P}6 zDbv`(wU1Ei@3`glUA)wjd52atm*!IrMh->?Vvbn$53QA6Y}K6=$#e-MnTrMn9djMR zL5VFxOaWG9e+GvuULIIjDUtQ_Kh~u*_}qW}AWyBB`7ZOFh?ER`^x5717G4wKM9hJ+ zRq^w+B4=j+9JD?dV^?*wi7FOUK@6&U_ct>~JXz!Y zwu_aEioGldn~d%5ZGO#Rv0Kkn=$z-*Bhgt-x|sd_qWZoRjGsRV`7q;~>kTbl_tvSA z2rC@{o8%Muco|(juwhwnQG}6(*yBgERTgPuhE>IGCY`rQR~)BE%8`?M&)V*KFXY)* zNl$oRvUvxh@{R(D`#F0hyAzau7dA@^CxlZx;5j{i&2Osn^N01wIxs&Ip^u%>tCX?m zwt3~kVa6n7o$QG`3b;29Cc0dpr68gEMN5^dwHrH{l$qZj@um@2mz!N87U@%w3p2Bm zSdmD=Z<60Fp7FuqjrNzEH{0@<+0Obfdla2iR!ru^0vPnrkkyf*b&`q{JuDMm0J3|P zI1K&pd9Ypo%p$FjN*_sS-@{-jt9(s1)Wzo^zk;ivoxcm*Pm|5pIo_vCIB*iqbexSBKewKEy?i^iSq-`XQ=zgr5qfNW9_LTiMB6y68QSJqWKvmn-NqsQB&Q zMY7P;hrgIOEl*>Lr$T1Ijq%`lGX%$C2z^z|VKS&XkZkCcK)}e}nbR57szSh3C%#M1 zxL0e#UzfP?g?av6k&5Rc7q}d*}I%sy*?{u}z%`W9T zcr*AYyFry?qiE=0`r5U*fIc`6A3zz0AKJ1qQbe;iJZi+i=Pc0U!PVk{7iN%4A09jH zk9rw-e@lrCmiiQzAN|tjkpVkQ_EsS#K7H+F%>^GGRu1mNyL?_qdo|(gfp~k7D9K

    OLwTRaUEk$7_iJi4i-#4s@_T5;|({GaTw+^mk5m32>U*@C> zRh=`Te11h{8KOKIpp?GbQ{y;JW1Z1a2iBER&xq-3zk70bnd) zuUX8JcjA2>w0^-;L^iTDvc=W-T61h|D*8dek_Z$l=NLNqX5USKW6!zu%m~B%_-B$g z593cOJNGy5nHt8%N5;p~@yVZ)zex3^Y)ivTS5ZHa^f!KT6`|Z{;diz7O8^w~Q;bC~ zXiIZE8+w|un&3F?3;qFn@D&IUz!IphXwPc@?L#=$bEYbvam*8+HclkZ8P1759Qv8H zspGx2u4o_^>qWYA;wA80vNJN?p2!U!V$QE%bR@V?3UO4G*9r_zFokp*C#}>_k_`0k z6RLic^iFYz57-;AX|b8qJwtPQgnYoD$%@UlmodyXo%QL9>Jz{42iSa_B(rN+J<`-O zxDY{*eA{~tC*ZT-ekrfC>>x%<+jRTJM`hYI^RG*Xul&ghEjgbhn~towPJNo?SM28E z%*+69j$VKKJsD2$nVG9rd#QiTxox^z%MfcOG0S@JM`5b;RVtSeFRJTCY(4l~yAUpd zJ&&y;$ar9^sBHsYa_^^oIwWnJ6&3o?=NPPXgUx=>)v;0G29doOUp-D=8%3B3VxI-9 zsEN>DwXFYbbyr*J{+n_Dqx{`6o!6j{IaX^LwJH2DMK-hTnxe2o+ezmzm0s8L3yGP1 zbUKkPjk;puSyBGm{Jy+CT0XZY=I>SH{1luw^onC!Rb6oikaK)v@QP1Y?=nSh0@sz( z%c#n!1a!V*eQ5taSTSsqKK(?6fwW((baH%hVl=~c_@VApk|V>(%fLvpxcDLtjq+P1 zUzgd3!QuXIDr^MXNCOWi!P5fRBp+W^lsiViTr)Q`n!GK zjitXMp_a$Vj!JvaA1)U#a4-gatE5bARy~Brp)J_Q3>m(%x7Cb?asv#C$ zOy}SC#+|Z+XI-2hTFE~q#_sz;`E4@;x@~*0O@^%K(xDU(TZ;>5QozRlEzZTT( zt1gQ0E8pRWq@Mt#60@ZZW`axaO;-CJ4Grvfr0mKHaGt3E^4g=FlUErjg#~=hhsp2o zvcQ&J62=S)GmM74#@54E3aTZ8wT|6gF+#au*7Y&9DnwOM+mb71&wNkL1vYU3mF|ax(X6=ankXl8hKw!0Pjaq$Q zD!zPH`;y>7*3h1X#8IN@$S!a4<*gF0|!efl6pahtb{xzr5M-( z3BLSaaYforVRYME9+T%O;inkz*TJ6D-q|=ysl+bCF1Qe&Ki(LSnl7a2I!bL^!E#b> zwZtiz&xzFar)4!rYbb~6NcrozWAfVswFF?oxm1nS$px;{nBmsuqAXtmx3lyt6t9Z4I&ftxi*uW`cdqy~3W1o-GQLoB^4ptR zm`g%C{&)>;N3Bz()l0H+0O@TbwT2FyHr9hcI?+!$TM(GYiMV(2tkLr`{e&W2g-maw z)1xV4sgp<)vcqW~4nheZNwH=<#JTJ1n@xAUm(lVi<`z~0C;kWtV$v`84;$USNTO8l zJ3Srup+D4L#N8!qwjIwX{4ncmS|2z{o8(z z`)hOmJd$`Zq5#fOoXCEgV=+7lp9?9U(`E8!i#UwZ7RfjkLs*xbLL$*jqg7r0ZwmU7 zN_5R6m^3OsQr>PM{3+@3%)V<3fxC*#lKM%H2NaiL*E{%K*+QU1c z-J?Av?fo&r6qaITjhK_UuXd6#HZ-f-YFanp8o|LLB_JgbUKid=L}QD#bpAwg;?tny zngSJ@Rw&;?0lE}nfnqw7grTuvuZ%d;z+r%aVMY$cB=vgDMc2;!<^tbNOU!r6J#=o# z#Wj;y<%wT>b{kWpvhF1Nb-TAYd^mbJMzD>Sqv^Si69D^dc(u*gnF!sEg~t{34OxK}szyWc&|@1{9{phS z_`Gv;e&>%?tryx18z0H&_#-roCIZRbLgKcngN)XZPwl!sZHe>(o0oJ+Zx4oXPAy54 zeYHr_diq-`OryVIeMJ}w(6GiHuXgii_2$pYBt8Lg9))O;3UW&8$RA(5R$MQlG1=t_ zN*VDQ_nq(zG)a7p--pWRA|wop>#x|k3z@OWZl?&)SQhQ~KE2ngs6PF(S!^4VD|INC zew1@kzp?8<8UH0_cp#b(mubt&vC!MRS85rP6F;jxU~r}FMjupcylm+}-p_qhN4%YJ zFp+iBzTIA2+F0HCxpz&6FJl5SRx?sPEglv6L;3ifI%Vd}ItbLQOiZ>4PeeTn%|%Yk zYN}85V{~L5qYk8mP0iA=eI#<`TcoT#ZRB_9He1+#8v~kaTVLL-4zB+Ss4s^0e=Is+=jhCHK)GkCM5l;Q8c|13=>#q_J*i&<%VL(4%6c8mqKHLf*B z9E=y1R~r6892M4B)e@v>b#J;H_p5%TYem!H>Ow8NS%Q7PAU^HwkB%FuO%=J!F=Pb6 ze-50+|EA^6kCzcZ$UBAwYQNWZ*PiNnv*Y!3dt&bUEt- zXtk@KyPSn46fH*Y2M%nN@x^O%9qCyYLLN}^0z(zQn-#QjbqOoVkaCQwAn>DYI-PK} zXb4os3HFt(Wc1g9ZNDwO`Ay&%+oLrhp~RM=uS~!7+7voQ@`cQ#|67UkpwrRFEkFP# z7-Qa66pdQu83Q9tGq1$Q-g)Cc8d!m@mxSkkm)FU?g=Hpj!e~A=y>;|?+RB8PpA$Pi z`MW?|s^zFPQV85M>K%XNq)f8k{OS)pOQWP}g4@$r^CQL^5ONc&!QncjV!a?V#N%Y7 z;HV$ytH6ihpj(t0+mSDl`jfIA-k=U2`}`!VGwo-gRFsAf$FVei*!5GXS&;jWiXPru zbNzB7J}Y6Iq3g@Iqzb}HB8ktj0mVFLJxMrIMSpZ8Qs>jb*Il}0brbFkZHN7tRgJ+^ z1;gDYNlZk#UZfKk=W$y-LrFZrKji zrM1_y#M#tRNVD6z1|Ty%e4U|+A9VK%k|a-p)Rk$>lpgTJ6(@od zysCN`tH0k{ss%YGLw>B&?oZ{35L#cH+tPH0_f3>MT;nHgy6`Y1%`%1yJR5q=_?9sG zXl}`V+k&3o&49n;1RnV}CmVOLbc3&|nx8+_xBNkfmli$R$hTy8F?4aQ)|IUJn$Cdk zSsv^Wc1(H}C+m@U$9#J@i;i0cRLBoXwxOWLYq-?m%2gclcDYxWGeDmIxQ|#><##Q^ zF%#r5Skb_lfMxFi>VUqRa-S++z63nyLM=Q1f4|n3FZo21!foDLA*$J-^WIt=SHbGB zw&b3J?cj^QShYj41e&s+u6!i%2R|~1qj&ndtvJPsY7W2MV%*PQ&W)1^Kjf%ws~S6b z2(*xj)2+h|n)bWk^3AYL*ZR4pExFl+-6CGo#rNB7!&L+&80?l+vx!a#tP8AbbrTl! z$6k4jeEGqB=2toEYS2d$Lfoh#5y`F4`09&+IdI#NREbo$bjO>T6eC4qzKI z4}^i5Ze*4=y%jNIh)0@>(jvkhMXMKJz#<2H_HZf-; zs~g_O=WQ#ld)NVuOD2~EWA~fy%4LGjw zykp+)2EAq&zdlA5E9>-jdtP9r@>yRL^H@}x<`Fk^kP^Bb((^FQTW z9HCBSz(APWS>4(*4@hOhFp2Zi&)MkR;Ma-Jd-1BADaC zl0J{J$C<}m8Ib;K_k|)X*+qDu2SBkHg{l#!Tf6FiN`JWg~)Ok-O%L zDn3#Aa=ln2J@Q`#|Ez!3y#cPdZBC-pL|L8o zknoJWzUyC`Tb5TB1|OX|D-nT@7mQaMGiQqbs`#%)c>m0`j&DAK8 zJX1Q#_6KU2O8<%-2xD|`dj8L*aq9~L-2)xlKC7dTShI&>zyEQ7{})U4e~7^UAm9H7 zcvr#A)%zXL%i7by-P_F*MW{t>t6RFDD8RD+S-AN$9bD}cQ1n}!x4b$)7Y8dhXB*UE z&X#sw%mRY={IXuwC?YVkm@w+|zk>d42nq@O6mz0xp^Jo6Ri<)$RR}e)mM^VQC|B5vIue~U2F7Wj~lJI}# zO8GzVyZ`9q|33}-ue1KAS^rM`58fP~U(V7C`0s-M5AFMJcJEuIcmEFmhwnvI6}6@7 zrl|Bz&C;EjU&#j5RtN8Z|9q_z;Du`M|3(#S1MM78whv(DkVUbWft>jK8lE;lPn0E@ zIsW%)s4sPV+})jlF8@sS3e_t9cLvNTuKmA{|8vLwfsp@K1OM;n!9oC$|0_G#bap(x zMCK{Zd56aIPNR_u#VWqo*lB%s09r|Y^>;0Sy)P|Hhi+NXk}uCoz*XP`K?up_ zt3-O0Fo;*!XL|AE+3$m^!REKW)Gq|pmDrYEU9alE&uV|Cl)_k^F}3iTk<13D$4As% z`E`D7aS8dJ>6oQ)A*>Wu^VVeOpwCR|Xxk};@oW?-Vz%8VP>{w-za^%0bmNMcHhrP; z_1c$at1)qP`=mkYAp!2s^A%5Ywc}u)Wj&)N*-6CIO51%RU^u?nWmWLg?DrLZq z+v6-mskdyDv_OxQQ;3!O-Kdz7hiSbWppD((9apdLoUwL+tO8vH)fXzw*;7wVr}yfh z_-&10({SAj87Q4FcX-Y^=yeacuHwK)#W6kNiQcqHku5}m^OA^DS62u8OgOTZC7L>V zWvhwIRK$2XJ7DC^uj!Y9d|wQ3Mnl>fM*%&wU+xNMm>KC_OMtjlqe{ZmCTb5J)|BUAU z=@|b-#{Sn&|1Z?(|J7yxUv_wTR}_r;U;q5?Zq57te-CIIOIPoIh5r{o{6F&npa!O{ zo1Uw~KZ5nY(e)o(_y5sv|IxSqzq#0`DN0a-=)cF-|2rB= zgDnA%Q9aLhi4-2O=aDwJuThI?3Z6RKuub3Ce=naKa?c+5CQg?VE}cy)s=!AfV7e+M zy&A0&LHEc|G<3aqN{E@DSlb73v?2qvj|4we(r4^K>CG6>aL|fQ+DGPJ+tJ?y{6SHw zwa`AYHE|hmCkkPP?UJJXSgtm;ignY|ka&XjK>wmiS=pJ9NB<2Pnl1*~7qA|<^xa*% z)>+s#Cz{N6y^cm#rR`^mXn(&Ge{@}3Vf8&K+N*+Q{zGA_C^=^in19a0Mr*@Hqd1-F z)-etg|3ZRx-XhgCYTg}kVTC4R^Z@m7$Xwv{pv}koxZnQ(Mc2ftXhTDLiuN7@4GpRR zVeT52e)eekFzBLUhbALl>ZW2I)eJvE)E4hOc}h^E5ytVC9Lf_i&5t(@WmX=iPwnaP5zn*t%0}NuUJ2PhqlBd@|=gdk@&2POJMQ{qLdN?{%UL zq3)G>ZNbdohS^_yk;uFgZo()HY?S0{Db-x>?JRK;JPOnlbbIQyn^;2HP^?ce!` z$AoSs>_5>8elmuHfjec5cC?^QSupjqwu!G_w%v94)hCE zWM%K)AG_-qF~6w5PLWZWqJ0_p?hAf>L?<)( zuO~T?dCYh=k6}euVeZJs=-a}jbAeu#3(8$#{e&{!q(8gFMvE5&2Xz+d;G&H%2DRaG)ON{eH0*SC#J}%s6 zPtzK_qv`VFTh68=n|wy~9om2M6x)ra@OGFL2Ps=!T%WYFm9qh764=;}9>@GGgAmMZ~s*~?0s)Q=uEzP;90a@hcdI2s>abAB2Q`+%eEb@$EbLF&U( z8zktft|2RWu9W9aPkf)EHnH^i1FtApF+>pK6&D`O@ymd9;rOl4D`-{QL$?KoI~w7i zA9%PjPpFGN(ocOv=lSyy=lll&8H!=ejL!5W{K*|NhGsanw*?wGrp(hQ85+YM*rZRf z1fJs1%Cdc-wLv#}6#M;*nf(`*XQTu(|1Z?*xlf9iIWX}fpBHg(V8=(26}{xZQjQcX z;^DvE2x}abR)}f* zF{6mmo@nJ`Gc#=?24|7vU$i$7x>I+?&%!ScKd`{g!m|xuwjj+h5xj`GsMpb-?hLp#M2L-w;(bkSO|w%U@YMR!pAKLmhhXyPb_ej@O;C6TaYXf zT!-KPK@-I#4)6biD~g|lVi04B;;Dzv{vi}4mNJ%mfMw?Xig&@*y*gY+x$VdU)wPS69E$o>t&AfkfEoelgT zLaWI64U!<@waCj2+^Yxjk>eZ0S43@*zc)ZvgyE6v8)VO8|E@98DYH@eD$+%(=)}E! zK7g;6!uXM$z?Pl#L{WAdM!|+d!A^LhBvPyx{sgyJnE`-T+baVa2PmTfJ5u*1y6)J;{febyr(e$8y4j-;p>cFPho~%9Rt8%QT`KeoN?>P0sd=DqoO&= zVYG!hhZas;YR*F>pn7l--2SPrTO@()jr?V~S2Fzlq?V_g|9( z9IcodMH7_Ug#S+hpvsEB8gr-^hzgkq`-yY*=nbA+Oo8G{l+%RYPy90qfLs-`rs#zV zoCx`edqxhxsAAd_tx;YRfj>b&?-l?6c+R~_f24xowJ(^-r8SjEEoYC0}LQAY!Y~@d?jC@^SsZ~rM>Cs?I%g-iPIEq z-dVjV?rknf?+GgFIM^ihR+pqc#4GE}-xTyV`O3J$e28-y9n$%IQ{LP9E9(j?%RRDa zP-oO8`;l%Coh%az&iiQf&Z1555j2QNmZjj{%V?g?^iAF)!ypD(<^r7YXs6D)O{pV` zAQo9xt9wGxw4I5YTu1sr^sP)*IG>|UIx9EDj?99XTUplbc|`*l*3G9!#zBm&%m8^c zIx|vxIMTbK3uThWDU5#ES+*&9WO~IE%F=cZfERRTZSo%( zT``0*x8bZudv!K#${blw?;!DtJrZfAk;{xU-Xk-myz!R3AjET0DS#C1yb ztc$~n6Nmf}dFmt9#~ef$brCkckN?rDxhWLiJ%2#RL1W87&Y94YBAG@$7;O*v!e*N4 z{ycyaltwuS+lHL51*e8S4==u_|A;r53X;I4mTLRlrx;J4f)|zn0cv@vzR!b;@9UG7 zM;k&a*o;zLpZgaR=u?)%W+1=V{8QgN4=cu*dgK!Q43fhZ|JeHB(-;ADV>bR&qXAcYk}ou-u~q8gY>cVe1CI8@U#J&j+|>ivWKt~$ zJnhK0{Rb{|t`++Z&R1A~44jWIZ!GO#5Lth%H*gSPXHriB8p!Y!JOWhn} zq3+2hk!n8Ru}$hr+Z?;1&ca5Psy<-1O?W~T93!i4#U_+$GT^pNazYav+o~?l#+v$a zz-gQKg!(!rR6U$cA=P@oYnv<${`YP*Mh{O-4+OBSf2jgkYs)9FZ+Z+4x-?i_vY{fY zXE*@E8llU|S48wnUGxJ$u$FfHz|Ei-<@|u8h{m;u{8>WZgd_m+jCO?7eK4JLcMf<4 z%Ap*E{eYZ)2%Zde4hLZTkDf-;KoUQwP1-v9)Z>{^JcVUKhCet=`Z@;#Y<}|UXk$p_ z2ct<>Xa9NvGsOi^i3W>I4iyr`zAps1}VvItd_`XA1f zV{&q4a%6HPb=!HyT3VkupUDM21{Z|a0E>)6I19W0 zZUtY1%fs8?;qbq39C##L3El~3hoj&&@J%>5JQc17pM-`c*BP;mj7Ox)pkY?rTHFuD~gFQ8z2 zk3WvOi^xt5{SgYTk~F^0ACKsIVdsGU0+p(gHO8roGwR~AGeTED#j2!@aVz6zyIk%3 z(chqQRq}K9fEV;#40hUR)hgb(hi-5#o2TeZD1VjM9D!RRm)!xH>VH_=CARtKXH}we z_XuB0xg2BSXh7aO{IG@BsXA zcY&P{I%|P{U+jV)BoSa8*|DPEFYxS(Uf|y*0B|Ea1$5zp(7wb4NV6Y@bW<3<@#L@r z$nNtcBh$YUmw8L*Y&{&qFdcRVuO#wp+!w@99CkZcblwFKSoDfn^pmXg;Qq(@wpr=& z_z(0=$I>r~K^~0+(a7=xf&}@84Qw<#rJw2*dc={58{y}`JDvJBFyU1VGvm>&l>UXTSSJC43p0F#y&?+bY9q2v{@gi_**iMFA_(PZBV11c<``!A z=-`Spl&6gt;OBH+Vs4M_u5kXag+Bm*Ii2q@{YP6@ga9LlNFlkfa~!jCbb5skKye7$ zlYl9QnLpaQA^|8k#O=xJoxd@cN4HnF0QTlVL=rIcFylu%SHuA4hA1Mry>lJ&`{?ot z1b}S_|0Mx45VL;t`-yHcvJWHZL~! zHqSPXHm^2!H%~VYH!nB$H_tbZH?IeG1WyDH1TO^l1kVJI1g`{l1y2PJ1uq5n1RUN2tvUe8{SUawwvUr%2TUoT(xBX#~Cq;!|kD?A-Z zAjc-8RU-F%$4&PiKU(D|I_o(bo-!wAm-;}o@>Tr9=oik>I&{$*cyVmxkGrDP7F46- zD8P?(>^Viqk?{hm#*Z0O^9PjvmwD33@!YD9Co`NO&v??}{tupXT6};i(PY6-#n+tr z@j9vulgOXSuerXFug0^ezWhi#nG5{rbKQ{N#pCoS+CBnj(`}F)03)-N0n8!!bUb~JmMsl9H(Oj(L1JbsU|EqQG=R9S#4lYBUy zy61&0b!`q*rHX5gd@r7)2VzTEiv$=WT#e+*@ytCs09GV-K?TqSkl)7R_9$T<`D9Bf zGjYMm`{OBlG%!>?Ig%=QTw~-r@x(o97z!WcS7i&X8uIyg#vW}9jZf}Zl@+c-^2>No z58w|u&JI$RqWjTn0k_*u&TO_GkJ(uhAx6)8^%7r`x0V<=B2 za7n`vc^)$$?2;-@&t7Dol$1_CsAcacLX1R=Kpc61a@?SWy{8BnGHXQr2M=)y{-CnG z&6fwJ83GU*9?cZ4L4A9dFAq&K1=KTn_*19{U)Vc*Au>f&L5z9aQp5($>^;7anr2n0 z&+#y(kPJfX?YNP|AiT;{69=-!!MLbNC0iOzW1b3m{du*V^dTHZMMAuRY=CxIdw(Vle;O!e9&V% z0Pu>Wuc#ezU#5f%hHZxf6pR#ERTl2|De8lE+dhD1Bu!SWfO|Z}Y0z&w_~d?YYOAUh z_vaLoLAPyxz&euNsjE$wjUrNNefkL<6ckk8VuYH zIl;Y7{i7Pr-JW7S=(Qbq0=iEBqxP5kU&^lF#ybl%u@6cxme_Aouq@F#RWK{jx7o5j z(Wh2$4C`|&_?f?x>#J(k_DQpS7UrZy)IMsKV3QTZ zBw`R~#`Gd)5u=DzL^om@F?>FCK6Jix-giECK6bu#-g!QGK6t)(-g`cKK6<`--hDoO zK777>-jC41A^P}=2&FruWJ9GR#ry6tFRhxMXF@4mLW$&%%5g^4i~mU6oI~n^8Oqn? z4*?E$h7Ns(2L2~D>W^I+YKw-^3Ho3@9fx8OJ!H9np)nsLB7aB;;9%%Am&+Pj@v$Nb zf$MoOkshr4v7sK&=gs3&LKMHyD=8N-G_7DVDyUF2D(2Hel=B%HRWKOkS18REyXrNR zO9Pw=7NbJoE?>-`mt4+m_;@zM6(Uxa_KC(&vx0gy$5o}FB&|HakZ88xm!f~Mez}ez z!z}WbvVX}pz14CS!bm%8DQaOn<+mn$yRAfslGnc^i z`pYQ+xDJ(nj`hd*^~T@*>fbhCEv44`cP38W7+4U`HD4#dASzm&NQxddIRU-Dc!UD95f zTuNL9UXoqDycD|hx?~NMCUK67afybwfRZOA4~hwMiY=e1wYcOs{zn-n8=bb2j-+u; z&2(mcI!$y?COW}aJt^%m!Oi?3>UA9HG>ykJx%7+vpOX2hW2#Q2brYt$?ym!+LI2Ct zaf#C0iFg1zL%*7*^YQGIm?8}TaQ5E57xG9kBX_1fzj z*=p9I`ehkt0(Vyl0OUT9%V2?!m8nl~?CPC4zj-K^$)f(gjAw#!R|9|_6UiY8ATP_D zCPa5l&)naT%4HR(kC)L-5bvs;*#b(k3@eCGnaKqIuF;w68fh^`}@XdZoMl05`mganU3 z9hpQ6kR4j~+~9O1?}(uzgJ?dobHpB?^&+K4EF4)x3r#zK(l{Tx`M?HcYASgF7oM!u_I$${$l68eE_%xDK}!}$XZt@)xl&>3XVl`0CXNY zzdWffLyC@={$TPeXzl1jb&EqhlS~bkW^C0J!O-kM{m>JVggDhPsD0-UIv!Jv5GqXthOK zcOT&5llHVX({UK>u;}X^+<4zSwYtaHu@Y^x=<4nd+=J4qd*>YY(Ef{W+`}4ifEn8J zA9Oa}-QYjythTK=`st#vyIUj4a;CQ9axJfWNF(lYsp{bEt!`6HBJ&}#zpOYM?kZLSncz43Pj5+TJC!WkhNs3_8&Ttp+So(`!;}eDMPN0 z#pxxQXVGBa<>FyTrd)r4lMtGAQFGq`kT4;>_gOi4p(Pg0_dPC1L$bd2uQ{=z$rjat zIzQoUMp&P`lQmjs(PZE4g5)+ctiR1k0nNJja^DG1G$HQ#!kr?}3X9hJUKeD!V>qOk zSEQS|W1TikV^UJ@IHYLReLUem=-^n%vF_u%EX@r(oo&vs{=vMi>*j}fLoRt^^m&8$ z|8Zu!@_HBlgUo^j#~ijre2~oo7RG{%S@}RJx$W!I+$?KhCCHjp$lpP|P2>Y>ehjdk z=uGnXI}zJ2d`g-{EKF;dObRMHjJElF5Y2oRMl}p3`9OrZ?dsFeENx*~!(vkC)*-gd z;FH|UZSivzjCk+TUHEXEnbKJTcuxS8zmT10Uufu;^zgY*M(<1k}{ITDBR-0KY zUe?gg=k9f%V{d%!nsEU7*CUB+#x4?Uj8Atn`O0%oDv2D%?qn>0m1rgejyn_*$lNY% zY^l$5GyRH|CyhjIZuck_01`CguP6halWg;@r`SxN;b!WU7oOBjIp*Ef*g2oQW)grN zM%jd1?()Dk`YbmyujqKvHsvmNA7C$hZkuselnx&SX3KOjW8psi&6Fz|hg5+%GTr&u zF`u1gV&Ggw5r}N*vc%T-%r`TxXdlu9=C*XNVh?>Tn?Wloz#%w0q)QH4;4|J#3!uoT zFLOe=zhl>Yem9e?s2@^ZB5%9Gux&o;&8#ag4{0xRZ@WuE-hxg#SbCz~FtLn8h2*hx zsl2gZ8QQv-VCn0ABl*5xbXs&+bXl}tbY65^biJ;lZlZ3WZlSKHZl-ReZl$iPZmMpm zZmF)XZmw>uZmq7fZnAE$Zn3VnZnkc;ZndtvZn|!`Zn>_%ZoY23Zr!iLZ^CcDZ^5s} zZ^m!LZ^f_6Z_01TZ^^IEZ_aPbZ_TgMZ_;njZ_%&UZ`NwMq_zwLJ1 za4j8b*~VgB=+z;y&3K%A%^mu9J;SR{VkiBICRDSHdOZiwdSTPA144<`3x0P5ZW~z{asc-i zw*PqRnh-cJQz#${yIx|;j;F8b|7eBNDC7bvFzn9p={5czWx%qNZQUh=%{m^wrvCFH zoVq;+FoR*|kN2)g{y@Sh+mY*CUf8DNwM_N`|x>}}MhFX?d`da2%##+`|I$I`N23rdO~JGMnYCXxe`Ez zAoQYK<7$0*m2w2$H0aui79zB!Y~u=jd6jx3x@pq&J6eHo_x>X`9GXWs)J*reH{Kbr z;pux5W^B+nN0LJ$DP`{q1;K!aajHrbp#TK-o%I0Qr+3^x-?3*aD?T7%XBU9Jd#W1! z=@BJH8N!~PVhZ>sslN~|!kCnG*t1g10SzSe3E?&DzOoW3MHl+yF%@+JVK0nASp$`! zYxaZ#SRN8$VMNMms5D*EPmh6pAmJ>GL0KD>scZg;V}|+{;W>;zSp}6k0d;=NNu&*P zRQ6-naAvQk0$j5&abn`7l9c6IAYmwu|1?BAdG^scj?+>3tP~!Cs9ENi(ud`s7;=*RW_Rz6*plzjJM0sCP&yZn|*}J zk+2RX)n#E*AZ!g~6QH6YOoVZD>DwUD7EtyoDr3S*m{^yYO+MNRh*hb?33FjjyNqpe z(Uw5kNd-(^m|T~YO(EJ^l8uRqlrR>?(WSSU?QJ2+o=2raSOydAGTqGcw))CuK_y6- z1>^5B+RX8`{K~#Ue0LNw<07(qZXI1H4ewR>G{{cB^O20%_j1Lz`q-`IxLMlR?A3NV`7xOiIwAhfa2qA-tp+G}j&=xNz#~!2TscqN7<`^vG+-kG|J=Fp>>KA?KQ=?`@khl@_5E*Y2%1{ z)iAa`@m~!sxCLoV;`n=wFs?qyUyUtzYG@_m7<;ubjy{QBjaIllX#?YAdMz=YK0x7W zh3Al#EDqGGg0VS{3o?}DW}$r<$J1+oaXC&3GM42jpcRUv?bXCM947=BwQ^h0dc{ff znqxeU;Xx)qdP~b1N7k#3u{(~xG6VuyTI)EW5mj!CH16FrcBH-{ z(F=B70n@anYQ>+Z(lPoF-t-L9p~nsgfNfdAq_4x9m0>=_fkgnw$&&l}O64hrP`=01 zhy;z^5(<5d@(e>WJ`Mz8NCR6!q_0+<2He~q8zCw*W=k0KwaYUN%_}%&5x+FfO9=E; z%2Q{cu8+B1XqPzZ`|)Z3gvbmtjp`C{eREz@SDupR2PLHX>byq3I7>A0O9b^z%5!Hd z0iI&U8;$QJ^7_{0g)`O+Y$O>38c`+eQ@SqM&ny_&lQSS1MJ3=Vs7u~6s~k4%3~r6| z65c68mz-yoIqahujv93(Qd1T#1<$O3&0z+OMq&xql)ekH-olK%Is>2-m55E5x#ZVd zEwOoIh->7QJe@Lj$*s3sVn4_T&}b=KmJ7hM-1P3ICMQZq94VZ|tiXo*GRhGE16#`_YUDT7_) znZ+A+;J&8uxkO^hd^i8h>V_>WLtdk>L}WFuV6vLO+df zc87i)-{lA`9>*4ida@qag;u>kJvcfzJ2*MGI5<8yKR7+OWIkd(V?JTNU_NF(XFg@V z%s-7HTs>MnTRmC5SUp}nUp-yDlsl3; zlRJ^SkUN$;mphfa{C@QP?EA_0i|@zZ&%d93zYIGHI}1Ary9hfDI}bYzySzKPJG(o% zySO_p8CHz3heGTP0|v5_hINoB8jD;8U(8D#AdU_?7Xz*P2ugb;8V8Mw!7o(<;Zjjm zLpfE$G44Y+Qcq&H(e8tdOsPe_TJT|dtd_4MApJEO<95pO8<4_U_Ha}sa_=gG?AAE3s*@O1zT!A3RQCRuI+Vpua@k7hWa zX5g96VjLjBLVWF-YuKEg#~qm2 zGGK}I^bG`-um*=*mzlQ%Vc2lrh~T%fx-6VznXv;ZSep~?;AmNW7OwZ1{R4JbpOc{A zcL1!F^JQk)fC1L!#(21mB)T5$?xW({a!9Zr0MVXgXBT%R-N z2i&m!CvSqI0J1BmS7y_IIo9JO09fxDta1I$yc`I@hMk08zYW!u=VZ-%KcJ4aJMp=W z4%L_ED$E=oaKieX1Yf@c4r`p&nV$ztux=;*z%JOJjcYv<&=FumPQtDu|LBHuDr6Q8 zyu>=4_+7*P=!bK)XRZ%;VFOP>uA~0w{pF0vY#*@3dYuGb$Nn++%k?kw-@q=BE*rk_ zBYYz!qSB2719mEXAKna%u`^5$3Nw%;`W%G7Q`1#d(+^FkdXiv0_~BDR>CXgI_6tQq zK6b7uXhOAW#wQ8`%nJxtdYb9rM|-0$yo(5?7dl*7Y374P+eRn6*NFQsluApN;34#c#ATOhIp|Eq8DlJ80!s}bTa%(+Zm%8H*HAV^=Ra~bUx7xU&L1Yekxu}>Y>uyGGit@qleY;WGh~S^@U;e*%!Vwy?-4vh23X{YMKG$> z5FjffB!ch|A&2kTqwd+R&vzZEtVekyD$>?>dtekuG=I8@kF z*j2zP94Krl>?!Oh{BGZ9|JlCXzTb{%|JDAZ{jhzreYYLke$c+vzSq9f{ySnL;%CHm z#C`-O;#b6vh{K4@h}{Tm#6iSX#9qWs#P5F_|9<}4{ z8fhbCE~Bg$<(>#*dW4bGY|%-DiS~aWVXoP-p^A?;vkw7`a77J6MLEID2L}D_ijpN) z)#M7WSdF8hXgP9Lz||PYS}jLWKMeiKn`dQRt;7m*te<|MF(fXB%{~UQ;A}ICr>IOr z&GM325m(cOJTt5655|W4<%n56S0f;awX87>%u2gjHWZjydwdW#WGqjf<#zqJ zWav>UZjwGj#4RtFyf3=L*=TyvI84?YGMwUn>Uvber%$XYT7 z#EM3@<#)3?mC)W2T%Bfgmd7Dl7_^1WG-Ul9NFZ>Fms zJ&l^mmuH!O>G)@TGhZz_G`cLmoyGm7be;mR?>@2^y)W;dr3B_`#v3!aq5`Aw@|{`Y zUupo5-SqoME2Gcl^RtY;?^J+E`cdAfuzY-$_Lt^40>F$G zwHd9K|DGlLrGB0ckV8L)8?~3O&$9k{d7cHpK#NM<6r-L&Rh}98IcLYX=_F4)A1%?# zF)tE>*ooI7q>%2K0wS7)&XGc%8BxUorP+3Y-nGf4vkK=s9EeiEC_aT#sk z1Rk5{yOlJ|EjfEM*jMLger%YRc4lrctWM7?^`HCZY}w#x7FZn%kfuw{=Wd+C8p6#Y zJl=}yG8U7}#W<@p*Z_u~XmNeUlH|EQXS)WUr67-Y0ExO-d#=>kpuuJ7wMUG&L2k+D z+z)5JhTx@8kH|({^Wvv-na-LG4okisutt6JlIpoRXSef6V78+Hzhed2bnG6-S?bM` zuzGn2Yvudt{yoaG_#4i!FM#f`;^lPNp6D6!Mj)(FUcIn#e0pb(_zZUQIII@1KUN4$ zXYKKyA#V7>8rmS%m7k~Q_ZZKTZ@9zi02yS3*L2gK%vt`8U|3U|`g-N>>B~LPSrl-H zKm%^b3fAfOdpu|9H@tWC;Shz&!s+on+OxzPuDdUQDzd_Q`tzQ|S?DqERP6xNT>zZPFr0+#BeE;0 z9fEpPf#(?ZlFs`G?22j!7u8-HhTEjOKAf!&J_C~OOkg-e zf6`VT;a0KFkfcW*c#L5u>9h}j>!Z)$S9c3=4a0oWULVO;sn76Nj}`DC!)4NKAMO_F zcp%7K7F@tEp0v|Pyj5~M6y(tgUSs&3blC^mDmos#atG|}4C_h1`^dJ+j)$*2{(z^n zUnz6DKjwCo)*9*2F4M>^-WB1U_L$J(A$aRrkfTx60L6v@%z0B**b-U88A#mD`-? zUM|Txl5=8jO_xc;@#_syokROvEYIZ>0H$tX~_jZg3V9p#|OG-4NX1-+&142nY!92|zJ; zF$6LAF(3#YgaCpM0rlba5%l5rfw=Lw3ApjOL8W-51f}?;AV)k$0!MsD&<{L-GKl{J zM1w~|K!Z;M%EZeg$i&YC8RHof7~>m*=J4hS=J4l0;&|c&;`rjAM!ZIXM*K!l0A2t= z0Db`I0`G$00{;R;ibqO7icboHCAIAs#>{7iOw|7a&ZLL}1q$ zBy1;aAnYfsDeNX}E*v7PF6<<1A{;3EQrJt_S~vo&h<=6EMSG*4qn*)EbP!q7%AlBB(DYU(^YT2$g_(ff_>bp(;?WC_mIG ziWrrM(nJlT`2WAt%uz2<<0v82XOtJ}H;NTih_XhlqZCkQ!VgqzB$J{i(Hu#zW3;GN z^dOpF3$|(_JrcbrOnVW1jh4uJMAKypCA#hMg%aL&(|5T-iT7+c++%PzUrADt##W=5 z;n78#P)U|Cx-qITrZI{!hB2BkmND`%`Z4M;<}u1K#xdG4R>4Ptbb?fZOo9}G41zR* zo-Uc5^qDUBRUfFobY(g$8uuiaf%!ch>P1YE)dIlq&PA*a*kdIrHy<}{{aQ-SL+z(%r5@2 z1*{FGtJN%kgCJ{m`Ij9aQ!u@&#sQwzr-&^u*pf8Fn08l_&prSD2Pk;)#uhjrn66i| z&b{2rI$yrAD_QP{abJMA&jc)FCok*dqBWKs3>ue9J^CCy#x53G4;m=lJ83)yFBZR4 zFNDiPRWIdKFUNQ+;mA10?xQ^x8<}g10!HA=^aol2j=&qr*)d0_Ccg!#1B(DpnfLkg zV@^9w#0&Tb$^kYlah5ZJjPTf z2W9~tEpW^E8mIXt#s!iCNPt~Se7>_pL+;|}0cQ(rbqa7)HZCuC9N4$y=i4?l$t*A* z7`CM6I|eqkELa|R1_ZXmu1*8y%EsG;u!Hb`h>*8{Xu+PWF?K=az~;g`BwB6?5Lq_% zFW4RUTm*%@lbbBCf7w{JU~u4a@j4_%ZW{1fHtsC=9Ry#5hC~8Z2795#tOd;jhYQ~j z*!L+wbJ;k*;CA4D@g^kd`{bIvS7XzH`GLnpKuGNOX~25fc)1XA5OxuM`xa0**t0gi zUr;}=1D0RWVN-wvvvGXE>A>$I`1W1cWShNp3+rAf z-@-2WqsYhJc<~>|)$tNH$ep6&QpioB6TWi1j*dr@3u5Ar$h|n(AFKAnQ5~yo$59-s zi>S`T(M)ncdXn%ScRqhY0f&;yP{gZp)IOI@1E=w(Nu_b6iKRVFlS|`B6HVh!lS$)A zlSmUvQ_yGA7uJ8GFR9O||4d&%UsnIIzKA}bzO+8KzPP@izPvuWK3JbuUrL`#Uo1x^ zhbKoOM<_?ZjLl5g?1`DA8K>DZGXXPMv&Uv4W_)JSX541tW`bt&X6$BQGhQ<(GcGeR zv!`ZqW*lasX8dL{W;|vRW6N-XvLQ|oW&|2s*G#)w#Er;$xk}>7qwg6}xr7fjhx^4PaGp2bf7!$m8 zjk(^!$KY@AWB9i!F_l|x7`LrG%-$9whH)zwle=Y(G2dFoEN{tRWVTu`En6X&kgZ$H z?G^|F+KR=*ZmDC`xB4;tTRa$^tujp6mJ`NlYX`HlMT?=`%EDxAnf(2aQBB>86!iXT zr)lKkE1KRzG@Dl0w_0mC`6>OCs>`Fe$AnmUjFUa5jn@hm5@WEpC>oHoy?7V#LT9mNg*r#dDy7QYVys; zo3xuRHwiZtH=^fa=l=d>H!(M*H<>q$H}IR98^3e82E9AjjpljSxydikug|mVpW2Q7 zY24-Cgq)N8Vx5gJjxy8FopBVaz}h&^wP`(I&$OTGdL5KXM%xfCoi8Y@1gO;{+-HCJ zzgfMA764mn0q(5FF}>CC7Q<@MpJ!wGd<)!-Af{H6YagdPuo!lqz|e5R0Q<3T^(XyB{ezde1R2WE}qj))#FvzuHw=eV+GP6?F8m4d@E6jPcA3*ds_y zZ+U%(m64l^(&r(;lx0_s-}UC)DXfp184&+|+G3`0kQ68CKTv&Px%IoAw7SO|e1tpx zRBBAwceic(yZF(UApf1np{Q9Y;TO@$I`V_|os#^6Gwc!l?y&`==G7BQe-i>T%%rzz zF8)=rkF(a%w1M+6mOif|_M^g%v41p_yHQ2zq^#I&(H*U*g{?xCHj6na|MzT9|7x5$ zO(DDgdH+czWJK%VwH*+y-*Aa(em^LcX_vYElGLzXQKOG?m0ojAdnBahus5cdELuFO>)(7LRBM7)sZpL<0v8XI`rL#;qMgY3 z4l~(4f?wiQhu8-1y3gA1bm}vwUx5c6dn7wHsW`M@9zdd zCBH{U3F&O%|0u##w=`vXv*klxIy$-h_?vX1v8$Zq6}@g2LE50DdL9$Cr+MJ7Ja)Sn ziTuk%pgG3R$gtR{qURuH&L?5FmN8z=P63wLddrVq2B5nOnpa7ppky0wQl#jW-`&2Zq9+X$ARpqFy0xzY6nC zV8w*BEUDz+RPy6WHBu8{rKSC;wG@~4T>BZ{aSpz};*VM_LA6f*(!ZoA!vq=~w5X8q z>)?lf{Bm~8zHMzg_kx<6aqShc(07vGS~VUt-e*4cxngBf&azMI)}09kg|uPZec>X$ z(>}#JotJpoGX$S4TCPYg$-mKec<@Ix38w|7%9^gvPMfqIj5iN;=M~#5B$LD^Jv_j2 z+<0ER9Q2{u@Gq_X`n6W#3=tj(`D;nIY#NNJ_?{rc)if1)z6^G=p{6?ZMrc@P)`l)8 zMA=nZ{-T+AT4iZj#~a~y*f`Qv^^Q6DMrU4xy_0v0hg&uvOiQbtu2t%Z-(tbrDTm}? zp`Pu2>b~EY53_GgvcFbbcmyAP zU-^!{B^27MylZju^U&{|>8by@Pu*O3$`SCnJjwMrpnU&UZn51_xaboQ`o;3g_fIEe zD@?Y)C$*3fO1jnlmZc+tbPL!P4nkPw=Ugi#gE^8gJ0Y(}JkCBH=`&YaLnUrMx#hc3 zLrzcSmVeBQuK%vCQ21fKqqk#R_U`a&>}BWSX{w(}rQdJjev~HjYng|iC20v?{_svK z%LfD&y!rDT*0n@0Wx8BiIWK3kwFsJ7E#6Ht2QgG|!ZvMsPvuT>8m3;QcWgnqn>^Kv z{%&WyW}kaHB^OE~@duT)$^CWYSvI%G6>4Qb<-yli55A$jKk#3@Bfj}a%&%RAS;dv+ zezs&HU75r8$NWcLp|2(WCHuR6Kdpef3(A{xQWxbX7w3Ih&r~X$h_L+^V$@B(x+9!+ z4irl~BMG_fA~WWp)(;n2CAo%8pVvIq9&6a8avPc!Dz*OmC{*q1v1Atg;Au~lSnYeq zWnHa_=g9L$yL3#hg=bY|2}5QbbqYgl?x~ICB7MD zre>t3WX#V#5O`K14*VNs_=Vlxp=G3H{;WCTL({f$;oli}+ZmVE<+5Vxl>6xw-+hkA&vJ#4+XF{%$| ztfI$V*{Y3Qp?vdP&a|0lY@5sL>cPD5w}ek$KFOuOR(2e?_}~%ARMXArNJ((LnbCBd ze1qTRK^IK7BLDUkgWBKG?1s|E2DEEVJ`Njg9bIhHhmPWzUKP?a(~;z1`k@AYBwJ$> zk(~Pni9|9jrPo~tLT(!fG8;~ixb8q{Tf-{*yxh}gasnLgT>|Hi4XZx+lD92~e7;#a z-lvvA1-rq6=4vXaFXMWfVc6ynzo9y})gjnMD*GC{hEgu>Nfy(b$Gk)DwuPrldk_XV zZ{vC0B5TI#?1*dwdTG>I;$5_yw>Ba>k-VQD@>({Ie>Ob#2BTXktHSrD8B@eArgPDo z4?VxyE0EW*co-|JzZV}+=&pjX1r6jnvi5UxS8#rL@}?ViqV^Uw#}`wPOI@_p#>to37qgUVc8@d|t0RH7ksbc|F=;D?{D2u=9g zJ3WV2GRwzbFR?GYr*nP3QkAo)9Pma5Qd7{)wGVks+98ooARa_W8(A5>Y5s~da5Sor z$7p_dc7LPhA8^bWWV33E8D7@pdfyQM9UDMi5k(lEc&Erg?X~&Zf}Hfi^>9F!$hYXX zvwz*B+#_f*?INh_E^>A)*Qocsg~$A2E*qtS>YW*PlWiYi7`scN889}*E@bs{t9mB5$Bi*YNT7GbsI+Fg&iLkaz< zWiIP}MYk5yy-7mS78y`QwbU_AC@WDM=6w19!RVV#ki=vz_VVlbBJ8tS}Qge=o$RN+URCjwxgZsMo(q00e@*nR~)j0Mss7H6`M}GuP7#-%6TVKEJXTMwM zntOK|JTLh`AxaZj5BM|d8OmO>_i@b0^u_M|ew|3j_@KCs}Z zp0lQhhL_IH#P~fRS*ou%OL$$AZ%NT28DJv-`mPvEgb-Hk?h=pNnza4}hzwY1YB1g` zqK7Jdx&-5!hE^;cq{*6oF!?tdP2HM{eEVxSatmY3#!vT$ic@+vR7s0pE^i;y>_DAE zS80koRj3m6e1-m+$K{OZz-tqkS%*8bYns?xA3`QqRKt1eE@E6j|BgNr7%(TjGD$Ws zwOaUnW?n+6rVf^67m?PXrOl+vX5xU9I2)XlJt&i4ouu8t{wU6hL&Wc7Mu;Ei^hSLV z(meD{4$444wv5+Ebizh5@eKtOm<-nhK8%KmJ=swt8-w|DT6IqnSu@l{l%Bqe zMU_^|ve+@?zAuoQ3GS%zd{IfvGoI-etiJ0B(y@Q9m_-!izqufZ|qE#~evGM^9qbf*mVyY?vqQpRvLt@%f+uHBK-Ka84S-GxBj zc77);A82E~+B252boO$V_CI?ZyGyXpLlb*Q{N%FSou-v6==Z7M=8(-R8Pe8bWZX2= zD5Fp>{3lyvrQ*_>4ya6%nw@DKAs={nbXj9Mjvn3Tu@pe8~`pVY{V z-yA2lN9e5163e4`yKVk*VKL7OYwivj4u@W3jP!KYRBi_W_ts z;Rap9eGDS+^V9zqE583PAcrN}{kmLqU+&*m&g+Fz$T6o=%5UvdUsG}twXenDN3{y| z!B#67LO&d~v4`^6(>dYO;D3{9Fc^3fy!kDAK%0e^nE&oGj5+x$HSuRFbKlvmld}rr z&I?L^m39>iqT3HQKaLYU+O*qy`5I065zm|dJbU6{qnX8GVf_8iB;m#FZR3Ztw=8+0 zTQT4JKTroS`%PGWTJZD!_m_zD!hN$gyWC4YwB}>oOpW7E|5%>vMj2(*H{94S)DsS@ zt!59ynCqgcCHWrV|C5kv9a%~Lb~HVgnY<(?>lIhwp#J2E@*&95r1NO?PrW~v9Wlg# z%%tHEdTP0_!~gly#6zB7);~)`Euz%A`>nlaDHa+JD}n>OOxw*Uqhb&eQjB?&o~<)B)Fgurh4qU;q5Pc5FguoL>jm zgM1z|n`7ZtPF)xfr{-LpKOh_br|#SD&(in{&lJbKM7H&tL{LYH`{XKk?6GA36dz!T zGgWw~kGH?&AM#u>W~%7!0Y1Qg-kt_(mpK$yF#fCNuUS1e)8wyjFxg|}CNnkEBXy+6 zPQ?uws2zn?mHw?phT7q4bgN|(2I}c7Z#I-BxRyQ+e*5U7Y;@~SWr-5CBYw~THR`OwV$Z!-Q`@L zwdgTxzlrtX`AKGs5{OIBShA}t<&inBL-@le?*a!e&dz%uYozxuW@yx z%=6G|>-sOrx3f!O@PFP7r0<1u;|B-G6ECQJ)EFevk@^6MpD)J$XZ7K_|F$^Xd?^G{ zI#P0}=z(jCu79F3YJ$JZ%e0~hja0~V{~OSo*fYSt!_@wr_4e<4!++x){u{PY<-cMZ z(KJGTPy2u1j{mFFMgW@M`2PUfDE8k%8~-7}8UH6Xob-Pu&VL7O{6}u%{|IgTpQQW0 zxN`r0GaJR9{=0ntBeU`8v;WAov!2m;U;dQr(MD*5I`~<9?|>Om!iNb=xxX>~ySR%M zt4}S{i)yG>owfzx_aUM+I~@Mk?>*)V415vliXBFYL|q{ktc8W9R4fV5xv;hCz1l1^ z35B=}IS2EyBs1eU+uBKUeR|@EzKdG%5V2Ce@^m~_*gc;4A!iQYz-g8TQE0^os z`KUN4Lz?+RX+0_ZD~HYpch<)eILQZ6mo0&o(!Hm|v64(ORqINj>!oUjcS<9jlD{R%UWZ9C4p}as4RMZ=aDxVuS1#5F`(o*w6JUGKH!;Mnt!>hyRIwALNxfI0-2ROn$I(a zt4D9t+9G=#s=qw!uAXJSjEtD58(D4jvrP)9c5=DMtBM>f7J%1$G@s6tA1PFPb`Goj z8lNTiLe;3>{cpDZX?LI63lu-m)hXLiO1Okj=cS%0jcdSQ>ScrZZ*3hB&&7v4xB+oM zDY^09(E)F0&m4kNi%BeE3XdZGl2JbSFZsO&k~8#GcVd|q*Y>2ipet8;57idRqO{Z~ zRTGC2+-F5Kipj?{b4%yojc{4Hg{+)Rw)LaN8ov5)Bvnw4bUC^9;}9JydiHE2_T!K+ zJc}5snvRUa>y5`&uSrxff8B(-0%$l`c=~Rr*R7d&suw85!4n5B$Yx`%UOOO0zQLrH+_u z;(JrEUmO>c{$TNskzSjT1^5?VBCm^zEUIuugt1lre7w|<*=OI+-T$$_b}qb+ISc%3 zplh2G;TM-qo<+XXPrF+K)w%FL^+!Cvxw+ZBsXwVhc%6oC+)lSPl-p}*B(}fOA0A0Z zYQNXk(dG?2oT@WvO<$2+wB-iF5bMQg2cuF?FL+P1$-uSXn5mNNrI;4dG7 zu19wovLcTfHXER+r)D>>7esYI?G6U1+brr)OHo4@mC}n=&h=u*yzYycke0*W@>kD& zbl~`%B75@P$R&mI#66R4gHH;c({ZXj=8(uS_Er<5#<1TP1bz0ZbuhQw?#} za;1L~FgR@)u7~zkp_TfYpPqU+{3_qpvgXC+v6Z>5@lz-e3pubh=`P&Olk{53m|ZKd z@d>Hie?NJD(NTT|mq-0M>z0e0#0C>;*q-;OhYB}YN$#Bjg;92re)XUHM)Q|Swe< zR_DLA9^ShM=KkEi<9?DY_s#S8%WkM8ocSyAuJg&I_xkPm8Y%MlTK%3o)OI}l_Dcf> z>KjsqsS)Y!q;_-i`}DWMm(B%5V7072y4G(tLQprmhyC;6 z-SwkCll_Me^BQVe1K>;Y9@(|lZQqxdoTa>NDa|v&Vo-733x_qg^*7$XKR^-)?O+vZo(>FR{E=zFK0 zoAHF0gp!lC5~z{u+1+qCcv&#(#I5fd?wLXk^0=cF_B+?i`7iySXI9VpME>}0UW~`Rv(E9= z^6IN2R`dZht!@3BoZGiA_!)_>^y8@5i4ZjO<=**d67^h#@}F}FnM%U9jEW>sJjy0` z-1yzCVs=fo#TVCL<7d3FWG-YnAAimm`zLfMgN)6;XvzgrI}cYi+05|}YCzUc%% z3yZ5rk_5JS&#-5a0+z&4H=h3Do0o(|uM>8LAr$MwcGVmYeDf*tD|hyN60%tx%)%*U z!^nN#HZQ;OD&X;gq)9`xBFRl?po9U!E2C^>~Hca--8$ekC9a#cl zxPpXC4yyzG1G9GxlQh7b`Xjbc@P3;t_3fmw`pU3Alx#oX?h`!qz{026;RLkHduBK5 z@=S;Nh~&)r)V2r=)$R9}+e9UmA(YXXseOK~BR+!!m}^sZv4+Bbd3+?>g1`JSW$^k= z9_-t>1=WS+z*k*VUz+F3#2+X&ni>UXBJ$__bP^n$s!Q+rwJZN%oc*ZeSaobdUH^=< zUN%;rHOYKvnuiF9lfCnN#Z2Sq#z~B zU*s1bnK%mb%dAkv_d>VfC{`~Ilv+IFD2U^GZ!g%On)J>#OCT@*ST3Jmf4d2^fe4kk z;Uft=QW)MZ6ooCOt(56ITSE7ja3f*sw|lxvW?R4V6T`26-#6asv3}Kct1g{hADG>K zdp(A^YY_0s`4Ea1Iwh(K88ud)9!@|OmESN#H1C|K4xq2xdZ2Ev@%MD(Jg-r7TOK3y zVGYvO;GMOA&nY5`g&|Xjxk&?Tx8F;a- zF8e^FLF8x?z-V&K{EKg4LXf_A^)uGBCb=?%6k?G1Y2?_E*VbRV>eBxG2~5-ok_i@k9@%+;9DszX+zf$R<&R(8cg2*Su}F#tFT{?@aQK zZ{`$-@m+ZVbF#}~VD@@PcfTr{GoMD&>B~2;P0a#) zIGsG@WL;z`dp2x<{C*arZM%Sh1ce^l~cdilSL|5q0xpDs&aCGvs#|1^4;724rfC+oAdH|uG_v?>Xa z0zZxmLb3#Qz%e4c!^Y}=Y-gR&`d5^Ht_7Glxk(!WRb2=^#{!Fu|A`C_N#$9I*!;xe z@Z;WmOO_tIE7xpF9@ulI9J#LC$IYU%_CUZGnXm)#mn-m$ACbcS1Fnp&NLn;0*j<OPQK?!%<-cSrodOgAQzHGQR@@tw9zM=j&V>I={@gO!NcVF=|y?w0Qkl@2vC z00T*;L){7Hm5b+t{EgHv+(+(VzWnk_F%iUi(W#7w=mxj21W+MxQ++#2|1o)^Tk$n! z2`GhlnJn=4@FVllLzR5b$}dM-n#-IMSig@-ZuLS*zu$3HM%H?j@?NkAgIA}UzZF!& z(BFWG$g}W_{;O7lL4aYy>AWNvae<1pQsijgf8|jDI1u{ zZscl@G@%aFyx(IU7F0UQ7S$jA%6)VH)zqG;SBBSXJ-_-W2ek%tasQ#lw1mifuAg;3 zS<-(2VNs6Exqo|&c^hhQ;Gk`%PUBC>nHvnzjX%em@$%A+B`P?UKXwb$^Nep4vSm zGvOk9Aj=OC0uUpn~4)wNI9@m9~-j^@y5(H=5A-)s5a)6Ehvd+YwNPvY5~+0>_U=a-)dr%|MUSSrZp z-Ci`UEF(iJdqE4b6PE~%_+^~RpM@Ya3iHd}>!cZl8I<2w`Le ze5qagI`^i(15ocRRyxrj)Fk&B-D^9mfn>xN7>VN*;_Hd4tce7v)Qa)SiFVPX-R_QEA9BjQ(QlK;3i1J3>j41HI8;a{B2_y+qL|I6k2U)E=!hNd1e0SBPceA?Oiw_4kKLe zMK+*mZ}zTSP4|xtOhE1Rr;!=S;Z|SJtaM62B$(OiE%JyhNMDXTUeV# zTR|H`n_U~1N<^Dn8DTh2BIXhIJ5MPD!(c}5K;C9Sgo`lWt>Q%w4dlu zdaiBcu}G@&j{x)YX3Xeg}q18>J6Q^!zPJvT~>(urooi7&fsOd~f& zjMj-|gqrWnh^E*o@iq0xZ$3h!dgYg~U+J9iM~pL__(qLh6xXV~eD{@M$0GC4upamW z!-;q#h0nuizN8lT=j~T=C(04$%uj~ji&v6g6OPpJwU&6Q|B3s`?1VdV#3yTXtn`C& zM>x}(FR*MS=C#O3I3Kc1?(Heth$i%&FjrA78ss zAut$YM?Ev!&_*K|d*^xPf}ssC7;{H2v(<1-BN%tbIumKQ2E2Z>qnep&sGxC;RY9<0 zk~wLp0K9&@qm$WS*rjoevtyYFH|zrbi8;j_N##>4xl8^^yF;64YZRe+&AdaJ8D51> z_aN{E`?+dMXAX^1q6MJ@kpxqVq&xE*-kjzf-`vlt>8cCE!?K}bNhPm@CA=0< zcgi{QIlx@d+~+FEIp-?;s&S*EDj9bUcM5m0FPJUZU!wA&^OEx7^1yjf2Wno42P)%g z<0@Y7mKY=$C2(7a-7QU}zTmbnyNAwM&B@J$%{`t|nIoyPnd6uPR}~n_mIWvuC0QgN zs0t|ysUO8z#94q3fJb19s3pu63W>K%l)u%E-Z7{hr7YpLh`1}xJyc;D;+B%AFel4k z`STq-o!hM9Gz6A{RhUy`aQp=i0CR{cN<-dKeU*ab5RwC`x$3G}!^*P4_aQ6?*HyH| zHVGl*2ZL4F#WqPYnEpHmf^(yWBEW(a8C-wi1G%{;hOjbWrA~?qfw>wZ+ESaCpLqVF z2NZJ^RilR4W%Wwdi9ZSaB@SAu7D{YVLog2*<`|6@O6ygvQ-5Oka~|-_jaNyPcq@0( zU(n218u_TMCjBJ#mpvevTQ&+TU5g6gJ+Q87H-u|+;$GOy-5SDy;g2qq=i&`nHNvqj zjOHMQtibTc7g}?bhD93TI2SMHV1|KZ3aK}b58hXalyoKE5FFH0HI#ILZ*UGiRr!>3 zrQDDlv{%7Px>9d24&tj=OCpkQ@ZG5oDyxc0BEUD;2iaA&B@rn%#0RZa>m?DXKXET` z=U9y*RqpBiMGi!&x=SD8Ze$Nwt8N?Ls`r*UG}%oznm5JT;SU;P>gWl!G{)NFLyQ@9 zm<7qrIhxe$tKV}o=*SCRG!59fy{%x+(lBRmbc^Pu(P7F864Yy2Y!vTLe_J6jZeb_dSZ=2^m>$Q?tb;?to0Vm5WiHnA%HHi=g+!L8V0h#C;0&owq#$M^ z(SR7Rpkj%Hnn&zBT^&9;44(-dh;Jg!Xz{EWt9cgiBsT0a$9FLhNsgp;C z@3Wu-_%YBS{J7#G7UUMdW_{O!>7T{^>Q6MzNY^9Pg}=o5!sC4iaCu_Laf0UElK4?x8&PQ?#el>QIev;7$ZsJ#k3UE zjPFW0%~PVMA&cupuw>fo<~ln)p)N~$6xK{QC9KwtcjVBlGbOD4DN2&ki)P8mHM?wF z<5P?ztryD@wd>h5O|f-i0QJ&uSHkIfWy{#_bYA#N#?4Nyqth>n>(ngYeP=kbXg-{( z2exB)5ig~$Tyk#yH1)lBH93HAsm`^v#7liS?mM#=?$VK~?DVlx zJLM5N2d!&h*=kIH$Wpi~vP}N%CEJp!D`}a0^d;YtqibrJeAFe^l8LK9nS9Kp;F6zf z`*a~N6yr#}IeW@RBNY4SdGo@Q4KNh*NUyndYE2^)_sF^#Ikg77eRQPSoI0hTaf?+) zaAeXvIi&!+eSDkENY2Zcb2e%?r1V+PdWg@5m>)W(^e#Q} zP_0dAlpI>Z@(`Q{)FRA3Ikeb&#Ytdz_|*o~%FL_PYMEy=$uxfNakta!%}bIX_K=w; zs@1O*YWmse>@eQ9MBw33`^Vg`@q6zQO$}oWu7_;xQPZx&cz<4M%Oel=c@p&9iua8H z155ZGF16N;0fQFFzvEl5Jox9m%|{!v94{O@2@b!R7xn*SJUlbE?YZHY&u;8WzM!sc za0n+pJTzbLx#5{_ZR|?9V6KHbgp(fLnk)9)u+OJ9MkHTQ);>2^9K4~QpKOYVy3nb$ zwZCULlrrxgykVY)Hy!uhV9v8PJ;YwP)P^=aL|>TIcH7@GAF`SwpD*C4QmL4#2*$d` zn&acMb7g*Dh@Imqr(w5`jiogH^g$+8jf_G|lZxFRKar=Lh5Z6Qk-Z#)ofzLuP18{& zkBmY`lZhP>E6zQjq4`XO0?$o9p@6L5gPKY@o)*u5vL>O*SNvi2a$K>sso?3m4 zFHuu<%`c%?whNoPi?(2&BdB=6(sEk;T&YgQ-M=_1+d_TrK(kJN?m)LrcVm#Sp>m#f?k3&B*67fqFOEVoxp6Z#h0T-8z6_61Z;`HVh(Z$Fh=|o=^W?D4!26`T zC>^WE?kQkDi}y)?@keX{aPd0UT50iJthL(WV63&uVnysYnuFdOPjvgf;rXZsdGvk5pJWds-jt%~$~y6%6D|+Hbq}q!RyzXE9jhHp%pI#7 z)z1lkz7&~z__)+`aMJ|HTYFgzeCoA5nI zE}qcjIG`ZcQSxO7b)-<;*I2Oo%6#gPs^X7U@nf58MBk`Az+M4b*y3pSCQuF41&6u{FxT3s$ zq;|}8O2Pr>Iu+&!BoCHKLy`rHq#?r{>Q#qGL*K#GH7bX6jP< zlkE4$Du>cAwU1=awN0f;M-l{hM+{5@O9c`RlufyfFiJxxoG5<3uVORmOgvCEwJp6N z|6Nptp+;QpP2|sL*vjtDXoPe-P*7cUslH|M4>Umrmo{+RxR=sWgcDD{Pq5KFrzp*) z=uF<*QEOle;hwHZu+ckjQL_b}U#P7soimjBaD@m>A12rsoa2;AQFJEmjjOGzozs;1 z@Z6va?iVT7#L%7<`Mmt@FO{AG%;6ijLBh_;#q3WlZ0G@ zvBwVeT)P4e^*qk(q6=i-5^@Fy1lgVWMMo1}>W>jPyrB4&l=B-6#E4;ZYs|tqbZsoe zVRUUw!};Xen2RGdZAVD#{kd02yzL_ne6~@6*wJ}?$B%n3Wg z#b+Z{hKmX#MTU#Y=|>F2(21R`+uj?IGN>M3dRy-nZXmaLCngRZK_?`HV z1RmPiZHhcAZBKcJLrO+fPfQ0!isgjGp#e#D$*e_y12oY~yEbLfdEl7i(%S*fere+X z=e&$?U}d{hc3|bWw0B@-zcg}S<-7zr6tP`uITUeRx;YfFU%qrG;tY^#nxwpa+$2I_ zrfns)HIndzcf!Cba7!TJP}zzbgs~Mu;X<+SzKspknRuvbWxI7lzEISLF+j}aO$Lfd zWK>x(+=?TY%5NhdNa6CPLI@yewj{Rd2I9$BwZn+FJSZZG5$_Xhb?+#)vMIWguXY9+ z*dn+QH3_zQcP#@bmAi%kl*S!=0Hu7_b?|-cGlAaoJPX$^({tLhWO;Ej%{Y1xU7PT8cIvmE;5m`!0DtXMa;lk0ix1pJ!Q9O0Oi% zGQbnsq}L-!zFdC5v*=7PZkqSf_4D+Y_BXP;qtZXCT*>VAg7{EPI)gqe3ZC?*iLt|6 z`Ko0Kc@77y)G zdsq_X2|}&^PA?wXH>Aqrgkt_BZj$O-qYI_{+q4L6ggE*nt;TiIUt;|oZ(43TT%>H` zwKo_#?pb@>9wm<*DsUpkf`uc_tI_G$UOqp9UGSShRoRz_P)TN?8fe#eNS~dzJwIW8l^xHPIcpYF1qJ94Jk_@)N*CEZ!@2t2`|0dr5p~fI#wA?J)!3&raRT{Pj$HzDW5 zdyLakB|aM6_~GcAAA7CE>q!xeH!se;_Lipui`T(jl=md(veR&t^>-0cH}ZSP()IWV z#T(2$(o)6Pho?83d#R<0aSwnS$~}Wp#diN%YCMB1wd&U$G>@Gp;ZaS<|n`6InB^@DrbNMQCri za7E~E(Q-v-ZJBXJ=ovF;?Q=PO*ygI{))Gz^(;DHZrq-&{TGF18O#hzI9837t_wi$QC!|UmH%){#$9r4?&nh$B)MVb$}+nrn}mD2_;l*TEX z3#EM8b#TlXAFVoQ-&?ZTxP{kCo>Ybd&I7n_;`Nh*%Ot@v01jWZt%N=!TA(;M1aJUN z=$(E9RAox>6(5?$0t$iwOb9^UR^z5?947|Qk12pj2CT-U1xN=0e4BghH#B?Gk~oQh zGGHPmeI_ALoA0ZwUwzXAKo6!rfY-jwz0)-DjPbZYS*9b<_SUcdwA8XkKz1+*paYQP z`(|JoALznl?fYiXD7inr3=7B)_6DFGG|&_19=Pl=kd)~o;4vU%>nZ5Gk9=U75y;9E z4m$6jW`#Ur!UPfZiPAyHm{dVT{pjpMcubt2twsBm8! z9h4$jN7UJFY#`?yh<<2??wjbY-PmAGJP3OzEE${5%)#m%NMcAO+2bjVz2J~}bQ6^$ z{m|=VYPu()FYIfF+GwCM$%mreJ?1eW&LN9rf4W0aNjuMh#n>i#C{MBwos{EBH0a5Y z7oDZ(cY9CBViZVrNIzNj>G41tp(E|kDjm{p)D9-gkGU^sjU%})q>LkZFG!7%&yg&Z{N>f< zFEwX1zopZtSn#h8L%W|_?vnPv zzh9L0AiZz<;emVKHtj)TfBnOQ(EfVbgZzG|CMxQjRST7PUZl0Ib0boY(!TL2N9o_N zmcwg~Arpqb42KuBhL~TiXboAv`pW_J7CUB#+K3%8?%YXkO^oR9{f-`8pus{vS** zg8V0-`o13wuogf=f3W-nqi=n0Fy}-IU}4iL)emzb1t7J#l6=OKZ|S?1d`6Ssy467p zdy&8F>kavV2|EG=ZgpV73IOoFAB3<~0K7L?rd=dU&~BL`F16q3FZ4h!*F5k zfc5@sg$YvMh=eoFd{*ckmJ78|_RMQ~q3qe$*g|GAuc?L1W=}0FY=EPOZo!!KGHo2b z>RU;D&uPuX>qFWOph>;IADO9IrT9t={l+pAtOr;j+VZx(Zo0=k!7%f)3b2x?SF_S; zO9x5&w)8k{X!m|hdO~a_Q%_{2ZzTl!;cFdzXl(V&cYHvCaKWif7$U*Az}dz!ctKYW z0m(-lYFQbiNym*fy#jOk$>mc1%GccG664JXCdoDVm9M=kE>@WlESw8V`yDM9Q%m*L zcvzeBNkJ{q*Zfy4T%+nQcwWAI)xuFD@$%2Boe#g`YQMkwF?{;rH@Nol)lT|H;0uM9 zPlhej=iR^7b05llt>-<&`8q%Kg}82MW<;-Mu-QVTrlQ$Gqh_bsLb>K+vxR!i@8+Lb zFBYZ`LM&F5Y9yL}rp=eR%ID2Hy2@wGLtW(y=P6y~)8;c=<#Xp@Qy~O@B!1Ov1qglZ z|3$*vF8Rm*7ntpq_iH3isK}r05BE?0bf?|R{)zn1*$^@S1gn6x!S9$-n4U>}%^2<$EpYpZCa3Uvf zVgBds#b0h3`j4f@hnq6WGBPyvDWr$D0l(ao!OHps($(ALX&L(ZI9?oXl;HYa}8 zlV6&v)FbkWC>~F3zD|@>oOKrQiYOUxXueL7?4I2vUHV(Y(meB`q)ywC&`V;;!Y!24 z3tn*)-rQOAopeLE$2y@M(_7@2V}%(M*tbd_NV{SUqJ>^=3inzkwKE=zt?abjx3xp- zdsZ<6xsM+m7q;oGbo%0gkVC7ufwn96zDS7tBc#$wj4$bsJQmV$rQeqnBL5hvxl-nv zIwX&SG+%-Grb6T~kZLO#z6L|#B**-1m0N{zp)$vQprZKOuoc>kE;6Kgo5)Z&{;>{d zvPYiMz(h_`Zv2F6!wn1p10fj+Xxz6Lnhr%1L?p)_WQ-`^)PiJ0K@uyuS!fG&0Z2LHe;Mk=iVc_A2msNYYnBrL2CNe&Jr8Y7rvH@kXuEVZtO=@QW!ikFp%RZvkuf{juCIqm~9#bwUD&O+Dp{S0Ec#sUQ zY17(sR=Br?xdZ8cj1F5XA8WrhOKZeCqn%C;#Y$~1kp9|FCWba&Qr#W z_1HV}Q|PZ$-fsSD$AJgXpMu2-@WIv(%qyW$Tn_E?%ScNFZShrSHowex7k8v1Khlz zT2tC&An+;o6?%8bXJxR7Lm)L{&&8~F3*@1aNG9Zfwx9dXNZZuQ2Mn|#Ke#+F5If) z?8GK2P+<)_s9_+KdaVW_JP=B}rjGt4U>zOEzvdK_4YiI6-N59WNPW`yoJqZ%KcujfmMNNtZ*I zLKydzHp0K(EUtm6h}AYQjQT2Mqh^4%XMwUPv4OUWt!wS-W+Rkz{q{)t zrwn_3r7(!3@0vt}N5OT%Y&UNi)}^kx29eBNaKuqB60?gHaUTnJ2@6HsN5jp+x;Jl` z*IBPFpQm;S8u1zNHyM^1IaF}PrWQRr)VX&)F;C~I+X8)eQ_aOI_k zWX@G`#iiq9ikFv@bEojTsb~pugE9w9W-=)lxySjmip!vcqQUrvp`yX$2B*Tu_=cv!XLek*HQ`A0QV zr1(yIq@ncAeT3FHf_UdWpRMjS#YnbsSMupjWqK>Wtx6qG*D|lZwA!_vs-Ww_MaC@?z zio&=f-HOCR^ABmrvns;Czw_y9YB52559XivHmP~3MS&`4}l z&6RCGO6Ec8q&pEMbms$`7Vt@oo89!O6j6HuIYtWXqIB=v&2A_`KCMhID0l+auqfeF1!kxz9$ffGZf8CvNt8FbiktKtfo^RbQKsf z6wOKknI=~{Jf^0s&QTkDB`{IqKtOF$oue`MMqr|1OHN>-a_g~xaQPO8fbi!n3IX8? z2OR2W)j8^ePNr7+gPtKopCM!+L=}*yAw-oBypZH_2wzC@X9!(Las>nsl3WSF3ehc} zQFbB}AQmvG(yb6n8F?e{tm=*NpLA{7kGZDKMt_n<=1rYVa#fue1(uEXKhLN-$qFo+ zfj=(O$VqBgNK$mq1}sG_E^hREo2?3khuSUhAonsyXX!&npSPv7;JKAy$X z<@FVgI>XC1*m(SymZB}8XAn!6-IqU#9?O{`M}0%=aW-X+o*hZl53F7Cw&Kl%;-k3#>ea>c1i|C=9hMk6k zhW-3t@=$I3OV(#N-!Pn2$24+ML_gULISknkIZ6&T+e`NA_IQHbAakOWq8U#!M45Ah zo)V8yjhT*#kG&Zq(&cs5(WQ0fai(#8GB%&{Cr3KR>*=z?Pf_`tqo>P`yAHedyN)z= zG!6kh=MFUX0Rw+y|ImLUbT%7v&}DVTcjkAN8WS6Pt*hu9I7TqWlJhYKW2`WT$5{mJ z<@Fg;$O#v{wZDWgy_F{OBSRln*>hAy$~6xgW*u zt1-W)m3I1r`EkcBcP9;45BChB5u6BjJK>p3Q!<0lHU zw~3Nw^~2cxm}6#dlk$V?jA2YY=e=mQo$#Pl+z%!{>|O1#=Q%Z^4TBvdXCY&ZPZy?Y z@@*nQ{CW4-7r}O+(Lb=x@OCK$*~~Q?F_lGnIii{I12`6Q?P#N|@o6Z}$pzWXwHq0G z#iDnx?y=e_YuOfK?6`X$^%i33MR(%i;9v4A#@pFO-{W2K0^V*YMaSTg@Bm^r45Rz; zNO%F!8=BE&cwint+=h8H6c5Y`h}uw#&cM^>2_os`$Eu{r*YK6;^}{a&p4_2;)7B?a zpr?=MB7Fk`>HG#)SFKyQX&Gk3D=5mFfv;&_{jQjbvr5ZK-)1ThU0Ka-Z|_8dGcO-5 zl?zcZoUxAF;OBrBQ1cilH`5QmsqZ$Fug55%3=c92=mR8yY6qK0fcRizCUT}jkQ#^& z?F;ejX(EU4Fnt1LLaTb3uz}p*I)DRU3qS!dWnv&?R+?ZT^ z^9MmBkYFZSU#kHSKE#R1%-3oVL=3S6tPLSZz=5EScxX5i>&6us1PD+VLg0f9Kw)uE zKPKCaD+-7iplb+04E6zq#Y01x6gRHOAqIemAp{}V7IYT}jRZtM5V&AP(A_(z444t% zz18*(Dhcie-Nis{nF4)R20^5da3<1+8mau}zApw}61({4OZd(Y1e3wo^W#A*y}?v4 z(R>J~uqT)T#-CpaD(nrWfl24XKsG(W-WFFf~jf-)A$75he>*AG~InK!PIP zo~h=uZr;(scmaxo*Yp#Upopk5oqXHPI|i5(pnLF|c>)f4czXuSSKPd#hlv0p2d^0? zP@8wmFjfF+;F@;g5a6@Xk$6Tku?#>BU6W2kg4TM2X<_pDNRYynhynQ*HdFPgI78+V z92LD-3%nNc1GYK!Ds%uw35JSltOi~Rc^;d%x@+7NQwg?;PV5W3I`Sp9W_8#2DV7pU z6=1ABUIF<}Ho4d->P`DtAQ_8#5YZ+mmY1whEr?*#E!KssP(6sGgi$3hmIY6qJcRvR zV=rckwuDtBG8O|5lN^VgNP{l=DV054pKmNV9w)g5d$I;y4BEfM)E5+sk4H()!>+55 z6aAFho}uqeEIr;ca%Xn54T^b6YtPab77HV{Q3@jOMQ?dBGAlenvUIW)JVJ6gykR_> zSSl=56@fmESn=35u|%=DSc-iPvD|n%yoH7~4pX z#>YOkC#?U|w!4w{-h-w7x~&j$@wlEAeWI5J;kQ|}(QIhF9DK}UMIw=ANbynT|O)5i@Z*tAIWpsxSj zHop;qZzfzXXLa31;7h$F(03tL|Fqu0$^%r_|2(>e$_#5E#LCEupkB<1(bsFB1%JWW zYDdr<5=}vq`IW6N`a&?_tCGDkJ)vZy9Vek=lif4Ik(Y+O(L#b%uXqbUcDs3;8v5ussttFOB{>xDxTGz9lLZ`# zb)41)++;}!B|2_ugKV;-hCV({Y~$T5Ob#VDu5PQ`ECh$*9Ot&VY!;@3k{thNgKZY3 z-UhFTY($W^VzyGYzFmG7igC=f;=Mu$3iaiMUT*349`zR_g_0kOuk5!y^L5#}gxVyB z;vZMEWp7UObutA?9y6_Q98l}rZMg+f6B2+u*veo9D2PubS=$sYQk&BH>N zn&QG(coY<{@h8!Rws1AbruR&saN(o_3?r5cJ?Thv5h)B0x`axr|ilEnzC$odP`pzT@eNMvO!(`>wq1PCbsX-BaXU__4PwtXn zQgW#NGucALlea20V}ix0bKD(IX_r%yubz^yoIc|jhVbt$bRYd?byH|tVcG1lUO7&pC=Tk+RE z2YuS~0=HtXWd&JodZn}yuYC_%-t^L7^QOt<&heM)bNe$?&uSGY zALtspq{)1mlP;g&_GhU+)9N%hh(YD8sy{b3{iy!i+_XSl!rU}Ny~W)0le)jTX}0=> zxoMF)vH9Ew^%TuRRSVmho3#0&W{h%TE-x~-7%fJXCBvDxG|BvC^70feFDkb(t!3a+ z#0<%YfDg^8<;*-scy2%~S&b#ojQ)p!^k$Rt0-hrxHy15g;8O66@P~l3W}R|to+AP` zGp%-wCChRocPH!qy%wv|jnWJSd%IS8ha{BHQbC%O2+}(#DAE-Hl@b(D5CjFJw*U!* z5=BKpT2OHjB~erm=>Z}l0wN-!NR_T2HMEnp_S);)d(Jm=X3qba%p`g9zR&Z!?)!R< zw0j*|qcDoe+-DV(#wBFa-xylAJ0HrXgcg!PXA70aC1oGJF|=v-IMhuEEg}n_eWId! z^nta%>>YX5u zxrf^BSSoHx0Pd-6KU^wqPLSR++WxWR-IM^}>^pBSc{g+3DB6Xm5gd*yFhyN0lPp(wZ7dPy;{p|j!|uHCr_`2+sQMk zQFaCNYBjq8MzxXMDSEZ?+vsOB@we=!H0WFQv!H!%`JM(zyybfqB=9!vX%P5r+Or^@ zx7epak{;o#KkVGhp3dI*m`F=Idl*rP@~~%JJnE+V^zMz1$+TPl8p~f|U9@vEc{+6C zV-hXeayAlKXY$#MwRj{#`)SOLuj%s*XV;N+7N5CU5Zg7_Q~n!fg!$65;>Z}o&qx;J z$eQX?+zqp|dB)isWQ^%&5Ua>`P3fu14YSnwM`s<8F~*;DSw%==-w-oo#;|JFKzVf%^jQW(_vE--QvO@Z=#Y4W!{A5jw|6{9hh#e zu3 z#3|$ptDww5F@_nQpP9``@tGhatYQTi8e^@*9GH2=26$|o=m;|>ZAgxNAijs0XKpCq z4Va5WGl>|)n)Q6vAU{JJZ^7Ipa!c?d#H--HB2of}$hKC3{h9&JfhpWFw2lXRBOzXxk-GFY)ITdlyUcxRAH|qWMBv2 zuK+TLXo(wudZHT9oOzsyAzmQP5M_yXi1ExeqMgKTgqBU0_37;Vto#&J#1l&q7#~0x zEsG-507Iq5E;0`jwc%5UDfkpp8YYd9hBuJG*n`;9nKfbz9)=_;xdwvDsDRyq2U`vk zYXn1e@kV&wF=^&e=3^p?X^7`?#`H^sqq%$0)e@JOmxx~gk+4PdaB7YGk`(hKz}qHP zaY>YEMhrnLVusUepiBG4te7^$bU+Raf-z0Irm(~_c7*9ldm>1@C+J^Ml7vfJ?L*@o#Y>Nnm#S=FGV;#g|SbWBY?AQ;YH!PmCA*GQ`A5+!H zW{eqXIMBzGG#nUXdK%sIv4a}jfI*y(MG`lU7|;;?T_*|2lMOV)em6`4@i+htG2iu) zba}dghPdyhNy0o@z#8=TLrEGuPk=Sp@0wg8plj((bv)mYzs!@w1!8T#Be|fU4MNjH z9&_X`qap`Hv{{{}5=g_+jhp3o0)aFPUBB6w zXAVfi(aoFrc;taWXgaF-08arh2un9=mgYGH48qV4H|z6!0S4jdX3b(eCct?#UAI|_ z2Z|WH`Ms3~3g1v|?hr6{_$8R^2#n46{(+|$zHzYmhd=~!@Scx&vYFr-Vz9smnj9y% zh8!&ZzAu?u@EiQv?eAvE>w@MRIhvF|U?(ttq#aj$#OGpP?rHm+G7I~N`6K-}^wEA7 zn{upe7UeGNFy>-fzrrJ47rSyd+sBk4*mKOq^nS=AZWmm+gY7-aE0`IfUuwp;9G45h zM2pOXmaF6zp`(RnE|j0oEy6^LJ(72cEQi>dQKI3i*x8hRnMY8Ug!28i+!Q{zC{`|6 zPx1n|?{Yc77D>Uvv#@e0deRpZ`mU7=+JYzt;P%+N$$C;3J(RT~)K_U+1+ULu;p>Bx8&K8|3pPVJSNF}p`rzfQwz%AE zgrbdc_EoMKr9QRt54PuXyAk(njB~E;pF#8~m%p_=nfnBB#wJ>L=2CfN?l(-d_)J{6 zc&<5`EimI(?wD(iVT;UMDc8saNG^Ldp|zcQLP0IH>?gUtBr=-W{_rsfj;WA9E{_pDdq{ zP7BxShbd0HVy))RAq^~piNgZ5s4&pP1J=9T0_01}VA8Nq?cp%_i5IMe+%L#T%SGa_ zV6ASL%tU%_9m0aVEwD^w<-jenw|SOtupHqQS=%DZ&sgu_kv5Cj!`!thVcHYlSaG>q zh;^IA9MgSKuw~dpGs`A79U*Q5$u{MRQd(A>=wENE=(#U&EvetuX&=>mJdxFoS0;NW*M;%%R&?T!X!MbZ&7Sm8kCdpDy&z^ zHZV*p3=(D@wm%Hc83DXy`A*;`p0nn1?Q-oXNY)&M$`T5bUFMs}Vin{XAa5g2!a}T` zpuc4(*kmJBa!;HU^}y-p+MgBvjQy7OS}}@$*o?8r$^G- zRnQ)(cdtjpT37HLLa(4l;ooWU-vlq%3Ifg#SAi$xW^%&iM+n0NY2dQN(E}68dDbkP z>dhX6HK*Jrcut~IX+otszXxb-C#Z?c!vq+W23Z>s(AF9PyaK#}M+j%F;no_0j}g^( zZ&E#s(r)^B7-ioa_b^Jj3Gy%^-MryplzP+E!zkF6zZe5p$N1D|-he?IKWqq|=#D*DA42oV0PS`7j z0HbcaDX{)_eE9*z;NEN5iFZmN(oxUe6xe(_y*x!RD1QCpO-#~jnKzs(Q^^tb9`lWB z`8w;$jhDHm;!$rVqTblS-{ZX0qcT}`NbP&CMV1e}`F-PM{%hq4P2~{TD31wE743r8 z3d`taSJpbE_~v&64! zQ?zeD5edqhl`L=jUAbj%gvD*nzvA~BZCGROHe%WPfW@(R)MnrtZ(O|K=KTpA%iA$N zFE(}ikkG7)Q%*8lQm>>0&YPtgaLfuMbl0VaoIE92T~eaV`&c!=-b!9*$fYMcc}?1!h-?>v~_azIl5K3z8T zom!BUubt2-=fS%z`jRj1(-l(})aEUHaY81}gLhiABoCKVz%f~>7mqoEGVZ$clgp+g zpO;i9V;-wsw0D-z7;@>)E?bifFR4Ic?y1fmbC$_~lvQZ_Kj`aM)!FX1Sy8ouqn?C7 z&=Z>)t8)ReE#rcYFjLAerIs6N zi}s<=j4hYpoUvU=@sew>wiH#!u_cL&bQe?d*r;Sq$u*@msw%{O37pa4Vwyd+B$@eAK4zxW}EwW!y$oS!6nlrX3Y2mmeEZJzwNWrVLakXh> z$T$_E83kjhk};|d4+iZ*h1$$BT-ChLp>l0AlINWYk1&eI+Gq>SLq)WOwxMsdoqNv{ z=xdGxyKO^rwEE_u0$P3B&=;CX%PT6)r2W-6&7}F&4Vp>Ys}D4j)>qGHCLOPS)9RXD zWzy=Huinz?T3%Js>e^quR3$k*ExN9%ETnucFR0`!Qn^6&^RXjF%2IhjrRCSJKh9&S zl3cHspzoup=!eV_W;wHr`QWU)@)xzwR&N}RMmRq$xPDSK>gM%Ns!{i@8>oJ^c~g)# zfB!60c}va6@{QF|G3T)SzPP-_hb#N;^Q)PmXMB(5I7R36`Q4{3AVM9GMRZ`o@IVG}5d8x1+2JfdCso=2`~^n!a0 zdwHC1R$z~-T$DIW@d6hElP*z7=Jir#}JxOZ7u7sC`NPM+fu`i1uEh1kP zPwy||CqWR=`O|0qVG=2mYpXRA)||?dCO!-UWn*B(^6$8NnS{{ zbni=2gU!mBvY&vs;%R=gg%TUkn?s7XUU4le2J940%b**T*iyY!qtgZ@|l{LEjy^Z#g_yXN_;zH|00sYYK&?UTDNdh}FYgzAE` zamiKm453figuuRc)NpN=0z8Nr!;vBs&B0P^x~;?WJVgoy0?cbHL8C zd1|Vz&JRkD;r_0P2jy`N;BcNQ?ZQPtCVBH@oE20ZB=@(aKHaA**p~HFqAle*c?@&J zYN@om?4b3(3h{5y|91gu?FQXD+Xdu5JwtV3Q?t$m4L7xC1r0OX-vt@BKNt_nrbn3- zP=nkCPq$Br27O~q*#~{=nhMiDNskgP(D?lN<~x*r$LGS5SmQ}u)#4+Y2RqNZnx`+< z=DnxJnoquW-Q}9pc3CVLK2mF0o4L%Jr{cW$AQnCe>Aaz~?owo3o3nhpQ^uL|`x#Hl z=ACz0d>D(Gv{Usyx_PMcnX0!#l>VeqUM43BVrm(c8%7Gdvn(;Gp|)4F3{~BuEElWp z-C6cl-McAtLnu?IAmh^Upoe&VDU(Non6_YbuhOv->R!~baP@B`cyXx^7sl<3xa0E= z$M#9_KQctO`Ko6-h2~}W9anfb#&ha)kVn%kr581ypXPSLkBi+81K(_Yq+m5^tB!Lv zy4#65o_#+|;pX_GLd!|Cx{9;Woldpm4)??4Zhm-FXf=6E{k*eLL8sC2?sIcOFZc%K z&Q>zr?mULScye}5{lydiIXV0plG(9&06qs8LmnJw7Qxn(7!QeN_Vcp%_rREJcLV%a z(kg7=hPyVtp0o-dxb1F%-yw;@^m7Mc_!N>TTt9D62j5D{g6Ur$RK-(CS^us?*~9cH zgG%@tBzw62%|Si<2huy3{*A$d_-CYdaQ)kZrug3^Gsk&eyf*NP#1$ZjSWDD|-9mTS z2f=|a*(+`=Bb=g!AChL6W*k~HBj@&*s#J(#yZZx7tEIi~a?**(!c zHy?dksUi7V;c(ocT9s=^gVe>7>Mn_3P^!Zeysi&@sU=_0X&uhhbPS@FnpJ z^Ce)!A(nsX9y1a!V!tglRs~GR+L&XGz#7sw3YhD_5nQar5;s#EXo23=Swb>%fEL(o z!zB>Y5om$g)?3nLz6V<1woR9WncBcc^!A}84Q3Uv5xcE976M90->74bAa~7|#EA*E z+sH8}XpgY*kZFP3HCoapCLGz;81n}0rER=qHX?V;mY~Ev+ijIG3(#KbMinywxoa`j z2--{8C}!><;_q#Ujv0_f5b*_^f$tuCS9{5X`4iZP+csa~-)rt8sVn_)y#iZiOp;T& zc)bEsrcX*y5~CO%8xtT=m9i;@4r4r|8%hooL;Eoi(le!QilO5e7b#Ooi&ArJOo&ve z^n`LPllevI8+=KNv~K&_af}8)} zi321Z$C?x3UwHC9SHF0;f41VVQ()PE_2Vp0{^wd3&HC9DqE7N<`qr1oLp;ybF6#DA zRcJb$DtlplDQk%Dx#mTa{jm-sOIOHBVwI&AL`N zQq5D?2WPKTe08d$u30XShJ>FRT!i*FRO~oyQN=73iN*rqIC|jXMUt^l zxZW(dpHVUH)IoKyyhk(^3_tXb$)Vfw9?4iZTz^)fzqaBxN7wMT9YO54${&fd)@Ks$ z5@xYyIK@zV>}uJA61J18vrOrO(g#%k68|!`vkXP*Hfk;B5_Mi=!jiv2-+#dSDQ z4t>+7(`+@x~{Q|Sm{i=T? zd#3%Pe3-0|syOAO;rz0!-D$i+@VL|on~%<-$3Y*hpF6)S4aR*Ew-x z6I~7OH*i`nX&}9l35U+c_j6b9JByb>ux828lB?j^(0)*binC*B5!NgvT6$GsHmYB^ zLdIFU)C*gm94)mfH+!lggxZk8)|!o}_(_dVWW#516;Nt?GFxr-d_^%eK8dY7d$Pit z8lS?}oQVa9!{x1~?)ZG-e z_N-!mUB$Z7PpbKbc+RIkN={%Z)7%sv^Lg4=dj>r3oh|u@sZ4i+KHl$XQ;iMC>b+ZX z7!#N_pzxU2)2`Yr;BoIz$#YC#`T*oH_di+%Gs1w>f^Rjh2ZD(aSqQCG=_x|T2rXQw zKHpP>i4l7&?-^MQ2{7x8F8%+KD-_w8pxf(T`j0^&w)#h}mt_p#UD6a9 z)N?vOxaWG$Fh`|e8t^8-t6EYI>Zv}2sMf2#S}jt2OwVEnU#%Qq*L$nIUveV$Ex?B0)vW=zp6oJ38d2mNm>6+RDqp6$zR6~2>(OZHG=c~PY;xSvI3kd;@)SaX?l_BqdPrbn< zU(t1`5%LQm)d@Yjn7Wh*nFYvDTs8mRJ5i^?+!^iEy#=KPxR9i8z;uvU}xk4Nd+jhlyn%dh@l7oS!n?vHb*yxob(>HqmU9pVgV;@`bn10s#qvSoN zINcojcWp7U#H5$^stlWJMd_*m+xn__^r2TWX1rh1i!vGn%tXx;&A81#UvnD3ae{1@ zm2=Y`({Fp9^ z&V((ta&Nk>Cz9HjysOR*oUWoaCN=Qy*ss)2Z}qHGp_UfJc!3=qHeiK1-O-anEw;2E z#S87|v1M1DO>++Ap?X_365|DT4zZ~dc;T7%PM(aJf9r=}z-bR}}$PWJsv^T+ePj*LU#k)7bW)I5#Ih|0lN7|KP zhp)&_8}x>hj$rrXcc3c?y+2DvFpcT)(4FRlFA`KC>bBr1r{DMX{&I5#R-svCmcJG@)0PD%@@ZK7)d^ zU*j2fCU@vSI<9ezA0a=~DQdsQH||0Hq4Uc3YR7a^FNi9G4I!I@<4|nhl@4$sO2SWq z(*uNqZBS{xA|2o)6wptyJ%Ee?`=Q!>$sPHLD1aZZ{VZ7x?23Bed#ocr2?g?#ZVw_G zfv=#Ze7icXLB@H>GAISGgUJ5YRK`A}U~3jbqBVs=9&NL2{^eVaKiFd1YTLnTVljXD z{kt59mFCm~gUAXZ06$*rJ|q$D%L2p6H^G%UZho}pYl27_q&N~v-A9$63XGp4>tIoT z)drQp_rU=2D%e?smn!1N-Hs*Og9}idD0Q6|KF9GvZA4!t3J6wDODpvQgAb&o`uYX6 z4rVjB{Z!hu$X~%#KCd&D%_PJT_D^|UovTjf)nuDsiBJF zeC_t+Q{b1V-S!Rsac{B-I1;t!JKS;Y*NAQhE!jirnVf%kmt6i~&UuLg?X(mRnP(9H zxGuhYQIx!|etS^zXUS)>{#UxB^EFYYd|$K&rF@otrsyBjC6=#Yt_%4eQ0INRnT4rF z@>j&BPIpD+|3(#e#P0u%ImZ70Iv-HF zI=ZNxf3mZ8Qfn1-<#qX8nWvLvn?&$O^AGt8Tv47<@A{Y@sN>zz)z;P8)p4-tAoE~L ztgJ5CgIp_pMe(mpFwYe;e@WNogRR4fwSX(2DgUl8PC8hVlMX(G^2-nH;(3tq$aglM z?*Zw8?@<01otJ)#O~a&G;VTAH8u?ZDhO|xNDf#>uoe}16X07-Yi>duxDf#I-;(m~3 z(~KyQ--c6yT{rR{>NxrpHJfHeiTyU6;_b@JzpbO~=hgf=BTDqQX4gy9NOP>rZ?mp- zltt6F#BXF*4$7i=Tk^MV*LzfB(>Cz8MpqT8v3Xniw@KGeR6^4>;I~RwF)E>XTk5w# z*Picg_9p*SaejiYSI6t5D9~@|sY_jrsJ-TGncrelXS!nY*HO@I1M*YO!Rc*(q@7T# z4Xv~s_j4Grs_#klKpxb0%vM}3qCl-=zZw|vj}YIbzCcQykVZa%#9WOv{#vQ&#F>A6tg z;Q=|?ZF(4EnZC>rq6;xH=w9tYeo}sq+dR`xB%jETYWB>LYIC7?()E2VF^34xWh)gb zxdMgVln2~sU^fMgr2F^_?#8#0&fz`W^#}B63+^WL2>e3JP}Zu@K&5+?Z+-SE-vESW zz*xgCv<~Hj@0)`Sz-g`SIC?f-vDG*`oNG>LK#lgn{XD%Jf3MXzCw%`LVnCVp*8L>? z3I0rLwD8;|S|t5jTeSFG98H{V&SVSB`OzHd=51_|xhphndIOU!G#5w0hBS`_?Sytp-yV=|19ZkTf%e7@jrTdFMeYqr)es z4U%pKiQ!s9&mS4Q!FcH7*jAKgrWnJwc5L2b@EPNW&-=EbbTjBy)VvJcn;GF_!r%>( zS>u{l3Nl!;4ib+z^g_mj_e=V{jCuhRQ4>WIZWGX#oO*DK;F`<)xj~P?w~S|uD|F1f z)ZqSk*b9QDUpoCHzN*D5tDbL5dH(dg>3r-w*Sz&SV*WOxb+BzPknzd)w$E)mj{eCH z$B>#oG%q?R&oJ-}Y1is_()2C)45?nqBu%ly!KZRi?nU+`pMpW@7g_b9F(zwb^Y;ep z=#hSn$vf(6frC|kjY;+VTlVwygIn}`8v*|6s z=NXqpN?36of4QmBBtR|aNR)M_t4k4OxiC+r{I$~L$Gu8RxTv)!;i|w4;1KLAnnlQ! zg$rA|5rPCh1HxbvXjW>jJY3w`ix4ZY2@rxwqE!h_;8Fo=X98ZJ4R92ehgMB>k}DOl z_8^1_Oajzl$I%spUve#T0yqB-o&Vyq4ks7@F2efJ*Mv)@tuGNcTVKE|ydM{k*dsA| zi4Z9v2iL;}B>&Q~b|v@={DkY_0+M=wrBc>`gmr+q<%UG5sP!pAjs#~zfZG87l}C4! zFos{nPAB(B{S!Jj$83m{%C!6t@P_?Y`rI2Kf(8?Gz`g=4P6S_$Py!1hqc?;`0}0Lo zR6sk7i~*|Prr_mLBd0U_Y8UQyq=f0gnm-ba`i6)2&s0nZ-6Jc69~2Nv&ioGF5ZG@`lz=k@1UX^$VgY%8K0F9JnEXqoWkg^P7K9m0qbrVj z6ZRw`VDsp~RJy#cc#9W-b4dckU0GxToL#I z(1M*t*AOntjtaG$AOs400tCZ`(KV@;~ zVYoE*V6wX;1B?%40*T51JB};yV2ZmmLjfPf6e3CiG~k?2sxkf?Q=NDMPzi5Ha#vik zXUY)|14gWAsqXR&G5i^3G;tLm57S4-$}cH0vBWGu0ViEFD9Ml=iy^)PoPxbT2c-_m zEyXd#B`nZEDTC6S=~x7D0bqfhPaFhrCS)9!8=wvrftgPmRAlhu9hr^*3!C}W4Wls` zVm)9BwuYHcAB2YP8@o;92JpkhunNhBlA++S%S-?f323z5mJ5{}3t*y%et-^me9DIA zSR`=-nT^}tAIdd`W*#Bl03@IblMSUp<;JcuWr@0g1na`o4c#$q;xoVxSU09H-4MzV zE?INJUX6&|v>I@z;Mh;19pE-x3wJtcgMaKO^8~RH@Co(=b2_~S63UGiDoa#F93>tq zORhj%BpR0`1t2_$`eiB8h-jiYJ`s$-5>fc%{EQ8iF)Y)bSO9nl+fCgt7_%Ur0=$F= z{t^2}%5fQvUL&rY&sLQ34I9n>2;kyZe!%u8;?IE73dH3~xwNe& z#S{J<8x5V|E*JkR>BJUzr05b;o+~o3Kw|#Y|E>18?bVzdU6*;`rOMy zZAV~nnJbEY>$c;Rc+0zqdVmYSzO&^}$^)1^=5Csv;sw6GW97xU{_q|0if~_0xsmM^ z$`t$^&NH!E;sT(r%C-@%iS(=>bqEe*fx+d0Dp`dO3X`E zf|35rIF-X5*~(qdJ`1~JD}6m{0#<7axt=2lOSJ{Kkn>>o5j&)6zy(mBf4Qb@0(>WH zMVymqx@7x>vWsDhU*PX^C_lrohOEIBFhl9p(3yRGR^>Lf>6C1kBE~rFs=^FU-;r`x z+lQ2H*gcGK`c=pbS0AR_&h|Ft3G58!RoYd>8NNRI@>8}iDT}bLm{;jnp)>pYY|3%A zIg}!p874YyMPY`w&#wIB9`yR89_s?-1N`S8`K#!i!amOh_7*uN4pTo``4dQ21d9BvXkfiDjP&ILn5T4j0Ekl1zb{ z8WU9%96SdLNimgWxtk;l3fm)kYXjks?c7kujQgd zmpv!KIdLTe*h82w3-Oe25UIgZf0{-^%CinUO$|btu(Y10&m;L+@Gyb`Qib)1m4FCA zejS^n=W+fo^QeI0%$uCDtBvAHjz9qc|Mae7&PnfY{DC_W_IP=6C#BGU9z_Q!IW^0L;^KcVc;Qa#*-q(0z%siT2;>(1tun-YJ~*&L^#(rVl$_&zts?Ct1e zTzVBdliVkDU;b!h9z@m5*&MSea$lzNhpKnUf7!gf%S6z!ghSwS0-a8IzN)Rx*b*{& zQ)n_U&smk~++IS)$fhrgcD_^{DUHoJ1exUj$M3xf_{Z<Wv3{A2Tu z&Ew@ryroOGGnVB$@p;Osjnsn}kF=)>=Xg2DRm0h>l!o<4c`AKQu`@bPR8>utD}#tA zWvL2fWR#UotMX-#@TG&QVi}oZr5mdIj}n2UOjW_7>Yc@^^3M9DLDUzL)LWLCBu}B|dKYE;pH@sdy`{QYJ|=n!t{(3Hxxm@d7d88bD#D%S$_8v6=M3$84xjx}@v}t#FaEQ7h9dxf=QLt- zDSL?Px$;Gg{(-;I!$tZ27aZ;M3!6(hY}7@5j@7%k2J2rm8|8gZ{P(JEsKPpWG+hXjZ7-!s%q$6YDcsulW9g zI;$1(POeV8#{nm-Z#ql;7rjwDF7wf5)tS3r;;?m=GpPSKhnX0Z1zUe5zv5lh?r(J7 zv-fJmX-13|Sk;*Y^iwN3oN}l|mS&`Ap;f(E z+5Tr0Kb+oEy)5gA(SoaoW~KToD?T|@QNLN%lcI%J_5TOMSjG|A0;{N5Q2)b<_fEys z2Fo}STS&B8FW^FNU+I0^+r(P{O^~O5^}zs--lwJKaBq`tfiz`2gR4ygqI#E0Cvh5y zZW50rJbkMX0hr#5QYoB9k{j@`r00d|LjmV{J4fnH{z0oDB=qbJMC{8{}AGn}VUG<-WZG(W3vbgj$GmdE++H;`99$i4tmtDYBs|C3BJ}9-v z6>z-T3o6wf0T$GqWPSNdVne5^qyF-0YobpP)-;Af0y2AVmF#4{kh~;26jm)2knp!x zo1@eAtPT&D>(wv0Um_TQxJx)dRSQtRoA!Vz8*t!msz22zKn%RYK?%Cy-!Nd;OdehKnv1Cm#R$y zB6}B0zv5yN*CZAILw?mN0gk;zrDnL8q&47zl=1Y1o)2XYZ5(ro_M0K253F=ed-Oaj zJ8$zoyNKINC0c7`csi=*ci9h{_c>ns>S3Ika?3QPC$mh(MmyV!t6nKuZKZGeT+iFG z+cw%cUi<42(aI~Idc1K}WG~)&_2|PKyJID_k>tf)e}H{z`gu;Jt`W+K@A0E1~v)e^+wUcE4QW}_ne|O=Irigr~jqiOdxy{t2bkJOe^-7 zlqDp86Rg*bmRWf+{k5l#x^DTCw5!HGKV9Erf!pJ%H;9I=G)(XGY*EE6_keLQHf*JN z+NLMHOxy;VZO#>^#6CIgP0g`}W|{NF9b_B+k5Y1pqm*>CEGC)@#vNkkOuP0xEOWFe z&NkD{oLm{{k)di^?J35ou@9|GPHXh+ zS$dNigyIgfIOb_O&;2G@6o)cF^&)^Jt?5_%c#YXm=xhnn@C*EVT zB4CDf>~ZbgLvu`=f^oWR>6ONwJ?tKToCaHeWnp@+Y%jfmJ5GhIweod3rf0qEr_D%C z{JtF+8@|#yjqAxNgW6bR$8+r{vDH>SOrP(0Ush~mkrTgv2fe}`rZGF7 zd*=XKbLGo)WY5pC5gX2zyl)52My_;BJN6WpS=c0G?{e)Zvo%C?`h3dUI7?j!k{gR9 z9|PY(J@q-;#!90oBKffnd#!9DfKn2!{Yzg_7d-Zv7aU7|IG~fC%E8z5IH}Qc6V|pc*G|*b4js%9XyVT zZ~BJ@K~WEUjljR=B*T4(U|<@#)TaV0mzM48lMj|o%Nq5m0YlPq06qjT z086I$l;gKa41gb~-Jhe3Oz_>#S`u$}BVPi4LG89}i2Lz#l#yq^bsS~meA{3;13JF1 z-HL3(Fze6f*+!~eG1zQIr@chu67LB4tyK+#OHKdP1=93m_?uA zwwm-%==lD28!`@@gDUbdZM&AXq%h9gZbv?u@AIJfSmqruT{C~aE^_`I9bG^F=B|u8 zqPiyjVqJy#wK`Y)rkcAl?}+PK`0wWoKvH#t{iK@@W_XA^GxQhix}JYu$IkCo^TA9H zv1g|Kyj>ajH+8&QV-=qr@|WuRBmbk$NE0o4^MJo-*WLUO-+>ldmIwbcEq}8vcD|^N zJiZ}oQ_LUP)t+y!Gtw56@mYjJ8>TpZl~ec^EkRkE=2QInQ2dMLpv+Bxze(3xKGZLw zX`Z+#=&#b%oqtBB4j<7vpZ%Hpnab3|{9@m=mTiUK!d>6;<8-$0YpwG+M*Du-btQ3J z3jBUz%?cStB3BHj1iC2s-oEi!MnYHgrodf{{BfOs5JrdJZlcltD~Ktjt~dD>c!%b~ z3?tDi##16)ck(TKyIZzpf6H`z&cCAb1K-_Rm{YrtGX+9)d7~0qPm?(kl*q38`EPY@ z`#ove=Kcrse8N9zJ)Kj#UzgXlNfM=eOxCseIO^~*#Scw-D9vN?ADXYC%#J~In?z8^ zF0gL%v9@i{739=`u6OyTboN@d<$puF9{&Y+b~87jQ(|5B^6PXW{T7@5f4PqFlxSB$ z{!5(@zi-X2Go!?Rn@@3frRV49K>f^{V>32Iej7~*ciqmfqBk8)xhbuo=oU>AahGKr z@;%qynS4`9L*6Zdrr>VG2=kq6?@YNVqXBh`r*XOSGK74k+SQX!NLGT~LTNyEWyVq8 zo9*f;C!{MC+@feg?oteO-}+e$~;+g-2gW_B6rmpG^XuCgSO!>TPyPJL( z8n}PJnuc+2#P6g%2L}oc{QL|0Xm)ret?~~XrJZoEWDNNHNpzk=0=eCUZY3(?kGLPY zmHeOR=2priKFZzPEl~=OaYwl&-^}0u6D-Z%y@2t;XD4;lV8Fut6yt^Or4F{toCQtM z-GmY0yU;$A@?0hmIuK9ecIRh^`6{*>Cx=VUfd@iqAa@mpgYUg|W(|sX4iUaGJck0VCM=Yy1B&7*72Z;%n9(oxCbJCp&P3CgZNn@bXQ$$7iA$ zVLZPwC`;GHpKs|V-{UpWh|r&(A2gz0!T)IK&br5Mq8(vAzdguH7sku9XpztG)Tu_G z=Enw=>2~!Z{2swfc;`_1!kPU>~!)Oic&27V#UyTV%`^9l5q_>k6b**n^634Tgq=|tT_HHtu?dxtwC`*6mQWIPu}6#Qd`rV|1qdd_r^E2 z>{k(W@GQJ)I1_s4`&s52!VOs!VF$OuAj8k0Vc#d1Z&Gi_tB5;z6~-EFh6;U`WU3K3 z&oTiA=R&+;TjJyM=YpI7XT zE)+FXGvvx9B1c(J_;kBHbQ^R}6oIYJES=tR-BL{UOwSqA<|#Q)uw_VPcccPg1A}15@avk*%fH8^n>2~11YYU{1BT0L+Ae2~-)hn%of3Mf7c4vcv}W@1 z+i|z1$HY^D>xYLwg=&nuH9yWcCAuy;JX;eoHqi8#v?U#^IXqMoetB+ep!IRimwhkc zi(hJfe%EigME=6Vk>Nb3d3SlF^-}g1u9wQe8p8uMKgZ(}x8T9@!!K%}qc2)7P>ioZv+ERetOzSIad7+$O~yBsqXpRpwytUdfbw6SR+>kI!&?O==H-5T!8jemj& zfk>T2iQ&?k*30SR*-eV1Evdy%HPp+v@$6>BOcSwn`Qebz#?~E3r0Jq~4d}AUm_y4w z@)mMYa`;irhszJgyPNKjwm^#qhl@iKn(t+q@JDJbnhtN)2w#>N(`wm~S~uXV>g+Bj zbZ`{AB9TUmLc2lThx2AehjPSbtqT+B}&HCk^2=}tp=;-sI!AAIR3@GTQ~|#QUi&|^z2{rgTf43;5FnwZ z&}%AHnpEitfh2Sy3O1?*u~008A|(V!s3D@Df0#qIyccS3CH?>teNxb zbfE1Qy7TrHyfB!H?Np)Z3*CD@GG1u6C`N>J9-zGurcHd~|4^H=?Tnz+P94p8q1&Pw z5!snZ`ze&0ILdN_CP2rcI#Dz)Vg96Yziy5re9pYHMd&kG(x;p2sF9#I=13bC94%OK z8>4j^&Kpex@J}-wwdY8krnC*hKPChEPv$hr(j9dZRK~V-rqaF&H6|?h zTNz8{V+ph(;faZ#r8m?Pw8xS=)oEE1m-t)rZs;T^k8SBZO#3Kwm^eEDp`p((jHgU# zW@qxxO=;7N&gAW$T2He)Q}BLDmWGO8Xinj1=V@7j{ruOA8`=qqW0AD1sh_zw)Dv{a zj&x=TCB3h6ZXgmg#}0J5(b9$ACqMVQWT!yqpkvXU7#c}fI;r39l9K|TQybgUX-nHJ zd^}mxe>*z`HU}Tu*=bG-6JDO&-hVqM1u>^Fw!hPbmLmKz`KCWTdkH!R8;k8UrUePl zOuF@_=PbeJ)ZImU=KmC&>kTTamGZ!38i^l@HqT!b?CyP1S}WsWoM|Z@6{XI96}<0# zQWm+U8<~j`^F-eBMFP!UtI|m6ZfvHhcv!S^{(+#f*QzX1svDh&6Tg^`>~ATKl2{O!i}dGR1X=WPNVjdKrueex&HU}DrMq*i zRa41s(VcmZ{#EI2$4oObOqQ|4Qv61gKEEWG>m4u4TC<9jpv1i*(tMe~u-BtB zOL`S6F%|zQ+CBe7P}}QKmL;`{mf*w>L}BwSg2>+P(kz)(BZ-ChwJ2qNPB7jJe8_8n z00u_fFAAEk6?pV!m99#!;w0wM;9)4BMj)}zAZ74AbbruE$Q9@g+<*_e1}TpZq;CTO zi!kUkZh*wDty_b~(+QwFNFh`WXW|oFT?fKb=v2^I$RHG0Cy;{A)JfyL>As*ASZ84H z$vOr6MtVFb0UBydJ60!$51`)w1MlrdOI71I%MT|NGemC6`v>kE_cF1@J z|Mb|z2Kp0l8Z0AlUKXD~cLxFdF>KLT%X1#r<4MPZav}LpC7hOzb#)Y|hfHq)cNuAU zTc3(j>ItVOfySX3e)IZ0OQ0!8CbG)Yx;zTrvx9C3`2*^YtMaj~iIVH_r`Lja!NmUa ziaq=2>p=%0?_dv&!#!KsQLvsCP&aI?Q8;1VrH4x233>q81Qp|3IZ^68@pO9-aDjm} z8^82q6Od3Q2%h6#2Wrm6v_a>@cwLQBV0^rEssLxR<0>K34cFn5STiBl6F}bzx&Z;sSzHGxv35eL$BRw^ zl|jxxU2!y@`RWPT9zS{*1NsNb-><6F+AUg+SIjsGwnYGXMc=9tYnNyhUNz$;7=SBL z5B-4quSc{LkIu*gDbwh#XW(&UbD+p5TA6o>kpKfozku+9R?BEN-U@)d=)$`KL@Lo3ULPX>JdWGv`?7f6 zjrWdW0p1F~j@}m_atD|jL-=*nK0koCap8Su7$N}5g$(dE#=OUj?cm$+BbZNtFLPUs zC(kizVc*f>>Ul-p*f078{vGov$SHf?kC(&91@r=9*C;;bt(Y{UnSm2h6n61T6_|~ZvOg( z&cGjIs)IVR6H$|BUL+(7v(3MQF`vRa%Xk2;L|jISa}#lsX1r&=pc?pP%(kG89P7Mb zq#6WAI2nuzh1e5no+9la7KGDJQHLOIgj#E)5(LAmvPSvi#K#gblSaHpjIH2RG$7$J z~6ymyaLL+<+(YYMI1HPH)Q0_GiPbIpCc&fp@i8djG3SS@z;==`&I;`u^pWcg( zLmosRg#+7fyiz&i!PO_auz&@L(JQa^$~eQJOs))3o}~iQH*zK%s+iFlO5!4j#;ibC zjghn0p%XKDL#bRvq9)4{w%zC!;n49JouR{AU7{oF0PKy?Ew4kBGX_IPx$;C+mI2Jo zD2=dKF{3?nkgG|wVnx8bs`H&JlAHyLzYr%lAiDCe&I9gW4uVho^~{6t_vps~0O(|u z&_2$OB}t1CTQ;Vd^3rQJIw;rb)JfCFW_w z4demJXkmxF@CV-znnfPX@30V(_@9}t5n2ADIUN|GF~5fCf&efm-_eo|mn2oe8GbE1 z%V)GmbP(XP(h*CjFMgwC9Ug$_%8DfqS4A86yE14dLTkY!AHyWUv%JOjLKDFdKbF}K zFT+UkMOy)OtJ~NhNGt=muvmPcNdvJ;cFhBHpLT)|d|T#j_$tx0NVHoJ$=r>2f;!{p zT1ImRELnN{B4!p&QbMy4!Uf~3O1Kp!BCwM#QWYHMUu1?MT2R1TT}pEk$_dnBa>B7E zm^)+g!g0@;hhuVIVy`pz#}vH8eP4-=`Ns2@Xf-L3@ zcmifDP;4d4;=3?`Q4>8D&{;sU61oe1{zA9lhG=*H42H-=Xd{^78#9C8wP^Q%jC|2r z;d;T>Uo00q65ZvWktZ?}+6zAN9hnL6adcNeMuEsu=qC8VS7jQ)JXf~lC5k(8ncb*N*~%#+zbbDxUao4Cp^!L1WasijMjr^n#~XDiDI5c=8^s;BT->O6 z|2;O6y=e5oYq+w}kdnob!bWnGu-e3RRXf1*;%X1)D1jVS_-)Omfhr<0(&K~TalwItH*k#rZjr&iq-Ry@(C%x8H z?l8EY!I1?%ERAxp?}G0A7!D5GeQYgmvky?%BYWQvYfjlz-fXnl>&l58`uEc~%2-pZ zG>eQbAHXWGe7WT_SUDCY1_(r}u>1t&BCHgJ3@_(nAr!OwwOCz>L-{_VzX%JO_s6lT z?0vYue6G|?M{-ulN7$c$dbTU4cc|Wv;2g#Nps29*u(<=A3bJDR(6a%&^HkG(g zH4VAHfwLR?gc8B-#HMbZS91s*QN44dgVvRg(+=a3?KmQl`QDD3Z^&sa| z(a31yJCwcE`DOB>pm-^&B4-P8ga`EZUNbp=k8BYb525;TwiJ#GH=aOUTYLU3*&--j zmTJz~@*xY;=t7D|u;^T1!V`c_xe@Fc8o}18b}@YpG~756id@-T?gr?e7K5 zW-`%6ytRzKz<}T${m_f18ST!K1_rSrs0OC9VBVc45B7teK(F-zMlk6~F93($gl;B? zw0^s+gP_37+_btKcL?+dY(?qMDV0F55_QrmZJ5%oJtd=feFc!VF=44K%qns1n(0J z4FxIVN!Cz*kYbNdB6J%_wTA?T5*T2V4;e}YpMyO{R(m@YBpOUg^SpssEffC_@c1_> zJqLD#9YBrxbmS&#P8#rzGUUOkFkrOtq0#5%0s0x}7(%&{M2eFMj4Y_cTciq1H-1Fu zpU5t{$Sh_H{}A&7%of>|Uj?&4#O&g)Wp0LDMRk={>D$N)bO9_GaLp>(XvQ4iyE0Q@ zUr}8pRfcVAV(@$dGY?jT)bP%b|G)9cn|zw-z?w!U=J0PU8K}VaY0d>!1O_oj`EpEU zm@dk}XCM6+jU023ufeo{ZAD%8`2``j>Bpq=RharP7t|4-PxP1SZMrcjd;_K%EFJaT z=Tq)W%{IfBEWXtL2{{Jp27UB$oivj41T;Q`iGUfS0)49gD`31E_1LF6*GV(UKyaJ+ z6{d-_BmzgRme7sA1oQCRM(*X5r*-{p;@F(7EMv;AkgREW&*Du z7@m+l)}qnyR`N}DGUhFQu&6>65b=r0vTOykI>D?s z6m;HX*oAzLU5GjEX~qgwIB!SQZoEQ%%O1pR^t`|fg`8hURd2jNe#X9ldFFY66{>jN zfvVqli~Nl}i?R2NXO4i++fWgWe~=%sPhqZk#LyJ4-y zHu4m^4-?>difISgvu;?e@jUrY_8*u>o~KxLihCS}^%`%IzXDRhQ)TUI_MiZ1;yv;l z>Q33B)G)m9EcpTZ1m=?G3iJb}@i_S++udhNNxR$!MB_E`NA`2fe$Q9TcF1oI+5xj4 z|EjQEd5_DmN@ETAHrt)FBK^S+z@Cp_KI2~%E!qz|lE=|U3l`mm-5YC8H$@PPzi&mb&}Lg19EVbv*K!{tg?#C^h*ay_i(eXoUb=|-q2 zp|Bj@s5ZQ((U!cs{4uJAbSwK1?6>F861Cmu7X6U=2c6-=jk@G+^v`^Nk^Udy@}}v1 z08#vlNEXW_2TnVdj}so}RqL)-O^%q(7)ZeU15F;sTjp=my9r9BOj8HWmOnsNdRrE3 zGq@?8>^8?GR*sO{x)VzP9*ybl$4)FI(i?-|1Ti&Yvc{@U;Ob+nPk#* z;6P3JZDfk~m;6!voASv)0Cs$*{0DN$`%A&7Vd|O%&uRQXZg~Mx)!QK7RWB8^K%Nd6 zXejSTmU$Z#xEiENFA%3G1INnGA%ncnStA{bGy7HVg67_5-!Z7Vn6HPJ>jL1)u4Ffm(D{ z{%>-4)Aas<*X1e5IpSEJc>RLrKqNXVuTwWwbs+*^pS$rAjb)eVxql+W9!NuP_xudK zWzYg;dc%MRdX=#jSu_B@QrwKZIG}T-bRY8cfX0=QPsrN?23N}TkOc#<9Mom(K7r4`2sk%51U#SW@5Pwo= zP{W%RE~xn0R0vFP!M@xIf@uj=?(ACM^%V;y>cM8*P{R3Qs_a=aU;Bz#6Z_zJ?g-(0 z303~ArLSAXiivWt4%d#br+652*3{Rw;+=^_@D^@6VNc1h+*u1>mx}Ku`oYfJLxc~- z!?I`1eH|;ln79R}aTf_6N`~dnTKRfZNK9mc<+w@&?c#NyohF0U6_X~IU>|NVLAzv~ z+|IRwP8C8EM6eOppK!8xo$OAtLA#0%Cbq%5xDN>@OV-Knv>bG;NC|n@u-0=k^9p#U z&0xC8Tti0o70^!8!F3gHP0WMciOb-fxIwduvXD&;&G==|PK!b3if<;m!4BMggk`n2 zwiS;|wgzA4?(_Pq^oq<*<3Y=cCm~&)%ka166>m(^gTHe#O8&(=Us2uZF(_4$Yf=!b z(x8V2ke$pGjrN<+^R&H}ij+r&>(9>&2zXh_@Pp`~TBCl?`Z?V1uz0 z#wJ;HV%CD%TkXMv72Uyq3#wLwf04+t_R6#7O)cC%yaNhO8Q9Cr?rqWzv8~_b^N4;* z-ClS0W7A(D2kW|WP9eSpjNAx5SpUxFQSK>CdqaRAUJg;L(;!+fwrE`g$A^rh1Q*q7 zkSubxz^|#r?-^Owv@_&E{Rz^g>@Bcs@c5l0W=$JIF4k`%UCP;lxTX=mf5f@zaLC8{ z=cN7Fub|gp@v*>bYe2~9dI!?}oLBH`>hXI=9Gdorysp1a`keg=b`24~d&IJ7d&uqj zBc#tcuMpQX;}b^Qn~sM3sQ*sV&vu3a({0oUs>v&)pk9TfpW_TatTr1rV$&2G(qCUn zs>ybS9fr^D7%^?y5OS_QkW`c7j5w?@yKiKD)4`DU^<72IhKHqQ2|#B|QOLO0QNwRC zBe*8Nkji>X()OI+A{O(Iu=>p6TRMl8XN{ZohP_Yy92Aw9O3wiMk&P|pV3T7MRno#i! zod%;O(~&=$b_YMn?r<-mB zCp3)V?-Zq}esiCd87XKg3pQ+U$N!Z17W6lMEXiAOob_m0G;`Tg^z^AKQ zSZr}_UyRd!8sYVTc>-c#yG5hDIqt8gKvit%37OBz?bUG!+&g(E6fGRL7_@iBEk7Oe zc~G`#%_Za(R68%u`)MKfPVOe9OHNxL?VPx?PkkGX;Fre0ynJ%~R)w!}yPd&y_E^Y*7UsqV7CRYxsu$SoB==lEa4G`JRot;OFBUj2wOth2yxExfL@fBh?kc2$6c241fe022CH+}@|| z_^n0PRrb5Rl4~!CJN?_vvfuWVM*F3>*H5oEeD-|Jx~}*yUCVw)KnZgvF0$ch?stn< zDRJWs|8T=(db$)IQTpuk3etWo?%Z#oOMoY02y3SufZs4=XQ%(j({^aBo$e$2!68>W zLkmyEA#}Tz1>Uc|#>XZ1h{k8VSE=oaahgM!K0jpt!5sglq`Mpb_Q0sT+TNZXw=`r> z=SECteAoI6d1VNI&u-r7`QP4Ee>dNT=i?}=H6pB9VTW^N9Bt$XkNq(I`3mboZBBRiy6 zujyk&k5B`wB{4JihWzR(iB@?LI(L-PHZLa6yd5&H3nR8LBDC))q-|V`pLsU4x9$b8 zB`-qvj!N40#k84kL%Ma2#018e)*VRNhQ(bokA}9^-5@69jp^J`PTRV8WajgbOI-?a zjxnZvM=>pI@xaWRq4c^X;#}UC?j6;%$i>W=pF{F>szgHu;1>a}1TRL<^bV2g%7}(} z?m9=6R>BvPW~PRW>w<{240r9L3M-+DduIL|+FkdASexgrdsJm*+hXd>9QO$+GP?_U z6t)txxb$?Kw7TYRpUi`yu(~X!1h(S4xN*j?p~WXMR{~ktvUqsrwg2@ZgsZx1ci&3XS9Y0FW=mCQw%8TldAdP5%%xN8L2d;L4E%W zB<-If8Hw$R)lB76tAPq*_ zYJIn77E8)Ur#Q?y;vTuETm|FiBUk*wdR@#8-av7=EXLf&0Vp@W5<7jDCWA5VJFS%v zJlP_hF0gYi+RpBgVhCs?48w?4@bOy7x&J=V=vLYs7XI2;KYSwfwA4#H{TNFKv_l?P1vz)65fT#oG7j z6bD%Y(um&hvNow$OrKG4kd1rq%i=cKSo1!I;?G(x)<oPR`0G8GYLFp-3Kc+v@VU&>vbwklAgl$nHC$`Wb&ZaL?wt))a{$o za`PcL`9#zDPzw1O|^sC?~)&?12}Xh<0kx|`n!Ihk?}=TCjFN(=3UxDvVeN|*sCTm&!-GPU0Rp~a}ePX$s!a}4zj)(J>MFBvo$&P zZO>rQaaF)lA`X{rRftjNnH6sYT{L;_5`M3>F!uOeGuB3hi*}o|o3DhwZ5@o=c=rNx zBjn<`P3p}T!k@KXh<$eV0&AnzU$3$4!RKUEx1lS7Md# z0%3pfUhC)3=KAp7*8JF#yE-g;g}rvqwVK<)r&{}B1MZ$;+C%oPd#=`eKK#$tKVl!< zJ;kzD-0SdMulZ*9SHQS(s_fbt;9U;gd@p=1`cBz5sps(Kv*8a~PsCojy8;DJ=;PrR zTiyG%lw6YoQ0QynA6uWt?!Wtrc@6S$L-UhXhuHl+uL`dz?{#^u(p(dMyVbpaMf#&( zb4%-y*v~z$ioV%DcMKnoIa=_|?YVpN&v5xxl^A`VbMax&NBQQ4@c!1)*qXb}tiuW) zNzJvbptUeR9;Z!ht-4?DaGTOv!~@=yHodi)4|*5cq?@7Uyuvnkv)c1L&9>pY+a5>P z^xw)p4ErsC`3H3T3zPol@;snj@uk5Mn~T`t&ecw6d- z*C!v~Kkw-%$9o6z-{{?zJ>vIi)5}Y3ucL05AVsecJ!>bz4f*9DgkD=lbuOFCzi!`HpV7>i39GEp6RB5{(}& zpXS<@qUZYEvyVc7_w(pan3o<=hWFg_kLvvZeW!fd@X`aIo-Lw^Uc#>zU;1ypna@$T zUm9F5(~l~62|H3;6LqdND7Lo8z38aQ57+OqpNd|3#I6EuFF)3OSO0YJ<%`yq*zvm( z^&gG^BK<$J$Eu$^+G=AwdNWIZYJMMoxf-=v^waRW;-^ZdiN>B(+4mc(+nqin4o~g4 zo2qP#2{fvH=(IWUieN`?s=l#Hph~r4VzS^@gJ_^-^{7*7;(}nhH&xfzBTx!>gw9J; zm{RL8E&QqyXj3h4!X^3&DtM+P8|2Qd4P0Nn;G~{tCJ5!7FWw+~&MeTrde+H4FQa-xpFj<=`yPtZBjK-=nfP8Nw<1ns;%C4b7Dvj}vl{_doo=qxzI z`%wI+>^bv5$LcRmZi#7vMc#*!KjqI^1$tCVoMaN^1WG*ZVq4H|lgHN8lTMgKA3-rs zyTn#*_u9u!)j}skqLIL#ce2=4cDLDMyXp^4wu!q04|yj`Y~^=bK6b56NqRT6_U>lp zRq$?`$LUUUQyJM;LAy;Kud9CRWS;2GUk2~SJvOT@OWHKm+_MbYZSmN-`kRw(qJv-` zZ&~fVZS^Ckt%=tK`+EN>y(+WY__1a6lccV@%kcN+)o+~A6Tb^GO8!MWUsc`h@mLCY zurEkdnbPZ7mU?gU*rs~Q$v81kP|aJ0y*JjABJs-;cj(EI?hPd#(v#`uwWiAic1e7-fKMGU+vgTHR6i%g2ttk`7LE<(x(=1&rQEJUIET?@{h)O-Dn3Azn^W zoY3G~FaX;f_&~^LN@CHZM!!YQR`?CI1A9i-b?i)fFnOZ?QZ}$?fFIa7YSyta>Eh(3 z{!2Mq5jQjr>>qXRIGprx@_GOM?AOp6umiE9MjZi3rzaiy_vgHZ-%vlWchsR{f70v8 z>;0dzU&C%74(uMa?AV@kd-6#C=bYDw8=40aM%_D(CjFTF-mjnS0!@JeIWJU)S5m>G zO22-N3p_>bOWdeUM{H96WNCj*Heg19f7vl=+OZ+&++<*XO%A{aXnff>y1wIJ()-D- zA{WCHsV{_4?~bCR@!q3`OELgc<(E`BY1zL$=LhNwslz-eY%;U>woZ!j7vqk-NiQZZ z_rJ-$4FfQpa~-vl2m0R7Z>y*1emOF#4^RgwlbNMIWWQ8)L{5I`dy{)xb7}8rLSpy5 zpDIh~qenY_B&kjq@ZA{cT1#L6e7~-Eku^VQQ@BPEoq*lKU4KV69V@XgKBG^HXLi=x+d7lJ~>$ z3s90OkQDroUcwpB_RL50q^nz5L^yXY(zNFzdLJ+=Ay&2#8lBCwzvd(QACy+g%qe$P z(-H)C@+uXr93u=mJ88@FV|@?G!qx!gV5m+W&3nEOXu%9qYH^BybaH5C=Y6M+_m~%j zskFF8$aWUej?bG-ZS1*N7^d9f9HHEKigs;2e(G7z#iB6P7WW95&U}Do(wVaF*<1KR zsbzhHV&@6krTHyW*LwCAy-;a!i;xFaM>X@#Q-^y#7QRq!afwjvJVU!PpEmWa=VQ?e z)fSJjHJv%M+q%&tzq70s-#D^$WbN1bqoaToQ};KO$GFvE_75* za2`|YJW0DcziaAI&*>sZ)w%7R%QVG#4S@x3Yw?o7*bkcFghkKR!W&8n>&Fy2RRI=y zE9-^=z(PNx?VWe;*;;f%CBbb>uCs)8dfxrs52Xa#F^$ekwAb_3r#|0(&AOpDcd*lH zzKj1uA;EFXpz{tba_VUAlEqjGZG7r;@9VOZHFHRS+v=r}<}>fQ6s9Q6IgLR&kI~M} zXYzkQg6<-OSXb?!o()1fSN$hB~-BWM)xARhT=TyeFcc#;pga#9C{B*{W)*NKa5I~>Z?xp81 z>CIVnb_*pvKQ!k&IyC{fq$enMRY7u5v`6^onEJP(~LB}uqANi-!io(SUCGCZ`i6eOYI zJ)%E_yCT>~3flOcEnrnji09U6TcoP{lh%4}@V8SXk!%qk7JU>tP9*Th8NWH`)504Q3HQeHyY;i=C4u7YqS`5-_YwzS z&$oq36La@~_DfxHg0Q=H)ga4Ik|~xE$qQ8{4f{Okt1^-hajd9c7&KAK_sCnt0NAs1 z7t?C;fk>gNux0Y2NUn>OF!@@f(p5A!`9ma?$uyko7eO)=R_!F(;;W+f^G~KC?{+g+ zZ6#Ks%6Y4)$e!-PEag>aiLy9SnAN+g|3AaWt9Mrs!1r$}elN_218cEAV8uy$ACBOjbPXN0B zX@z&E-+(M2)Q~3RU}l{)9!BSa=AddAlfYnl9Tsm&9|i$36?g^4Bq%ti4vojr2SFRb z7vQ0oroiCbIwQOV{T1jicosf_X$pFpU5CPB=zX97@F}<*CNA(Py$**rr#}bn2fu;? z@`0eIIdvGkG5s-UJNOp-5N0OuX>Oe{-ikg30-n3zi+C3G50c&k@&f0>l`vX? z*7PWBj|qJU6btTy7h|-7taGB!Jy`mE&<5}yaDPlypmlDPQO{cXUm(D<3V(>9RYtk@ zNYnE`MPLm?Cs0w`BM z5j_avj(O?dnipl><3RrmaseNKe?p6@Clu*ckS_GgfYyR2tDYDCi9G)Re@EycoydvI z3F{sh-4I*~*TXmkCekOcJ*EHyor#8miP9`jqhN5Tbcv_2HP~Oe=&n&Bc$;+DU1Knq z0LbZ#$YAO}iQ`&GCaQy&cydCaXCr+t=mq2eRO~yi+cO7pgaD}|qYkgc$_ay>qjY(Y zD#QThYD6Q<%lFiRf*@yLuEwIGi3B?E*99QYzhGnn_)lmTL1Y%a1?YMI0I`L3`Bar# zBcgW!?8|1zRajSGRgJa$q%LDUWE`7O1oXcj;JGqVAzxu#0adlFYohTy0wWIsP%*fS zf>y2QBp#fBg8*&sMgSRe0x<8T@)Q{A5Wu}>)JzCJ-l`LQn5V-4Zj-R*MgSpG*=i7d zlqbhfh5&{=qkV*z6|LIQ2YDI{3&>X3b)$V=FHf}UN2l{t82S(w*b$>ogqOzw*Io+G zfZ+y7hkZBtP^yk5C#Hb z3%p1x$B zIsimx5<57F>XZG9i;x%4OhU(rME%J$o-#uh;t0$16=_fI;sL`K1Q?x+NAVrU0F>rE zBNCcP5vfle-~p2bq}xcGKfjeX2ktf=C3V!!ubIU2ych+LGN{CpRsq=ll6VM)F(e2k zA&U_8o+fZ##=3e!6Fi>bT#t`~Z(%spd(FVp81B)YT5unRO*Ekj?HWMKpI_jZN?IK4&jc>Ad8suHj@aR z2Y40xH-Q|<$U;cGL{^ho3@dOX9AAY)bxD#~W|bHzkirUG0YZRQ`!XfhdcA>LyaB90@?D4~T- zb|Ko_E5x_VLBvMn1#&2>Xh=jX8_3N5+#!m`yez z2<{(5z&?byhK#3-6gJt1=yImew&p4iLGN0cCSD0YQ$c0*d+HsTbs4-tSoMYdzbts7F~o+tjv z`~&d_d5U6J6z4Fc$Gu7X${fR;3Tn@eLk*$1_lR?_J3)(5LvZd{BCumZTtcp}0T}u? z@gmdR2&gB>2Vm%H#E;D9i2cY{}QrDYLL#9LxnRWZY>jp zE+?ZoEH(6TGG>^iggyr7##nmj$^py*OPb3zK^L;%T(zM+TwCI9)?-+W@h#6o@ z&0ar? z2FBA)s!0)o41NOQy|Ja|Hg*RzDO!N$d$Yz-mOk66J3vVk0hNE2^#EFl1Eh>+I;4}l z0WITk)24-7D;U)o)X=4FVHSCzTc)d`Q9|>^Jou_H4!U#bNs~aUbA#xGSv6f(S z#sGoE7D0v40t`T48R7sDWVHw+qzE?fJpk@`EwqRaZ}V@4UgYbv1@42M=4-SCe1hKQ z8?*)KK@0e>B>!sYIc5-|7Uk}jQ7Up3$_k43K+g;zgC$xgR2N+2zhJf?#*vcafX#B8 z^*__cssayIEgT5G1p=;1poazul!F@z6$O=8b|We^Z+auA9s7Yid~63YwFHZy7;zqA zHdeQVAn7DM*o6r;5R*5&V5d*6v8#3IN>9Dnpl z|8;pg%^W0#pbaQDqPWt2_Fno-M)9TxYUIp46lWCzYZ^m4_tE$0z-EBQKSALg&XE4e$2 z?^|-7P`Z%IoN05;8*DoHJ0~OHU(EBBvK=1xr8v3R062VDEqA{K+g&aWOg=WPaeqI@1)Dbbz4hTV_l7-O^8V#-3rwD$dj zoNltjXu04w^ZbiOmOXFR7=ij`cD}uFxZF3$Oy>Lx@=ok=R_HG3X7Wzl@sg2`jaQBh z;%Akq>nV3Avli5wOIPF`)A~gkq0+RuO7TeMGs2e8veir(U95Lp?hY>O%cYIgET(9%@Xjp&Uj%J09vteM9+% ze0D6k07bJ6lIis#fUYvmr{bX=Zu(88z?0x`x7Hh)G0~; z(!P8IOFc#jK-nK3v7`P;d4#k-HnNs_mGTH>Updmb3ZW~mxd2&{O;`0+gF+!aNVPqC zLWxv=_JL4>b13`Ee|$ae{xa6MK}vRxtcJcy%Ln%SqpBmAk#!^Z! z_Gd;wR0JgeZGUn^jk(SB=1^B#J)faP=c#^`Xt$ad-y`Hk_n>=7?&8QIO~8)Ia=QG)tbF=9)7Liy=8>p`_5-yyC+Df7(1 zE$BvXnlehC_Ys_cY$Oe2vtg3~41e%R*cD`F9$Os{UjJ{mHccL-NjShrfsJ|53@2q6 zuHaPI0&1Ehf=*%>(qKc(KWy9Xc$1u9c)c274`Us8Cu|T^K@zD=+A^L1+U<;-VA!M| z!}nj>?O^>$bB4~ZlwR(<1uq3WjuB@EBkDDHW#DVDStLO66a*XAOA)*nKHw7ADWsiu zT>ewNdRbl&*aIV`|Lxy)0C%I?z2gd=8vNF72ZC#0w~&XtXYv8z^&B`0d5AQVGjB`? zVnl%NzyLLw_e{Z4!{{|UPX->G3(H3;d28ic>qUcjWCpOd{@b=~Z4fQZBQhx9W3WGv z{@zvj*7`s$(Vwvyd=>T%`Ov$nz}gUqArctg;3C)wEf0$`4p z;rRf8!qc$pf9tWM<#~a>(t@z>$WPuc3t9~)*YNNRFK_{@6shO!ln)H$ARdLW;h&Vc zAGi{B8M)27BOe&B

    IRPbdrv(#GS1VRj(>9#3o7T99rJJ`v^$l(l<;VQ7XH3J;9E zM!@*}8VtNTqDQ?t%7Ez_#ltZA!9h@ok4S#flxNF$|0~*8FfTocLo@e4Bk>vPHWq@t z%n#5=QihC;TZ|mPn3;gyMF6BzvO)`fGcy6R%j;ojm5hzCz=e4edJxl9Br*{EU>YKU z?PO7vs*Q)BfN6-*@DyvcA!AT{9@86Igx2s{TPlLYK=>TyS*Rc81b%H%xJsL=;2g6S zm021t1@yxeG9%HO2*AQnw#_WYoj-uE39xQ2v4K#Ye~Nhxnni3b372oP zjB(?yFqNUYXa~Z+;+LQ{(->R+JEjFRiy+npMuij1OVF*D>v*wxn?;NZ|2tD3>ViH( z_*DE-w#_`o@i)aSmT7Z|QRREU($U`ufRjbO%__!&FJa0+<S8C^Br{;>`@pn?0?9K%b%~RFlBK|vzsyvG0zosv zwqjs}GZn1kzh#<3!_b!r+e(0m%|hS|Jfy_Vw$Yb3>c(7G995Cn9^LP32Kn3 zz%6V-%`)Ywz`VV0@5Wgz-^v(TU zEWf8b!ppZ{(Ro;x{GoguawjnjVTz#cYFtZBK<)HS(>2wl9%2ksFCC@bhr$&PFrx#_|iOjieQY^K!#4{!?u2fqX{1khh4T?r(G^ zA14o5d)$fWX8ls?Hh=MenEzftP&;hl}<V${(^DyOk*yB zKiCW-8oSFS__V@Br4Q?eyUDAlJDzDQrDUDyFm|MOV3AlS*?Ia!`M76bS+&%9%);q` zlWbeeZhWTVdh>p6j z+Z+>yzg)OY`KI$i*nmB|+ead|ymfkx-A$56-84$Jm^Limi+O>+T(nK~rhBr?bpAjI zTNmSqKTtTTbaQ>O;&d%L%SR%66PIj0{d{0QJInh((WuHzw`BS0(t#Sb3nm5srEpaF zH^sf``K5GJW;tm3%)lLXI%Wy~rD#<3rpLmX>70RFwme1^Z&2u}lVgg;a0s+{V)pfr7Q;3|7J<_Z2x5m3|az92oFH&DdZ#8}}Y z3Okij*DokcA0N2L4#TwIBZ@jzQr#Bhrb`A+vmG%B__4xHfFaGnAH{79i8d2L6pwuVh%9ct5O;!U_JWNszJg$q z7gAWK=53l!)q9JmfSce#eCsQGOmnFkXZ3tjD}qAYy_WUPN)Kw9sE2d`)@`cxzlx8$ z2<1l9#<>{<3vPp|CiWrm^vVQ14Te`FnM{Qk)%g=oGS+GT zH?{W3ymh)eRR*_Jq?&vU(WqNX+|0P5wG%Q(t=MVuAY@ZrGjVg?6`h^RgIg*Nn|us$ zsM|;Ui*ZGJr{dtIiv1?9L;l}Lu^WRyYA|m?d5D^ty0_O*h>{xO9-%EnPfhclmoP-S z0*WKBLf`TA?YOn#*|$Sx?nY!WnvW^ z!KI&)`=&k;7V;;zEB}Ez=$c8q&4>W-UH_YE`uv|3%xKheN$Te%#M)th3m+F~+{jz8l7jr7U%ll)Z(Nr3G0t z1~ZIhv`{Gwr&J0jMUi#TBGC~}$ueXqg%T5k`_1X}JEy+i-*vA0{@s6_|IT%ty3Xa} z{eHe5uVvB0g1r^)jhI!jFXp|o?ujhNEIZk3Gq#fo?-Y99*;!`Auzyi}_fw^=)cdq- zw_63x$8KYy)G$T8D7_4RgL0$jMw!%&tiweY%fxPEzAJiACU+xSswlM#c9?RpXe}iM z@kQ+2(O&biDEHaoA$nVyx0fB z>JtFJewcJ#PK(0}2lh9&79YSpB`k`0c~sYYXSF}bR__bC-}8N4^Hb4V`=@E=kss`; zv%C3<;wc{ggtk{WZ*h7#R__SS}tQ*ezMF*iCWUtoS7EJ)uwZmNc-gH-uqCdz0^p9hH3*Q!N-I-D6aI6!)6&O~#f5$Fh;dA8@ae?};Bp zzDlU(2;%7xDwf5W6Cy=ENW6-uMg*z!xcpeDYZrUt>IjjdAEaKLtd6e0PxU(>aA9FevRj|l zNWKEG)Q=Hcr~#;UW9Ah>OY<0^g@UQsqDkB5nQPk1u~V}piKnmdSn9-BEwDDuZizly zRs$CZQz_m2CE^&JbRU6-Cd(>QO5M)1JX@ViAMS^mF{TTjrV43^scWV&Tnjqg8sNm& z2l8-hjOfCRsh7apPE7IPSPl6f)*9IzLhH9(hdnfkkzIH&^`-lLiLp%>=^MO#b?RC7 zrIH$(b;#f$yv>My6%pq>TTHl-c(EYk3%4U}IH*XtEd&;f~FMOP`>|V#tl85;J z;cX*HR=l8hhAtFOwRWeKWZNLgR($aW%MuG!Q)As7C9Z$z+9C_rr+)9gR`T4YkZi^O z6RHjNIpGVxPCf0;E2;R|(*6!)-eT~jh^GfZyak2hYH`+qxkT2V4=<66u=rLZy5 zsxhVhAoX^M^px_0l+Y6MDeVVoA4_0m;~&=htFWS|ILmFO-} z!i#gK1W2^$Sv9LBxx-6DaKRKXouT){|7-_SWK5s(TugCZs28yJ^7uhkwUF&xM`?T#oBYtNRrs|TJtwUwp0BTLwDb`+dMrrt%r4R*Un zri82ARl+)uMd*Q-h~h#hMiPwy)onp(J#r-+I6TEg;+=I)Yg(1u_f6D$en;8{QmbVDZ&Yj? zpIsAFPfAOi4LESl72XPE=oOA|!uW*S8~%;~S_Q z7I3holX8IztZA0#hXo#N?aaEsp|3JwzA0-rWPFvISjk8F{Y7j~q~#<1#hO?WcjSRm z)skmRM{P4GG)YY!U$uha8=13X&FDSNo?s2?=!d736;=&A&`v=mTGxsIz(7<5kO>+2p0=xQm*H03$2Jz>%L zHJ@KsJV3i;1JpjQHnFwyZN7%??tt4Z`!eryAJ>{N>->^0t!o?*+A>JF&vjg5!l?5@ zzPWBxz{i%s%=X{o22;`*#U zVc7XT-&l8NKKoUYn*Wo0zJH9X3SG^Z_Fv9tJ4llBZ_kHJ_~skyh4~M)*C(G6|138V z-^l|`r;z?u?Qw*!#uL{0u6l+3RvlpD)VfnVU#AKv+MBDJ!Bsx3PHA7v`lLOltG4nQ)Eqxu} zAnPB}wri!6-#NN^$}Xv!0v>zHk9oeW`ZmMK=jrRWi@prM3I9%R@9J3QyUE?x?>X!j zpYcVuZ^_fz?l0c@2Us>n-w?G^G#KZ-zxbf;-;@w6c<1m3s5T+MT5)m8uP9T$@f5g}rI zN6Jk-k5^6jKkM*1eHRLPhQBscH#qIP@DS0y!{vsaAys|;w>n;(z6%RM^c^hM`bJ~F zO1g^(5$_8vxAcsyTJ-D%U#u_^^H z?f$CaCYS8XZ02YnUtg%y4?NVIz;CXx_{YeJ zLj#3@yPMY7>l7CAK;)qjxV!mwy0;(zw|4_@yRrSdYrV!+ryQv@gRBY(>~FrE;VoQe z70CgH1^<+{L(|^~)R{)|&lFZBwy$y3DMf0`^bH&Zu61a}8=*SONS>Ljzk%DE75946 z$E-ITfU3SS@bI7Db`ntTcmjo+<~2_R12KC^eArfSx2xUC^A9=XD{Xg7l&$gV2%ThCk-Ufelz zXyAF(dfS@t3fH2uO!$kDdctRQKxy}fzZk900_t^4fq;o*#LzcWyKAq>o`|9L$Ejyz zRd`%nfO>swbiDnP_@w0~a{V~@jJOKYC80n#!m35>^k+R64CrxEBGN}h+SF2a%1j~( z;3i5DPNQer)slCLU6XM+Rp1(7)%sQD8he*G*mrE8UnlOAyvFCUtKhK7%ZP@S>q(yt zyNpeS8F6W!ExUwG3?mMYvPe6nuL-$$7sQx+iI5sGpa&Cwm$(Mmbhn>Hc#W`#pY^+R z0Hx+NTHPL;{8txPfw?xF^1JjkVHe+m z1e4VW?vek%ZA+%;OC1vE@+^oj8H-RJ*+#!W)R+7Ru6-dzU;2;NCZ8k3Ml|Vr zh<79oLArJn958tr;W1K9-;;7j>X2ZUSHVe>_Yp=TN9cbL??@iv@A4=(YVtbb|Axgb z4d;}B;ajK?A~K@*)}9Cf8AL}*RfLR;ct`7e1bYEgrG*>;2XT5RW3c6Z=5d}$?JmoL z6%*lbIfg~cDavQg$*_XN@GA_9)>B!Zb-EHwbi#cYgiG8@qJz65erGhKUJ_b5IcWS% z)Lu~zRUYiD-4j0C@+^JDDAZ_hrq(q4IHMtXgVz37S35h}kiEk8-Plebt-wOr2D2mh z8DcG36d-DtNo5nbK1zPgS7Qj&ZQqF3j16`B zHCqiDlwDo5-r;qO$kxq@+d8~%Y_Vw-QKJIX?V;NE@D;{l>xXRfEm86xI@ zYL(40XOB|+s5;nF8yMcf$ZD0%HfICZABuyIYj=iUW4N?l&NAnSQU zm$U1(05DHsa6{D2V`#T}XVtNTf<=AsWo<}!KjU_*cXl0H6#Ap`;IrDj;WdoV);C#o z98oGCwFlqS#)dC3KDNHej@_~(56H?^K#^uM`>ULJh$i-T*+nMi29@NU+&XyiYt%ZeBE{&|E#3Gi&J{}!3 zuZ@bB9Ubb3KMj%^*vG&@mDl`z zl0L`l#iFf8S1C*U-|+2MBdh8CVimGJv76?$+33mk_k@1Y3TdESH;%0)^~+Z93>5-R zFlO{i`}^d6@d~6*Vm(_l$2|9_V7oNISR_nhD7+pPjs82e9bFHJM$9XZZg0OtFcuAy z8ah!g8LdBmaP(RGrDS9AFu9?)dM*$QiH&Nt?*N~oFyv4|Jx4UpywIp@yE!3BWL9D*q8<^gGVk(Z zrLH~d-CjqC5}lPAI$19rt!BaIN+oYQACk_#c$`UzsJ8o+8dW)=!snM$ErmRoQLPlchx@iIzOJ`1lkx2H1G;U20W!+%D1mbpLiZ91{$p66B$hi=d|k3}`j zlKv)cZ&uvGtdC5~xpn$1d6@qn;x>|G%?lnNLs`Yl*15E?>?S1HnlI5{O@dX$9GmMH z`|fLtu&y(IpSw2pys40E&Hodtov614XZ^~2I+r(A(e#t1J^UAueT(^eu4ZhuX_(x| zpJ==$$9l+InOhn|Hd&JrdDnHo&WS{b zD5_%J@{4#e?t}o&Hi#8U72}p$B!USh0IUb{1a?-1d3Hpf@EoEJjl;N6N1Oq?eGYO1 z`ioK-&h7Gu20@C`7ZGPSr_~(AIgDW0xSc5yYtH7p3wZ|x2n*h=u!s#~N5FArLM}o# z;O*{$BCcjvPHP0qwmY{-6ca));%tOhD+S@ZuM}}$@B|mm%a8}q6G~IKxs8fD5qbi^ z+jA-ySAq}cLkKwTQkued7y51aPu{jWX9=VoN>P%)>t69=Z^jZFInVr4*WSZ<2QmTe zRLaNe7W%O@+Y;YnsJ2foR=W?phuJj zaFv(;Z(M9lx{W*(qR4*12IU4ZV87fXuM5#+ztn^Zhgh%|%FFXY6bSk9C=jPBH)|1I zb4Kxggb$)?UFS}ZpqkNy4o+9zHDzYnh+4BgVUlwl&ce?TMwC!s3*HwMcTQJpG=w#Gu%{EgHOgCA7r+?JmLQk!yO7y_($x#TD7s*IX%+S(1yOu5k&;41!wY>%b^RZ&cy zm0v0Ek7{Yz2wmV}XiXPDUjL|VZ<5yuE}ltq{D9r|g?lKJZ}Uv4R0r2f zN<{PG;aLhY+d*cdIcm}}Pekylz+Dsywt>f^>Z1lN(?osVL+~zzg6-fzr1q#q%U2>l zuQ*&=VT05TR~y~h@|LK>ZK2*f9w9iYQdX3n>y};LV6B|tSK|A3W%zC7;)8wtt z1Bx+cR1xk6X`0wD*a4-OOW$SfA=DH5vzMm4X-lLbmF3f_!tOq_IP6!lmEtm~Y)ena zkJh#;$q9N+QQiKRi)8}tduYe7Z^>3l%ap0(0NwV5?owRNErWkYw|A*5rL_6unDqck(@N%A|`OO?Ymy*Xtt_duF5c02hZ%uwYpW&zRj9NYL! z-!2pEslbA}H`ra34RpH<;eLpwjrAr!fNfUXNbDPO40P48_e`0%dl=0M3kF(YUsR-Q z403{?J$^J4){dMC6I7AH807xV+RjwDXk$PPg7@sFsbP1Lufn#gT*Mfh2@>l$LNmo4 zCr`khsd(8`=LEre0%%I#L2bYziS`_(8Dc}oeXv_9uWW!*gy=a)1B<4cIQAND$eDun_|wo>JUI&{t73*ZkvsKMr4H{oK-0kPCf|m6t31G*Re+PQ z3SDDt}M0rL-az#ZuvDrt-^dB{TxXH zu^V;U2~<*MK-x4UH7b9Xt=E!jl|ea$B!?jSQMaAaey*mgx-aRO$j*}MSb0{zaG$9om`I1VX4#^qjCuPPS5$IzqMlV&v)ggLRL1dCuB)RJ z`fEWc`(tqcb2cbm$L_dL%ICN%_psti#|DM#m`{d}jTMJ;9}6oQIv%F79ClnP z6>{{>jZysKD3xQN7>s?9Ukcfjx1TwB<*=}y^dIXeYB_pQtCfT8K4}1XJ5uq3qgf6h z!m%$dl=3_7&JEqHxIgi1%G-yRbBFD{h|JNo7(D6Tqk=lln7The~(#r*=0J#!-z z#~hVGQ*{Bm^};`R?F;r>FYOn4yf62Z;%7&(98JYN*x&N^LmuzQJ)rp1(Icl^agY6P z7xxQ3_R2k}_}5uJ=E?RQq10oS z&YG7FD!r9cTXH;Q^Tck49Q9NFS(Q=?rMHr5&mB);o;dIDq2}7A+oU_BW7D^#+on6E zdz9_ArC8n;MQq`JI%nD<&N~KeM{l#qC+R}`x3-87uWvj%#QvmgGx@-WTo`l$t!cv)10QP} z+;#(=$u^27wteHanUK*#;91>yG%LN5-CwCi9ju*z1N=>H8+>?i6Ek@)L5HJ-1eHy0J)MMd_u_)AM%2)t&~b(@YTcy7E02fLTDKb7$p$^A4w468QyD97c?t# zP8d861P_SqOftfSz{e36F@rY`s*T=#=ng0+7@x7tfr)U6V(hwM0-T6u+e(-Wr+Bm79E_a^McI;I zaN;i;nD$lsZE5*(dK>{b`Zm%97`Sb-?@Zk=v;$n|`$+d;pXDd)!6xcI>1@qZPnjyt z07v=`(yy?m^5^X}(>&#>*aPh8{ZI{HaC=Ht@d1N-7wjg=10RQ|;ttqO_afbey_fH^ zFHiGCg3S3p7}{azd)Ol>15#CjpnEF3&VzvAtl4oo4_LAjQw;q(oWblR00{iD&uBsqXQfS27UnB7o;&o8U3VT z`7Zpv(@ZT!6p0@ujsmZ(I2hTa3|OALw*9_TCW7&t)F`iwXNg8|fv00&(*o8nf7^av zTCLo?@i%Zg6gNny6^)Pv6B4gsQS#tN?FP6Vy6J4MV_EzWNJavkgTw;^KN4{kgn#hb zS8y!pc_bK^0HaW8(PHy5j8k-e5_tE80tZ=yXwi8o#!0&L|56)^%u6zkZ)`lkd{I~B z`A7;hqAFUQq)tmMLramAX(>TyGmuNjn zOD7z(a)xl<744{;R|Ak|&tzT>@O>#)i;YJH$q|yxpf=yoVmQo!`a&YKOj8w*gYXyJdK=*$aWv3l4X34x*o7E@l`APivG`P#Z8C()RS; z(%Bp_1uffUIpAL-sbXj?j8}TKz_dzfAvFQxm9?Ppf^U=D_CVjlcx6-z1zWxdbCAw4 zQaEb+ic-xLtntFAbeMV%{lR9LBUt5ycIg|3*qlX$Rq}%PkHEI-3%$}Y2bCNbh0C^P znG41*tQ`*Jtl2LMPiwv~E&c2uo};bcZTo<7f@@m+g<|kUr5;C3;<}Ox#7&XM62{pdaZ&kE;y7)>K9Tzp$0EkzkCdp+s63o@@;=BxZM`h#Wk}br(>W@FCHro6L zVwBP9?BYo;2)N|aGWDD_Aa-fj*MJFa(AWyM1@sC!h!tzM06){fYEAJ=w@xVtNR9E>ztW`>!)Yq`_#GL1UI@f!~ zk3X8E>d5@m8V`BYPYshF#x|tHNq-gkNz3KUR8bOcCn<|=9KiWN=_PQ`&5s*4Pk;aUI@MQ29ow{@d=x0(kH7YJgS%7%u3=& zpI}bn0JVNVJ7M>g^H*~x;j>p%AG*bqEMTTHKB@f+Tl*7;{-yTYvj_m%sA)f4u!VeSof8`}2U*t1Bt1neHlH*LGnEdlqH>wxK# z3czlA(8_K1Wd6qeP1|lPK4S9+={Lv${U>5)Z>hd^OTcev+i!)>URJGhi!7PJ{E_iV z<%zHAirZp|jEyPj81GwMaKc!k+ToT}QeXq-y!hT4JQ-G9FDk%%6@P1e_KxbLTUW_G zoBO0=khfc(h@QQv+V6I|WYFe5`56COqbIUw>r|KAK9*S6oFaYVeXI8barT<(bGIuc z^){!-pZJux>}_D~iXxKs7@{`|DeA-CO7W7uD|FbqH>T{1`>^eQ zAhbdD?A+^7cFX;BQA6@8vAeP$d;S1m>kUi$OMI`en|X00ZWa0k4Nz@lNu>RU)Md!w zs9w1;OZV8~McjwvSK?oG_9m3Ay7LqXVP%PC62KjC>-8^db;lQFVP#Xyq)rOF^Xz@@ zW{qEEKPmGrx)%aYPgIIsaF+>Yq9>&Qef_)pp`tGA?bUm-?7e%U z-8XOhV6Rr$UiX^fwX6rSCwbl>H@)p|%(iQ9quWyPN4(|f80Z)1JAXi>{6p6c?rn5m z$5%2=WJLLYn_zM2v=@{4-_`3tW8fClPD~f&a50n0TZ0zb@SZsygXpFyz9_G7o zTAk)pw)F<#2JLW}*^Q*bG_NwF8_DlzF=bYVPfO8oWqOAR7t^`Dq^hffrn_I19I*KZ zqWxRRTbrlkzuDQJN0CMyPuTovbjlG zl=4!l?(f;Kvtv1Kse2h#zXJ^SOPiZy5B^(5Ub58>g1&UWD|wjGx8)Yf3tinFw7vTx z&Co6+tB?J|(eH?MEYB@1FZ1fCo>wIg)B4zMp*L~sleX_Ei>O!lAn$G~+y<-t0a5)i z$g(?z_Qm#nW*^Tjomba_R=bx=1Z|{AM!bO3g;o~_wRWeLWZFoRjrfilyppJ{3Mwp) z&syYqWl}vKgy>eLZMVHdG2%L^{>lKv(N{~J*<2zU@gFsMB~yJr=yP|2?TXX~=}l<6 z!G1*u*bWNSvpoqmE3l(_fV25E=xKL??TX|F@#?ohjkH@f8{+m+!&g$(cZ1${_m!-s z-eWt8ex+RfENE}{J=#&b71^WauY{_tyCZ2IY+q;I<2kAW;^@TUAAIdBnyj69RwVle z#aC+8zXv6jtR_ctfAFnd@9v^qwlmL;Wc#4-N~!v3(C+TrG;h1QtVj+pOs7@-Iw-39 zBkhe{UH0M@piQ8wJAk)yg=T3No3+UPLFtu7waC9}m$gJ?7Yx2L+E-wfh?s*5np1mv z?i3%wKTo=XuoRC8U9gxs)$_S{60dXG2l@~ilID;kDL*ghGawD(PFfX9n2A6_t=3hC)DuE4Jg#&ay=7Pe3QMQyK{FGnuOP9+x2 zVuw>2q~nE`eHN^H)@_H=8j!17mN8)9Dy=8G2x)Jfnjo{vx$L;GbLv{pI&Ph3RbZ33 zF0{8!OORV-U$$Rxp33W~DDt&$OihqoX1!kL!)uZlun5~y1xbNZ+(oj?I9B9bbUI?DDGTif|MH)FLiGO){}qov**Qd9F$av zOkJr!gXW<09)S{596#{6y#fH~pV`AbCQG>|@j-W}Ehu|l4#z{ul9&yQJKX~*(Qi+a zK>D9(W=fQ3;EaK3{UC6mX^Py#Ut)|yQW_)*{{^ibmpX6SE-nEW>%eVI`6N9^;MR5# z%5{m~bsOkE8QV<0u@Fj_?nIzw6H{!=oU(y!H*_%B#_*t0{uA3~LdFhJe09$UveK*A z1C`p~?UEF5N8Db`SD~1A=!iqy;Xb&%(<}e3-h02kw(_(+NDw)5=L_md`x~_% zA^ah7NAlqDPBBnD-=iN%`9tcCAgG>?>b>@F$oNAJxYk18yk)q9wdD@t;Gs_Nyt`$F z@Kx{N?#|HsLchq4nWR4ucf=2dbz0@e>shzWr2TFTM6bgytBob_`FN*}ZijzXN5N@R*m3y8{!X?0oqE^&6Ue5r$GIoAb?(W(qc`c- z)mD%ODD3|HVZW}9eW$-_O+@8`$u$3j?5`XX+4&iId4Ae$`%=FmCZ6Xv`e}EtM2~Y# zICbvYpZ0pfDbdeT6DK>R|CiQS z4|&E{E(gS?zZAY{-M6JY$uqf&i4Dg<+GJy0a`7~azMXER*3~_HG8Gs6?m^wURagT?3MLJqmOSB z-1Z2()$EmVS181?FU(WA(kS3)%PY!Vt`Lnrqw?XZdx0OCmN`OH`n1d6c*a&P2CS05 zi2ulItM=)Yk9n$8x&&NqG0Xg7+-L21sB*1sS@^wXpK1ALPw`6a0PmIul#^WV)%y&~ z-+LNYh6cQ8d60RM=e>5HW%-JyaHU*;WlId@3+H>aKK=4ZPn}AifQKzk&HpN0-ci-; zlKfrKmaNkEKh)kuxGZWe9T_fiHaTs;D)83vFLn%gSJn9^65hzx@kF}L_zXO(TJc+ITN9~6Mkda%4RBQP_zSno z5iCVwB^JYHU<2qXynlAPT(YIuivG;=s>UX{G)uWy_C@TB@;?8vBLOhlt;$?Z&{cj-jMgo<)}#?}56iCBNCW zHN=X}O#Hw~m9QU@Zbgij0Jx$1OyEFAm8)MN-6|zsY9(wYvGVz!%JrU^;{%gbI)1+N z24cMA3g6f8tDlsmkIxl z>1Lch!>yv_VpgzVA{oAwvA^XpA^k3~f?Fo9!xK6-tnEqRg3Bg#;gMrA&3|NkR_XFJSqWbplW8&~ zfsuCIE?7Z{Nk@3rSV5C1`8eOCLD#U!`ba_ZSMf>ff;%RY;ay|6 z=?}j>HrRBZe4KyMs7tn>&SWY4NR+xb~-|TBk8XBAZCix%$a%U}%3i4&fzUmJ$79Ax<)9}doZTbj=sEa2+`40xJxbYp9I6 zv|lEei$+NS`1<#VLnB@E%PHp4Q9>X04W0rLc0%Tg;K#T@uG(QnLK-0QU>}!itw+{K zbrMmKk2?kr0Qh>1vcmuI7^t9kkKCqvr)+B5UV|rV-$x|2e$%!O4r zylRbZC%Z_xt=U$8*X!-}C{oB~vrl;h*|BjSH&MYqkRkDY7MAn)d@Fz}JA|1J9M+>^0gO*ctPQa(!c{qq}gb}UDQx{qP~ zJAiP%Y`RI_&0k^UBU}F<`pewAv4<)BTfoLRy1qSn``kr_VQWZMKl|*_?}TOV$X&c!gkw7k#k=c&*cx)!}U zw>&1;1n!=A!*qwB^~KSxbE#vQP10mzzA%F!iTbMO!qNDwC9WZp`uS+YoHAp3%O#32 zSD5;c0Z5~-jy-F-L^kFRGa8bqzaRa1uAyZ`YF2ua*=}fC5eh>MDb&x-Cp4|V!t{pV z^}j|xol9t0k(?E;e;eJ%xYe}bZHE~SN!8ztem~bYwwhYQ7KR3`*0bonbN3iWTUTVm z%!h>Pt>+>cA6i~#*6@VsfHXRB^aou#iy_-;o)yIo6hyW9-=h=9R+FQ+XMO9}=eih| zTg|hh*ub2+QvK8D-E+4Y-mP_6Q5>_%Lt6E(qod|NGTyY-WiM?3O$oZbBieQD3d6EB zHfxD}R%uA1UgTeu%Q~V+mce&KyAWoLNI1ySWbT>2GkU1wc~T+5T09|?Wx+f(|9Nz> zL+7+Fv=N%%&r)F8&u5H^cjzSf!W%^rf>~Rc2j-uS=5gTZX}U1EZQgyTIU~FZP)pg(WMULX=^AL zZ}wxMn0E7Nqrx4?Bx`u0$XXCfj~O^`-3pRh{{Q4_`!ZZR3X`l6iDGL~(2;v#}RMEPLkg*!pSUT?ep~n9lQgqwB;?!usiaVw-PLBRo-b?J&!b z88Y8LTG6pCn8>k)V{K>t1#PdJuSK$CnTaE_^x>37=|tf*AC~p}ddqNHBXWJq8ir-Z zOqBYpiE``gYxXQ>X5M_oh;LhCD#*yW z*S53vGHd2%M~2%P(-M*EY-@HbJTrT~@UP04Yt5Opo2mBilx}r4&R||J-ivl{%}J6+ zW0VP)UDHb$E;$a#wQ6MP)~$kpw1kvs-PXyLTyO^1v8H#ECBg!3G) zk4o7#x0DefK< z3HLZZ@D3>jxz5R9cnDdXvxqpGZgP=+a~dZSb^^uBFVesm1JU{cVnKe&u{)#47=t7< za2EaxSUV0kXWA^zImX+L*e0LvpiB1K+AKo2&iOlUgW^xZHZy%Bgb>C%fzXs^o*yya zq_!JWm`NjeLfbcLn@JuyMDXQ3k6<}f68w~!)d?>-L%vblAb{p3WO82OH9{Og4LDV1 zjzn!z+iUUzj+GgH#?5kshn$IUmVITmpLH`EA(=CcR|p}4GI0v0jF>b-2xmC2@wy;b z+vkLvB?-WNN1Hf@XN_1ia}hE)^LVup`%tw`;h7_5&4PqWoM0yd0TwEp!?Q=MnmGt* zoY}l`2n$rS(;Q{Qw3(lf$63LrxAgOB0Ds%_LM0#Yx4{q;%tIyaOeMGf_7*Q9SWbfW zDV5_r3qj)iAN=ev#686$_5&9|17l7+3V97{a2~h0^uiwi?3FES|3PbC zQD$A5LjntM9lnN-K0hZjdJ3dE;t(B}k8-^&7{8DjJ=r4tzm&#j=OjmuZv@5=U)WVB zA5ozgtBO!3su$zR5K=_tV*4P38Bx0!KZW2XqWrNE2xa1REc92Dlk?duRZDm7e+b&D z=I%nY0xY=f`vzyLTD!B+2-p-7A3_wR?(_?#%)}i+%fC$z>|; zI`u~E_;&PiZjf1z0POOi$hPEVGA9hF?*ox;&q$463GIa3!6Kqns%dQ~L z1R0UQV5f7DLHDGrZM*Mmtwclw15Q^WJHzsnwe9wuua${7#o(ihl6}#)u`IKQ0}OR~ z*f%2`Y^aQiq1eIvT1doB2KXh3ycgQIeJ~f)Q6T_n zoZU3ES=te?j3pBA8Wj@?L2b2xX!rL{9m9Y#ETg)9t3Dq3OV@|nEz z?upQ zF@@&68L{*wG7@U7n1E&FGa=t1WAMGGm|$OE`|ptMT$|ifMJ-1&5avocY|Y)T@OWEp zilT<2QSOYQDZsPG6&`QTO;glyw8~{EayjtjiYTaU+d(W<{qJUWJ#Ghi{ABJE#a#|V z^4FbqWR{vezVtJm9Y!^f4|aG#D%EpDop6$P-ev`HvsYm4haQKb9U;nXK?k&aF z4hbq7()PG8XuIniBG1gA{&4=J^4M2##bNP`j6C>LCynbqhUJzhb~t36DUdgHJeEFg z@OW5pJ*NQmHE-NH_m1MEL)V#o^7kE%k;k__7R|k>*za)r%%J>z$731eMvrB4>lBw9 zKAy3V2jn?vT<@z5%EKHL;TNzdcSi&GWxBkcqbB?k9Tnkd z0WVaPhd3(a<}0Ecl|*;^o^$bh?}^f@Dux`_B^{q(4s$T zKODN_bI!%Q-nh~UmAhN6b2(~Z5Bu-P$niSc8&E2ya+mYElB1UW;ou!lbG**?9xFYs za+m$O==!xO&Fa%PX!0>j??bVQXTQnQ;2)vC>alTX+Bib&={PJFtEstgpP6>&qghnf z6-nxZXs{J^LOhs_Dkc()qKb(H!>D4S!Fp6N@n8t`yhyMb^}JZHB=x*#uqpMtcrX{$ zLnK&<>LC^^O7##8Hl%up2MbdBM1r-bePY3~)IQN*OKP8ZFbCC0Bp6LK5(`F9jYNa> zsYc?#{M36Q!5Y+iV!_hXd!oVS)O+H=Jk&^$U=?blSg<%XQZ(3@8YvzuOkETS)}bzn z1tY18qQTbGMe*q^R3VXRd8&}uG?XeNI;~3;5})R!W{FIzQnSRSC8$}V(IC9 zvFSSs@h+vY*ay2ySFjI!OL?#{Zl!717|+t@84Fz02GtjN*yZ0Gd|}fts+{Pw9<@RJ zML%}=fx|F#I)ZuyI(%#HnlQFNU$pbq>h% z1!3x%+KWc)a*e|}Y#L2n(|ECty{N#+P9)~Q_-yTicxC_qTqZO&rP+MdOo#hkT2Yj+m^i_I_CUu=KD{et<${ujGn@Vz#@*k0RSTrZ~A zzSpi7Z(w79HLx|n8DI?T4eSi?)i%}GYTIgDHKy9W+O8UZ!sZ0_gzX933Cs!m6Lu%? z3pNYb1=|JO0%pN}0o;@e*a%<+Yz1%v7y)|$I{`e!hJvNoQg9Ru#hzkE!EdwKhTUen z4Yv)m&3>ERHhiZ|C$`hJ6W599wC}X*#B17UVl{0wahe!Sdrdn{e7Q|Iw%oQHSB@#S zF9#!|M{JH@kJui;9l;#2KVo+TKVvh4ow1$4S!6^DRq<4bR|!{vz&ZjN!5bklZ^7WA zXKd_FpnWhh7#VvRyZUtSe%*{ANROaH=$A+}P;elFsn0MWo1~azf?WwKh5$p8A;Yj> zurm}G9CRi60lFxC7kGw~4egKK*PL*93_ zZH&^N&i~cItWBJkft98-J3*2xbk)UF7|NNH*G_!x7W>u3Wf+P_DD6(XcP;eG#Pk`e z-IP8j{wWL7GI3Fc!d?pd6(rX}&qqv)p;AfddBxXfVeBK0VkljqbiU$!Vqq{TX39`o zpbWg?U$Zcu6z3sfMJP==5NfjyLQILIOs90|@Ufc>5#mxL#ed0(%XF-dKj z@?mb534a(#dpdT*e}`DJf}zOEXTo!e^$_i6n*NZ~X5C;JkJz`vqK0B>Lk_{h1Jt0Q zlZJw&LwoD_XP?O$3Qr7~oQO`I<2pfk?$7(6nKlPK5t}w_6wYlhba+L?jHW$g4@SqR zd2^!u6u;qp;ru~EVKu_$znQK;XPzCJ+Yw3i9CBF^jik}$_&I`6O@njdCX}dQbDNBo z(RW$O;JOpeIb*Lf>h}YCGIlA;|BkzqVWN!Lc|a&b@it;7u047I;!L=$ma#{{G(J;y zr?B&}+vjZ#DVfG*qIU8-JKjEFQ=9P>`w`zx%f$S$!x?wm!X`c=2`huwpdLZ~0&%vz z?QC-=qaAw#uR%M4{)O8af7{OHM#f$2QT$!%5!5ey&JMTTY^pM*uy62pX-6=>a5-Dv zCfKB8lr^|9q_r-y{NN%uMgfnZu2N(9Qy*FOWTV%%k|pgHXf|S-^6O+-Kdqwv%IhEZXdO| zm(hd0k9VV0qR;ZYCfs(g$;)_*y@2ndR-(@GzjnNR(xxt>5FaXbR{XWc?FgIo3^6Rq z$|&v%;#0_Nc)EvGsNkp5w_U(M8wzhkUC?-a&Za`CA?6D56XbOs=#4j|EQr0Xvr)@% zR45>Xihqi@t!Lw%(Wy{i{UrJd^b^l*dz-9`2iTMNHHlA3x6j#NlulZ&K|b-lF10CA zh)7-FeVt|FsSuHJMe39MZFieN#Servu}@;Jmu-SFA`d*FEhxQ?xLuTv#%|CTgh4C3 zQDGx>LE@A6ZS#yxi#7RAnA_GiTZ$XBOvU6@@y1;W&)bB4O)6LT+{X87;(3MlZDPMB zPb;jqaa~G4Dzvrz%VKxR3BKB0m-df+ZIemYRCKX;KtI7- zt8qzxYzjoL&ndpOc#v{}zjpT})3LQS(R6u51B;9Fen{=kOL}ADZCdH>iq#euQ~LR8 zwJsTtEw!Q2jTM6|X6XIAwVIa<#%9_~)58>(EoM^s`D?W=nU8I@@uc%Bid&%RAQ_#O0|e4A9dn&KggLb?fWh{o5wW1rge(!CX5S`?<3@Q3XF zYBILkCY%me)VA=T*F!>fe%&+nu}w4GMX|!dBc+}%MC+^3*kYS}x`Cpf#Q?pYH$?O6 zzOgTD#_2(dvlas>oLyfpw}quIE6!RDq=oNT#e(sPXKgQ)8lyRiU+vqpl^QAGkX7}s zx??Ut=|`egMaM?l)Y1p7B868kj0L3+;>{Ang;w`|4QrcKD#Dp1hl{P6eB~WWZo^>Q(%LWzo|c;kkik}KGe|ebZ;Gs59@9>5wAvI}JvWxuHi#Xx*o3X_`x?|1 z1cKsElQ}$JO+iq6R%t7avt!kJ%oF6oH$_*2#%OI(*sVkm$sTOm!kSxb!dK15r12&L zq0)kQ0@3M+v?$(M*Xf|NFpCi2bV6F3Wi9Arktv`;uyxwQFp0Sa{b-wcQ2kKxPlVqo z*JM=W+y791$@t0o_n2!^Dsa1tnI`HX#IMC;);pt}CGJSrkuw$5@x-KJY3rRa&XRYe z?apTIQ9n&=FV3|7CE6K!N7C+eriS`a;@#pS*1yC!OWlFlUC1<24{VDo2^p2FBcjj*Olf);*SFAt9yq3BH zxAV(1Q;#676)#xJMuY3)678f+1$9dzwOGVjHfE3HY3X*KOkH&^BDRj&QBx*r2+y+7uwDyWY8mDI<6-Q8}R zd04%aIA9rq`6$wUJoB>p1aUXxgw^VfkCN@DGd0y+h-Ox+0w3ktTh-qZ&2Y6bUw5|u z>FK|!w7aN#mh@Y#@_mH0SF2Y8Engc8n&KycmY*r+BwWILRLkU7H!tB(zG}AnsW+CG zSgrDWJOnz~n}k*VkI?o;^{wLDWh3+L75}|K=2{f&rk5SMb;cq>NMFwv)?Hrq&Z&qH z!KZKRE7qM~R_k=RWE}S*IagfY9K^6GW${kJB`};;lAB1Cp|4=~wX!=-_9ZuQTFGu= zRVKc?U@-26lV-^=-2Egs(JCX5zRoSHaynPigS(&XCSGOc%hOFQOL3Af*@wH3)F)E4 z-&eT%X4!ow_maoB3(0+ARi?iD-Kk{-PR1oyabJ@9M5~N_#k&j38l1vPmT+H^`^2lv zr*?G5l*Kynmx$p|Nk$@phEoFIj(&-gbxA4?m24yyXfg!>J9XEc)Jhz21xZGtfksmz z-8p5CoV-gqaRtdn;(=yU+}-hI$xiT+-MEuUPecOuPYHG3D7)w6Qt|+IGWm&Epy?D} zcS>2FlR?Qv+=rwmqJhR!V%-I0bxuJgX31;FDRg&3*}Btm3HpF(La4x^&eXRuZN^h@ zVmI}?tb&2YnI?sbEFSHC>*Q%2!Lw*MB?yfEphblIBC0!xc<5H4g=xwfdTPDQ+v(-4 zLQB)MP_9MADgLr7C+!jsTtm{D!jyH{TPJfuL+YB~lxX)MqPgV;a#6Tjo7iZvA-AYH zWl&b_)QE3LSwl^sKvsPA)@F35ILL~x11xWLU_*8h4zPTbdz&zKB~F#XG-?_?9Qc)m+<;1xW&OrRD5J#6#|*Q zr0k|zS^8>E$!Xm4q?@8&&Q^NA`d<_EV}kehxXD!B^?CE^ZplAny8eN42|WV$b={;Y zfA)FtDz~KS0LUH)-Pd=MuYBzDC-w;6H*mvL zKK&o?^U+uA5{CnM3Ht;u?CF!P{Ke;wSN~Aw<0V=L+!G!P{AJ8qC1bR$`jA#NC(dqg~uU zUlQtrR+jj*zVg6_iGB&JGWdaAj}PF&;6K#)Y;i*xQ0Ke)_E&!Mfxp^) zD{6DJ>vOaWA7cA)y4YT&P!U9$zSH zDja%j;r!&G67$$Xlqr9x^}&cnr-99l^b3wO~7Wy{nXQ2wy}sLq+hd9b7m*`KW7x@e*G| zGs8r1ZEN%7t}KQ&-jn(i8Ns_|w{UdwUe{Yj1>TeP6#X|_{uC9#zvj4ba?Zpe^H`2YxBHGzv9M}O|iAQ zNwuy+#YKcD@r{TDy-Dw`m&HZajnR?N4W7T)`If|n(!#k(Oo^xU76kb7(#fLYsMJl~ zwX8|c;;58JsSSA`(g$x161K!Z0(*Hfs4MC~BMr#;h=rn87{(TTQ+Tanvaxt8byEU# z!oM^4E%^-$Q0rT_wrGW?5?bv_707J}A!<@Fc@n`#O(c_h5n|NjVe$%si;w^%w;%)w zd~`LPJ*P|(GXzI>{)N#~bnH%LHmj!)`AT*X_S3&2WOOu69cliK)Jrr7`t&J;zK-vy?&h)-B7ezlf+>9s zA*v&HYHza-y$e#Zlb}Z*M`-E%%chrT5sc|e2$YV|sVmKs^e*0Qi9Ulc)d@Yd&=kvug^I&r6GK zL|;V6>+CyqzPXpqyesBecEhDFKjCb+#_uMc3n5Fba76QG}Y#KufSN=#K{hd~cW-AT+v{9R~1ye$&6X za}4Q3a}7O!cT{6ry-e2zl71V`=OG43{mlT*?*n!5AOPoU zlIMBYrgV(%j29;kxOD91aTq!M>t%@}T%1ts**>9RhmngF1R7vzQ#{H(Q|850THXJ199adh+9c zWWOYxY3+!~kox!7Tn9isbw|jp^qfbobJ&0q14M`j!Qj)ow?9qlpU!1ncUNQKKh-+Bj_2g4%KW2-8}NX z*7Gs%Bp=C~IoGjo8>c^RosND7-8SjFvrp>Qk^e@~*U3w*$msnNmnA^UTp`<1mqr$A zMaJxxyevKL)1jN~rTbq9bjQ~GnEg_hVdLjJ_Ge$#ogjaQ=V0RuI(`bo!t8ak$h%ul z#MDY&mKpc$(9b@n`SI=Sj(cYpc}2#os*Jm2 zdwLDDaQME##;dcdL14T-cGYzJWCuoPmb{q|g88NfirD5}o0L_}alh(IWVgrOfNNroMV52_y^JmC zs=~A*-(YLR9);aQ9t$ZKa+P6fkdLzOQjW^plRFkzF6XMx^d-Mx-;F&AzlS~+QO@To z%9JDPvwbOVr0>ZdyIc-))ndAltJuD=Z(#RO$HL0RTv1FTav*z(@|Bbz%sIK9E9J7TddxHA7wp_vefT+aPk1@6t1uHr)?&L+s-(}!_FO8Lan)oVBj0Dc z#a6-2p?X5gMP22Y`^XpAeUvJhbMie`%Tcbz%&X)t>`>U}{r`+zPcS`x3x$4GDbHeh zG#OC>r9UHj?g6~tkh;j%6HqSY>UXLkesN!qvFq%qf)=CrK)KJR<;%=YQUS||7Kr}L z4I&oe4|kJKvY$`_Wj>AvtM}>*f!iq zUc?+r(n4c`F9^D`k3BqkUevvH-$RG9?3kW0J?4q z!fl8C;_6F(^u8o{w|2%9NEySgUYs`R4PkyGPqgliJ}FTrag{u+*o$W-li{tqV@^ue zNnbrXy{Gpy^Eo-I^+EJWXr1IXS3k&55~5_Qn4 zUel_*4$M5VLF>hszm)m~=6iB=>rC_qXr0tm@9Ev!COxQiCgy`w9sH`_v{`QibDg~0 zijFpw2$NVMO)K;^C3I)}%%15z`1f&`IcPKIuP9e z4U<|rGp*I@&a5VXXXXu3VeqAk)85RYX9KYf@G#6$N--cb4>_>F~vi`tA_}w={dsk%MIW87qUb6)Qla) z^79RA{V$DjA5)l->68FY?7Xcw_&G1euiO* zKVg*KB%AzSSaffrPLcc^!$A*&JH62fSBm%&>5O5Cn{Ev;6 zHyuxYB<5|}$p=Oy^ZfUXo^N`W^hng(xKr$hGdD^8hU`S=H~gnF|7NH?R1ZpQozD#` zhLBDBlP-%)90g%=kJb>L3Byjoe1m|2<`DS_RDKYcA1Y=7Ei zt_elJ^0WMRkDh3%P5P$LX$>s88M`+1n_#EtkL>t_aK1LEjIYW8hGAe>?f;ZjoAM0> znEGtM%m^p?viO8G2xFTMoBXyaI|0x442XQTikeX9#27}6aN@ribebEc`ERmT#no6c zX344lRp{I%Ku$lKYvqMjl!z7obXU_I7`wzC7#)iR`kuxFv!Zq*!^WPfc!ep0)W{&oY z2becEP}g;50{aj7`wjglk9!V9Ca%lOysa?+q49?JbuEy@p7oy{icAZGFZ1_@)tHYA zv~CD4bIrW0X&l;2T9==htq~8{0@d(k?QQ%X5x0%scNPYBRE0@Hl?JW{=gbv0Kc{E$YHNDzt1q1|YR;9Sg%m=(5&wXzA)D}QuXXy+FJnC zJ=E$uflq%j68P+M>RX-)H4p9jf#8U_wUNbVpVJI>_+baI^-aN+bJP*hXY#2A+yLaL z*LMYb&9O&Pp2?>faQP_?DA)fUe0c8X5r=1asRlfLssp>~-vwWu8y|V`EHABk$2LM| z1>4Wv9MO8_o?6ZAr!t^X|0ej{T+hh;XYOf#Bj@i^t9gL)*=+W z=ARQAK{XrGmrVwQgSAH*;+FReXa-x)eYfXfG9XX>c7EWuZG`SnUp+U#4&$FaS${pa zbj}f={AIHN+4@Jp6LX!TCx5F;SmydmqemnxLkINh)8-$HMo@xye#FPuxo7P`Yy2r2 zFe6a_)&1r#jz-Xe_-DiF>w?XPK0I58f;{%2VDY&~_B!vZOa0(nWNTQ$^7n9f)bK{i zvN*u(QS+P6?B`itWq)MNoet;qWWAjW4Cfhash+zK&OgXno{Qk@FmFkl^Ws3vc{Zh1 zWao=oUdC-n|7F+BQ?^7RuX2zp`{yqYPq1Ic7QxLik&zs35IhtfhO@OPp3;qo$N-My zipsqGa28uT))UrK6myvsa z*%iHc@8Os1qF8fy6nZn9!@D9p4 z!A{zIr|LL3KZ3l3f)``^|3K#^hvvAOk|EmA`h#;qO;Ab+q*cHJM9PN( zDFyqA<==np6aXALPg?WFtxnT6IL@}~~%YT8fv27wFgmJC1OpE$IqNrrL{ zf{_fj@=qD^qI`xFN%UiXB*>p)SFR0dQYr*5N`_ndCl9%UHufO2Uty(iXm^u1WLY3m zx#rNE6u|36f{_XL!Oi^0cVSO#DuttMUIog5kY;6 zf>+qRf?5`NuN1Bbnpza;U_}I#nzMBjIu5KrfL>P<)PtJgvvYKW$;X<{#~qR~v;5yP zcDuM6g7+kjsgx633;vAB&m@&;LT|xCe)6GakGKZGb%`aF|DLELtqlwPxreR5)ckcpkatwcC;UUE z8y5L<4O=wh|8nRx`TyYO{yf8kW{0>uLC}3v=_k|_`121tHiH)y!6KFLR1ksmXa-Mm zL2(JRvWZo2_FM?4UV18rC(fO2cKM!$R52l}Xn?$Bh164AaQ+-*I4{l*`qW`XY`88? zP4E!3P&GVlE&|AOZ^4()Lbdt>!5MQr&GvCwf)x@TDxCB=rRH;S7%2}mPTU;dj|%w; z?{F4~jz>BKUkB|=_qajH0aZ@woY?SkT##TCw%&S0X*i;}NB|?Td2mH|xFW6*y6L!* zKKH#KzNNS=;jOnNe70m_tH(_n#cPSuiZ^VOUMGquUT;(UH4&+p)u!|{k^5GW$;2FPUJwK|ehCPX}X%h&2nqVIMT`$%4y81dw-P^-m6ISGAbU#sryGC|_u zTOd@G==N6&o9KS)s@0c7BMC4cYX!ce2@_pzUEEG!gB@3VcV3w|(eqZM)kY$pgs8Hd z)!u9$fi9<8WUFV11c?-7IsD#SACWHCTLD(1iK-F~%DGm1b9{ulj@&wH^+)0vi5JSb z_`P{PVqGV0g;;${gh^;AyIECc`v`V9-#TseJP|CcDudzFTp!Ucw_AZ$pA+{MR3u3ewh{xh6ywV>S#Zs?guhw!8SDO{;2rY^MsO{$i8Kju6*R#lKNvD^ zGeT@BNomyya2igv3jgLTi)nGTmYX z-;$gN0G`U z@jU*MpNEXV6Fik86IV`yQhAyLM#YT4(U?EiQX$od3(sGHfKs_1w9$bhHec7GmUswS zqzYoF5hHpn-ia@vMQTqEgl7P)Z{L!YSRvu5vYEc31c*9D%2RDKZiR2Yw513d<;dX$ z9db`-ltcLS6?u@z9+VtZ-An~~eYqtlF$(+CnxixyF;bL(k=Q!O5uUGTX@qV$a?)4C zN6Ztq6gTt0-ime0mgJUo{8if*lwp8c|8hx&AHSY*&_gtnyZX=w!u!PEA4;$H1( zZ|mr6Kc58}*I~2Y|B;3^AFHQzBb>c#QgIM9w$)Os%I=nQwzt(%s><&ca@MrHuUM7aE$4jB_P$b8VK<+% zyzK?Ws+?|^v%BpDrK*B%F=u1jFN#%p-Du}9+b>F0McrJ^{I)2?!0c|Qv$ZWsDKNiV z&{@s4Krt}4Th`gzwm>Pcu$$KzZhKNOFsEC_*~RvxQeZ*1sI!6X2gSg=Zj^J7?FXg6 zqHZ2%aa&Wx#q4e==R>xpN{dK^7s+uhHp%H?3Z@o(add$ki9Jd`;o6eYMHP%K#NzS= zY9%fyjp5po)5R6yvDgFwNeZ2TEfbKVq>`}N0x(L-5Vl4DO-Yl$#tA?z=;_!oYxQU+ ziD8vE3ju8Wd9en1fn4#JLGnLBYT|zKrICDduW! z6%d7*;Z~%F_2LKuMM~i@uMorbajF6i&|HP^_*ckcUJLuU3g}bZcJX=^>ZVXh@QHl| z8|DX_Bz+2%)|1h%pu=i$jsgYHC)g|aN$M*UNMNG{OrfC)pobRw3SNu>ckni#d{_}H zM4S#{*d4}hz6+TWl5xD_}U%ODDrK-pM29t5J$WbS6G zI9q}1(4Vmf@!3=z6qyg)Upy}G2s)1Kz-QBRFl4S~i#RZf0=WQPSxp`F-#JXj$?4|9VzFnfV4=mYEtJQy884fBB)E_Z=yC>T@2gN+f) zFjuo>oV7q2v=D2852nr`bzdY$o;;YGEv9RFim!#9kRzd|bOr~uXGL|5Pl>hUCx8!H zO5?bWWUz)BuZ~Shki11N!`@AhyOrvL%}s#aN}0qyNkHF9Ltv>1&{Onm?6~!=Xjh4O zl@^NxZ6z3C7iC506tTqxnym1Yx?%)U+AOF&_NLXY_!ZR=_k{1w?WZZOFedU;NK24} zCia+BIGibY>U4`n!mPs6G*_8-{RX$u94ORQK&hNBR#LzLP#i5 zij3(+%-gr9COAOz6e8n$kxbrG_AM3AMjQt=Z`?8qbys*yI3L>!0~-_=(B*z?JssT( zomXpdOelcXVXxxB4kilhOrR6MVZFix6{m(lNtReSVufKN&b768(d7| z0*`Tg!oMoq;2zrFkUL)p*Z)t`+40KQL>tL#^xN29Y~-$`{)El3fn7@( z1J`)a*V3f1@itIrdM5UxwMO(2iBBp(Gixi!5Hu(YLe9k7E*VJ*4b%mr*YY;33_I)% zD~i1;4{`g{3$4fe_S_H2fmLKVR` zwi~uxzV1_~vYv|WhJy0-zpLm^-nY>l*V;B48GKk#E4jG6h)*uJ z6>Kass0yOiaxr@)KN)}&_U3^#sZZLs8#6X>Yw%Cz{|~|R67~zek5-BKwBt1n3@6Ys z{^ZfyD%$q;VVly7PHX|*h;{}2iTgGFF9ZFAdIbgOvjc$6)fqF`5BMjvE0|AQuPp&$ zPRl67n&LyL3&{O1glnxFlk>&)n*y#(Z_7#7Q}V`jCgqFnH@+k`mfu#JepzV(*O{Cz zzCZqdlw6*$-W`2HVpV0#0$^P@=xlR@E)fCNO;%{6a*V#px3Mzpu~}BT<2kBd-P`VD zJO{z-ALZ?!bWN;_RV2Jta=W}etI(KsLIwo0ecRq-oWn*XaG;kQ#@yPfGCpJ9;vdjX zU~0KQL0dG#9JeVAa@d5nBBiL9e#EN%m};9tMxH`cd_S_5_mcfsMMfhIa9-oF*$j7u zYQn|Xe%LBM;Joh@s;y_D`=P69+fnX1Y!H5i+K&Rh7u{x>5vH(An2GI&*J8eEw{2wb zW5un|aV7}R$5v>w%%CZVTccx4Bv%c_1~aw}Y}ch5i!pp#az++b8}C7_M~3izwHrIy zb}!>CwgT@#t4D|Md?k!IwB=<~WBu?0)Ou9Nzn8ZMX!V%Y9ba){mTk0*G%N;hMh!=< zLcZFL9d0Ylc!@2-o6*A2tK47lWA<%X85LMh{8MT;YL)M+!mYJ_!>vXAP z4EKBTHF1@AMMi?UWD@-rqfA{cDfJX1TOF2^GQy})M<=C8GUC*scJynEKOyr+l}rnD z?GkCiPRdsyJ7T5_5Y6?}uSV_i>MWuiBhzYU{I=M=Lu_Z%r#QpzAnigjgPb%NN325N zKaBHiaebPz%txL~U-dUcUq<-%XtqP9n|c*-iqVb#h31U8!vzShDA5eJD*aI}ldzq{ zevJSH>_7Q)c>HVR9bRxHy@L1@w+j1coH!@Bpe8RYb z|3rO_`skgB2A9}Fix&u=Vqe4WVA{3SH;8-;5i8laJ&2Dk{~@D48e|RW_%yj1GJbZ4c%& zSGz?fUOkz3ld%hbocb&BG;h0I=27)~#2!XD{y6Pd^l6@ULZ*Xy9`P~bJpLW^SJY|# zcE`+<>UG2=#x(vN?N`jl9qqVGOLZDCm4U?Xr(QySg#2*Oos4|^e%dAUM{aOzVXvM= ze84z?uccl>edKF*$aDwBd4|!CucZOn%+(I=lc}c>3mGQ(5b9T?{tMwpb`Ht8V)~}O zd_XGaIO&y~!M#Yz75yhrj@Mu$l}X;E-(}n_le?Sh%g8N*-A$QdJSjupO_O6#%b>pW zT*kPyR8z7JW&3yRzo#75i(Y|$7vUiae1gbN_e zy~y8bIGQRJ?|OlkjHk$cglTcOO7NGlezM#UIO zE*f+X61NU)NG)n_H?B9}i{{z$m!x3LVH9`gQO&#n$ zUiOGM!RW*n(2OvFTvHa{H9MJ@#n_EMNqvG0s^9RQAtEh58{h`rK*oZ zS8j1cd=K(IFUT%bbUnqb!@d}U@U>fU72#ZL59|wnC8n#dxXSu-bPrg3t90}!=z78k z#DAvtpuTulqCu!3w0M#5IkpFWAJeDpv(d%J5Vewz+lTn#QmNo$*+nfDwU&?BC%G+v zHxH~!ebKIL?ApYw!@rnU5`9X#*o+jsJZ&HP0yj8ov-P>&^)tf(pGVz?y1)n05668T zb&WG#;PYtvFc-M`EGqFn$z3-YT6lNrW8?+iKD)}JKKHtM829n+w8!WRJbi>p2cNvI z$BYa3_teLz3;cbKl_!1bx|SGU@b77lF<*A{;VLbCXkDoc6yBJ675N3yXIpvLr?jh+ zQGhq5T}6N421k7MK3QE47$@;{)T^j3e0>g;?mpFBGmH=TI@(pt7p^{Vm((Y%tB_%e z52G$2O`BTDqiz!YBn{1=O+rKIg^WK_+Z!r?F>9B=3EGrRp-|$2 z3utaPQa6p(hC1J-~H4Os|!rO9xyih?&thMr!~n4B$c zO!JTdV%K-_P1iX_RKh0oAJloRbyBp;9JeLCp$C3`7L`QB3?Me_7gQ%5y7G#n;=gyf z0e-INYQ$~9HjEc$e+0S*U>p1kn6CH5)z-7o1JDh%g@5PJ8{P}(Nf03^UM9@O4!|2Q zYub|=UHlAjD@>djV#DP>y4)KE3xi!-2eza(v=3jGm9E)w$#~)&$;|#FgR|NC^l@ zD!rIghLEGCl1bSJ7&T>>RD(cM)1ag{1e8F}AdR)EM-wGRRp=H#=}NQJDf2=EB2c zMtSJIh&Q^vr0|4!D8Yg5hN#k=B6YLCA5lyR7rPZ9s%zG?B0Z`{Cm@Qv!ehD+qxN)F zgoAD_IXu1#S;9-Or&s7cZQ2fC&+597LGC}c3pUCR9B&`FvUM`L3p%PscSIEEJ|SIU zO;Wp10QRC0rn(>{&z_9!f|p>}+K3HZK9WcaB2E`E>OxmQSn5*ABCUuRUCB`c`k?OS zZ!1!x+Vn=<&8BVoOGK3DvPmGaP18ktakH)HwutMxKa&o!vZ=Z#FFy7``fw}dTC6|=ngiHZVCQ-sU#%JkQ#s-g|KbuhY_W^ouqu0AuRws%FV{p z?GahJ4@f6iHPisqC?DH_?vAL|ogwwJ0ARt4ac6FQmKKazCe@ zCFN$reopyBdXkO)IZc*C&4!+#=aBvs%->WxEV8w|VC-F#RiQJ)4i`X~pHf$iKv|om zYfrk_vMYX@>V8jfKTSCfdxSg_(h;PiNjlaN4*!9hXUR{~j>~-G>F~{dqkE1NnXn4| zTZ{V<7qGjcy5>zB>2G?VjP>2_zC(Po|KXk^8em?>>;m07(pA)RzIy4 z^KAz>m9hl?uceXDEE8%7@*Cs_fPP6TWSP)H(BHVh+?#!NmTm>fgH=xrL4D&Jcj#~j zxOtW|z^bPK)66vvDgxPQx2RycJPsrf?q_PhUKNjqMJl;|pXlYWQvi>utt)YGIK zSJ=&zkEB{x^vyIGQoJkl82tw6W2;8=Q3(KaEnKy|WY`*%MWJKFau;S2xq-T9)Fbc8 zV%m{zv}nXHs)CsI9cDYJA>{{a4tl6TI@$u-*^ms0O6he%Rq03u=~hWty9r&pdf_p=vu&hLJDL}QQx3Gd;bkX1LV8GC zmf-J9Dhb6hq6Q*ALwan>54)EBCw;be&0;V1 zO`XXF;>Pj+qXP4ve0g1E+M-w6>w9*4L+C1T+66e~M(T#ql6)_VX-~>(*&V;_bnh^q zgMRjp5O>f+O_EDXB>abLo+US?osv+o z;I1fuyPMLWj!oz-@`{T2fLOQxfu5t{KOpOPui8&nFdLgTVe7`zvrKn#HTz=h2iQ9Q zH0Cb`4J5B)ZvnH86vUdLen72zPosNHnPKE*_Dt*tcpYX*yLW@hPZDoI$C)BPF8kj- z^t!?HAam=t?HG0=bE|0+zHUBE>@8uolG0e{f5y5^QDJ;b2d9tsK4MOgUa|^l+l_7u za2}q_%pz&CJg5!GFy1A*>7%{(m~TlHEDu@(I*bP#+dA~-F{?>_tO05RD(v4w+yk@* z%=(Tc+_WWl#-x!jEHi2ZavkzRKffduvCL=@=ymQT{Iq><7PErn$$CnSK&|sFIZV3) z**r@cWId$;(9E@DIc?pW#w;S4vm&V*NVONjg@d-q*TvLK9r=Jy&hg(f`cu>IN!LaH z$&%xhh7t@VQ|To`WrlL8sa`|bhOpF>(V-ecbZVN^P@Eyuk$!z>taWGfVeqXt-@;IP zRGPh$@=eH*nC}vhG+a;pX4ENf$O^C<%52#g|4p^i-SAF8`%rz#VOS~BF(g08Ut{P< zO9;GF((!b@254y4ryZ7=;K}zjd=ub16#l)T?U3(gSQRie)Xn;Zb{JF2)!Aw&8erD6 zDm|eGfXDYj_8$lk#8x$Q2*@1{kN*Q%%Ij#KUlH)MX%#kM4D_zsa3%X}>>scR{(MY8 z-*9E?r|3VR6KeU6h6MpnhOV$aQU5?qc;}-HO#?!Q7ucU-|A3cbI<*Zq0{DhRT4dw& z5ECx>3Wk;e)M1fU*%&>^34{E>fX&}lr6#oV8v{1~%v}==O9I$Kbe1el5ADs}X_aql zcs=0fp@Xa(svgRluk&F3al=Oe<3k;+9GV`+n+vqx@ZfIL&7oba~VO_w|&@}5E?Ga{TM<*`d61-oe z4k20lsh5!xkWSnD!-k~+okRJo{j|&I3GPmOzP({qz=NR^tXk@2)C6CrL%zFVb->I} zKdY8@88gAvX_;?rm=;htWWoxeenT3(NH&PigBhSMh61208=yCQhW&z)Cu1Og@oGO3 zj8R`69%sLZ&4U|YE(*E)CKI4?Le{0}Xn_6+)Z5?m1GG-azikQ(Fg<}W_)RoGsUKm` z^dilDM>TfFz9t^yAgt}5JbLpttweXBWrzN1fBVs!O%d|d zyDskU{|dbBvES||tnUU4r@iK=|KPI-Otr=gf6W{Jd!s$SZCA8&YpVRujrKI%Pj(lt zHoM5vp9Tg$BPr`UXS{1twj0^tB`d4O!9Qirjm`)}5Gjz-1;z#CLEIQqEx zLdtu-YONV@0C*oiyO8#tt6FL15KuqHqgR{0B)u1{HU^^C)IV%wsrgIFd;V(ei{|~F z{_CS+zo8P01%h;DDrzkKX(M9KP^re;LCQ0JHI1X2G3#nGo;6XUo3Y#Gx5VFiG_?tp zY%CUJG6U&Pthw&5HtN_^kYp?xWHckvpHuV5-+Q#PsUX={JjiT@yFVVx&B8}_H=RtX z6A9WsBh-JR=AOUH=!2${$#r5urZar~DK&Zi2BR07J|xwN1{u$Y0q{`gA2d4C^dY%U zJji^8t3MWeNfRGMH<>1di7Xq=2=-sEDfK@zTG(Wo945AGGQ-=ST$AOmJ?hcakQ64m zY&0X9Qo)Q}t|zHBzb1HRa#`C~@Snj(_cMV9w_2{!YH zhL7Nbbv-Cqn2H@9xcaO)q2UI)3!*{*2wnWV2TPN>EI05u*l$RtRWrs#vO;aBd7G1#uj7QO&(QqL9Gv%#Jg}g^lebIdA&|=Hy__y*E;vSy$ zk-?2ai>>m}phYM#K&tngrw)m-!hRoH4fn$g zMAq{Fl_EBbVjEL}q-PNW0rgVBYV(f61#IKkAlNK&Af#S67(Tyy_$0fI5+pM#HxO7a zA8asxargtfE;a~0iynxm=LeVtJ#5Mjqby6$$_`xS?A3l?73s#gvhrzOZwO4S#}&z% z3r8N~oL_l2e|c!4K<%YToY%_F%ulojn^cyp9&qfR80<1&{# z(wO8a0$ST|=Ldh&PW9vlp~amXgZaT`?G#VGtqYuAS3b@?A8m~Fg-b&dL-;Q3VHDglD`J#4h8gk}Wq~_E{4mB6i&3U6VHurKq zt?12pkGyOyN-^h;+P!JQSzQsHgO6x8d(s;rQ9C#Ha6YbR&bf?KG<&8r@pjl5BsoBKFlR*dI@MrNA_QyTfBv^UK-8!P;C;v<-5b9xkHOMO$9GrFQS zcW9)j**qnRZ)?})e$KZQ_?-5LXLBPxig!z6Q=jvB#bC~FWU#q0C5nG*_ogXleMNi@ zGh*HxMc;yK?cCJkOhC?h?5d?yLOuz+mih_MYD-bT6jRdp>B8ZEma6@e69dcCA z3|mHUDq!$!x3s&J%kWNl3^CkEN+@JeP);KJ;H&f@Das*1GbJCZ?NWA%;8SHEi&vQp z*(Mjr3qd!DO68T@A$f|Q;8UfQLWT_P9AzKmf?y^0a`%O#04xqiQtEvPDSP&wO5Cx;}|bcAvi@`vCVi4Ns#yiOiT ztmytrlR0IEgmfem@;-fi{a*L_a2$62}HKFzsOq(nN!`OVf{mQxez+ z4Sx0r1-YYL;}xMIeU4N4kcfu=`Iidy92(Z=gsBhpXyl)hr>Jkx5PBeNAEMBJJsGBrik=0xV#63-Dqktr8 zCgpo<81@nobPo9bpD7-rMHLn{OLh-pMu3m9Pi&!!DK8b((07?Ah02Hm0_19?Et zDb-Xkcqbd+BefLvKUX#>&_{MDsQRM;XHOMsIuORo$li1R$LIijr0<0d7<(3iY*1GL zFkpw;K(Oau5IL$K;8kKNyqeR1u%|L;9kmVks<0GTO>e;3vk~Nt3Ttnqh9%mI!uT40 zSfV`&@Kug4$c|x~t!F!k8dVzbDs?ZoO&R11c$K{8g^@r1iLYUS_gvdVJvBkQsDnTy zP=*X&xE;s#`<~LES=3@6jK`6MHR|zfll8O&!7^BYEFc}3<}f?ZTZp zF4(s5dh&w?QDcEHgh$pb;(}|NxTh{?A9WI_2Wppb3%}sl#_uT$T12e^!a9az-6Ah| zw#j?ig6>eyfg&I;nftH{_HAHKanK}cHn7m0-6#s?aiW$}PV{G>R;9}ulYnLT0!*l3 zMZiD?dR3OZH3?WyE?|#Z4i62+CrZ!&KT3RxlPUlbOVGth8Uy(ySmLCiKqQ!LRpLF6 zR^lQ2KWf<{yaac8R3bP$0=MJy*TjQwFnqZRuS4kuS=BxdAVC{0hxZ?zt7?(QAz=&r zMf*wmYt{jI9=Zg6_y+C&0h(bx?Q`Ha+DE?<5>@9slK=U%zb2FrsM_QSNH~Wd;my-q ziruiQiokKwQ^TeCbC3El8kJZJjH)Dje!%12M4Bm5CoP&|^p!BF+hgOflAN5;dV zd;InP!Jr?b4_xy^!(M3~BM)rzVE6qn^|kr?Y4bdG38U}0WR_+PwndM&Yfh&kT0VIHl7e0UNbGrbnLKHeOE+A@z@0w&49 ztDs*ItB*4WPMhX2OTdCq@oeZ}Rh0yDLYNLlSi&>>AFNU&Am#))z@0Y8qn3~kkHI6S z7XbfX=$TW(EPMhllfG5VDeeF;ZIZ_*p&nj|r%T@oc1k!PfC0^d60YHAcQ6G2M|BTvn_RKpgea>OWfJN#`HL z19yu0#>2Wk{8U;CXr{ef?Ayfkm47COLAw=U+Q25NpYqQLm$7}PVXHt_(3#9LECy(2 z;y>65;7Wa_^vr3Gvy;`=5eCcDp*oXai@hh@dF?|8LjmA?pip>byu{tf?duH-1;Riq z*=N$r^FCNRlq`%2+w6P$Kk{pao#{TKut7j9HHET}zuSjPnw{bQNG*Ueb(WG)pc~yK z)6R0AW7s}mk~&Md-Or8c^21L5f9Mu~m0C}!J;06j^3%?IpH$d zNkBHWh_aXe{fA51ozXt^uquE)b*GY7;62?X^Ui9YYuGtple$y++3%j}l6q&bPdO|b zAWH3{6#utBgjZHRK88kE7CAnOCRK(b!I)}TEBrg9avWPJmJk%g4vkNPd8X z(E!2~@*pKNB;iVikQ5q%aK#-+GYv(!G5``pgD0yH4}sEu6#D{!(#C(LVNG~X_wn-; zI*eRamyL*Pm%0)dCjEaA<}12kZJI*a5lFk@m!twRS@(EXng3X3_v8W?;2Zx5=G1Oi z{_+co5N}B{FKY?;pHo{gUW=wd_6RaZTPpn}y8v!@kOoUugz6y?${8>9KV$Yx3QUkq zN24g47Uv~7lTm;Kd%G&xPO66_s9^lLtX5n-orU;J5)>t#Qg$V-p8im5CJss;uSAn6 z+X``_J(QZsgqp=uz~;jv?uPDAd?vYoa+sCoMHU%?Nkc5bkpfkZr=k&;4T-~~CkAuG zLwVyjWnV!L2~gJfF4@=rqrX?hK@@0Hr8qK;kzodN zO`1B{zmPH7RB4WEW4PhZ@sc!=vPlpoT1~0i3}YnN7x+d~Cc6MBr`43M%`!$9mWo%T zNtbPeSko>`)n*!_3@gR!(zMC`gPhPVOV?&Y-wlJ~#c4uiV<2R-{8A1XP{d)`cr}`0 z*$GGnEx)uw78D)^mdn#5%T_{kXj`NlGNH&Yak@55lk6E}jkZPFAsY%eEFLdS6Dykq z5u$aMy2^OA&=V@TE~fPrxGJXiMZPkl@uj;mqw^)WGNbk7xiX{o#lG5q&hEI2`F*tV z7?SzP(^id(Zh2V5{EyTslH>^%zUO&Z7;0Epm>-r!zz28=Jkk#zG$0!V;eI7c`1ttp zb4&RH1XO8b-YMy8wve^7r?scGyO#}HuXD=D$52=VU^(|w+A;4wF-o5c$OqZb6IT@F z5(BpjF%IRD5w{Cj^_?n89(x$M*a_+mFDT8=9Nmx}S1@o1sjm{`f-sFK;fTvDR*yK1 zE`cY3CP6HLBw>Zy7Py2UL5k}cV2)wPit8D;gwodu`iD>>8ipW7hPng7MG53Xln}%X z4dBD<+Xk%!^1=7Tfnwn8xx$RZ$S`*Ja0dhV;QGQrO7Qj^VQOL-=sR4v#esYXeW{=c z_-VMlWspDsABqG$?tZ`l=8h1qu2=?69%I-~P-|fGI|&?I!hi#`oe#JjVmg?4ykYWU zH*oeJ!#Y8*)eL8c12;La8NTlqs1lz2UEe$iIe-Y!kS&Y~6cW&k+{cF73)aEd5x}Ju z)4?&M2_qGYf@de`Bf{kkC_%9YhSh+6BC})nF@t_0*^`E?g4f^-g~9~E3h(R*!@@yl z$n0o+!XUc96!;xI+&lkf%02{8QGgq69~bT{c*I@QhgOUO@;0$TQq`~FzmqcNMU?Dg|?l5|=5YmnX?xdd^L7yWi z3*{0%j1XK7cL@kf2Dif-GKZ;y+mUyiagW8?;dT^pZT;Oy`)tAO2s^sC=l=KPVRvA! zcRS*^l>YZbee@s^q)SiSZ2x<*K0?szyB&F4egAusK3-5K(xo)+roRS`Awrm_|2;(? z4(JtghZPn+^C=7&mlRBc%Z-~Z_Ke>r>OYtFfU;DW1cI5|xn-n4?4TNuJ*WZhkQyR_ zdX0=t2NVl9843_H z;xMp466Ee*Pefx2N%Dgt%zS}(fv*sTDGN+M%qSK}GK^p?q%ZGe%E0J|A5jZ_Kt7A1 zBUxa{7=VHU>j?^+L6Uy;6a_L69>4cUU$|u0K{kl8I5Tt*L+}db7cv=bu@&?g9!O(g zJwkyS#3dl{-3$u^0A9iR0+8_(lSBT9RL}uBMX(T+K@pQfIt0mBfC>W>;l9wxXo5@v z6A`|!$hd>{0>8eSp@N`;Kf#w06#yV|U;)f8#4^%ipHNES3*;a%0bh}3*dZ~2PVfbm z5TyVo^nzJXCfp&D%)Xca&I}TSCEzQ<3@wBu&2gjH}1n)i1?C`bpb!yod< zYz8=?6tscX5e@|*XMs2G3PM4`@Q3U&%3>bqGj||ighPHARg?I*7 zV>qxvJOkHIpq-#Qgci{u1ThNKD-Z-FPzcdj5E2?7gbCdStp*CgL*qcP@a|kgMq(5g zSA3AcKp{A2I7k`ZonuH%EDQaL3sM{?gaAziO~Nn3L6<>-0YWIo^pO346U-|ih^|-` zPA%imPf%N6`#WPC2w}hp+SLb0hnOB_E$@)L*grV;k3*fHC;to?19ngjfL6pcXm{4j^a-a^J1MQGB zxDx(>XlM{D0_VUzL=P50y0U;w`gsvR9YNVB5AZ{T;7Yg$z)&){6W)P&NFCgXeB}%| z7VCt&QiRz0dyztI!JPghFA4?7%A|2K|7Zz$<(P z{lE`?c?kVPiP$+#hp6T?T4Gl+wUkw@%QPQb)) zBQh#d{v0HU>^V_LCS(k|;M8{`5-N259K?wqa}dtQ|_u;#l66b20NC87x)gI*33azAMzZO*-4?fduoD$in< zC?>=VqhL+A5jmCb{(yHQmMZXIGe$H2a2h7CXoQ!vcB;~!N;w!I{_t}@CyS_GDAzOBd_p-C{ zgoG@gE~fU}OgxG_bp)yJ379`#Ox!X!Ou7#5y#8x6faE68yN(0bxhDrDxfIDG>gIBJ zB&GPC%S6YN)k6QVa9D2itf`FN>G{pp=W;2MKDxoRmSsUJJ$QVFOyMRTiyyj9=!h&I z^ij4n8-eI`)q*kX3%e=6rCq}3wEQ}S)d9#SappHpZ(T)U^QfAvfw6+KOxdjq>s`OU zgs*1L=dlC0y(Z$!=Ufwx^<6LVom3q+>$f~@Hg!)$(M&|T{7Ihu&3f0Jt+fmLvIoEy zqnCs}dd=87{qYtpk6#Jt-yA1ZMw6pPh@F3YH9cSNxPc9E59ZSb!}>dhrnoi6qMfVU zm3k{poP?~S>_dG-(M$IO{ibS{v%$K`hs=7sbAViSS}PbZzjqw zkC9>CVX(;&H*#4C(rP0+G=(adS1q;3n{uxA#CtJBcIoFue=>YSm+Wb!$|@&W<2Mwp z=aIT``T5s>SD=NYka&f^^+79or&K=%pN87qHvU+YF7-@>t|w=Isouv8U4}&_4_g#C_ApvM~I;&mshZVb1J;W zwP?jMQJxa}+{JemGbswnuLfnFy8P$4y_uzp&TboVuJlblTtO=dF(Tjr62aJh@QlJX z9oAbM(u=$AjcVpDLnGhu49q^jjqVfVz091F0;)GB7}Rgm+lH#!32N{#fppS7=Xt^vTCK; zM;!WC;_UI0tL}rBYmx=JC+F+PS)C`LD4uCm8ikNMv$~O#+L8ehg)`j{yW+B?uilrg zT(|FyIWgYmi7&LOV%zYwO`Gjo4A;Vc>uhPE$oZFZb+_nOT_|N9>%s7R@60q-grNaOp_VBwgtUu6Di>_PA#QQGwhdYv3Dz}E*k4Z22 zd*4Yj+(!rgiCXH{fD8R4{U7G&#FmZ|PBNkW7UVf3SkSlh0;Hm2uqhzZ|z zEL!~g_Y|4RC~~mdd73|y3nf$Wdd;4^3kSEs1HT_1D1VP;-mu(cGdQ%uu3Vn9$Wr{< zo`1MqJd%Fqr=Mg)yzZk^x_L}DO+BjU}JRmCs&J;x{)Rc`;2)i z4^%%WT6CzgCjBwKIP#kMTtak~_dtNNCUX~B@iH_jEmJGeG-hMuq9AX#U;c z8J)&6t)VCXusoH`+@9gcd|ULbWlLf~T-HoU${q2ui<0S2DVAc2@5~Q1yH=)OCnnO% z+I+@uOLnI}N;|)qE0AJ2KkL*|C=Gl!PE@W4jw-)7sV7sCzaO5;WbRCI+}$ECLx)3I zy@b1Y2vC~!&^@GuQjQ9EU%-dz4*zl(V-IEV{WIF!k=2;b_{asp5pbcBhBq~vj)}J^ zG;IqKJul+b+0B$8R%#VJPx56bW-EitUTu)l)wJx-TK&^+WFnl(ZoHaZB3j{y9#FM1 zJX^)6+RPNc{+cmi00N44vI*)VO#X2W62C1XXS(ng5;` zq=CPkWqcO@bR{}0WqN%6`xYA+vVoFidXOrUHiBKKq#i~ixbZ58ErDxgYIQdwM z>GKxK0&yu`mb3*X1tx{2_A4x!?3ZLFMn>NDwdWk>7akLVM^mT%pd$&I!b7q4B$GJ`f|pp0Mn(r3uA7 zIuy4NE?IqNDQ`1gg^5d{*Ya$$H=7VR8cI&`vQ^La_BV0R#TIb2bKOV?{SiuYQaq@c zK`TBx9Cm)LZRk40Gx_DNdg>{4kUCk=H*vJfUcKE=W{a7%20S+y+*z%zl!Ep&^Ut&h z3auQv9lv%t6gIhGE8dOp6R++U%*cu+UgNAaYr?l?j$+)II+OP35t_EX?^_Fc&J5N; zsB?Kv`{>V^T)?b!yE0fR&PD%f>7!Rsn%ionM%Tu{WZg0hc-a}(vo9rpZ!}IbEj4H- zc-fdrA8$+2YkEsEY1vX*NRZ{-a(!F!v^(#Haw!SND7#l2{#v1_^Ue3}$c=HOJB~AE z!n;n_xUNIzK<7LCGkFgYo^Io-ss?qbNdGMNc}Np`Yk0CjggR{Q2{WL2(2wbfIL_C< z!}c}2o-o!EvP+FL;`n%u&)lmww{O_NcJf#+U3qRP7n@8#NpUB3;o$6;y<2nSFcclu zM#l0S$HQ(w-}9+QuGBdP0*yOJ+v=HCl6U%H`eo3^Sfav)@A=Q)4CSh2b*pbI&#oS9 zsuk`wi^?Hz)?k~zw=YfQBS?g`6p8~p<1TAjGNS@1ztVcQ#mb=-m;|;KqHT?!0=}*4 z;Oy#E`f0OdUg`cZ&UiN~?h6!VNZ~{UKKDf-!O(Ae<9@3{t>chS?fV*4ji&Xv&`~4p zc4?c#4PU^b@8~|w*kAh#ZIWknvmfNY-X0}|m3pXb&4&b~*8S_;+Lc-WF?o{~Q9%z( zy2Ru1sn+efD;M#2*BNF^WL-Cj6?PwwowlbV0Q;X}>pG>g(I%eu_r^sXn(3Za6V28f zTL*XO0kIXSKSIAbzUU+;Bdbf0?H>rxT`axQHmGZS%JXk;eCROvl#S!Qd{*)>&l}Dnmo>nxl0M}&GWIl^pX3l=&gH4_@D0KFVPkY~jLRwtyL^8X%`sR>K2?K)_Q7FHpn*fAzl6I=8DW3P3HS4%j~J~ ze%8-*eWSzn-7p>nWqpM)Xbw43-`fz1ZUFQ3(dTvk0nRtv)BG-b4zP z5P46|{Uw}B-Em%V2XuUslsBC3ykS;8u`xa+x_XSzS{op6!EE>=@~mjh9;H=%;F2Ki zLR7;`Y(t5EvGN-7H=&8=_%6ZqY?IPVlRwp+_+ic0NdE1|z5S65h3>G_v1LqKs@>|Z z-F97FvuLMAEju;5>b;savr#LYOa7i9t!?Q zGO7`m-i)y7hVA1Ii-#?pQRitL!9~qTz~hFhY2>QKS!b@p&vbL?ibKn(gxQ-WU0bux zjfEXwM8QK$ilXrziB?HZPQ990Do-nzuGYr+1%6Z%YC@)%u0;eCW)(=*y7#)y^9{RA zoJUPRJbwaRinLF*;O_*0^(GOwsh6I2XY0vs?kJ61qj-79wstY7dXyv-c)#~i(`H{V z)r9;lu+sdNQu|R@+V5}|yX%m_~U>jJA;LMR2uR{y#4A6(h3 z2ciW23~vf=d0Dl&&)UXh<=>y2%uL`^lg1dkSlv^Ix<*b$byc#m2-)N`5TWV>zjB7U zq>C-Y6nmnY>xNfUE{MpFuc{~NcqDa#{k3wnH!(!fxr&oSJkNrdLTyR8)J(N6lWLb7 zSnzFmrzCiuG*%8@2*)`PMcZhNgo+)ZLm9(5P78G&2J^mN&9B}E86|%&8~F}DDjJrm zS+#~ZUXY9%TyjQ0$!mP^Z_U`$Z3a>9boi%SCB9mI^>C8vI~___btaqeIPD1{L!ZDH zIU@W-^K`12Rv$z<(3g0KlT0EXwIL}gy6`KXvVK8<>tp2MZg|Ie6yV5*KS+1S?tLf< zd(65VBE$`hmaboCE*A^$?Ri{knBS-A*pY5p{Vm-v5qFR}qR6^z;d=Xb zQ{4Kg0_9vOGh^78j<_q8m8`!i_D8W{{fR2*S@i>-p^)uC^M%m z6uAgC%a~lO4AVtS-rA#C9iC?s?pQZkCY%kDLxRiME~lStv*l^!99vU&u zhdN)89?vgEQwuikgO1sEFqK}`YGpaxYFFUIwKpaX=c1@%+$UNE=Qj!`eyJ%PeSNBE z-!~>ikxov>?g@{$QtRh_k$ZJ1^|a#aXsDfb|`6MD8mp(U7z+HH%XfZ z@AQPvt&J%-LDzwu!z3qcbW<4V7K-oLr}D1zO!Q;+kPFQof}GybO0Klh_><^%cq z#yMSIv834X%luUH!l$wk%yI+bD%B3Tzf1yLy1U2Nd-|N*WTz|j*|#{lyJkB@uHl)a z$(A2~@P^c4ak|MlN4Dc%tGs<)Or6&5zg^>jtW*%VXm1S;uhI`FZ*of$c7eJ%yRCM{ z;;vDcTR<3#wJi9V6>EFh%^xhj_1};5|9VvLUg<9CB`A6orUp(t#|ih`%q5_V2qy$v4iu2qfXDAJ+s}g z^H^4?r-$(+T9w=+$GWW$dGdoNZ6S^V7D^kBjj=F1f{-G?(YleYuaWo<^Tutu%|0$7 zBF^uE4jH_?EGKfc8Q=`XbEEH{k6vF;?g}&Y9IP+nB!LxAE3OWFrp!NZ8~d;iR3cz< zUvy(vsLkl6M_6w&GIIdfu>vDIu|`mkJ-Jsz;UL8?{B?GJe{47_?iS|&PpV}0A*FwM zgI$Cy`h5)!u*N)7`JRLFNi!j2ymLm~O~>)|Z|-0?QrpN*8Nc;lpGxEb8Y%o@8ciEma3K8lIGto4r6M4m91sH+P`<%GwQ>yOEZf5VIhULrsX8Vt@ z(X?gQ>!n?zc$1;t@Ri6GGjID-*NAgVTNR4*KLxSjBXKzXIS!Sj{q$NI3wG(%F_JEe zoanKQ`ot(G(>1(*ywB;d{s{BK#8=@G?{(u1KMFnrfi@Z;zCV2;EWKj~*y0H_8NOk_ z#~DNd>H62}1P?Xsp~b(jzxdmv(|m2Zg|n>lUdfoG#f*9=6B96$jN==MGx@2^xti0N{rR%B9a}yzBh(Gv zxy#+sHd<$p?sXwkZ=Z&UQr`Z!sbCjq>*h%q)0t$1Z)EWG z-rG(n+ntCN6?tuY>Pbwq=cZ=OEHCrYc$BLI5d5>RaU|nBneiL#U~zmODEv@l79x0_ z_MNDceavg|>!rTm+0yb<`l8fsi-8tBV*_xxOWLzxR=Z+WQK&ekNYz@ayF30xdJH27 zfA)neiO+#6l0SXVv9GP~7*d&RwXic5O#D+IZL~!3CXK!cj zT}zGIrQmB*@p;N-qe!I)blhi(;;lf$XKjj9yiK))I}+9eejc2@56S*FeLQ-{s&L4Z4 zS?bL%K3a8!f4{u8Y0BtkEt$KA%SGe8tC(d7`GkpCHgCVn{V?Yv6w?3MX3N(FHeFq}?k1KCScg&41&~fZQ$@JY zuINnev|Wu;DO&Kh38+=kL)`9Lu<5aRn~|m?+>oMJphs)0Do;-S6isQsyXWDX+xTd$ zIA7759~&(yc(~$ia1wl|zQ6vvn-x319Y@-(iYq~F#j>ny#e0Eugmr~ipd$T3q|{(? zwS!EPdkdGx#_F*#s$$KP0Gv6NPYzT#^)9*fl21m~x9%WVb#RivfMzZTR5(U$Ra2({ ztBqq=gc`*iEf+I{?(1KVuWf7Gvn{uzV>*Pd$4=r~T1lOir0FTiHB0mPbVd?Xw zvTE)?(#D+`Z@#i0|K$DG);@aSpN4OjB(00p3Cj}8GoRlOp5@yU$E-(`HQSWu+FYM& z>rT=6Fi70o=O`K1KYSg}=lsAAtnIS3SJLgV%J{9uuQ+IkR(Q=tEWKk)GCakGFc>O` zBv_R;sQO*)A4;!GgC3*d^Fj~{Z?2L(ac1;XK#QJ=*W}!f3M^AKbl2oFChDb^^UDTb zK>4=ke4s5!m9tMQ{rrzl9#xHIX(GK(LWQNg?22u}zkRr}7Daq2ebxeVaX)P@&Pu;} z@ALEXx#-Dte2_DSGov?JjsK1DOS*28HgAnz@6V(K(m5NfvNOQLGNiDW>G7HQ(_y~h z&h_hjLk)WYEE@%*YFN?rm@==-J8&Cad_S%A^5~<}yiy!v8TmJ}s}KKH|FmjFH=T0d zqt^5+GfLaO-`wR|7o1NTzhbas%5-~eVLM&BIXcAGf&1qn-T^U-r6*GsND|twnexVK z&{q;(fNElxq{mu+TpdtlJi6<`yLn}$jHbG8ph_=(-yZsLT*HtddVBZ=Db2;q4l~B$ zb<)~pY$Rwa6Fff8jzcHnEUjo(mjoE{<*oo#9lIJn%k0#8e8wQ1Z0>}@5M}L0P>2K3B%+k}m z$=||?hwKeeiz44E=3==S2_{w1lrg4>3FA2f_ve|tW`7kC-tvbmY}|$rDkP{U@YwPQ)EWv7^C}`v_CN-@gz$YE!;C3FM{wI5rtCU7twe5ys~Wm zXg|>1-B*}RD>`k@t?F(rwN1G6{neba62U8Ot0iu48p4C+guD3T2LjU0)C5;zyJl_E zRzs}M7xCrYXoCb$Cbds{RQ-uVIE)Uc(}6~zJbjia zxTJNLU6Y*RkWqf;{M@Y?Df#G}hA%!fB5@$e8x5}T^qP~j0_av_tITPdd-Cdm(UmXCH)3;?fq}ux9 zb`l?ABUjTP=u-pVR<7(#tI?-A#dX>_&{_zfVvPv(;u);#Xq%S;AP1MjT2aXAOetXV8S? z9|FF>rx?Ierl2d`i9)r=r*d14owmu*f5TTJS5xl5spM|s>Fw%ZOS0IHO9X8OC1-*w zeRSs=35khwbzj(yB^q}vEdID#!L1f7n2ECdWlK%vF+6ax;ypJ!7uR!NqYNT9WZ2d{ z9JM!X4D6z0dQV9375d%rU~iyrY;&v82d>!LI!2T|mjavxx50_xOe`-MfZ}RUL4*Ym0*k*IQpOx=frOMf;k)Z!qAH`p}wA{&6z8p@h z96f8ppN2k$x!ANJgO)6Z~>cwr7%h@S~ebcRgc!Z z^V4J;cy#Ek$Np}KV%g84-)7n{?A7r^H@U>6`G+-iw1uBgVOodVqm0<3x(TC-K$qdK zo_YVbG9eDYg?GR2q1sF-~_L<$f2&}!gMx3ZT%Bm_AKRd98G zr_$P|$~P?&M*-eIZ@vnw3Y$L@Ayp+t2qA1;YI#51Cw7yumwYfAk6r(^h>bZvKEr#f zbx_Ox$=>{emEdK%zt>Dk=3}aqU8CA7KFE?iVnJO#r<__+a)6~uI)IZuNk2m~INJyx z!yx@S^CC@#Uv}yiN|pS=>Y-=1@J%#DONhnRIHVFz(LI!kdz6Jq;O*%oXl?pX;FkNU zeIZ^my^e=bs6#EM+R@}W!tKq}Lzoo8?ImfA;PF~K?hjkot8#^HV>GphjvEAq@`=e- zPTsrzDJLfL(9rUl{Ho}sZtI`WIz=;Lc(`Zh)0d*vcHLWc>KxM{jeW@fHzWF@o2c9zPPqc|BJ z1~PkL0hg^$X6+M#dX&D(ccilYDZS~XwnIr+8g&bseQI5Hb)GuEQ~gd;TLacci}>&e zd8c-$b^lt}YKX_TX4)P}+oqsBY&g>$aTW>jFn**mTivkXUmam~493Fvue%{ur_Dut zNJ>fG*y}TJRuQMHA?1%{!(4V(B@0w{&(esT=oWzPB^p~h z-5-cy?Tj@`lFy0HpWreNq*!|{g?y?Ft*Wc+N~q%LRN!aY0J*7;^k!up0zN&Pp0Qpy@~ z`ahl0yj!n_&q9YC&(Ua@a^uQ|M48I6?F_CTny|JXcCSw#T$uBp_C#X7!yY}L z0@d9O&Y=*)RUsz-S?*Q~)ax8)Pg^qA z8IM*wC{lo{yF;<<@MB#ZS+dHx?A&WyrphDNlOlTK)||cmHrv3U(eO-vnHTn>S>@0! z-~!E7S^UTjRbJd&*q1bPi97jvqD1)Kf2GCqsLPV!MO1`DT#rP^9gmyG!+Gwg(eRBv;?ld#tULjN|#e9@8c`wZAkL^quZiZ(}JM#B%^@cO6Uiep2;t zj&b%yQoGWX+bQ~J5P)+a2ieVB-J$tNV>pVt4@W&C@x7t^WO6o#B-c0vWoSq2SyAQ$ z+Fs>30{ica>A1`>Qu+e=0)l!b+JaOTe>A;wjfqJ&pyB-O=$e|+*&rPJJ1-)>w=iSj zikxQ~)yA|#02n&W;iBo-U+B9A9zO6aI#Y2}eM6BGr@nquA&jOHC7N;Pd=B3*ANc#5 zz2lKszf||Af#n`Kog{6d+8nIwX8*H$={cAG#mSbjcE_!2JF7P%w8IGy zGe_R~>$1X2;(oQ(GIg6y*#`dK{i$BsK}Ej)AsJAd^I6uRfM62`FpdeWrOHc@L$$N~d@ZzV3-(>gM$`UmqqkR6p_qpXb3Z)3RNbAE zz3oG9vpl={qoKkX!8O#3eb)`J(|r^ zh^RT=VBS^yLx|kk@j&58e}o9z?QPA_fkwE9H*bE#V`ey zj*174YJ2pQkE4nt6L)hi!h1I6pS(+lUW&QNn3HRY&xr((-~us<^D z@T4WpzaG!lu|vfxM@~8 zT=(B{M!tz__zU}0dFP1>ft+076gPwMcXJfqmmRgrrIn|3xo0M_aekpSvD4HvvQ4>7 zj%-6++eOStr>4Mbr@3F@BAu6W#736g2gNpNHSTo94;&^aUG|yo@ z6f~t<=l&8++_4-|bL`cV+>8`E#k$}*=wYh_3{J_&NXft+vgt_7gf$b5xp2+w;wnAG z5BJ4Lz0nwc`%dom3GDh9(GW=l;AgnX3HDoPn-(Hg{AZ)zIquuGdF@4Y@q6=B5~utn zn4HnIe5s~K&~h00oB?|^hcO9qj87JW(va$edpZCSEW^%e5o+jJSc=f%gudVt8(4AW zEkyAUBwzBuSE+^v%^t{;47ts6Q|tUWXp@T8JMY+7<#mhMP(LRc-R(MXW7~*pLTscO;#q;GYNdNl%8}=^qtI8su(a?59)+~>uMGW&2>QPtNiXxet zYoguVH{!JOKg(o|(^7BcF|R6{NKM{v-y@BtrX!@28u21miEddM_fJnf6!I37Oltio zGu>SGUS0Fg(4`rIo6fC-L!!vi_C-b1e0RI=^3PCF7$TdfVpbUD=3m2Ta{6_x-_Gct zouHXr7@t|O_=WHdZC&<-sI^2?m|LYsQ!c2b_>eFfEHHg?3WaFN27(?iX`lNjyMx>l z|NP4}6KdIg_n3ke9)`+|HU~RHt+Y={H4kKrj|iDW=-Po=t*AA;q{!V@?1*`zOiC&V zySySMtyve->w=ym%GE5m#nF+t`Yxz-9L$ROi<^&rQeZILFkb(jDYe0>b9dwsd&4RVs(3BCP#5}vMV$+$(of86DL-y1~Q!?V(lQ>=t&YRpsfm7v;{ zxluCz$(-}z`7JV1(Pq+Kkck6-;mT9m(%2Tv!6gY%Mn$MIIYij*Js*0 zzn&$v;&#V1*k;w4Q58B)!$F~dK$m??o8yN3U|Z8)#=CGouX4iqa$@8^kU_t@Dy(nE zgZb~R0jQrlxtY}}$Zetg?OFVzc34`&f*_ZWm(5hjo<~dwn~xP>R$;o96U#Id-^0r) zz$c1_{PhfPdz3hw3~6F5ft=q9@YrARqR zxRw*j2usFM;gPin-Q%CAF(xdbYn)dRoS*)wtH=4ZPBc4Rl$yaS3dq|06zuqWq0zAr zvYgaFE67rOtmJ=GZ{}sUSs1t$BAiZ_xG~|K_1L)z2R_vsbJdSOP2s1ti8{MAc;ghI z?}$0PfTC}B*|&IGynU9ud#qlhZfcw0b><4yyXb!`C;uq>l;Emv>uZq8D4`s!Q_myx zL5QiAA1ib6{*A5#Eps@U+-c~g5$)`LUuA6G%%ET8 zQJw3V8N12QoKI=@*uI$`%k1)pa4hwhg@kZ^cp78Z@BO^an7}M$V2qFYy#Tqk<{5C# zR_S6SzFku@fkTR$(_!POejkne`{O0S#<#%O8>X764*ru%uMO%!Pl4LvyYYvc7-&I< zC!nmUtJ>VuxHm7Xdg!7dZk*XpZ)|2t*P@88j?ukN9GwvM4Lx6HgzcuM(qg~&!1SEn z%{nqZjo05!+WfVV#)OAftJr!{b$xz`66q`_YRb+6i{JNS#2LVb)maq4VS=nZMQ3z7 z87lc|dZ5gb__LDa=;M3csTzN>X^izF*k!X|f^fr+9S1{4!)vJS=ea*qxr`@^iNQ&T zgs=Npk#8Gi0DGF)e#g@0fbJbZA$)a%8fx)=Xphk)!1SBj{ilRD?U`26b>m9t-a^Xn zffY;U6K1VCQKFrP!}@ks7T4U;7yI9gk~LJ{y7$1e3Gj#+hX2ZzexwYYrM9iwC-;Wy z1|&beviB$L6g+X2V!lwsZJN01w%@)X`ppvM3H+XX z=sxfXU0XJP{7wAx-;i;vqO7c(tn6}CWaJW{#@Rc~Y~e`f}F_X55t9>lt97> zb^U!jnNBtPcLt$!?c`f?w>VrVE}L1f{M<$ff@*18ziK~wKN+@rBP4uCE14ipfbHuN zUbWHQzrD5hbaaZ@E>lY((@)3A{f~|}i3=RtgS{i-^7}!kvUM)wOZ=xY?YI`CYz}d~ zw`iYlPoqM{$D5Oge;PN%EVHxQAGuVW%I|oqKUQiqTGNIG4h2g3D?AW4&`WdH#|T_^ z_r6FmlRcRysi>se+iuFIzlVF1K)Dz4URe+pOmIE@wBoWXpdEI(R&Dw6ICOiQ*K?!e zYI@sBE?dO67EiW>#=nuQP|X?m!k$i9&FAXyuO!O96$R8_0SwFAlk$4s+YF9 z5!{+SsJ{Pz@1As6@A3ZtS3s!0)rybl8Qy30zF2scK6!kb$ic$Uxh7-@C&&_@V8k!z(l_cpo^GlF-qZvZ3n_r7vG_HPrLP(MoZ9gu%_r+6)Fbd< zR{^`Hp;-=gEacv?_?R;IYJJJI3^eU|Rxn!=GCQ!tGQICXpUTLc&D~;G-krvF$AS5>=vrCY$XIYY8;!=)UV4E(~Mq6X1 zu3=(Hw~M#~mOI>bdL%BIHD>ax(e7t#gbRgdDvzJr9=c;q{F=(~Ro>Mb|9wPh3_&+* z{&H^qRZ~o2EA~_*SEO(a?A(C4tLFxBXpd$;k{J#)qoLH*61$Q+J0oQJn(1rPx(O8t z6^Rvz9L;C_!`G}bY0lr4#_bn{w~Wd+n(@E(Xs(c)cD**`!LSQ2gzj}cF7`ad;k|DE z&AqTO1p8SxcP-VLVh)>=l$)HB%>BZ8ul5dH9K@mZPxalX~4hIV^W#Va>(zTNzKdH`+QDMKc~F7~d)GvmBhKSGb>8afa)w2J}!+id4wrtO7{TH&`xXuR_`0M z!aF!u7RbYbzm$9EhAHl1vl6otvy-?6)+cyL@RCpt?VkVG1BaQ>ur8J#$dh#sbqjY} zn`$BC?#$hplfcnTc4>G>fXNE|@>u`P`$gd~qf(P20fp$yLA(jejP zV-|o!ak+(fB3ypU-eznWWzWv9u&N^$s-c_~tK6_XF z>Q{IEe)O9=!hK=kyF&P}4u0y;zDK0YajZR3o(xQo!9rTS%Jz~3v`|gL@|3)+{H)C5 zhaQTKl6#^Y!^8K5hwKj!G8jquhNl(GYNYY)R~`0ZwaBPBbZtg$W^ESpg|-W@4YUbn zV8y$)vanGGH{xVDn2biWQLtgCVR*45X*k@F){xGi3GEpg>LuYSbc%NrAqhWG!ycSF z%X{;IADf}r{4*Cw@ssci`v{6vu$YETVh^Br85aL;x66nEw~yry@^d~w51hf%AGp~R z?*YeHOyu@JBEN@*cesMZ*jo_0hQckF%SzMH8~wEHO>E7#*vq<}QYN3vZ#H*yck~wD zNqWnCkfM1FUSEWUygUm^=<3X>tg3A03+>?V5NIFBz!Dhq9>>7ixwsZ5%fMtbrVRrP zgAGNiw;{bDqhWOQdWM8}O1KN%;$1~@zofWcFlY7G+_1gA_nM~Q%(G2hYulFBje=%J zq_{2?mr;eaN16*em;u~NAIeS1OUaW-C-%x)*D3B`+86$|Ta1x`F=$Sk2bqPMg_q1B z)oE2})#(fx(Vk%;-oMQ|QGbu9OQTy)AuXD~m7?K01vmvd1~Rbhm*aHz262qpp#ZkD z>9Q3Y@!Q>(l?h1Pc=4?L(`g*{Y%xsUc=Roqb4>N3!2RQQaY1*Ul?NoDhU42C(15%WyxtF!K<3Hs%_`92kB4a*# zzDgv21zna^mQ$9)e576dT>PB_7*M|YegmwTi)-e|yg_T)HpnK#Mzjl+9xhEQO=Hkd z6piwg@D+N;dy7n*h7{2{g3eL>4XDz`}%rAD6P;I0x5-qUp@y zwFAQb_>1uZbF^0lduuFQ28Cg?=f03Y2^XPDymMmSV)BkUTTyj>RyAZl!0dW38$`3C z^uy#Ehc2X=-u!*%($Py?ABz+D$)1P= zz=CEFbi=qyZEnXry1fP+?zukpI{SjG%2`*SUTlzSly6orbnC`1U7wiem<^M-$shR1 zFcHVlr@qc%%}Z@69cmn^JsSO68EzV7v{GZk(jCm`816r0ujlsXUoK=Y?&CGOLv^U@ z?uGL=1-rjTvlje(PVer1NfXH%X!ewybEUcs=k#U=AtZdwGHR$vpwJ^0PwU}9m zT5QF-diD0ryVTe2R5E5bS-Njcc3yTtR^h*0cVP|pmbFygtF~M7ffnhx+{hjUr#kz38^P{X8@8z!Ur;2^x^7(QeN^sP zVP9^0{T{Jzw5hkQD?FCpopWYkBMCMMF!Qx^EVD1QD`kG=Y*-xQpXHw6mf<469WtEL zd)zjfSr=T+z`x*O7QUmR=J+VtEO)-_e$)3s@^3!&1N;xH_VSfmqz%p}kk{R}FZSI& zvEtm;>qh6ElXY#|&hNS33*)L`S_;f#20mammD-ZhmeMgdhj`*vBb>W=_Jx%s>qu5n zW^sXfu}1lhKc}csNB`~4(J+~br6;^?Qb!ON^MGMNokv#L%eZ?8BX6W->XJ4 z^D^=>3W^t0F0WH#aK%p6HNqvrIil!U!TTKeMyZ(iql7n3@K9Lcx5R&bK$#MOg%u!C z4d2!>uV`KjGT6l~)k{m13l<0-6?lGd|Hb*X0Dfv=7dw})E?l0gBDi1R``Y`V#|;6p z&)Kce{t^r5&a+KttNU6_dp2F0f9?TMd%W@bwq9l(rHNvzr4$u=mXqSrqLRWtWj(Is zZm}?h+K-IyT)V~g18xt!UngfL=OpJa>HGrLaP2nDRfeY*k(-_8dXHZ_rgmEEyy=<8 zWOJ)_@7}>PKvjW6GAw0|y~P+Rr7@-HV2f-H3B(B=bM2Iw6Y@76JYV)iK^ez9R#>uh z!NYa3N}LxR<`LoyUV`v-v7Z$ebT3$v4k46bw`a zw)i#r)Cr*a0PAn*Zs}-o-G)>&7B%HHudgBecc{uPgo(7XsiEaoo33T#T36SZ>dOo+ zdi|L$^{a7jcIduG_LS%r>g6->u;v$B0~!jbfjj;KJlVnHD|!&UpfCWRu@E3~!-oWVO4tf5;!P9EqzO#@Eq*s##Bb(<=vbU> zi;ViB`)f)6lV%u~0py=|92p6^KOD<023b1RC&nknmqGOfpg_e$#ze+Mxa;bhs@a}c zLCVuhvx;*WUj1`Dr)&M0+sgk;w_MO{-O->`Er4y$aTS%^Ck~2FabB;I7Rpnw6R)!M z?(KHn#teE>)x{;1`Sk}9;uGT&8Ayh!zxC)H<0}f;$}IqK%H4Xe;|BMx735Co>89Ef z@rk5e^Wv_DdglhoqL!^4mfZ|!JV$*hAvZohzJLLhr?^DammGyLU)|XYobFa$mj*?# zi=3_ouPfqdI?ZikS3JO5^s?x5Wtfo)VyRCK3s${*N#`VHCuAisx9PyxfEfQ623k1H zdw=+rhRyt3whvYt(FRew_iIKo@RQg{SgnJrX<)@pz-nDwO>g6ZSnL~CfWEH^G}nva zEN^v`vofN1D;UqVaaJb06%8l(oox2jDy?ICtelP9b-YikB4>+FRJ7K%*mpVgx}JDM zbP5a$ElZob%6hZF4V*A&|9tpZM{4*;9-LyKY zpco2pzSLQH0xRK1m;lSKfiZ)CdNQDgx?eySOy8p^0DTcR0)#x6AagX5*K5=1mzFnbNslnOj z#H7ol!?cB|1F`og2HT}@JN`^V>sJ-_(b}T}m4n%L1UYvOy$10aPz#b@RcMWR`&$xi zRE@CsU{-ooR%&r#ePVq=kMO2KIT6l@-4Pue8yOoF9UUDV6&oRBoT0ejbZ7|f-qpUSerf3?0dJGUYN@T?s;qN)33=9cn{)x8~%ok zw%ut%;4Kc^oU<11)369$+d0lmlL!(oxtCTrT zbitqe+m#3?7sIS(n9u|C9+0qtC0-qG2>z6X6G~+2t{&|>*>#S&!;h!avJU5@<;WZ% z`*1aT;D9(>po}f`ZM7YDROr^4HvY}+Y9t8SxF6U8rxMF@!_yCl$qAEV#_dcaeE%N5 z2hF*ti8Ey2N7@m;(U;q_M1*l~yIOy%`~kz8eB}IT?moAb#mS~P+Y1**Gx&gxLM=0t zStU8Jn!JJ^x?oKT*fXHSAO6f8hM(W_vp|l5pHtxb0{BLhz%aUxTMd8D%D@VGCoWoz zQ{By=nw;@A1Z#Lhrdd~2UpScja*tXKBPP^|p(LJqqT(6yJf+_ED%5Q)CpZVZ^ z?;g&5<+@oMkDBtJiQi$Q97Ll3C-8@;w-^QA!S*5C4&%XL2*0BX8w=Xka7*Rt=c54`&EZsSsG105gj|AARHg#`(4VnLA`z@$$lzd6h-w73FmdEWO7s zr_wUhvNE!i%E%Y=Vs+E>QuR|(52vN2r88hpd3ZW|+xjxxB)G!jS1PPDtT^llj`1hy z{%O8xKB9eb{?O%NvCTs;pZa>APiGfFJH1^`$_VG0omxO(NgvSHFF#-~@C*3UH&lSx z2#a;vpA(!}E#1EH6ay{K_(@mhY~rW$7fbpXe&wtWC6gv`1KopU_+A74I2eJfFnn=EddB?2NC<%dF3+ zKln@tvl$G23dT^3)2Y(NqPF}_=`!M_>89gs#2`cUmiV@NHoGH8p)Q2bROZY|!zxm6#I}&sjKCyBjO`EUN-m1R4cQNVgYU^vb&S1(% zh^F(r3SElr&palk6=tR8g-kI>zD3E$bC=*Mn%g@~4#v>NYc;p5-POB<^!9XJZF|6A z@6)*ah^#uZ^Py>c*JcTzg zv?o%QvO3BwIF^*1DLPkhnc+9QFs#+~niJ`x{G%&@#?3)+^3C zA~ZOb385n5qmvHKfV{nQQeIMiQUL?szLKI+`;!I^++kX7KgY`pV4fKrw>oNF_(sN% zO71;)C3$ewAriGHLMjx;GpGg2*a4iX22-hlN30r59KebH1U}A@Ab7~#XE{wOP|bOZ z@s3*?$oX5%?{Z-hbAvxjr#Ggxrnb+?ATGFNJ;#GddM_J`tdFGS zDm^9qW+krKa&-v--8(SpZ6|!2l$Mm9oIZeZFdfBV=c+T$3A#T)37DY+n-6v*9v7Zu z=7{(sxP784@jc2{-E+I^o{ui1`hLm%{0GbxeldNhF{SljyHqyuLUn!oX|??09i*eX zVW8qAb8|Nvi&F!ooL5;WsjSB78dsJPP#k>ywh<C)9v535>ue` zzi7Xcu_wi*MMgz>bA6-&q(Ynfj=k!J9~rnMN)%cEaqlq>1bt+7qS$9+(gou>U_uK_ zQ5;Qr7zr8~H++({#QCV@gYGk{lwiLQ_8bA3R)O9VaSX-PEK&hEwprF0mICyV;Wkif zalDiQlC?1jF$pp8;VEH>p+Y^Oo|Ya?y1S7)t1fKIoS7m_jXE5X<(=;MU**SHnCPn8RIv) zIQE4F>HN|L;*Id_qQ9iY`MHtoL*2t%!x%8T@opU$ z$e@7%omd-RA78I@kVGRBfZsSv{^Cy3+YYy>!eYpDEMsn@b37A$33(HaQI8MKg zWBYHB#V}C|Ryus^MM}6cZfPuzWAF!gm`nwsrXH?PM(Oy}_`|{s zhHFOyI;k+JD7lycn-{1@C6*?XCsxR1kOh1gt2(enRdoPta)Cq$Qy_u{n`h%S*~} zlBo9u^tici`MFQ&g2W>Ug^9_c(~<9sX5x9??Tq6|WfyWN;E>-TA7uT>g`S)Do_tZN zCEl(+Zocj+5hB9Gx`GylTQbDYq(Uk~N<)k0_>&CZbgwi|hMz>i66|G-_4G}4S@)}w zQ%&7nU45!OL=6ns4V%uI9kr~s7F@e#)o9qbyIwHNpgyayy-!3XYbdyN)BLF3(H%zx zC%}-kHnFfWw!f%Gj@2A(Z9TEF_jfMpkswY^MDgbj<_pki9yra%gEHKw_Za^I9N(bh zb1>!n`9n0fkpG#T`{m;t3N5Eee)&9yk_0{W%jY?gG+2LOKhBx^h59-h!&uo@=tf(G zTSiz!7R!=PMMLG!Ynk`7Q;1WjV;BS4Z{E!VGZ_082jyTKn*II!;{U=N59IV&aKpLi z26L(X7|DV+)_j2)*oU(y>p)*;345V!yk%mkGy$5r-Pmwz)^POKEIxvc#c9s7cP_i5 zPR`z|`;-pfGu*}3A}qvQ*oSi|h!n$pFdO#aYzp7NY!+vu8_b5k?W_IY*DqO-PM5<< zdYiVAAx^bEwU9ij8EEWli`5F->u2qzx65>it>_RprsHyN>9xYsX;*}InRQfkX}O5@ z7v@q0j%Ci(&deU3{R~4?kNGv5M-FYz2~Me3JihH51M9fuU-wen7rf7+`5>69QrJ5U zjR(P4l|o}!&JKXF8XD7ZYJdfEH8dai*9Zo{2>aEAxB6Ji<=cJaEUB+FK47nc{RXtB zp?}&{u-t%_H1@-?e|vkC9esP1!Uf!XR^BzkA>BUBPGA|RAE4>afI1CgnJh&Iz zCFVHR6-g+AuC&lO)XUqyPLaSj#V<>5m8W> zcf;Bg9^kuJ&;~iwMmZX4#6TV7P#xuHZhbksRJU(c=lVJg!Gj*VzP(qs-4(zih-UFL zmD!PgJhgjnI`PDxO_9-1I=7tEbyRkj^fIuYipAO(ToGj$W#!{*D|8TA#hWG+DU#@} z+St6AkAxjHsr{+yERqqeqed*;QwLgzcr1+t)PAn|sB5@%f zNkgI-NOO@WEqaa;gP*ua{E3hJKXCXTjVC`~TdCMxqCgCTl8P{$+Na}*-{>i-stPWy z9=LMie&vv$(!OEuQB9G{t6T4wUTfl!q@u)P27Y{n6R5<_gcAo&Gw)xc4RxsIP<=|H zVlnZX?Kt0b)xc(wUzuB%)5;9H@N-yhEWU-A+z;<~|F7@4*mt}XEP=N)zJ((!2ys0M zVf}w&ij4$ujnL1&l2-gcMdEJu1KPa;yZ1PT3XY5jmhct&#Csq$LkCk*7(7kKN_#Cc(YU#pwDgtU zOnb(FfU{*$iOMa^Ey^unK!x&l^>O$1W?%(BiIw^AUYY_OF_~BI6)Dtz#VRVkdPVcs zp@fxvOMBsTQ=GVUPVYRDmUB2KEtkO$Lleby|-@R?gH&Rvu&g?xG}KF z-^|}6$SAaN3(*84Ic$J1D#%bAYxz0v;1tMF0apI@{w`4wA^ZJekIW~ak^|pn-p)u4 zIT)NAe7}jf^f-4rA7|hP)S&!A!@VUoCKk;TzeQcHuD&=6I{7(tQdUw{aux$up+OFf zC|repY?gbLTb7GP_~v~ZBXTOUYqOh}Pm~38vQ55CUd`?zQshg8-A9@Wm{fSo&h}6B zPxVXn74Xv)hJSs{GgNpVs3U>a>Nzeib3Rph+u zyxer7>Mp}84somL0^4Gfa-B0ziSY^J4wGi49>%`MvG5~Zf2cOKCe>z$EOeafgH(9F z9O1r!Z&^N)v*aRqOB#4ylEp*N1&6SU!eX4wn&DWz`I@TFwvn?BPP}UcW??IVvLtr7 z?#0{`9EVsq&l!NYp@E6x|}dj-5lARD6T zt?i_9Uze1hDeTX_tDHmN3Ffht!XwF9X<6xMjR!9;E+etl(cb$bqasIZYAmC?M@e=i zl~9FVTWNhk0;W+0(8aDZsx~XO%Ci^T=<=_0tF!wn?s(CDrvx`xd1yxi{yW*>kMH=& zU;rIMU$@en4ivF_R=hHQvGbXl;LOvd7nM#)wF}TYiruKWP#?!xwkZ;z+TZlt>EAj) zKnnJ=Ncm@Yrn{xN3i$8P=`(ygERElN250_zDzrANGPLYJ_#TV|4Gu41Wrm-;=f~2) z-66+#RU6M%TBJ*>0_Ia6Q-f9#3d0}8Au|MLRwXB7Ve;+)_)FKC5QxcgNG z??O3^>tPDZ>09vnO%$g;$nyG4oW2FcTR=ZsxkdPy8ID9IJ0zCFU?7v2ztT)Xdr%`hWm}dFT}r2 zhETSHDzYdr%QJmlM}kZJD|{*$_~AK5Qz>}|3sR2A6cA5U%XQitf7wL}D~?p>)iRuN zBHKshx@J3PIX$l-;n`t1A-N1FJjVtqIqzUW@)6kr;=9UjouT^E-J*|PO-|k4-Ed$j zSHUiVhRyt(MI5(*?_9`rO3~iIVQvzZLh}TZ#3S+qW>MGcM1%n>Nc@5lS3%<$Kl?J& zJj0r!QbyQ7!%TiTyG*y!puwcfTyXESYrS=wL8o99cY-}k71jhQ*=1*wG$q~XGkun-)dq2p1YxrJCvax4DCTBiO2}g z3d>?(&J)a{lG2mXlQKlg-)6UC@2=}cgr7lyFTaq5a3kDDB_BALJfoC`FM}-a(a3pN zijcV9u(h0rE$>19DptpN*zg{-KI~#IP}yFYp6MPBD@jE9zVz@6=HnCep^`HXW+i9I z6%dd0=9{&)J<=hil||J@{+@aNIc+3}vyl-&*DuY2IQnLCfAaZ*1rGU+Iga;F6VvP4 z9xi{g#*h@a7P#iS%7-Eyj??x5brEL1g9RW^I7&<{&222~HTG}WuMvHs{&+{nDUeBp zsad}k=szYlXoS&z*f6tv(F5U~_`!IAp0=5dU4VDESCmIg{zCF7>3-5+^0FOkOg1^Y zg*!(%#FQ;0FfQqR^2=lf?P#CyFh2N$bS^9xf|g?}xSQa^l#<;Q*G#?7U1n<L2MCZ7R%JLT)78OuUu2%6_efdZ4q=`G9kL{(SN& z5yTVW+hk@o?I&`yxC`A9Tt)fdFR62tmFH%G1br*Nxr|d;ow+@Z z*PI`^oq9^PW$w=2n|r3d@o0WG^Muz?s-i$(T0&b>{E09F0EX|PkX|9ATgM}oLHK(lhT$hac$ zP8Si49D#4jhw7Li8V!eyS%=wH@+ONy{DVURBa0LXNamWYwcX?DEC>k=4EK*HQ6g{B zJ{G~)I_3qv-CHwYM@aXzOYqGgD9o=V{?`6>f%XcaA>vk9~+en7jqZ*4L4&q=W zi4HVM`erHsn-gyvZ<}Z@KvlO)d01VX;G5{1D*u~C1um9p#EW#o3@jk^BM z#K`2xRZWY$LdL+P%`I!Km$T zeEvBAYZf=7k2H7s1Ny;c*!G@xkO2+)DO9k7x_$cXdvDz$dyZ~Bx~`+Kz4G{xlgvF{ zTNbX-8&M1=Ex`@jFR75vjZZrJdlZ0=*8X+@ z4vzaBqV1zQ29A#E|3CEQj|9O8Ol4K>-!r7?G5X?bm8+LNGjA4 zeOZ;zmTS!~nn6q;*C-BA+N=_2??872ZYv#Z7-;5a{mz9HoXb6zagMow?q|XDC7Pa+ z-i_L{E}zCKKolL}7w#V#U~9O+Qp&Ms0f8~qgB=}xhqK8Yi@`mETh9DKRC`p8&2K(b zLLlNbx>5022eJ?3FtA$&chhkJu>r9G42n}t=gsO2D|Cwlh8tSFTU?uM1xP4hA&oWO z+~(ct+-fE0xNcExQo8rgkkgz5Fs$t8LJ|06NR2KOvGSo><{gd3!-lNWY+HGY#eXtZ z`@yz@Ey-4E9QU~Yo3Wl{ye|FF%)F*|d+hez6Vy4-2jbU2X<-fVxA31P&4R2n%6_2GKn!GYBFe%<3Z2Bb1#fUUOoSg^;SV3+hu8SSXP7&Lv#F5I zfNq~NGHxW#G}}1Sm_aEjt2MJd?WkNHamE>XI9UzFD(8@*s>13cwG7|(?l=vy+z2a) zvY$crAHOAz1dXTe(c(Aooa4p(qWdmR$&w>A;QRl6>}y7LYT0&Sm3IR93$@ zO!@_%QLp$87Q{gg#YGMp1F_E_Cy8=2p2tb-B3mg}oamD-ML_JxyYeTarqLKSWSw!0 zot(v@5Wk?1fQS+W(w@?Gs3pa6wY`qJQ%GoFn14ixBDt6TsN{Jg^O`pHG4VGI?zq|m zW3PbB!fIkRZ)s5Ljpo>|*8ntw>r`BDTySjgsL$D(KgJ&ARE&5P8pepVaVjRf3jOQ9K70{t z}&;h#ky_n)X}qy-|STD(Yj=O<`LP{s&!WX_GzFhMIiSj%$fIigi3A{ zf!q~xh%ahe;=G+Gc5wyCDbKFXsxMqwrdF-NptUM%5ULld7tX+sFykH0fNx~*8=NHz zvrvZKwQpC1c2toZ0m(d=Q3O-Vn0GY4W>}Mz2RYh6#(cY@XLL+t%)S^=Wi9cPFR4Rm z$$`oK$$n27iQ8?*0h=pJTu7#Kremg^PJ~X>?)??5wdWfjGN3ucYy6Lx#UnwdhW%Lu z@L2Wb4g`sQJYJ*6y*Vo|Nc7`DgA~qZH*D%R>Nc%67sYg2bz8Qz3N&#ItG=n<_=IV_ zrRZ(5Zi{A%;03y|Hp>i_YO1_8AUzK{9@jow+)B7|NMUgiJ?hkQ5!%IDCKSyhvGq-H z%`^KFE6WaaGtj`B@x}C}TDt)WNTvFO&8Y=B`FUBrhu_Oqk|^zcR$>18{N2M%g$!<{ z>;p2(XK|8{_&*%;@&C8K*+zmu7s^?F>Id#8y4kwfxLNn~Gvax~qrg4CG{3l{uyW@a z;%e>c;^JdoN)qW47aJ}YUtu0f(!s6%$Go~_+(@ofwq=$DgHnocfHIU_AcZsMRL&vo zwas-6^$a(MYy2-~g8x@VQioEOpZt-VL6>@#xt2Sec}7edjcW8Ok6)?pFY0HW$kL%r z0d2m=AuDStDl3^`D=v-Y_4xCjI9rI~ZNG5m zDf>T+W2=NkDcPA>S!rDdAI+;Ev3sH&_lNEekKDgc$QV$8k*T?}VApCo^W33p33nOT zDT_PlXq@0X&vu>7rVZMX#-~LG%l5(Z#~vKcPd$=a#Nbc#<_i0B67T+MGa3ovh9H;y zI3Mj4!45S)fF{g;h4Wv4-~|fqOE1@;l0_)H!ljucSj|Pt+@x2H6dcJd$tq{ExkYS* zTexS4uaBdXo4I$ND(R|eXeepPsm`cNZDwF16{{U%w?8B*Bq-7=&MV#}-Y%g~g~U{q z#um=(5LRX8mFAVDK0W|*8Gg$G_?F_gBhU6pYJR5nqYirs?eBF{IorhBsGjnY?pfR? zX*#DkyCSECxhmog%n~^z6bp!jl+nsPyE?T9_Rw)S#$VZPWB)c%bD`i)>PzN1XU!^7 zS%q1}nWfBYD$pg+Jg$!9C)+aKcADNV7J)zp>y&S zN)NH}nnQhmBG&B~HfH5Vejefp9aa`+P@@tV=(y5- zq1WwK;^5@u>f*t0OL5;{l>i>GgpI6Jb@YZP!w7eQdxUqe{Y>0TxyA=)md=0+@PV7l zhskn3p%H%K_tIM`?Jr6|26bN8l$BeaSDAS^^&|7Oet7Ed9Mi3%*H2vTb%n9S*1_Jz z(VgK|iU#$+FQvXB(A;LE=K+n|>F7~zwpsIlP=5Hmf#Qm-w>FVCch120JXpwp5`O*! zpJB!uoB@U){szTivlMPdY1k}Hfsl7)QHDx7kd!n7wu3Ypin!$+ShWrPdMEcb7z?gm z7a^9mcZi1A#LB|-(IJNaHpB}@`%auW;|k-5r-zr9w>QJdVbGt^yKygu&$Ajx=Fi4S zD|!|a7&Gwf(>0jUi{Jht4c{;Cc|!1~X9}Nn;9F)s1$+J=$#w{9QVa8n^Rh3b!Z^7q z60I6;92^uD91tPmhf<}Sg0ib;fh7I5_R9$n@7H=jR_s(UT4c|_VkusgUe;iKdz3SZ zADQvzdj2Eq3V#~a^QaKs`}_lf8s?LM&MT)b_PKo`4vtQ)F76Dcg28{RO0aJD7`tKf z6}@f)ktVL0cI@fc)*(Ov*0Hj{;wRBR@eBBE0`;G`*y{r0ew#t=45y5NG>qW4tn6vJ zP_=F2`EBaPORVQQ_b3yfs$R7Yp1ipCzUh$Vsb^$y#kv~J#!Xi!R5t>#o z3oMcUBahwB!)w{EvvCZUD9tA>lpY@Y0Uh8hY<`2AK?r+3@Ry{akml`RI=g<;6}=N8 zMR9pVRjf&**(F-Te_PD_~;_B+=;qJ+BvKac0d_G2kxCO)I zEY@=&P|t_Z+)UJEvGoJAN>lu1yu~Vj2^|>_5f~n5y-Upy$5@L9Ld5Ftp6u+;Doig) zD?hGqd*!d&uHGlooog=`++o1sHKtREh4Cfvr3`q!=4%zefr@pDagTOq(4RtWuIabA zU|9c0Gmfq~$$z)zM$LHcXzz*BqZ4}TW^qpDuQq|-C!Y?N#=`iWIQ|R;yV0FAEj_;#TN|Rj#nzY4I&5g@1O30W!x#qF(e7cvJ`!q)MGM6TsqE zUqjGZgr4)0@DRGkyCoJVk!RG|it5X=xR%~GTA)4;)$s?KKL~4BwG9{bj_<7%>BgdC zv>rA}j9Pw@Xo~wr1O^A!FC=GMPao^NqZO|+K}P1#KLV#53F20XN=1x( zWuJ4+u%2&zK13B+=cVKw%1;&G^EY*1Ve^JFLkGIJps28@m;tTlIF4%XYr0Z9xU7Zv znfq9HS~BPG`!Dn6AiEgYxj26T?4h^qUT?h8j^Xyx=z$AZyi3QZgl_WP<85GWp=p0i zm0Ygw>?rT6yp;Vk0mK-%t4zZb{xGY#3SUh6U;wD(E{m(B_BSBmWC(hz+P7-eOk~EygFcxh=25eD=`s&T~ zvI{^8zeNQlSdUG#cY#l_Uqy09!m;?{iw~3iqLlWjR!H64Ome%jy3>2=3|j0uyf3=I z(jZ6|iZBj2pG>1S$1V~I&`yXmQ?+wr4#XUYJ-~nrOn8YCKpeh#i30c*<~+waFjWqx zq7==Q>|?`CgY5!bJ#FnBjGZqnAtxJ~+e$n08ne67FNzLIaZ6%!_xtYm4GHs!^Nx3m zcStB+Kw>J2WAkUW3oCPSYjbK-Vax&8!tmP^VDj&~RE`AQ8LndS4b0+Y=)EE0aB~3; z(ZMl6F+tH~G6a6Eg70cS*E64KyAT@@R|7~t9a;?2U&43viA}|Mg$0F$f;`(ohY}}E zlXX^0?9VMFsfnpcX-Nz}>1{2T+rHzzr&FU-V-823c|?{MudmZQdb+puO8G731_sb6 zIS2ES^JMdg^Fkff726mv!TU6qiHhu@ba7Zsd73&}SX(((yVZF%GEj=cEdM>#Uv;j& zySdx=g3W+4!=Hf+7N>(EOh-iu^7u3smVh}fL38@I_;DGFzraj>E*%&h5EBs1z~HEi zu_7reWC=_!h4JMdDo?K=gGa8{T<%B?O9@K}YuD;!k31>j& z-HH? zaE*uzY0{h0lX~hfgL?15nXXK!I8=U!8KRvdoFW_}n75B!s=#y^de|2Bv3wZ6kcz>T z&Nxkb{@^BZ73expN`zeuT;hHnqVZ>}VR0$#93JQ^5h(PJ_f9yngv1sU#ud#xl~`7F z;4A|bc#7|)waT4)B|x5P5tbdw%Ff76JCX8iSuu$=h;obyiV6&fa1%1BlzT|pky+eU zp#OW9z>y%BG2G2=*nCaM-_ech_#6|j1|Ng8pRpU zTq)deKw2*OupV(`)wO40x3t`p=oCWiwa2`KFnw!8+quoV$ zvz9`$1k=PLvIJ&RxR29kR~q!FwP{pq3m)`1bQ_)5y7ot&x#2~e0n01C;}l`pTYe4v zK#N!}reuRyslhXX-#g-Le_Ry9U@jev3eGrT&(dq_$hp^b@IxvrW?%)y7X#0#i?pz( z-av3;z_@F7mqwR>yC~9vKUMtEHP$LtKUNT@XAoyFbFFa8fn5i*zxDs`yHELVbqZ7h~Q$$io%yVFes`g9o01 z`AanaAR~?AsnWKR&f=2{H{lIFp;C$t6{nWU6_QZfF#AvkQE869GrwjJpJdfHUDH0b zr_n%g?V9n4-6u3oh$LfK2&9g@bd9x&Gl&z!>5D{D6>dJDePCz2=^>X)&vdUmuhOu? zg!}$4L{k@u)|NN(urMtmBe2}D##dm zNPLBfFp<8OaXtThiQzqBfRec09W7>-&mR;HBwjfvki>YJ)8yxgD2Jy)Jx=|HJe&Wz zmbP5fKCV+MlGVIR|HO_H0`A)1vZAVR(*f-RTJfeS&ZDAw7XK!ymje8NWwe#InZB{= zO?C3@XjNP8%)`R;(PdOKYQ^rTi*Xm?dgD$B8D3)edv?Vza}RUszzp=ztVP}o%}@`_ zY%quBTwxrGVjUo6I2wTX?Fo*f56g$*;a9K$PN2$bh^DY{F1vq&zk#!>owIrXj@@6s zl)%iihs8C`Rh0!7Q{OF4AwVI^8g0JidDG#Bg`jJ2LycUo{#IZyuJE$ z{iB+fl^>X!h%|PUv+Hp3iaE-QPN|aTuWr3P|FO;Z)TYbxFJC1Z_cq;DyUD0isLrdi zig1>;*=DO_Z(?6)TV!3hX$yf#t6r|VxOrfJIF{R%S(Tr-eDp@s1LhIGm(rYiNq2ACh1#nOUikpG=|bl+ z>uTfPr^KLRZ>wPgQwP(Aa2mwY9f#UeTMs)tAtKQD_kJi5o;#m(CUqnoO=i#^7tovx zo@M312vt6T3g{1^{vfP*jcXoDEkRWUP*p`EdKp*925%17uUWUdd#}Eyme1zEPG$0-;Cji~>XVKaT?Rdm zJtbPXdU?kA-JNwkxtEwHytYy+4F<@t2DOg$fz1r)Q{HBdR;KoUq&WgfPMXC`=&{0E zTi}*CFR3~*W00TQ40kW#-3I7`%&!(S_b+I|qD>3fm{E9X8d|h~g&BnwZ`o$BFdr>s z+RTEDIodSTy=7QiPuDkkS12vo(gFpFmC{0y;4YaJe1t$>P zU5Z=KqJabt5aiAOd7k&&@43#o&N&~R^Wn{0NoMxmv-VnR_MYEfd(EuTy!LqJDG2ta z$_oU_xzCQrZvxYWbP1!p0*0dKymhH*)#J2jQn?Sq+c+)H??MI09v&Xz(2Ny1MqQnK+&aiQQdn%Y~UlD1#(ui1konWU4zDH$BC!|kh2>otnCi}{Pe$Dwbg z-gL81eeDo_vE0~oYc`B8B%?ckTbG8frB*NghgT8YqW4y56b8 zTO#wyJv^ug8|*>AR&d;7C+m7)L*w3)^|o>D1}MD(v;e+{feAL)Xi*GzU*rMC-+j_&bM5n56^d zX??wC@+lXlGC?8{%)-WR*!ra%_OpXJ*+3gUMH?aM!XS}#&t!0VVIi=B_XI6Ni|8-( ze+de4wj0wvj~=lEuvc7d?BJa4zwhU^m#DYDaVMn(sRxN@K$S?RmxBu{%b2T|)TdCtl)P0*bYluiEyz2{a6~GgBCV8G`ZK(=K)$vRx?aB>Q1WHg^hC`MFwOM0l{e_WGP(1m`Cf8Ph*r zzR7yP{KQ1KQH>J?$o|}OXrqeiwjv!&bxA@ zdg{fmkALIkXp|&J$rkMdz1w4qASYUrm3i`X`Qb;TaxIZMKR+OuIv?P9{CD648!+U^3}aiT z>t2qePP|^sY%wpffcV-ETfWL8AHu-9=U~2xZ6ny@$dVV@)}Gcno?-8U;)Wsz%4;?y zw&LvHmqsZ~6JI~sycEw4zilxu+E+TD9RAWcz0-v#>)Q(RD!m!H&pa!-5hw2zdiH5` zMuvo@H~fHfv5iS^J$NU$iO(}+mlO_06Sjk2N4M-6>i>J*Al5s zbJXkUOifJ$zlwK?%;cUTc>13BgCnLl5rY-|73@W6g=>l52aC#B!jx-*-?641%*@^_ zo5@9{-;hs8hxdhtIUWhaVz7qWYX$4O_N`ne(xIFN^d{L8@xE_rHgBj;qHWq!CRWaL z%6%csfTIvYcD-^Y9eQAj5v% zo4C#X?Z5W+I`WLLnvikdZ>yC&+HaLqmy?LcKEaxeXQ$d_Mgz_ex2Q4-imJcytnLv+8UH%?*B?4Rf5%{V>A$Zt&6Ne-%nm2G%Qlf7 zOmuT~r;F$XR$hPTxlc>U)7Lj}HnMDGq;F?eTpts3uR4MG_&LMM$BwB1nLwhyhOFM6 zJl|nKVmocO7Rwo5jQSQHyYI$i?oK2=4qN(ph;7wxpuB1sP|f%lpjQZ$9B+RNh`T!_ z!>joGxBBa;yt+twSewB&>0iW8@^TOw@ttqf72p2JqrINveq77nh8Dd{seuH}Fwso9 zB@1=bURqMSzLplH?Bsdx4=uc50|ivLeuxF)MT=C5DO+Q{4_I&pNM|7G_*X)@-aJ}< zMI6c)WyB=So`?CaX24u?SYXPUR}=6C5w1ba&XAb(_>t}mG<*2U^SMvxR3}?&x6d=7 z=g1~g;%{CN763gdjw*ZlQ2lLre@y3p`r(!+4-Sm#nE#)e)M|77SC~4~R zASO{tGFz+RvCwYg-|K#6k7}cMQBMe}Gv5~t&!#I?lA$A85)YTU#bzdvO4)=CaabiN z@I(^(8RiEIVGl7&ZkDxa>?tQfysWm;XEDp$n#QmaOTTOK9X+K2k+(l5YPPy@;H&+` zzpF3m^1CKCQ9V_i$VWk$hQiUTW=DvfC6Y;7Ez{(O?$DRMh#e`Zt`N~C>jN9)*h9Wl zw!eaP6-YeZkCS4nGHF12 zASvoh%9w}Lr$$sa(PsH{G`^vYnmM9fNRCX{f=+TzQfF`K&rebbNQW($7WoI*e5Fsfh!>agGoeeS0b>J9Eh+(4f+uuwMB$JTvOt!Y z%F%n`D4P|rI-}~*Y4=TyY_@Mp?TtezV*##?;1lZHF|b*o9*J3Ud~b+X_&bnq0~E?_&8de5-8)lH?pEW-lpp0c zDmelf`K^z|2x+rhI)y-8d4eU5rD?_T@s()ADODU__n)lI5M5^6f7GjA7;!aQLOV#Q z2tu0E%f$6RVy-Ou29BC)N(6Aa#xKqEtVCnqdVYA_N;Klgbve};X@7sD^LnJ)@}AEN z)dHKweEEF&K9>4p0to>@_O{+EP3^?e!9vVQpAtA0-uv-qhctCfmI$kmUVOS|{HLBs z4cr_hAS!Qsc>7Vb1fWT8VCfQZbK#TtM$AFcMgc7|aD&{qhf$$=G5>zq3NO&;uaoVk z3UkWGWBzOs(!oZLty@0EbWAS}bu#O!_E5bhMGL)mWmI9Wm3~-WJ$A19J~1kQiq-!W zeT(E*K_QpIB9djj-{k3ZamvA0IRRcmJG1Ff0lzd_d~~ z%SIiY*Bm52A}9zyD3xa*w{at0*+iK{RkZE;q+A%w*uIkIldr)KCo-j5jK;OmjI-#a z+s@tJV0Adl@kcTriKOPrit_Rea}0;v0{U);sj;kU(=p z?zpe@8cH4r%^;?BzeSHL++ChL*B9jU%3dP8nb69OxcrMrilm6_8&IcIZw0)8Go9tJLkf3jj? z04*OED+Yj^Gsr{6%H6`v&c(yojo?4ZpUs?bd!(iQ`LJ=S*@0~2%s@7p(j1yrPIl(b zj+VH?9L;Rp8Mt`}08;K2Rv-@sVSZfxA42~Wc=)&p0Gb|FPC5+S+=2uEX)~8kR(3YF z9t=VPTm%3G4>LzQ3n`F|qZI?L_zw#oKRSCe7;*^mFmUj2^WbXn3;aV8_@8^_>>RCl z8F1`#_%6C|KfTwe#@#kIkAs?l^fBK-SI-INfSk+1TN9@58_%h10wh zD*-^&&C<#Zr%48u|5**UQ4{Rq;%MdckIJ}kQUPRi8MwK){>lEk#rXa$AWjV)R&Ka9 zb2Rg?lCiRIwzMJuC|iMSJZu@bd3pIIBpCjy!M!tpDMKJb!KYyu->4d8iXd;=gf9$V zblani)dWdbKlMSs7*JSRt-$~ncZyM-W)D^vaTD3)7q7Ti!dF3)zsznMA66sad)o+FcvJC-^ZTRXFCO5bdW>^JFMgNMt3M;)vwI&wr>y{igp_+JXh1zP)OgmK1aFYksXAn#kJ@FF}#l zjP~}2gLoPY#2OFq=3avqcI&h>9^xswMn0r}W2u&(_?XrAL(`ib-k5|p`+N)W?<4Ci z@1=fx&oJbUcNLR6Z2f`idptK=mm&DwoE`rt9v*$!2!qOT){9R@x$^bD3BDE%%dsxU z$A>fIkvKo#*~(luh{*f=mGm={HKTO41xM(F)U!Xat~x=K9R`0t+r^VbKO&yekO2j7 zEzO(Sm7{D}CL0OK8Z$3w(HM^&o)RN`q0#uK;cJCgGhnS#vo-^5&P! z>0_f1tE8$?T55ysh4xXXnz*dAq74Umu1jed)0$CS1i0!j$3_qM%G|SUvIn2cYXXy# z)AHC&R1c52J)AKtnu&utdd@uRVCWGmIh07`~%+Lpr9A48qf_*gK;q#1rv? ztM?jA$$mmPT^NKKCLbuQevW&r_$f;3(_=*&_;2QpPmvy=RqpRU@gqg`GrC5};$P%A zhscx?+J&h`1)WO;;7R=%Y)@VgD^4J=WsqtaaW`N}!UfUIua)Y+cM$2PRwH6Cs$3lx zJKOh~q;O@(WAoNknA;V%G!V_Dd1GF9mb_g#xkc6SRK%-(*DvD!0SP60-u=?dQU*Se zgKPGUc#dZ9M*^xBOneXJ?e&lZiNA7eq2#szZ^t@mCQ>}A$>k5$wBsnMNb80$LR#M- z4&zTrA!MX2f@EbV+mr>$IUb_ZOS#`Ljd!v@;v(6nV|ZGYwYKUayHsN@@fuaU+bv4^ z6$$c2GlMAEr4*xTlFbMD{S@i6UMPGDn^K6d8BCi}7*~6r{|jniro;1ISmy!jylHuk z1Xym^+#=LcOwRQ@SfMC?4y93jj~IHUpY8g1U7u+G6@NT~du2j&-J3c6rBeY`JVOGy z-aN6f{72?iN%tnmmvv6Rb{|R2a_1(Bos1LZMTA<7Byc_2u@?Olzqm#4STz(xLLK5` zn}*Xn?XQW zh@VI3e_>J8#R~Kfn>bMXf4~nOette7f&Udj_7V90&(H2Ij%IeuK;E`W@R_lQD;cg8ZTt z^xe(=1NRO0>?R|W1a`E2eEh@v$`{X>u1-mI>7W1LqDlk=&0grKW~;eYKhUKjiTqk@Bg$S?T-2>}GwD(R-$<*Pe)9w~|glE|IUE9Yiek1W!Z- zS2DgrlsVrzV~;=N+VO6X(WRbD7##XhgPp@u*Pgha)6;yXU%~%StiQ&a3-!yriUGV%(szq&s}n}51(lcLZsHtcaIAw zti!qD#{BK;aTfy8NM`HKxdQQl3GhQAmv1dtlGHhGjg1>^2b-F)v(yIZlJ!`Jmmf-Z zBgP(QQRwUzpt(1*NrhTI%?E6{J7ukGVgay;f;7|^Y2;pvl=ia51XnIAWm2>*$DM1`C-?XFnv%c z_7BUnb9<#4T;^?W@Aw-L0sBWP1)*bUpHryTYC3nxp3@0NzfFW!lRl?bvHfr#oT;S6 zSE8O;oG5R`5w)xEB8{u~B{!^r3?{Kft-H<%+4N2ta%Cy_%#tFQs}h$%%`NU`zjVr~ zUSnZ1mI1bk)_7?8@z3Bdwcx(Y$@k=qv%*fV6BS17Vy!*gKBpHeKi~FXP5akvjHyUX zg!RAHbS0#BlpMZBzD~RBe)^f+X*WvJ>E}oJ-?nILwl=oKORD-4ej~4If_)~4zUadE zxAWQpVp_WZ<``$ci;dx1SA4CZyIx(1x`nZiyL;4$+}fCxwY#!A!dvGn$SP#!j+bpl zLnpc}qb{MYr0!eY_qxcs#=6+L;Ip?500(;H2P7Bru|p9!1N;>n1%`tQ_(#($ftEl! zpaswdVT&+FSd3IJTePfPxzN<9g#PQk^1aRb?;mLq7SW9h{gTDGBuVZe9{4^aB6&&u z^eNX{Q@8f1FMq#i-*b2XB5V*hmHuGej{4Ga5A#Uu<)L>w?>zusGufeMd*c_tgFvDS z=2bV-*mi@Uz#ymlO%In}2r=Lu_ujZzuFkbT3HtG18;|ozExz?55b+Yth2E-Y5dEX9 zC(T^Hw<3I*K-AnWGOH1;OcXKw)JOJeE5B}~f`h{z5tBv{q*1(h&L_yi$-=lZ^J|Jh zUd>v~bNtUQn_y#Nk>{uGXfm?>~6D(eeQTpS3X}Pc%!bm~|lB#e=l6ksgwf-NB zW8uv&-Pr$n_eaK0GSY|olO4oTr{UcW2}HTcLDrt`#!Y=LKrdV$eHZ6|)5JLg%> zwt8C}CqI0CMZ+zMyCN*%b^Tz2p6YJ@BBig5`*!L= zX#;z_{Um<%qvk6R&4?=rG4cDo6m zw`Jxj^QcrSzn3f?cyp%!e0!EU1<_c_!~5a*BU#x%&~78o>BqV9mD$9YSxB*2QYVzO ziF+7O=K7Pr%t;Sc8DII`?3tN+S8^zVy8itzou}ViLFEIp@Xjm(KY{(sNbkAgKMmP zzsuA!f5YX@BKGL{S?u+u=8BHgzpK0dUjMD}`<1$vEP@s+v=>yQoBLTlGggH1On-`0 zlkIa0sANS8IaROer<}>lZ?^~21bn{XPut=7L;l-2qLmwN>``j#-~rod{d4aR)9M z8LUVs)T`Yy6Zzdv(aeswl}vo z7w$*dJ=v;iWF^cVpLUYQB^lqE>2yAiM3B8>mPqtwKk{C;i8Oh4o1n#6{80m&cafKu z$E+}vV5}&Td74z7RvuZNe~+?+;jI1DYC|dyaL6Yyfe5dn$FtS{yhO~@)g%En<=nfW_)IVq5_cLQTw8#NPALeMBmB;>~dB;Jy4o$baT3A zquW+_bv8|3errkWKz1N{&~$)32;UDsz$~C)lD3ek+mIVOY|T04e&2!fyku>5J;Yqn z`ED@q&+U&JN-Wwz#eu`2!f?^lsiw|p*3+1#)zis7bIP}vSTjA}Kob`TQ{^Bc1 z2fIpx`5GyM#(OTsC;6*N>M6eg91XP>6KP5?;DX!kPChUNsvimiHY ze|>BR-xFrH)fdgUV%=le zQeKl+#>4)uqZ5AFT~Kte=CM&`n7 zlA+6B;xCK?xRnfJdSyJ^5yA#Fy*5pp%|?x|1HoSq76O8XuFtrLv=x z=s%m$+0@59`cQw@Jv7|Eswc_6Dz4Apb;#tnXB2cI+eW2gBXj-E#D8+z-&OnjaZk|Q z0Oj+$1i-R8@kvhw?kt=vI;{=cl9%h6kO4|n_S;`CFW0^Bj%B9{{f{E=U#@4KBhCZP zn_B)xZ)aSt$4P8OOXIkq7Q8f%N%udh13N=St57$0f1`JfdwlH>EnCq5zhTNTxKeEA8!QdLxm8w`o%S)NtEucgl~oH`+sL&HUl}HQka0qmo3Fy}-F! zxp2XS?X2M&E=Y=0?y|z&Oh^!`Y zFGE!Q((sZ>W4ar<68Yr52|3a0T(+r@@QfB?#_NLlUpnG zj|6wdZU4~}Vfw$#DekYgGc#cB%cH_s?(Ez188&Wo{f&~_SsB5?i*6IRq~Wf!x#YX) zY&DvY5h`4t(VcNAeBy5I*1H`uWS2e3SqS_F`8$`HY~9}WYi->|Nb84_yjt*Mxf$=3rXk6vQxvZ~ACHnABIOXSJyh$= zX^`e6i52HNA1{*53I9lfM@t=OJD0;49`=gbqi8G#8ZKgV>EKiJhY@vqi`uRU9DygE zY0l{Cn^}Rx} zPqvfEbt@ir>ma=jV7jk)V?_=eYAU8%ld;sO(yEH3)@m#}E={$p z9NhS#ZTwUZ#2YaOEf{o*m-G1Yua>TJ62zjj^Gb^#`k)>*v@GCP?w5Yx)Bqb@7V#@R zD6hwP@)iB+S_)bQvy}WeQJ0`Gn4bjVWGgEL^A|NRUjtF?%{mpQ!8p$G+N+LdwTs`J zPqiU;fC#TRgt)I)4MN*9pb0q)ooxDy5`iOkpcz1{=fQlP#cT$U*E1ANutE-Jv(;^f z<}^Jz*lQ|1fciG=?U&S@glF1#NmQR?Wn#Thb3T2e&qQg^Wlc4sqZ(d;V4LMk)dO#@ zzBO8;mokDIB;Q1vd>{!jsTTM28$PF6%&k{lUUtQT7Xz2i59)&#&z%in9F~TMGaQB~ z&cJGZGvwFu6WHh?bq#o7rm{R2=DF-I4!F=bo zV;Dz(p>M&O^GTAVysw@LluVBShrD_?-;Rl{l2?&ic$L5d2X?r6XF2MwJft|JC>mcc=%l%@4yG^j^Fo}17opcqKv*Df0iFlmno@;cXDW%OTpcB~#brQj zG{>&D(Y0%6tv!Y9m9An#O}2a;#qx`kw&UVWjiG`xjU+9r15$@Jpr6};gG06nc69-N zmQLT#_5k6qI8V7ix!`pE#_x9k6cL_|%$lt#lmvmvA8aEhORE^*HjcSHg;7AoFG9-|!#wpIQNzwro;YFa9C}4p_sXm6CFQo6SygeYR?yeUmD`o+$E> zoZIfb&JUViDU7yj6i#~eA-MxH=zu~Mv+S{LBCv=bD6WW>X`95qCOwx`q1ogC|B6 zJe#a->BkKNiG@(^O?3=fT!b;?0>iag9G80h@@QM^s3$sHUfE~KMsG`(tnZ?&H&I@6 zyRZ$UZ>UKJyhXqA^c*z=u4SAYoXj?LURB0{3dE?9TQs``g~)AsLVW~SjHQn1V z{dmWAFgFgQuM6n=voKO^T_9Ej|N;)B{!~@6dESq(Nb^H*Q{Oh^BV;ddrbD8=&fSm!gR1cE zkM&M_&Blv+lNQ_X&!e@Ydl~3ebC-o3MCTOX`6!dbV!3Y6Y~> zT}FzbK12CFQp#nMdU;T)s{hTl*=RXn%s~3Vo8*j;X-$hWPwQ(yB9b>d=nT;2wd3w} z0MIVC?ZoKiWbCz{88O6|{_136EKxo_<;D{XoGlQOgEwUpFV+{B-jeM$XPsfxV+w_u zyAh*Y&cjTnN0<}tQBJ7GuXvXmqLV9;s9XO~@5nAEkptw-p(@wrvx}9dh2b|L6pUqk zBEc7!$<0M30#aa}cb|wPQ)c#$%xtqT7wFZ75Tg3<`ru@UJ*;x0Wq-`VXI{;ORn5jj zSI0|};sC{ZyFO6}fm;ctoCf+^4c{%5we3}ZNf#pYH}SHnq`QydcHyEY6#(n%1@U&YIr1oz zeFBKWU0tezLvSBBg;+OtWd!yWG#%wIXi)@Owg^yy07Qp6pw-^-g-&AKygwxuA1)c2 zKplW4p9ja3JSL5YN}(3uET!3-$$5Q%<8Oy|4y#1G?Ue|2ufE)L%mr3x<5WH+t8syi zAh$H!Nb1P|=JT+;iH69QfV zlp`M4qkLe&xZi>b*3ApyA=o97eIg3LIzZDs>(m8~$Xds%x2BC?qvv#SSWIoK*)mYS zw*TfC+zGg8GK&V{UQwv8bA0p;kSv*nD>5E=x4;PI>-Al+pO?BV*e9DNqE&T^E3Y|0{}R= z+>i>%3JUBi9aTNd$y)0=@A+H`cD?W?zD!s#Qt>T~md*~uxCg>}iyELeobW5p!P7NSLH=PckC|)}m(dEY&8iVY8a1=a zAl_k?r6n8q**#D)m^-O6NJ4A#$y{UZQF&Rs=_K13mu-1y)tyy+(vU{Z~Q9cX= z9~T&XjWccavhSY}Z67xgodAgsd^yBwm1vM(QFrtXq4ZukW5eW(P%?!S!g+bGuI5sJ zlH_uGicMnk8M*PaFl(9k#C(Bnp66R2ME3ilNHo%*Rut%Dcvm+}6YwfsYbE96_gw&R ztZqHOe9A}VMRM2+u#uzJjXUS%&1-m-$!wX*ytJ?Osuy6?S%2e}w zy^(v%dUtM9Uje52n|-W0MF>qU^qV}p9$GnQ%W11BvaoCzyehcZz7|YWK_qeb2ZZJ1 z^?tuw?4zPcf{rdDgrU$>XzOo!L$R`W@1|`Lp;>;{seafX3 zw7nq;6LUh=nY0vbkPunCH$sQ~!CX>!gE|ZsHtb@)R2}5ApzDrwFs}8fFFZd}UnXEE zkC!!Y>rp$1!CDUrl5PWX;G57}q6#M=*?^P^5K#zB;&y8ko7a8Cd3O+Xd`n=nY=4%J zMNxWdIDDHn)8lXQtJNzYC*d<^r<^l!1icRr8l zcR@bS&bN<%kzp=BqMvTFkPZcdC#5dYm&as%5g%vp8~yHz98%3pme;9vuZg(XNnKk> zMYUk;f4Q`Z!zdsr{`kwRg2#Vdfq3M`AsuGqCT+hijh^Gmrnk(-Sw3}n3VtMC|t?z%T# z-l1d3VvxPKZ`!wVx0<%s80L$o+jstSMu}c}cNHhccYq6B%mc#z_A!V5-D4R4_oR2J z>{IIzc;0$!@?Q$R09Xxbn(%HGS9lw%-bmiDK7*kDJYno^3uoiFb~hH+9rg|!xUa!N7x^UeXb8%fStV#DH^Tez`ENyQ_kZ1GRdd4}xpFW0v^I2KCbAI|v z-{M>)@Rpm;3pQF;&Ko1~&Di)`ZfLkr0Zm-bQ|l7eIJIpLUQN36%*iV>-{2*c)!gXb z+g7>Ju^F6A;VZoS7QQ=kW#RdJ#v5g@c~^k5W73Xo4fVVQktbtHHXCT1wP3q{O>00C zx2SY|3vB=%w8O!8f$zGmwt52^wuraOzMsq)yi69HhLGMk|J@S1ItGdX1yQ3(ix(Mf znoK4eGv&^^PU2w>ecnbm>fZBEeKXgl`GQc;0~quCRwqz+W8G}L9t3oLB^*!iNN zerXArdyGMM-F{W}388^jFp!!p;*767vrINgyKt0&OBQAelzfS-KkFMg+c26L4@ax* zfVY-x*i0%EHjaev8c~$9XH&grh$Y9B&y@AC>1Ux^=xZNwUnM0YA7dN(4Z^c(XnASI zj`CtU&56*>C2s+w=Q{-QA{ijurQ#Au(NF-~#B*Lzq14G<*JHYN(*QFUfooMCZcbUr>S+ykN46>d+I z|L~+w^Z_t!=e=m-geg!+H?2&SP)-!t0_yUe%kC31F#%m!G%E+4q4uZ`nnzL|YSLvc zu_HAmut!O)P90rWA1ATq`!ydHP&waFxF}Aa4UjqFOl@LXV|o=X zrAFX!6>U+{ng}Q&MWl$8RC1&0sY@qYcPs=L z8UQgRu&Zz3-bR}nZ;hds1y_|XTW!qFl!3GYGP*0asIu(3@wz`?_Zec~Sk#gohJgQGkC~@Kht4w;o7Q8apvm z)qtAZf?Gk4?JC2aPPf&v?>tw>Rt7YiJS=ouR=feCFyu}??WjX)yCy;xf)JYI)b%Y@ zZ9Chf)TIesM1H`CBa#TqpsMskTy)3_I9KnvC+r6Jf{FB~vW)@Z0VEK{T=}&t{WOO~ zidIl%FA#$lJ$QyGg?dZv`X&z>u6ty@T9eFb_5$OIEfqzA3=oQ_+g#Wj%HW-f!I&#lSTIf_EGEZ z1&~0AE%MOw6_KtwmowtV#lk|1_naos!jJWBdmAi@)CU&J0op5(Uor7WYKIP!ikmGs z+&Jhet#oX#a(GS^S<=^d%;xMA3~EbB_gmtBn`itCIp1qR>@{;{WbvhJ6taA^zksdG zHX9v#MmN)>L?7P721(WupAZhSj8Au0Gq-rOw0|NA_C{2%jb24->(b4}ZM?LL$SrPi zeLi|%xHIv712d7Lo!-zCCmy@#TC+UXD49KZKOhUlp8N8|(q^71ufa}*(dzI0%LdXT z^0Z|v9HM&E=y2jzAjpw%v)(!tYIr+&kPbTL)(xo0X*vt--qfVKQe_%Q{!N8_;-(-v_Y;`jdGpbB!{uwsUVs+ zg`mr}`jH8>v3<`ZSE>{7xQ#Hd*{PMJgKlQZNLNq;H#6^Aa zZ&Xs;HO)2cjTJl~$vb^iJLVa{tyO!9dlY`Kl+;xLM=bXRz)lkbeRhNGtzHK2mH_J5 zb39YYI7E|WnqtDe5#R1%p4Q9kNyE9>HUfwwa~fvzB_>! z<7Nn`OJ04ZAPfWvZuKtY(`Qt*KkYeF0F6-r?QW7^Pt74fxKIN4Mj0szC+vH;$YkC zPU_cEU$0(%&=6)b6;K*Co6<_#R*Diin`&Dc2|pT_eUA~slAqonVu4m`4*qnA=|Y6K ziQZrT>dNZo^s1>=iS+Fw1F!l}iaM44>B6~T%>_r>X!i3tUXv^vcDt}DZf1$kE0q;w zktULKs&_>G+#5XSvjV({tg##Pu{Rd2r#CMmq;)Ag&qOI2>OCwDW3V3iQqaKkHaTiOYWn94pRJP54(cad{@V50(7|RyZ=(6$yy}+3u#q51l`;5onU3 zcb?wSLbdM<72E_RI!9_eImBX~oi}D}m7^|JvTUe#7a-Wi<$DE4(n(m4w@O8G3v3io z^8?jMP6i=F@JjXykd@|Sw&sFXXvORLb~<-p2RU(lLgiTY!%;%7#mnOxBCIQBUkwNt zv-SkTR0(badj+U&8eF~5Xcn%(-dRr$=k0>{12J(@^bnR9vAlA%Qp2+7^Q6Mr#-)W+ zYo%g~^WaD*Y;?$-q}R<~z4yMa1EquR9D2vUzHz*YV>yeFKW5TnR&KJ>M}>OvHE;uq zkmxHT)Xh7pgPs_Dx-&Xim#Da1DPcj6xtwG9Fg#mDdIx+xtc0Q!+3Sg_EfV3oTd5(a zFo(umPRM>9;bi9}+IqXN;zk;}-D`xMZ3}K}Yq>@vXPJZkbW`}E&dCr%vY0&T#RXrM zS^#=M$i4OlR*u=@(_KyPG{M0R18TR|i&=>G9bOVfHLfIg)}uBR1Tmq9JR}Dty`Lx< z>CYP5W+z3T65lYFwJy-BpZpU@Ha|#qz1>P<{8&oq#n9)+*2Ggja14j$TuW z>Nba?(do7T|Am!G+62$uP)8d2d{9VEmyg3N_9af;I zd~Qgv*f4o8<-l`W{&M2{cxypxNOHAa8yQ%gst6v^D4tTXic2vxY#kgUEIp94el1Bx zjGOMF7>qagL7xSGGv~fmh@u)*$p`HQl9G-yHCoUYYPIL~9kGXf!X<=f?WB9s4{RUD z{^I6iyxVqoG?If?8=^B#eceIe^oyf5_FM==SxK5zuujGT^`53 z`Y5?W`oNTd=xYbp!>~@Smn8R|K4xNg{FU+HN3%CEU;l7D>g^PIN&4LMwenZ4pG0d< z?|tXO`)&GOrisl=ovg+)8`u-b8fa z?^YGO39`a$R`tC}vcf4>WxbymhglpFG!s;GxO&qre-T{c@TOS~dVa{+jF0ZZKV-}Z z(R866ZP&keED`2@_{5*U=a9;u#H2mNg^sgb_mJQJ!Ahr>%d^&S`c?UhC!8H)hlJMz zZ5?PA;ky#u7ca3 zlDqUp<3avgMUF%ob^F{Ysp4o2(jL-$3B?DAVJxv~)VX|8c2N^V`NE2XiODSGY6iI% zxq9jgziMUe!YAnRA1KNverCy3hyU`B-3^3PP}^s5P}fig;YN-m zgjLgRdM1jh3H)-DQIMYxNeEj1Fdvf;S&e7KHYkvIz#{rT0Cqr$zfkT(*@?0XWjD%Q zD0@)$qU=N2k8%LzAW9a>-6)4p?m;<>as=gGlx&n7l%puQDEFb^rPoX@G@(jweD9@ohkMaV_izqLlyo_=Tqij`BLn8z^t0 zyoK^M$~!10P~Js(59NK74^TctIf-%#b;TKI#J0c+>>cMARfy8|p&TMW~BWm!K|1 zU52_Gbp`55)LT)LQBzP?p{_<SokT)Ger6QMaLPN8N#XC+berU8uWJ??T;!x)*gH>VDJ%s0UHAQ13=PgnAF^Vbmk2 z_o8N_=Aa%$%|*Qr^?uX`P#;8n2=!sqM^GO{eGK(+)F)7%M12bNY1C&>pGAER^?B46 zP+vrS3H4>vW2mp7zKZ%9>T%T9QQts)6ZI|Bw^83gJ%Rcz>U*f~qke$;A?iugQ>dp= z&!C<~{Rs7A)N`nxpni&)hx!@n=cr$xeu;V>^#bZws9&RggZeG%cc>RpzeoK6^+(j7 zP%okWjQR`euc*JF{*HPX6POfCDkc*q4U-vDDNLm?SumBsR2EY?Oyx0Ez*G@aB}|nu zRl!sh({-4tVY(hubxb#4s)4B{rdpV8#8ewo9ZYpG)x+e6sXnF#m>ObggsCy6CYYLH zYKEyfrWTl5Vrqq{H70*dR!nU$wZ+s9Q+rGuFm=S#2~%fGT`+}VI)>>LOs`^k4byQ< zuVZ=x&4P9_+6c5rv?*v&Xj9Rm(WaqIN4o`W23ic-Ote{Ov(e_D%|(kvn}-&MHXm&P zT0B|;S|VB!nhk9s+9I^YXiLzRqAf#PjkyA5p} zS{mAVwA<0{K-++}5iK2U6IuqE18p-}CfXLXt!UfOwxjJpyAy3E+Ag%+Xm_FQLEDSA z4{bl%0knf?S!j2o9YVVY?J(LAw0qIA(Q?p^qUEC9hju^O185JTJ%si!+9PO>qCJN8 zINB3vPoh1A_B7fvXwRZOhxR<$3urH*y@d8M+A*|O&|XD*4edDE>u7JFy@~b~+S_RF zpq)T_7wtW?_t8E;`w;CU+9|ZtXlKyQqJ4z+G1@t_PtZO^%R~DN?Q^s*(7r@Fk9Gm= zE3~iCzCrsI?K`xKXy2p#fc7KWPiU9Wen$HR?N_wl(0)g|oL?k2E0|TxCd?XUGv-p5 zOJlZRE`zx&=5m(FyDx|Hs(5* z>te2l*$;Dl%ndL%#M}sTW6Vu3H^tlxb92lsFt^0q3Uh1B{+O+p+hA^sxgF;Am^)zZ zh`AHy&X~Jk?uxk^=I)qp!hAF49+-P#?uEHG=02GFV(y2zKjs0L2Vx$Cc`)W7n1^B> zhIu&V0L+1yM_>-Z9E>>xb13GKm`7nAjd={_v6#nU9*=nf=82dmVGhGQ8FM)12+Wa~ zr(ll4JQZ^^=4qIxW4;CR49qc@XJVd(c{b)bnCD`S#XJvl9On6$7hsOZoPaqIa}s77 z=7pFSVP1@R3Ff7kmtkIxc?IT`m~X|Lj5!7KD$J`fufc4`ycTmR=G!o@!<>eBJ?7gn z-+_4p=8c%sF>k`0f!Tq1Gv-XpTQG0Mybbeq%sVjOiFqgHU6{{MsxGDKQOb`}vne%) zQgbO4OR0I3ilfwgN-dyNJf#vSl}M>1O4%s2kWybzdJd)MQaYB>^RV2Ar8bs2Sn6V_ zhs6&|eJl;IG{n*fOJgieur$Te3`=t?EwHr2(h5s!EdE%mSlVD|i=`cw_E4>Eh zmd;qZVCjmb8<6Ay|fD8HQyz zmH;e)SVmw8!V-)n1WPEEkyu7y8I5HOma$mIVHuBQ0+xwbCSeJ~G8xM(EVHpZh2?21 z&tUn2G8W2oq)aEu+)9}s`w?Y7rtCS&enQz#DVs;x&nWvj z<(5c><)N7YZL`YBcOxUMnR-Ntq6s8*9|?Wxv*YO|;|n`(2YmP56pRQrKyKT_={ zt{=zszi|DpT>l%_|IYQ7slJ8kTe+bvH>7jJCT_^!1_w86=7vme*g}m#)EG>SA=J2o z8XKswks9w&<9%v;K#dQnagv%-s2N4gsnm?7<|%3oq}He0IGY>iaN}HVjOE68)NVxW z#?)>??WWXjM(yU*Zb9vq)ILs~G1U2xIwz@fiaMvMJCwS^s5_jx0n`no?t|3pO}#zT z+lyZx{QBb855NBS4Zv?8euMBEjNcIaexUwc)Zasc9yI7lgI+Y~O@lKuI7@?%Xz(!& z&e7l#8hlEFJQ@bm@GuRJ(C}UwX49xWjXKciT^hYdqxWgtoyJeoB!ecu)8uk~8$;7% zntn&qi!}Y7X6tEoJI(H(*-tdPM6;i1_6yB(X?`Eg@2B|#G=Grh57GQ#nm(5w!q0Nu9`H41{X!A2|exc2;wE2xTztiS&ehW%l zg|;efO|;FXZ4PaZ(ylk{`p~W~?fTKKKkWw4ZXoRj(QYv9hR|*(?S|2AIPC&xuhHI2 z`%<(oP5WnQ{~R6epu+|_Y@|av9Y@h|G#$s#aV#Cj(Q!N-C(v;s9VgK-jEo9^$>{RB7l;HDS2c?35Har4Xc=t_@w>G2*t-lxY0^!Sh-C+TsD9;fLUK+iyW zj-Y1{J)fuN3-o-Eo-fh!WqS3Z*Fkz^(d%w{9irDg^g2whBlNnLUfJ}@q1RD*<f*BUVuuz7Z8D5Iv zn;D+T@GT7A%J6LjgcA@!KqLWE2#6wJDgn_1Oe0`Afu#ww5Lkx5vILeRusnek2&_n8 zB?9*_VjDrp1f>wPilEg5ts%%x&{~303A&A-bp%@oE<smFYHx0qFzS@oFZ$E;1v`j%PWF}n@3H!yo6 zv(uTqiP;&n~2R|UTx;pVP0M4)nndj=B;6#oj5abrHCs{ zoQ1eD#FZtk9C77|t3X^u;zEhLhq%MU9U<;s;r{c-yr@? z;@=|vZQ|b{{si&w68|3Y?-Tz4@gEX@lK4}^pC2@6PwCn14^L=uunu#vEkgheDQCSeH)OG%tTVho8hNt{LEY!c^?IG4m& z66cW^N8)@E7myfFVgiYYBqot)BXJ>#i%48d;t~>hg(<@}a)n}SWn zX2PanGh-`-tu!_ZwldhtVk?KOJhlqhDq^dItunSM*s5Z?4qG*B*JG=W?FMW$u+_v? z3)_v@YGbQ|tuD5D*!-~7$JPK_Lu`$(HOAHiTT^V!urx``nwyxN^Ve5|VCTurj>w&E&wqDqJW9x&hFSdTz`ePe_Z6LNm z*al-8f^8_aVc3Ra3t(Ym7B*qwD=d7Kg|D&jI168A;TtS`lZ9`w@NE{p!@?6Re3ymq zvG9Ese!#*HS$L9#r&xHJg=bjQkwu+YG@nHaSoA52@>o2A#X&3%W^o9Mb69+oC2d&J zmL=_2lFX7kmhNTgK9=rh=>e9tXITf9b!1s5mUU)X7nXHp*;bZqW7&3=?O@rREZfPl zT`Zr(@-UW9W<^a_)MCYrtfqWPZC1R)iW961Vr4KZLs%Kg%C}hgHY?v@ zCg=k}Hy2iR8*8S0TA7$=8uwjpXY|u1@j|B-bFhCdsu(zLDhG zB-bIiF3I&s_9MAI$qh(uNOB{R8j%D>cR>!e=KC2h7W+rQ9v1T@F=CEciYhqb55BosugRl?AJ_P$v?8C4R z#~y$^5c>%1LD++_hhWdfo`d};_FU}uu{MI#YNQ?`^%YWICG|CK8^mpcx$Ppieb2gI zSobUIej_cEw2`DeO4?(jJx;{fvkUv^>4HO9oC;<{kyDxkM-}f{sY#3$nA5u zeJ;1ha{D}PkK^|F+`fR@DjBblah#0T$#{c|H_3R5jJL^n2giOK2XGw3k%i-K9EWh+gX1ucBRKBGk&Pn< z$59-)IPSx7KaK}*Jc#2V91r7o1jnN|9>eiCjwf(DiQ_38Pvdw7$Fn$|!|^<-oo)Vj(2dJ!0|4Q_i((A;{zNY;y8)p6pqt4 z&fqwU<0Bj&<2Z-o6C9u7$iwj&j?Zy?f#XXY=W$%X@fD7*aeRa0TO8lvxQOF>96#Xr z5ywwBF5&nY$1ga3#qk@C-*H^d?=9RsfXxHhJc!MM**t{J_mSCy%${WSBC|J{eaP%f zWj}2L%eE-CO=Vj&+g@Y)GPWe|`|*B%KF{Yf-Nf8CF%L}4Llcu>VlvIP z>1Lb1*>=msjyADl%=V&Y`#}@8(CqLsJBFGa2hGk}W@nPwnQY=an|Nmvf7HYuGw~@V zKGh_+nuH!Ep{GgcWvnj7+QnGA8f!OW{li$h8>_3aUN*KR#}nFbnZ!R#Vt141Y7%>x#GWRxmr3kx65pA`T$A|T zBz`c7c_uO6Bz`ozcbMHf&F*-!JHhO>n%y?Ddzab$m)V_YcJDU3lg#d9vwM%(z1QsC zXLj#5yAPP%2hHw7CTXlm8fTKmo1_UQ$=f9Pn52m&$=4)JGD(w7(iD?4)g(^W@q95H*2nmxzNo)ojUqS;%??457+E--r+n!Pz@-$t`Kt_{}Z$SsX5?l4oor!CYu9O%)w^n zU~_ZumN|Ia9K2%=-Zcl)%)xu+V7fVY-yD2k4z)0c7Ma6enZu>b;nL>tadY^DIehZ- zhxrlA5t$=J%#otzh=Vy&%p8d`M|PMaJI#@JbM!ZJte!bm-yCaTjx{vL8ku8_O-com zQqiPTGAWf!$|;lbk4ZUgQqGu^vnJ)7NjYy)E|`>yCgqYzxolFdn3Ss~<(f&kZc=WT zlz&aiO_OrVq}(>CD@36u8ucXCzz|==BkgmI?-IsH&;KJYrD<$ zq2~H9bA7nEKEhldX|9hl*GHS{W6brj=EfK1MoDwyOLOBZbEA~GQQF-2+T18(Zj?1Q z63va>=0=jak!=38n19!se>a$$Tg=U^=4Pb18D(z$X>Khyw^o>2A?DUfb8D5kwc6ZT zV{V0-TWig&Fmr32xn(i8)|*=!%&m>))+Te?)7&0nZhM(KZOomY%$u(@-@ z+&OCQ95Z)P%-sd%?m}~Sk-59r+zmE&mzcXt&D~|@?w=;DxJh#~X(deB7bdNwN&C{I zePz;0nY7X-?Q4@(#-x=sY2{2>d6QPbq}?$0CYXEP=AMtaH__blHTNc&dy~z*Ddyf( zb8nit=V$IsH|euX`fQUv$E43S_an{yD04sB+>bH$x0wfR&4YI4L3{I{gL%-=JowE# za54`%nFqg{2c69WXY;_tJm_K`bTtpUnFmkIgQw=O&EpE@aYggEl6hR&Jg#CMS2d5TnaAIl$JNc_ z8s_o0=5bB)xR!bRoq3#Z9)C2C?dI_(^SHn~F8mCVJi$DXc~ZnYDQccLm?y=|lj7!y zqj|c-JR5GFjWEwfnrEZTv(e_+81rnbc{a{G8*iRXFweZrGavJ8qIu?Po=q~(CYxtd zO!hGI+}XTvF)zB97hO$Gd6QGY-Oe# z2lKk4dHtJt?POkeGH)80H~Y++{pQU9^X8y=bI80oY~CC(Z`YZ(7V~z!c{j|w8*Xwv zP3{o$zM^?w$-J*@-d8d2tD5)K%=>T5`xoYYj`?uPeE7$FIBoL&F?pv=-Wij3*5sWt z`J+w#7?VHNx&BM^n(+6tpn~Kbb;DQ&_?jeqjpl zn8LfJFwGR+!^DCs^njkw3wnbaxPu4ufxgfW`lBz=N%S{GEEHK!(S;OUgu@&h=Hf69 zhxs@xz+oW{i*Q(sLog0Ya9E1NG93QIVL1*fa0tO+B@U}_SdGIP971tei$fR=>u|78 zYyiauQfv^#22;$FVnZnAMe%kNZ;vB53dhGdKEd%Rj?Zw+rbIj?5-4G%gpCrrDDf91 z5-G8p5=oRurocvKS@rQZkJ%U-H#1O3kIzJW9={ z)B;K^q|_oxEv8g3rIt`Sg3?5VY8R^JQ1vC%E>Z0=-}qB~I@SHD z@e4KnM~z>p(UuzR__i-K2UF9NnnS4RMXjHx^)t18q1ONSZVungrS>FhPp0-WYG+gX zIkjIe>1|Ml)r@<#02GM8&jW*I~6OC@rxHpYMX}p%kVKiPx zV+)Pf(|7~lm*V@jy~{|)AUp8V>-uf_PaIKN(|?Ks+wr|ksVdehd2w(n{Cfp!aMw~%&=Xt$Vl z!L(aKJ3H+@(f%wQdeN~w9V^hWA{{Hyu`(U2(6K5VtI_crI##D+4LaVXV;aB3;4~Gd zX*l`eG#w{9PM_#BmrnEey*0ll)44yL2he#Sod?l*Fr7W=JcQ0(bRJ6QVRRl&=Mi)s zN#{{GSH!sz&XsYlf^$`ztKs|&&MR?Vh4X5h*WetA^IDw4a9)SA1?TlRZ@_sY&YN&4 zk4ptyD&kTJm&&+Q!KErL)o}R+m+H9Gz~x(9&f;z~v$?mvFg^%N4qW(>E4g-{pmh{?gQyQi0*^w?n(C{bia*j zGOl}Y-HYo!T=(O80M~=K9>Vo7u19b^it904Q*cei^*F94a6O6Z-?*N_^&ebM<9Y_y zv$&qa^*pW@aJ`7@C0sA#dIi_3xL%{j26}9y$0mAgrsrIG&ZE~NdM&2+V0wGfdkDR~ z=slF)!{|Mn-XrKelHQ}}JsP)~xYfe#JKSpHRtLAbxYfh0K5h+gYlvGT+#2KdJ#I~K zYl>Sl+?wOo0=Jg9{eW95+!H)q_va36~MFx-dZJ_7fVxR1hpH11y@9>eh%fyYQZM&U6Uk1=?R#bX>E7E{gUaohkkqMw~v1N>34vB2kCc+euwFIgnmcqcZ_~1^j|>#h4f!U|HbqV zrvDQ9FQxx7`u|D)<@8@c{}2WYV8B2I3}V1w26!@H2m`zr*nmM58B~cul^GPq;3f=i z%HU=UZqDEq3~tHb9~j(uRVC}#cLm4`|&z}*Fn4v;dL0VBX}Lf>lj`sc%|ZX9Iq32oy6;JyiVcu z4_>G7I)m3)yw2fu9m_8^SOzh7D!dFou_7czK3bV0cA_ zA7uC;h97455r!XS_%Vj3Fg%sv#~Cq$5dn+{WaLOjj$-6!Mvh@rCr16wsLqVK#Hh=R zy27ZdjJn3?e;9q5(PtQameJ=JeV)-57=4k^ml%DS(N`FKl`%sZGmJ6A88d=0BN;P_ zF{2qXhB0FqGmbIi8C#68#To0!*b3L%bW|-5Brh@os{5Q@oqu-5l>0_*BKG8b06PQyrfg_kT$||O;X383-gfe9xJJ&{5IjY8NYD+BJkUS-&UrtV)|;P zuVH#9)7LURjOpv}pNju9{QdBs&WvHq7|x6l%oxdxQOp?4j4{j@%Zzc%7|)Ce%>*$;0s9EpPrv~J4ia#PfWrhFA>b$h z#|TIvurq`P!j0{as< zfWUzS4kBqV`h71c3@^lW_`h| zlFa&&Szj@`E3>;X`wwP!XSOS|doa5vvwJbSH*@~SoL`yKmO1U1)1EmUnA4FtzcI&& zIh~mEJ99cS$C)`U%stB7W6VuqZYpz+Gw%}fE;H{6^R6=Q8uP9*?*{Y!W!_EZ-D2Kt z=G|f5UFM}R?;i8gnRlOg5199mc^S;hWL_5Y9x?AR^PVv8Df1gK{|WP-GXEL#vzh;# z`7c<|k_A7opcM;#WI<~dv|%AE%w%B}3m>s)F^hs(+=<|l1b<2JR|JA0_x0!6^i%5`3KC z69k_m_-}$w5&RFqrwKko@L84|Wyvv?q_8BFCC6EEf+Z(e@;6IPvE(0?oMy=xmYikD zIhLGf$pw~NWXUC#TxQ7?mRx1YHI`mt>1CE)Vd+(tUSsKXmfm3Lzbw7U(pxOO&9W;j zyUMa_EW6IK8!Y>mWj9%Ni)FW2c86tmS(e7Kdn`+5*?pEhVA(^KW$@>9{=D(o|5y&o z#quI7FUoQUmKS4rah5x>yadZvu%ZJiI!j%<0SkaRey;#wk6>h9>XN3nV`Vi89kcNc(O~@%i{vqTvA!i6VOUOAw&J%Kh zkc)&|BIGh5R|vUE$TdQ)6LN!)e+jus$Sp!{6LN=;yM&|>a*vR7LhcjtfRKlTWDt@` zNERWF2zgA%6GEO6@{EvdLY@=yf{+|SUJ~+(kpBpIO~@NU-V*YTkX%CE6Y_zOJVNpb z`ACSJkWYjZ5K_p>53I~%Wj-rEveM4VPpm9pW#MN_W)-ZO#j4q?I?JkatnS3>-&x(6 z)y}MTVRaW)cV+b^R&Qo?IBROL<~!EZW=$Q|tYA$DYgQ84kI?>v4j}Xmp>GL&M`$i< zZ?N`X*4||8EyA`E7D-qXVbO%e5Vno5Si-gw7Dw0)!gdlC&$@ipePo@Tb)Q&Qz`DZE zvW^8T!cqiFQ7jHvieV{^#Su#hEMH(LiRDWyUtuYQr8JhWv6R757E3uS<*`)2QV~lf zES0fT!BQ1VH7ws?sg9)vmT$4t#8L~(cUWp;se`31mU>v~V`+e;A(lp18e{n$OA{Sh`{P150--u2_0t>4~Kmmfl$0u()IKz|sdxUo8Ew^v5y)%RnrH zunflHiDd|utym(lM6v!4)^}&UE9-l(z9;K@vA#F!-B|C=dJoq3VSQiL_hWs3)(>F) zK-Ldp{b1I6vVO>C7it4+5F3iHp(q<1*ieiO#o4fe4Iyk;$%a*ISj~ntY`DONi)^^W zhRbYh$HqNu+{?y&Z1P}JI-BmZ=>eM_vMGbj3)#Gg&5PL_On7y|YY_e|;WY`bMfi7w z*CxCU;dKeGM|ge08xY=*@J58+A^a}kX@uV+Je~0Sgg+qsA>kQ>XA+)8_#?s}6aIwo zr-VNvJe%<6gufu-5D|xoI6}lxB90M}LPRPN$B8&W#7QFlCgKzk{}6GSh%-c-CE^?r z=ZUyL#6==55pkJ_D@0r+;u>29vSkok2D8PJEic*fimj{Ix|*$Ph#W$s7m-7W97g1D zB1aH8lE_g+jwY%EQC|>MlBh3<`iiJhM3p9L4N;*)ttBdqsC7hHh+0q72BJ0+wTYO-LDUwawh|Rd^dzDu6Fr6KsYFjB+K=ezMEeu{f|$v~Od)0}G1G|gBW5}={>026 zCV-egVuFa7$+pgHb0+pTVx5TXMC|Xxb|%)DSQlcu5Zjg5Zp8jUY@LAhr*&eTnTyY=2@05Id0AL2Tc^_Kj@c#P-c>4`+J>+qbZNE88R49>w-( zw#Tr28{1>qzMbuHY~R85ootV1dji|7#8oA(8gbtcSDm;T#C=O#P2y@1_Z@MyiK|0g zUE=BySD&~B#5E-D3UOD7yGGn~;%*T4FL5`CyG7h>;_eW4m$)?I?h%(x+_}tBJ$9tC<32kcu;U>+rxRa``0t3XO?(~V>k?m& z`1-^*Aig2-1;iJAmi!W8u>Og4Ikq|2=3<+NZ9cXI*cP&@F1uc_>pynAX4e~by=B)s zcIC3`J&83*tVQB?B-SRe4vBS1tVd#f5*v`%kiHNf$|8 zPx1zmH?v7LvD;97%E%$?y~d^6aU=o|Wub#h%sdS;L-C_KsoiSoV%%?|Al3V6QiOeb_sZy}s<7#NNs5 zox>J9yVeA{uz7gyj$-YtS8_m8k>~G8dcIk+ zDcwnNC8Y-`JxS?BN^er!NcAAK52<}g?MG^VQU{Pakkmn>4kp!;)FGsLkvf#rVWbWx zbp)v+NgYM%Xi~?JI+oONq>d+b0;%4l`j9%2R9{jjaeO|<7jS$bCwg$ACntJwqBkep zIN{C-4^H&qL|;zy<3xW>4B*5-P7LD2U`}{)VhAU^I5CtH!#FXV6C*e=k`tpi`6DM= zbFvL5f8ylNocx88|KsGZoNUXBPxSocx`Wo%y>if7jzwDNeoT zbPY~_%jue&uEpu^I9;35bvRv@)AcxApVJLE-H_9bINg}j-*fsXr;l+uh102=iRNqs zXSZ;6E9VAt&XaRPIOoOrmYn~A^Q}1lBNx8p!dF}<#f8#b_?io4xKNf0<+xCui*32s zj*IQN*nvyExhyUh;qqZFAK}Vnu3X{DRjyp)%5|=$a5a@{!CYIywWVBJ#`R8I|D79~ zxUrdkS8;O)H@&zylv|$M9?tC%+*!q))!bRbolx$qZqkxSOD1g(X?wZ1gL^x<7tg%}?pe8K(hrb+kn}^OA13_>=|@RFMtTbOPjmka4@>c|G!MV#VHqBl z4jFgJNF(DOnZaZ(A#*92%gFqb%;jXRATxx_m1M3Wb2XW3 z$f`xwcVyKjs}5Op$*MNTSu4m2 zA!{XBtH@eS)*7-x$y!TR7+LGcvXHf&tPNysBx@5{o5>0%D}t;oWNjrYlB_7QqREQk z(Gwm$<p!9^0Wj`zu;*}o_@*GuXtLDr=@xNHBZa%v@B1{@w7ZoEAX@;Pb=}X zGEb}Uv?@>Yc$!c4k7TzdyA9btk^M8-zmWYuvVSGJE!pkJZclaxvOALf8`(}|cOv_D zvOAOQOtuTzUC8cAb~m#BAiF!+u4MNhyC>Pb$nH(H8`$^|Wu8~zc~zcQ!tJpY#GHF;i(=il+XHqYzuye`k{@w`6I8}Pg#&l~Z)G0(r}c@v&DIloR;MLKu#-iek7+gIc>=KiJYIw`GuVSk@G7#ZOLgzPJ41XkkgTz-^g(yrxQ89 zlhc_TXL4M~>B7r3ybR^#T3&|navd)%yj;)A4ZPgQ%T2u8%*$|IM(}bAFSqhCl9y4u zjOJwwFSqeBmRC!7wUk%Oc=ac*mh)-_uR?g0#;be0O6R|Byl%(q_Pp-E>yEtsjn_`R z?!@cgdEJ@U&b)Tvbr)WD<#jh+|H13-ymsYv4_^1=buV7`=CvEI-FY*TH=}qvg|}0A zJB_z~yq(Tlf8NgEZ2)frc^kyrnY^9F+u6LG!`r#MoyXhxyj{TCg}hzF+r_*M=Is*R zF6CVr-j(HDJns^CXXTxZce{A^7w-~zx0~D=%3I`yIKp$*n_fU2^M@Tc6wp z+nU@q?n81j$ju}- zi`+-#J|_1GxlhS`Ms7B_&&hp3ZVtIG$$drcf8@R<_YJvk$$dv|F1hc?{XlLWx%uRN zB-c*vCvpqOE&SXAcn|Nz`vBet@;-?7Gx<=34^{b4jSt`Op*kOG@ZmLiyU9x;FPXeO zk@pXIr^!1*-dXa_ zk$0ZF3*=oS?-F^J$-6?{Rr0Qpcb&W&xQgXURWD{(15*kbjZV84p}8ushhZ(#oy`%Ub(u;0dh2m4*@Y1r>!Pse^A`vdF`v1ee<#GZxy z5%$N}pJ0E=r*(X?@M%4tHt=a9pEgl&nu0SFoTcC#1?MTaK*2={E>Uoqf-4kUrQjL` z*D1I`!M_yTq~I0>w<)+o!CeZ{D7Z&KItBMBctF8J3Nk3jq#%oeM-*P7@G^y0D7;GH zH43j&c!R=!DZEMHEedZ_c!$Ef6sA#lkHT~c?^F1I!iN-QP?$+!7KM)}d`#gJ3ZGK= zjKXXRpHujP!W;@;QuvC(|0sM-;TsCyQuvO-TngV)_(4b%5k-ZAC?<;QGx=sEPS?m#e#XhlL91sV^A#qq75l6)_ks?yXadASN6n~3T z;vaEZoDpZmIdNWG5EsQIeO~^qh^yk7xGrvpf5lC4OWYQB#9fgl?um49Upx>GMTW=} zS>lm+ES~7|D)3BXi|68n$Pq8aEAgLrE#8Q?;+@FV=h^f@2o>EThsJU^B!|Ot zI3kCmayX`9K`J&=#b&A4Y!#cMVslk&o{G&^u>~r&P{kIhc!Y{?QSq%R9;xC{Dju!k zF>>4@$E|XVlw*_}qvaSQ$8BsJq9CykwUXBTJw93&Y$6a##OOA zIVQ_-j~w^Pai1Lb%kh9556bb791qL!h#Zf~@t7P_UY< z%khjH&&u(f9M8+~f*dc(@sb=b%khdFud2i2fMvUZpFjbVYsbp|AU>%t)0Pr81*cW{k?D zs7$KL99NkWD!W-_!&NpyWw)s8R+WuZ*(jBbR@oSplgfFkoR7-osa(FweN;KS$}d#; z2P*$iTsKRcfY6%~h#|Dz#LlA5^K8DkZAYZdIP5%2QQ&nyUP$Dy>ze zjjC)_l}J^IQq@+f`lG6zRMo##ZHlT*RkdlV=BH}YRn1@3X6T!y`lgw_X|8WtsCo%i z|3cMEs`{6z{*|hiQuWfR{RnX* zVAWru`b$-Rnd<+k`pZ>+h3bc>{z}zfrTVK?e~s#gs{UFvSfmDv)gV|6mZ-r}HCU#G z9n`R+8vdq+PHNam4S!d|&T8nahAwK|l&nU3)M&37 z?Ng)uYIH!2ud4AiHNLLKH`MrFHNL6Fx77Hy8sAalyK0=K#`n~umYRI0CbiXMuA0nK z)9PwkLruR`(+D-)qNZEbG*V5Y)XYQ8`lwl7HS4El{nc!MnhjL*YHI$Cnpaoz8fyNn zn%7iwo0{)Z^S{(QQ7!hX#R0WAs1}FR;;>pAQH!H$aZD{z)FM?aj;m#|TJBNHy=u8n zE%&SC0ku4+ANHzMkXp@Dt66F_Tdn4()m*ijr&jaz<2bdBQR{7L9jn&c)jCeCcc}GF zwT@To1hx67Hg>i7q&5X=Q~0@B^b`7Nfqq)3pBCw7C;i+>KNsld!p|wAU!LgK^7{3z zeofP__w;MJ+I~>mJhk&xyGd#{S?#8%-Bh)krgna6H(l*psC`Sd|3U3rsr`>?-&*b4 zsQpiB|FhcvqW1q&`(M@mfZ88ahiU5Irw-HA!CxI_s6&7{1gc|q{q~!joaN*qr!I2p zDyMF8`a@3L<>V@-9&+j_r(SaEEhjfQxy#8zPJQImS5E!p)L%{mV`;NphMjrzvup zDyM03@{`kaIr+^ouRG)>Kdr7LFzhFU1zE5Y;}uQw*+;ws+&#ScB$K6`eT9qSg7tj z)xDRx_f~f|xi*sPGr4BV^|^W+R?h(S3{)>~_3}~g7IG^ow@kTTlt+yEOj92}^_i|d z{^~PBeFD@cP!*Ib)UUVt|D^sutN$1bhCb5J#~OB4!#8U9CJo=L z;o%w{q2XIJe5-~>YIu}}M{C3;jSSGpK#dI2$e9{BOQS+GI#i?AYIK-JuhVFY#w^g- zc^W%kV;5-bLXBOdv5Pe}SYwxH>{5+grm=r&>~f7u*0?6%ON!~xp`xklt zPu{=E`=h+=^8O_60(lpH&UE=8AIYbPe2U7)K|aOgQ(Qid@+l#oFXU5FK3~e`EBTa? z&sq7Llh1kiT#(O2`CQV(KQ(c=Ca%!L5KUaEiK{emwI;67#86FKtBGNnxK0x-nz&vQ zH)!HUP242k-tu*mue*FbPLQv+e0}6QQNF(Noh0AM@|_~zsq&pBUqAUym#@Dj z_0^<)n$%yD258biO&X+0gEh%hlZI%LmnIF>q+yy|N|Q@#N-<3tt0_5}@={Z$X&Ra) zO}nXSw>0gHy=gSm0ocZ!eGq14>@(Iuk~Xq0vmwhU`#Q3(4P{@)Fk=aWN>XN|Qju&? zkwbLa>rnHv@+)^jHjZn1 zeOL+`=d(?!36U67Ea4X?;R1GKlbyOP%+ZR>M!M=`a=JfPM)pB}XN40a* z`rdh@nyg+&nfh$m7Ek$a+0v)ZZrPSpR&wryZA+9-T7O6zSsPugSKr@WjY8~auSTit z_pI)F@7c~xo!xsoH|4pfJvZgJXWG|!nUhwU7Pi$&-?v}gciZdi+fQ5FciM~iK4rJ} z=lhiTp8WUy>zo^NQ&xMOZ#tVeH@+_`?H^uU*4&R=-M8HP`knhpVRcz!-+OggJ56uv z*_$cLy_C5rm%ZJ&DW5&QIa7zd%sErny_>6wN@+S<5|{UnY)M?*2W%CV?xVH}uk6FO z3NP>LZxvqM=if?tGlkoOd|!Sby?f$Zdf>scFTw=|2roPZ2F|=l7C7Ya!b0GX;|o6l zel6b|-Yc5E*Le5NzK9m6bugpxI&1n~=5^Ncy~Jw)d*sYR6mh+KAdh!c>pX*3NaOq? zUSpU(I>TE;?*0p+h}^>$AQ8EHF9;%XbuV;9*cs1j#h=_{=h5Q&5{D7 zYlF&f)P7Dno>U*W{9$poJjJX@BJ>~ftx4@?-0@!fm^)zwoj(TNR~&dNJW_#pd+pw- zrsF}6e+&#w1fAaCT-kF%D;~VrJ+M}Gn@+r^19>J+LZ}-jrdW7s1 zmhXFtDzzZ2MXOp6SkcEJ=CzXHpSo1tN8Iu%TKX_~PlE|A+J|p-2efS7lQjJ>8!q7E zyaE&OaauVc;N!9)Cb0iNHLO|Xtj(w3keVwGKMo(!HmoyM4BJZ8Hf4MlYVo65{Lu8j zY4JnLKf^*&)1Pi3sioqol@t;XRd?ZobzI%r`}<(`^(^PhBiy#N-&%E=x1Dac{0^(r zyyX#2ix8m^$&Tg zT$fOL!X7G9|DHd~9Ts|K{&3db?f2-cCFkH`ixSvV95V^_)SkHmOEhCvHpf06J^X(B zllu-fY%27RVcpx0;~VZf=0qwq)|H5Z#-1hiLa$UkI-4c$GA5jLrIq`#uA8Ep|Ng67ig^0!qZT%?9qTwuPcW{Tb?sVgF<$d>(Xk)dYeh* zC$~esU5Hrw)FVAU;&t7#<;lI1dOLES2XQlw@t`azr?$+lJPpp%t|%18Cu{2LrZ&dY zfrY_%4qpk%z2M-li;;AxzNKV?S{21yIXibXmt#%84GlRncNnvGyAO?7a`rD)DuF%0 z5n5nQIKoAklRaS_wtKhgs#aoFl_j*pap(cG!+j_WDt~{zC0G2+ngPZG+TlGU3+*5b zU59qK4b9{hIIKxxqMR;NSKWfj*UiH*QD-jHR<&vw*bNy%JI)NTbL||OorX?gmL1o8 za_!EpMPk%74BUp2pdVayr?l?m_?2tkx#m}{6`18`0c~>BeE@B8|KizFM}53L^4NQP z)Z@!U^INYkM$L7FkJmpwP8}ch`63wn#VkU$IwG^>?U^sx!Pl=o7W?>^IDXRe3pV%* zzPrF-k^6954DK!|XATJFcb?tzkRr z5jyYxb-jE0Mjxu)4I_9Gx=*1Vmd)mB4H8JI(2cBFYt1E_?v&eYj=3JSZNA;wgbBxP z?K2aVxgHPOV7a1%3G41U$BEGHI)Z1-?5O79)1(Dx5Md&*JHlZC+a2LJ5!jujb=ZRB z0c~|6(Z@e~8G5xeQDgs&40?}$_Ava~{K3o6xVfn?_TR_B)bY=T~Qwv?guYOSu~k$%@?@PRXX-8!ns!-4bUxh;9kz z_PeuG)T9mD5@vdu{R(Dk!B&QuTC;D#OtI{9FjG7BH<+n8dop)}z(IHKXr>m=s%xd@ z&fe8bEuY{a^SN%(8&3KjfR>!p*haq0Ur!X2gWJ%l5z z&%2PR;B6GM9=xr=>;wyn$%p>+B#<(Kt}OV>eFeiYI{*xb789>uNk z%H@`d+V25%h%k(s*6VVWu*TXX|F2pLCT<&V63s?48x@MzAJyXgjWri^-Ol*iUS4mj zRrfd6SeR*z^Cl59`k>LfWc_Kap8u}P==H|Q z;`PV1asC}zVdb?O{?(UHj2bjnC=pb+ya>Z!fQR)GGSFEji&cTG%)qu&WZ5QJYoi@#v&~NjSz|OY?eW zc(=dS;p?};RsFeFL5dqwG`_erUM{X{4)=NEjD6hLc)6smJsjr$0Og_jS@VrE=JEYT zr;u`}6aXy2s%c{U2y~7=Ql#X4LF)cH@cSx`yznH>2pscN$NW z)IAB;_7BteBGK4V{0H~h{mm%$ai#x`+hZU9oyzde{!!=0v5hTP>oUXT19ogrs(&_k z{qI@$jewXdZ!wP#H(tD4cRf6n+u;K%V39$&G90quSo+2;c<}=5`kU56ePeBl#M)ygJ&E86QNzf6kWhMP!BR6SC)PRLHlQoWLpaxrM_?kXE0l5q5C$4W*5by}AAyLF zu0V=5zytIc8IBvvcmyFzbwyH)0lZ`y0@();A?GrX^8i6|jxTZyAWqJkMs5OlENDO^ z3m|Nf`$&qY*p*7*0|J7fiRlV=7;IR*#< z4I(RWZRzJhGvKZOiWa~H^bqNZYs)wfnUU;@pi}}=v6})j;$2>pB)|qp0bzvRgw5zt zra*gUn~)hD3Jy>Rx{2UiT9N4L1laFq7Ihz_Ap+3@lrm{uQ9ox^5U>epl2<0LE97U# z@}#{({=jlKo4GkG=r7_qW%HvPnVtyX1SlSSVY<@5Drm*mdnzYAsw7`Wszv#KZ2_c*h(u3N z+N4RMv(Bst+80n9VhKHw)h0`ls7gmES<{YIk!zGfX$Dmp!AkD5lU14XN{KWRzjU|~ zmZs}RE>l{&;-%Rlvreoq+9yyHViMh+6)($HXH|mI%-b{LrPvCyDJ&tH1Sk!| z5o5=(Oo97ojwl;6dyb_}OHIsx*e~hoaQr)^09=1Y zDMUkRI0pZOeiN6-^9xgLgx5iK62!fS!ZSL9UQ)nk3wF?Xj0EA{EDcKE7C+bq3=`9O5YQ4bgGV{Pg>s3J}ZAu zaCir=h)AKGh1`>LjHouiU!?y=e#C79ex0kfFOor=K!;LB;J?mPzbh(7q!g?PIG(B2 zp+C0>%^s1vC*WvP?ToLZKgWhbt3h~WIu>~eE0cL#GDL1TzFHU$p{pTnvE}6B zun?Ky3)Ry2WAs4eTWopeaj6i6;pA!oyeM4~sf~3fH$y|Dhoh@ucrCg!vJUH>*(@0% zKb%-ChL@$EL`Go8$<443+2Pn~dAuP#7WoG|o~eS!!GnwQs}c9`GQ|b{h--Ms;!AUg zCwPV8LMS2&4|2>eMcl?G(f=X;;0)3)0Dl38_3%`B0U{-DO@4R-kE0hL<#7fX7r?)u z!y(m*MX6|m%nOpgdeQ}PAaFPY(s)v|a!dL;5Ic3b#YP_<9d65=c7 zDfNQlFP>q`Y9D&4<+l7UiE2~&o<$;M4gO1bcnZId*v(s8Gv)OeOg|WnojcukjoyR^ z!lVkGl3i`;`%I5P{6r6Capa;S=YGCBlU2R857_qu;{S4diobcD<+aUq40z+8aHRxcZ2>65rx36TnyPW25 zl#yNxQiWItmL5X65pJ5l&R#ua9a}1gIz@g5Bc3 z&0}p@ibY)_m|(UJ-WKlviSl6_$83SWYn29~-V)py&FGMhs!90dnJ z`-4k$QRfIf%zWIn^rN5vaKC@42I>sq4)ZkbTE_qC#r*M~otTZl08qbQsVd5baD{mY z=a$h34uJKCmY(1?V2(0tai7y0K>?8dz*23L2jMX@9QQe+5fUKPA6aUQ;?1QgG5b&= zxw%!$d6ZyojvsRjC7zo%%iKiqSku5v7E0JUw^1rUu|Ktx4<$qpXC`Mx!@mRiTTxTY zY~gh6Hn?n!zy=sUPSpi~RxLU_pZ#68J~hJ2Uo zk0`BlNX2dmd>8NcDosLd5EK|j=>IOR+%wyPeAg+(p$Z8%8JtV268)Vh`~5feBL{03 zf#|oCa_JMIq0Zd;#3rUmUb*}Up-{UKPws`+AJ`Oyb%7Bn!e7R7%J$Jv?~&x1ErKXR z5}hK@0t_XNxDfIfk{Io5Zo%S0O*g@YaRr^i*8&X<897=LRrNf}U9v?kG~quR7wgj9 zK`r3WfDz3aC&CmaMWRI}^dh$(^S>$>Lv2UgYgz~kj8RM-)m?F2d8CkFY95h34r~F1 zo*S_zm|8}Vw@>|+s<9<>qIX4Fq(fsyBx|$@9?ZwsU6~fKP>+$=nm+_XMlAXdWn8*N zG}L7zvgRuxiSZBpCu>}`MIzK^B(-LjAjA+y%To;C7XiN=Mu;`92slOoT0YA_=HkKM zt|O$HZv=IQ9r^~vK>DJ{@3SKzH6I8;j6w8`ECbn#;=esd5^DYuq!@?MUX-Wsi^9Jh zM*?cz5L_4!(Oy|kWiE>Sb|1M|vp~>eM54b^o=RU7{p~ywQS*fm$5=vt&3Y<(QR05O zW|ei#(fj24RiQNo_cKDP+-pwW&-`7LSYr~JE>nfA(G4Y+S1n<_QlBcWANXxPVp%iA zP{10K|Fe5?>Xrh=I6F~po&UdUE7Qz&LF)&9yK!qPe-d;U-slcWqV&4RZ>N#4nooo% z#w5BUD^Ye`eWa3*X5NvRD7CKeJ7q+uMuL!r*%e!l8!>g*NAHTRgMObIQLjn6wU@cA z^ZUd84@GT0nPBOmqs##88}b#{AL-_BZtG$I?oGxOh_=*tOz@MTo46#NKbU5tU>#;h z{uL>0MfcQZ-e7?tZ*wh*GyIQJvr;f-D3{rh{m;Oi)C>+*9hx-L%5s*eJ2-wlIEr~0 zqeXRA_!H3__g<6XgnmGAmaY?VcWRCsnzVe7?JQp>IKC6C$Vj0%L+T{mBbp6@FAn`? ze#Gqn{+#1BH_9+hpu;Gm@IPmo-@Pwqq!j!Ua6i+mGxXddEPGV0PQcx!**Umw=s7kl zb5ycU-aV;VJXn6nfO!$SKputF$-2iiD+C)4B{J8s3z?%*b&Bq3%{;+;LxM~(tStE? zGy*<;z8Ms(JcMOl!pdfzl#GxYk8c(Zh774OZL!zMCt(pX;}@ExgO3dbGT&maXP%Ub zP#8~c76=v{l4NRQJ;;xt5z^z)&9GptA!lYC)+6(=WQ07oEK@94cIYHC0{eyh7#1Nr z9@{J*Y&aCl{Db|Hsm90&2AAjGVcZLrDK7|QTnm;gzx0FgBv_%mP?C`q406xE!nhrr zH1v=82WOZb3;Y8d*9)c&6);lr{>hJT1mlJZnDRKoj9Bm==y*u8;`>yzVP>r4AGz^_ zX3=1&p~Fls>@#vK?2pX&#b()Hy`f0vSL}}PpP*)+_e+egm}k^j#Xmgbmd!pxsg^tP zejRuf~(Ki zGualJSFHMkuFvw8?GR7&T1%W?A2PMrhwnnx1n0$uWSM%{edzA7HMRN5TWJ}S&|RCg z`uEqFdbp^JNpJ@&F>I}V=nJD26Gfd==-^Alt=Y}r7<$Ht!z^b{%6AAQ+OK)fcMRn7=jD%P7PsQcV<6c(>7OR`Vr8cNzAW z%4`$)6v6G&Yi{#RLq8esFqKpj#T1@xi#5!A-q2Ns4#p?@xm=3Cw)L9R{DYxSjCza@ z^|?X{-!^v5cK-TMD*y9%qd)2`W|rCWo_zx8g8F&*M6<@y&}^Tn?~N#+curwuj1N{&Xf%Xfs|*6sIg&tXeq-SWA5sXN&dFLa9+i^;c!U)H_v zd$v1X>YH(XDEy;tsBe2Ao2Q2gKcUOjsh*llg48VqY)XFN5tE)x{#!g)%X}>SlCDYj z=D}OSJwM?-zQ?;a!QZs<1L1FV-F=%`!C6Bx-@@`w!XtFYiOs$9=|iAf5NuHXVYrv> zQ{si*`HUgREh%hNz6m@!qatu=YT!F`AE2>ZZ`2?FFZpRd=AY2lCnJ9Os&E_KE5t*+ zt{DyBbFiM!{1fmn-BDs~?^t>R=p3XcFkc()q5GH^-aD4j068bs6Pa%e=gp=eiG6U9 z>|7>s9xj-jLnMyD#k2Efh?{U8EDc0t!G*E84N~V6ds6fH;6l3M#NQ{}?<-caT`o+m=oOeFOIdlm8?-^6>o@{`~jx(dEVtWDTAz5FTNy%(F1Z#wxnc%kl1U(O}AL{BH&eqU7L z?ZGnNK-K`|n)ETzK<9y=BTYn;yle8ugaYjbJj>n@fAl0P{1q6G(*5iEoU(N^(0d@c zY)ew7Zt-rubKR zpitNJWqA5$U=t|t+8o(^)~O#-WwyGVERIN%bYRSYWSO?E2k~(aN2W#k`G|*)rvh1sFlJ7s(V%BHbCW%0wfz+~HT_Im_mK=rqI|F_=3=qp+ z>Ee6~SaMmXWMU5fa2+6(ebZICbFK$#z@>r*YLA0J9>wF&o8vh;7&$}pL^NKJDI=y63a{i)202eWx9dnYko`J z6VxY)e-HdHAFwQ&@>S?DB5!H`h%1{qr_gPbognv@|A*DUnX%_WGagu%@;_Or#*D(3&ezueR z1HsW9S4H0xniJ%Kq;o{Af$PPF-^7o-+kl00wf2u>d{3}KDIehrXKLR)D)&t(SQl_U zQ>)YPyel;Oquc`lXPa7Q*Sd!1J)xN&B_GH;C)J9($~PDgFZTQ74u7JxINw z`0PNe`J&4sQKD2&D(o2`maynIR!{6K@REDRA8WO!_sE8LwdZi=uG&A3v4Dm*#H+oj zvODsNB4e-yEuu@$L$Vi)%YSY>dO&pPeVDOp@=s_?(eD%MVV0NdGx1oj#l*4o2Gg!R z_zq-Ia7?U0mZ;aW2i-Zgs5Vx4E-m9LbjN0~{?T=!UT@!jZNqJC9OI`Gfzzl-%Gx)rjG<&yaS z;TH*Gw;FnV3%eDl#tKQi+}WztSV_ZOU;FNx*~aoog8xo0x{Wn8{Pca-eUoaen8fqX zVi7Zz*KpNWr`tQbLoP|+pY@{C*n@^ozV+SS)DDFtzJJ(7+p+5nt-ev+li3~eNkaeZ z7QM!vHEj5bjwwB+XrI#>(|nv=cTRRp?QvGbIm5BTkEwso35_9RDe~vk$29(VFQ$y` zG)VX=vP>wuV*iMX%41W0Y1Ccge}u(zW4#UbzLhMKtQ46Yp+&`pcfOU~Ce###9o~PK zMVqm!4fVc0-OsaA0zj$-8?0Ovm>9xV9r9_ULqa2}m7c7g%vf-;H$h^>35O4_+qMC*SiP4*-R-Q~5zR9Nd@Cf%Pt+npfw)3_p3|05}My1no( z&mdL*1Sxc8q~~7d8L7Jpb}1Ew=S_OH`0w)ASyo{6FOf{Tw+`MF9{j2AGkv^!3;a{7 zB2fP=$$h$+6_WKq=4V*NN&N`Y_)K%}uk;U~yAZpeio^O|q^C0%dVghnfZUa`i>ffu zPa$p3to2H#9|Hyf2YoA$`j({ZnS;I38OOju(81seU48Ca;!J+;we(}4An>4ng@*na z(w&*pz1K31L4qU)!z)hd$B=%^4D`CCHvze!hF^uMz76Th%%NVlj3#gpY%sLqgnk%l zbf&iVb9xgf2r?L0p{?&hdOQ=}`#GZt5+pSkSz)ZtTR>Bu>C+b}$h|c)uP<1Tb8co# zU%Vji+svjuj~xv%!_pVF%WaYhQXEXJ;L{f(iO(cw#=w6923z%~W|9kIpg-Y*qzZ_> zI>~OPqGyZeC$8d{eh_JJrlR*rdJO0%crc(sOW%d`aK^LuNk$Chr{rKnMdkU_o-Ki& z;)7llN%|Wkg=r(!7VM{9#T04p#TMkJP6bZCkaTmJbLp?dV5h$QzRlp*gKg7+thbcw z(t4ti&J#iBn`TV%uFLBQMcPexw!NF-Uinnm5SWl6{hfYJ**O~NJ(1kDMG~EsWTgnS z0wakNE~LC^$!_iJ9hs$twr-Nm^c7YLUn?{+Wa4OB)a>&t56M=!$b^Yj($vekbPrG~ zI5J>Dv(1S#)tw^IDie8eLZ)r`TWb0aGSYU!y{(0`Fg@B`NA*zLP@X6xnZArj{{n0U zMV_0mCz-yAAn%-7l4`Rhb+UFvTBRdnCM4UmNggwgdv;}7#Uec>V%z?Z45wpRe<)w1 zTSX&XCL-Iul9HzXvHoOzk!_WT^qEL)+a(E2i?ie@hVVGRlEVbC?G*_(UBHshGL(rs zxa2xPYWqe~pSEM&pcqQWi7cI+2x&;-Vj-G znh0zAM2ec8WOZaE$!@4mRFcwOc4Q_=Z73|IObE3}kkYz$#Wvz5OwaGLc11TpOXnuk z+tR-6W$x%KooU~n33$P$qwKBLJ`nG=(l~3Jc~xxLt$i{6)JpX1_pT&y9lgoF@jBBT zw5vkPs_j?VtFzx-0@iqBdR`PPx^!e5W_)@}c^;@zuN;KEz4GASE>d&Ty&>)I*w0^ty2QU-DgV~; zA}r^VNd1Y)Pw^2e?T`z1s5QUsnYVVG>S-CQ+{mP@Dl{ZRtQnUSIeAvq9Y~3r5 z!d9Lr>nxA7h;k7pxZeJN<=i&CFF-2OE_X@%biWZzZ7h8n@_UwvR7G=jYAYGTV7 zNxggZm(AM_)alA&gWI7|I+G^tyYWIR;Hc3;Aj&ty}YeQYME z=N-8cwlB>I-+VV4)cY=@5@IT~7qj_F08;(#|**;6lcvV3GZ5AI#xjGDRHtwZ%u*pJ}Et!PcVu<9v3 z(w!oyPMkRQ)T{bzANfwfy`4?P=`@-Tq*F3Af@83Gk-aeUsdpc+e~x3nB0H_eilR)x z_s?+Ntz4f@E7%uEJ;TvqcXmZ(Psw!(q}p(tH|yA)JyDrclAZFYNgVM_dA8w9T+cFj z3f3u`8pl!CG-fBwZ1gN=PDyntrlxUtHu=~>GZH|O=j-`M|$%ZJ80%zPi3a5RGPwGGDl!jlr1%*)8j+#gr-UF zMRQ=AT5Ok@`W~OmPRTU+y+n@KrYu`;CaPzO+zCsQ-HYYOZyK`WW|n)VGIgf&Ho?#H z>!%-V$~-TKn!dg%`TWxI^s`Nc=Y@*X)J;%oe&zJt%_R25%yO@3dKz#axTm*CWfxAT zzPy`CUB4Umtck$PQp-7aqL;my$@+aY3NGSqkwIXP)K_2E008FaH=P?eMpCYgF zM?u;x9Woe7=Bng=ekZ_vaJ$Wlg82#ZZ~ha2N%hV2X-jfBe+wWKGJ>qJaVTV%yu|S< zLXs`sr!$b|%H$sYN^mmvJ!LwEtOFU|zV&s>rGoPQUv4LOK_Z^4Ciq zawb0&@Eoas`aEUYgS-rQuC8x=K7U&Or7*dK|1Q7|!ZBM>eko0E;^*2Dh$o^Ae?DjW z=t~&+0skk!L&yZ8&FXyK^vRd@{H73&#d+%V;g?*6;+Fs@fH~GHvM-nU(|{bS6{(lX z#_$WM`TvpM_(9KU4-Vn{vd+uAjm_ zh-CT^i5VM;4&;aG0Isa^(E*})mkU4?B&n8s`4NCf-~ur9pyzh36_5CdR$Y4k!NRB= zvfNag@t_055HPJ>WX%q$0QV5Pk-XRb9l6-FPHKwD0n!bO`SN|EVtG#wyPrm@(@z zr(_CKf#RxiSpACg{4@A20_B!)FR(yW4yS+fJnsy;%ZgGWd>3e^%5}sy&I`_*?sB6v z3I7BRs&cJc<$0bNi!KZ$PxvbEu&O7vt>V1EjCGe2<$>@g;6qg|Y;*HG-wd|PmU3N~ z>&;Xrux&Ta3(eSdagB=b22g~e#6+VYniNeYwgw_YQDb6)AqJGgOx!#~kb)$l;Se>7 z#*BAY3S~!F0;r(EC3M7Qh+WE*DR3%o(|Cr^b&k?2Y!AGtVuXn=UlHn36n+Q1scM9a zzq!IYgXyxNTotYddaJf$<8Q18&e(Q&P+Eo4lsMN`q`C|#al*@>N%ds2%_1%nHw8#j z=VY$fb5S2fkcnEd#irhjDP= z5ZgsHY6R`7ar8ynZ}3Ou`}S*~p zHKz!oRaek;GNyhegcJQGg{VFyZLQ@0VDwUr;o)xS)biC>p z`WP(`{8p*l_Bb{8@Q_i}7Fv`h3D#C}Ki$j))rO8%eMf82oWXTU?zYX@!P-LxRqJS3 z+DUMP()j7-EN=L6vg!}okj70!l*VnFsdxl9M@8ux9_g5KTIaNPi@yAL+{X?z^}-sHWv!# zO@{cYsOV1cE_TguND-X|-o>oZ=5>c4Rh>C|$nC518ti@AF`#7yT^~XUoIS*H%c(>T zVmXIMv9oflQ#mmpQ(VRM%>*uo<)boa$pN$9uo80qf_|zWHuEgngw0y8vT}S>4_kPa zw!zt9ta^x)`eAd=;!QCwD0MsM4Y1RSBS~_bjb?q%nNmxow(*iMv(~K3IS+s?s;O5u zjb}qyA9KQho%S3aHkEZECk*sS?V+XT)iwoE%4{LcRBeya#zV54#j-Btn5ypOw+XX< zvV4Ggs(ZzoTC?2OtQ-$ut4bthqI@%K_9QDJ=L@J+eaUQs-UcBB&2nETa-M>VrpP+Z@-e&DZ@gTO}tSZYU=PF1?-P^pqI3C9J z)hAe7mkg>`pEPTy$3xhGv)U|=oK_Imj+(cZ#7nUwXN_6B4fsQ#H!P6`>srtPOR&Kz z9Q1`H-e9u`+F|jK@N%GDmN3b>{c5}-J9UWiRC z8mCt^tw6<9D&2T*<%Ap6`c}fl#VS!nrAivMj@fgz#jW`M;!{^k<(`#eUiC>U`QoQ4>-gU#$>>$x*Xk-_Tx{yN zQpo95jn_dcws;fuEpoNS>#Hh0^yA7QcEjXqRV%IHQ5Bz(W@L!Xa6z@Pl~8ek$_>0h z$pz#u>)}h)hE@{AH&r_Di6v{uUpB*q)uyix6lbVp;sr|%BBia5=KJfv1{Bj(ZsD;d z`ABJ-qXqs(ulb8}R7&t_C8v?stdCyuH+X%p_?k)+KCol}dClf%p})y%-r_8kJiKJd zA*7piW4`~X*CNH2RUY7-OKOpBHjM@T#;*m7FR5I|pDYPSeztDBCA7LO{xmp`rAESgf(u#d!gz~fnu?kg-m$ntWe5MSL=JHZA5EK+ zEqMn4 z>*z~!2Cv16udB4;BTG1F?t;CJN*sQvctZJ!{c8Fg@^!sRC!J%rD)hQiC5>*RlyG{L zG8a{xhTl_7u--NuK3H88sPYzFe(ktui1Tm|zKL#PQ-0&P5ciw+tbRxTp_X!UO<-8c z>Tl6=^!CvZZ!RsjWhGi9sgjb_3=AO-yIAEFNvdjNw`G1URCin16kSnC$>dUWA;U+j zql%wn+^;mtg(M8OT1_GA%-reC;E;e}&1xsBDbFR5x4wI_CS*aJnxYZ`(PDRG^la| zV{rX~_%BZ`mG{?5s_3wa7y4=01>s+g!vWQAtXzs7s(4|ZmR}J2<<76^d4iN^#XjYTt!5?5z^8{V|T-MXSZ7E`X4|PLwF38iS`6 zDIobQu$0q)YoJDiKc+9cNFFIimxB1HzUj2J=JWI4z( z#Vx!jiGX#`BqlihJ&+0NN&;L0l_QR0g0tVtF$FAaD9(U7&^V&K@Vz8co=Yo;0~8U- zwD6t6AS@yu4bNIp{XfY13akrFu>$xgCugo`|2Mn-+_EhDh&)k{>$y!41L(4> zBeF#Cu0nt*l9PW#YDS9U^S^2KC_oJw{nk@A3hpDTian$XpXH+r=HU0}Mg2NKWP>S)v5jbEg1yK;j5F^rqAduqzEf z1r;FVFnDty5X~=aj&%T@i5Ehqpa77ug;6(G4@JmWlg z2HF+!{{w3`1jK=skQ2E0^cCO?h-;A50rsGqNUkT&SOL$#{A5_4faa(3%EWbz{RCP0 zv}?d)%7Nwsxn*LyhJNC#3fdE3j50S@%;RQ&rhYsuGA#=zsw`=qEZ>0g(`C)lRDm{1 zS1b-)ausYihrL*SUI#3U?-L%$o62prkw%aRZ6Am zi;)aw53-iIh|E5^D-5rOb6|xornY zr)EXCmcm8pp@rwAHbIj1tRigz_(?g^Y=XwMTlTC@;68RDzfFLo#dTPJXokQzr6miF z5J_)Vfz?6V0d6RB?G%k`9+0ekpoB8lO68W3QHWd`xGKK}ai1nrRS=9Qr%6^_nnygP zDO4505!p15Uw#?lj*^0J7~WSg+)5*V)eoQ z1+#0&I>uJZ;ZM<{k>9cXng0u27eT_Xnq)4oPN??7chjvAm(l-4tUJ0@N8_Uq9XV$e z?(sTes;%*t>Gu&%m_*TgGQ(f+AL*fpj?DiTsGcZwkH^un8jD{>p1_8ZN1*ql9b>8` z@!E8EWD6HdUo&y^sE)<|p&KAl($|oVxN1B64Z4ZN|M2OB^hCru`ghiv@bF!H<^O={ z!$0x6bU}m|T86@vQ{QSN-jbe;6vN4690!L$hp*yq(R&b=Ff!ER3L(71F8@iar(9YS z8*asy(C;8@G27z*jjm5A@1`Gzgh&pDSD(V0D(zC%j&YURrzjOuPCc#|!ZU2a{nzdM zzc72Javj<|iz~NcT#Yp?8b#LO#?!g73K_1%ry+MQakW%**tt3a|Aiil;EHF~ngmxm zjsG{Z?o(}v-$%-04agUu8Uj{kV7iKmw3WFd{kV$!YqO*DLn^Yb&7S3#*46n^mzW2$ZNSLqKCT*1t~Apc8n*tXgO-%9^K zFgp%kNWY0N#w2F1$^8--wyAdM3n}uk6g;IJZ7{diCtY+*Dac|lze3=YR`kia#lBNT zF-kuz1}{|zozjUmnd9^c6p1QHSsc#y~M~!$dlvI(sPY{-;1Wq zQXx-_q6Ox1`z{x0DZ7|I%;iW%pO|Z3;hlQNO(R_2+ zeV2-+EF<$L_@8J*ADjEpr(NWs)M^oVX+m%-W$tm`pQ10yab|l5wk+og`fd~%DyLB< z1fFO`>&-3oDJpN6E#*vza#?qKx~b*Tr3s-YI?<+c@8~jAT64X`?&3*2RDM~}{32z0>J?ZO2?B^OuB$%x7&SmxG6{T5v=eP4GXsjNc``)L; zMZ&#v+C>shtjf%_^ra!{Exildc@mUY)#gm;`xbk$3CC6?=j!^t6tyZZn@#4li*6~- zeeFvs+E7}yoGeT}u!UId-M!1qk-^s?z zMWv)Zljw9gC0w6wG`S)-`QVoRs_qyuPbNI?6ug&vTQ- zwhUIq=C1d(7DXvfnLp1~tS{0qU+E?!|%xKT%wRSJP zfcix^%J4_OrW8x7ids9DhNC_cq8W4O*IC7~suI@TrOBu*f(QeO)}U}HF+l$U3PZ?c z{ui)*8)_X=dK48v=x4TPtg2Zjl!~BW1Wo2y>^-t0?7KFXQ;)iJ7I!aWRovRP)E(7A z_{|u>+@m@we)lRBM2Qh(nC;YI_-$e9GyjK5zb)3k^FLJje=_d!1Ow&;>=xj*sI^OJ zB!GHqPGhf;kHWqimWH4{5CR#=g{yqr>5&_%iSUEL zp{+vt-=Sg%spea-0EPbKQUR1GL6XVIZiEL2_dAvbpxzLi8JvRu#j@|2xltPx0{Hr| zrM9TFDo)m_-v1YBH$^=o{9`O)K2sYNzaQu~FHPej>m2HTBI|@wD3k|-raSmU1u&Q) zhYL`?Zghh~I8>+`!*)n6J)nxtaquhUSB3o_sQpxCwB&cW{)AFdloa7G(-ZrI91Z&} z(|@s47NtjsWKLk8WJXJUSLjbE6+%f66qrWX1oA5MyL5j{sT6k*=FPlgo+1VtX|DO@ z@ZnaV*;`t<@QGugk|VV>pBtl%P{5--!g94#VJEM(=9KPjbUE{yMmqR)|aWqeBo;2 zk!7!(ZT*V(V6!vY}j?*x35wnAJ~AK%{ftxU*Sf~IM?EF7*gj_kTt z_PcXl$sO}$xp0+nwXWA?fzCa&mBfc4;ilvKT^VHse!UtKKY2_Q>fZ7qWZsEzA%jg(=XooH7qO*5kTzit^f>Y6E&aMq%EST<0j z`M#=+>ver9GjI;34Olj0L<@Y?95?M+Did{9pqW|5Q5PX!H;?Ofjh1OSd(s|T+9%CP zOZy*Vy}WwO_V+Uv5E>}=qcvOn_p^Sx`j=pL4+3!gH0#UN54P%O_Q7w%-MzsxNM(tb zwR*}v+1n6zLd`D!YpiF*-0NQHn)=YN!*rq zj{}7LPn|v|@9tZp>hHk1bXCtbFtHnXTg*MMM&Ey`Ma6Mxb5icXHD>;Cti`KwncWH}*7cd!SonJu|AVQ= zQS_xxZ0K{V3H2XgsTRj2>myDe`+EEb0S?!fIw9D%r)H}2`c((pg2Xw~KGC0WeGXi7 z`r}HTTQBi_cC9(>Kf@9)*1#Vi&B^rn)TsE|vo2iKusx7CXVSN$X0QJ(R(J7j>m}Y_ zDEl&HP6FWY0@nTF6V`82?#rDJ=yR+&1hn{f(|%v#ghF3@4X?idYsK1xG^YSSEgC@e zU7e6^2nWlvtc}~m9IRfkHf%#Zx4g@e-6rweYKFDG2CiY5&O+Agsqyu1V>uRI#+xKZ zNPphYx4$OLf0U(JdFUX%^kbeXH-J9!ws9E}PD_jyZG| z&{?Zn}y$OEtj-9_86L!FOkkycZgD>~7l zvscC%I&l_jxP4$Ou5*btZ?!7hfLmNQn>d!#NjF!ZnnB_=Eo#pWkD)tlX<3%5$hd8b zlC#xgBb{v}PUfqEamtGrz~AW>tKxB67dOt9j}2aRvMS0n<6VxKRp|7iy|66GFcVm| zoh|B2uqjGk5n8Mqo9P@a(K7cWKZY(F%(jf#cjnQwtUNOxuV0RwJwJA<)3v11!ZUqE zV9|K?>zGWZ0WH{a6}7B2OJ^CB1X~QIJr<5LSrnPQJocz_)nYK?u|S;GqS@^7m_Vl} zZ8bd}x{RA`9<%MtqTTrKS@-g>w$7}QB6A!iUT}HaqSWl&vC+;KC7$MVay)E#>!R4~ zt+AfY%925IIwf9cS$|P(_R-jU=Tr&KJb}CdUDjDd&E6P$(OFbNH&39f2%?37IQJ@T z0fU_KXkHr|>Q2dvI=^`xZh4ZDBZn5SaikuUe4z8i>wU|U)EtG9bv71jTs_UJKJzpB~^5Gc%N$ppX%ZzvaK?b!9M5O%FehTN{}{3sA`gX!A_F06pp@4I8|D5%Bzc6 zmh2)^B4Trh8ZG%%XQ0LZ3=3X@XpI3l{Sq+g{wXZk5ORTaI(=UCSuF7qIhz=& zh@^s7Ecu5?&(ePAb*g17g(WxQOO=;2)rt0wC2}^m`bjqEEP8?8Q!2;ECV|Q$$*aTf z9h(R|I<(c9>Mhx8LDJJVHi@J0gR4Jo&QH;i^W|@ym&AFs zGxL*mWPC+hvn0VzcB+oVhy>O1SHK=DnXYreYfFn;O0}#nU+a{ly3RiDidMIzYVi?K zYPjSl9euCk%w7@)+v+Kq;CsBamsl<4E7KZ5m6J5liSXtoRm=E_wt7(GB$sqVykwaR z5+m@|1j$sLOfT6MI|f`EzX4{|>a4wIgRoVbw)V~qLd~rq+6Om?Hn%~wEvZm+tDW{P zolI}pHp9eFWB(1w4w#hAq<4Q?)EN$Z1kvhC#Y#HqT=CxC7L~|Bj))zVZtu}% z>`cEXqHB7Tznz+YQCrvdD5E{?qOh*XQIYn-{0G`$z8@Lw=@&(HaYuRDiQpPY$XA>Z zD|dI(QJr>nzKXWJ&xNKf8T*7Q=dSWmmG)=(d$n(Ux9h?)C)&sJ z^|XOqr|cKHtAA9k{bBxB?N7ds)8DMSt8^6IKCdm~tIs%|_GZIfqoYFY7xHgwAMm}; zh*h|&anz)JE?-U?*T{w6MIXhscjPO0M=&PR-U#0{`Pi0ksvYAq*TjX)>~4Rd9pgL4 zm`HykIuq8ulFzFx;3Lw+T_2|X5#D|^zgaugH?vWeVk9_Y-_FYS)o%02Y?jS3;+auz zr{tg2rnhqWXAZPK&EKtk!zVt~NI1;+j;qg|rh^#|_`@_lD&&9C?(q$3>?c2f z%{aBwwO3pFsSo(V)IaLCf6h12j`W#q;tGTre3Wl*$Y0W)_mywlP6lpVseM&j)K{Ld zJ?$cKvsYR^@;bHL>t??6^~_^lm-5B0XZ+#yFkk+9mXudYKH@0#qStjF`R47Jr`OM5 zK5lM*mG7th!skl!_N>!9Gs@rv{`Y)W?Mfey=K9RjyfdmFHQL|iM`};`3^dngeOou9 z^by_OmhYrpQ!wGpau6{h{?) z()s_=>Vn>4t!hL-)Lklk+*+!4c%5hdiPZP)uQ=%z?A1WoD}QVKKI@7dZs)6SdhKnA z7P=+f{nqVub%0kx(%!$@^k|7&Jo~J`72=e)UTXmH^~PIL`@$;3-88D*z3%~u{?%;X zfr<#X&(+3Wac90N?X#_Lbh}(_*7TF4XH`dgePxa(e}#45a4Y(0)4NCAmaF-_gqhN$ zuYBEJ6-sVa)hXV>ZPJN)$iR)=d2S`utzH=|(y4m#f$O_n*N}Q###iC)TDP;+*S#EC z7Daw&^+Dg|GkT~%@$TalMs7HtWztvO?t=h-$G2Qc)l&%M>9zzqf&O>DPWQddbWgq~ z9Vp!GUV*FX_P*WLcjg`<5Y=7emf*ddaZf5xsC!?<3AeY^5ni8}eaT-%yMroBe`V^P z6;^Jm-g2$R#PE&keD;mVYRncXd&aKnZCm7iZ`@kFWsA)3jFZ*dw2y^%YK4%6DoGQ-Kg&Hy4+%%8ZQ57JxF5MyX95i@jBG6Mwfu#R0e4>c9DQ zTeqz0D_*88(J5bLKk;?jSGe{btMY8-H_?bNo|x^Gs?zoGYwDn0<}*=`(4Uy-HL42p z8ExvwxGZ3z6=62P?d7Wy@{wrLq#lASg-_6WTdLB1^BOfNhXfyOi;$Z5t@lIKU}HS$ z(e?;FaBq3OO5N9$aVKqAJVI}xw)&QDPh-5mBh?6viN4z1r0G6Cr@@l7DT<9nnY zVK6b-tKd7|I7xXY1bDksHLiIwo);EhGpKdA=vwaQ%06f;mscA)eNoFFr8td!CxRSOkH@9u#k6zs>dfN(5 zjOyH$i8sArRSC=$*plDGgI>DVYMQBNjM?0J&<#niN@(_=Hb7!F&uyLf(5ns&j;M^*z5xU*HAz*Vm{t;oda&WTUl?tNQT>pRsrKxq(KQkZzx8&fs! zGu1qh6}N6lagN@bTD972Mva3kZHf@Qe@4T{zIW?=;%%S6UgP_TCwva{>fcZL>=V;# z7I8+-$F^4|f_OPCZo`t{9Bkrj?~N)a-y()tdYs78_BlRqQ=C_&AW9@RG#>1ytzd>&ZIl2}G z8NLfOYyDHCcVG>R*s&?EWNwH$dKShT7LEL*=@N!Xp(#TfTBK5RW&I!>c7-m6o@{EX zRFbZ^pKM1|A&;(j~M8_n>8{ItOo>RbN|b_BO$-DFEq#T&O7vfsS^uPXYXseO+CO@t2TL{?sdpu>+Q?~ zyz_GXm+J0?1denwZl@m*tu>o`R3{uF!`5#CdR-?7)qlP2c}T&?{YGFp1Z(wzWcuer z-?HyFpU8U4Gtb*E8fwChX!=ZDLIg?l->G{S@@OQU`j)pA8>H3m6oPA6-cV~0q|pDk zZaD@>0kgC{#|{KvR8;p>XY01ztsta zNU$}VmW9Eo4%vUL?)Q+qkvomca*-;NYW=V40z-P(D~XRpB26dx`!nha{&eBN{m<(T zgw(Qwn%`wU;sruQvp*pua%7V6F8z^cByN(YKdEk&E#I^(ItI1@lREt)b=VLm_LU~nj2Qm;Et5w5 zGj$RnT5OM|25Jo7yxOE*|ED^GkYM&eQ$t3Kz`W+9Y5!84Xov#atSOGV1exDFsoOtV zrxoJKe%xfAG%qb5b&T_J_*&cVXMl1+c^s|Z61AW6+whUL-xKptS`r>X_1mLPbG{6J zXj4A}UTokV-u22+l_O#;>M5?Wl@Jd?{jR8MoM%JlThvqM`3DN3K5*2A_A+mgT%{@n zJ@(euPTw4E$Z(abVSxz`ey+9O}dJ0K9Hzz%1ABK1g3q3boH4sjk1hqo*widr4|-1;`DRw7toAikbAN`SM{VnUi% z81Sw~N7-_A{r7gQz8S0>SLnjIr2lM%ox(V

    aRcfDWK3y#N712ZPMh<{ZtcKQ|jMzd2^ z5f2U>ugYy-*gt)j?brMwvxpamjo0M%FPxs9VUISy$nsoASBzKUHZ53Bd$wt%d2XN^ z#>2R|3)iOYNAeh2>7F91!dwH+?<1~_m1IvCeQUfJ_a-3guFVNDbmMqoK-L49I>%rnm@$|}7fvu) z5#e55cr?Ar7|fsxBxtReahDearbXGS=?TzP9JhJFb~=lFV@PO0`7udrM14W+aZ2Tg z%!2CUk|4OcZAFTEcVTq;#fWDkotyw$ z-MS*iy|vIYT{$w?NT(zSt?IAHaUU(rPfv~D8WYH1IzVRy#l5lcV!CLA-k3mHO;Z$R z1VZ4YDt5NnR}^_IY=}D{7h%7_534+}$-b;8VBttS2zdbe0)Maa#5TLAc%6j>(Grpj zOM}-tI-e_+vs#owm0u$a%np12Qk8`cM} zcj~-QEN2lz6oDwfW9>R~icuDR#4PAT_$ie!o6gHazC?M5DJ&WhYdO7{;Rk7eEy8D2 z#%!mJEE0%35MCHRBGy7X-wVocCVE4fVK#6oM$&p(h2c-sf%w8&5maox`Lq}VPb5G* zQL$Fj8jQol&5+%&$LM?;?aN;LjClwS-j2z))-Lc8VPrvY2<}epydepqC+s7l9qVRZ zmFbF4OW=lb+U)ez{x^;wNrDAW>U4OQ)+yI`3JS*)Q&Nbb-^#xbHU1RQ}7h1fdt zkeneT;|Nh5;tIQiIEbyY2st|>&Nx9dfq)qi0#-Yi|O1U zF>mRn9;nhz`}|C8Q$Sg$q>E5p)KR7O9r+pBCV;aPk{&?AP~gk9eSVfU&YP!+NJ@qZ zp~RJ9FIR2y)@fpYk2E4LC~t89uw{$45pe2*m@Q6jiB-zpDoxKwd!e_GkFDJ@rcX4D zgM8zlQU$>+y-MF(uIVA^EA$iUu{~%xDtV&;qLD%AD;?j_ORX~U7HYacx(z*mx~~*l zRHfl<(liGY3|K*!U4{0>Hg%8`0En5`0lwat47Y*gV+?XmnM<19-Sh$)gPKzUqorBX zVNEOF>yAhfWiBy98&H|6q-JO;3Sb$6VH&XRERrv@4Vj6SbuvtxR&Sz^&O+&`+?449 zO;1U?p*H{tH_Qkz9^TM21xrvYBp9ZL=nu;R68;^0hiHPJBOTd+E_4D#NTp$A0KO$q zno0+E)KNo>h6S4jVXnwK$_E|lQbII_6-b|;J*XhXe!Du#8VO%j?cZ6K9HKs~-}IRT zgbi|1nVTA7Ff8BHKw5&%qd+{;4$KrOHLXHLQSwULcjQ}cf~S#?S9g}dZ<3_1I{L#e zk;Jb$jKLq0qvR@cE>2| zp_NDvbiHF#(zNQZM$=nTBy&^IusUrUz7k<^ z?!qQHmuT7sycA_C;)v=q%X8;9$+$$&WbsB6kfl<6W_2!alY&b;Z9SfkB8U)ERkNHm zc5$Kk;9Dp=;O8-F)_X3MZE)F7JBbg5HxTw*DO>MiP1}J#Pq_)-s}h}FCJm_iYf1pT z!D`RhGI5s^G-G@?WgPJu8=Y6i<6=d#!A~LdR0Ax#&Xq~Igwe$D8WfO~QVp=0HFG&Y z1MMe@F+9$ER>{Sd1|m)rGv#s1uJdIwE|Ih>N;Lc{X54xfwuafis*YQA<&`P0M)AuO zez-738b8a&@}eo>ttcr7VXU;pwp{;>tUP=Pr4^o`B5k|vivN0+D;`BrMZ`JG3bShQ zXDQd=4l0Y8{?e>dG%5TbYT10-S$}cXaheexhg`aq^fJjwAYmu$Bc`SY+WY1Vi; zLPOQvvgRBJE1jf?;pwQ`7*!I+wvGpu#nms;`atD4$<)O`~%VYd32igIAEoBn^PUWHPsiH9+mKDtw zpGCO>H&p@kpTaRdmOafCv^hP|DTW#VIn6Sq$YA_f8GK_)HdF`DX@Y4)4nvMAcQ_QL zf-f~@Y%Y_JEQFL$*4%lJv=GjwFKQaLwVUL%nXp^4B81|pPNH<*&mtU z+Yqu=8I0PdEX1+z10VGk6{)y#X2FV`$pl|1Pzm2Npy~iiO)?cw^NL`;G<^ZZcB0_W zlMbNxsTGQ2zo0CkL>1-j0HP9NGeG_`6$u!X<91>chO>#SMX^O?DaqRdD776#Kr6{u zq?7W>r3D#wFa?WpQo6E(E63T!{)4GYrejwUqf|Lt*l$1_Gy$_hS@2^&`0lrM090kh zSJ0=)qL{5RzZtR%_MIgmf$*X9yow1~aO`(F-=39{V%&pay z705uQaka&9CBwbcYNhG`aRE{n8f>VWM`J7TE|h8!6CEb|80300(IW)Be8b`Bpq zota10LU}4Z-VvLzV9XI_7cgtd!Kgu{$M&&V3uYW%b}BQAtboEP#qZ!!7mPSU>^x?r z-OKEHoAm_u+*6o82wSrcW1ixH$QB~(%RP>HLpYiJ9`n>1FlSMMM{X?U8$mF8BW5#x zSAHq<=_iaeAuVSkcC*E<+|rGNW4T)~M+nby>Mg#g5>Dp|V#Ek)IeS#gEq9%NuaO&o z2|l|ATMl-l5gc;eG4}}L*TO@Nj$!5WzJUP+x+X>K_&_&z4F6(q5DsYxA<8 zRFvSE8;>bEJByVv2R{+~sRSm8kdnPYMapJt;bF*AyIdEHXD(G$%4+L{!?I7Ka$x|y z@5Efhf6;qtfEmo)sd~|J>-qO4xyLZC2uHJHoxbos-I==|bC>Wjn``$4_4EZMj1aH% z?fhZ+r?I(w;2%pohimg&{$beDUAadvzZ3Rla~*%nJuLP#AXg6)NLW$aZ~NPo!@N&z zavd-Uxm@cn22YRXYG4i!?&loGzOnf2>|u$gILsr$T=s;@8{6NC-miOVk()pe$>G|b z%zqDk>XN$=nTW^a*d0bD<5gI8r;tfZOtsx{WGYjIV;7ry27{s4`Q(x?=if^{4b4Si zums1PLRBNHlNa90K0Tc)gpnX<<{VUgV0rTVd+Dd)xiT07LQqb>>I18jdGF<)#^nlt zU$A`6cGc6CU(UUkdK#81fzcv(ak1iswusW)-x@avU_e9pt?)9{25LDV|vx)ex64~-JNf0WAP*d7tQ$}Byp$)!d}8jg-C;Q(tc7HbQGbfco1Jl z3XuYbpuMC(Xb%FMd+^|}BlEX3b`(ibkqku=sl|$AP-$YOmtsCtoR~4BSO=9SX2BIn zP=qBlTd@=_j|N9FlO`1D2J{7d<`7XMdnjKA{ut_G%$y}xDn3rj z=g~p?s50Bh`{Ce;&8j^!pO>Sz=8!#Y+cOsUedL+-jJz!*8Lx&HsZR>zf}Z_d=_6d{E5m zCwSkWU^D!C3 zP0%9dvSdT(Ka6qcHnt?Qnmht;Lpz!mk_};@TiF|#3-atG zFf)c*GsYY%W)|EJ4Q?{i!R4YEdp$Fmoc=2TSwIkTVH`i^2pJ1^Qodrz<>R>iFDNmd#|3{5egx0wV%-G~$MdrAHSiO7 z0haYFJdU|e2Tz6jG9fz2VCKpISm`1~Gwaxt1%dDLR7z&Hv58=W3P%Q?mZ=NK&BD9f zG1)JbuGvQOfg<+5DCA0|5BO)vfE)*v8f1S_{9yeo^_)Wax?L8fmUhWGX^LXjYAJhU z%OSf6rMv8|zk>26n^02jGRk~de(nyV)rTD zvkpk@k}v1|VU8avhFg!Pbjg(q>~bpguxrR!RQzf^p4z2wY~4%qQVYAJoD@Z2Yw472 zvd17V?Mhw#E{yS|gdeat8np(CYqJMzq6PjqR63tMV0$TXmgnWp(*1S{%5kJ^GRH)K zFg|TJlOwLEfp;g>NFIZ|+*NwS?)Mxsn?(qSdH+vx*|So>LVGHLiJa6~6(F6Lazqrt zG!E&McYj7-0%KdDsqGw&c5!i;oJiodUT z@+SK(del5#*a&-4^L3-`V%h4- zu9kPG2l*bT0fRjLL@zr~xySNO#zBDxnkP-)FFp~@mQgma{8xJXK;xvz`?)7_*(S=7 zmXp+<;@C7hMtR=yCp2Dp!kaCiENUrF-3~du>5KOJ;V0;9TjeZE`Hb!Sr?-4De9w7; zTJyzMsN4BYt9>bW@+$iVnx4$n|6=lFN|~Mt0^S?mi)Q;Nzpz|^e?zZ9<5A@oR#&p> z*PT}Sq71l;eRiI*mX${)SLX}%Ns)4;`7gfsQ+5wJ*nEIo5BmozK5g(t{{4$=obAf` z(^_B50DGoe{_w?0@0-CL6Id|I|Lws0sWs*N&GvoCleX-H@15(v7;%EdirBYpU!>mO zeKMN;0_|!3m>diHw)KnH`&&ch`Hx>~&riT@b%tdn0?L8Mfh9fd+ZaZoFb*wL@xG= z=aUyXo{Fm(Tu~sPSC!~^LQ<|c-tQ#YMb`D+`Rf-An!t56W?*-obje` zm+`Azw#UxAgkMAK@CCPR4lb9jZnHg>_!4?i)V@rcy3ljpKr%q+fbJi_;E$GN?mZn<<9S6Kg| ziwj)t7azBNlk%I~5dkpderOF9$EJKSdM2?c#%1nmEai*X&mgv}4QO8cNuFae~)ne{pQO?fVNiVs>pNI5C@ zf&ZDqxdWSOT_%hBtskVGRQSLHt|)B(dx37j4?53+H_=PBTbxe&vf+d1Ih@Oi<>|~X z>pujaOK@JX{wDfCB|sVgCX? zR(9T5y=0%o?KF4cd&U96|KX1Vc)`$phObb5u9%SfsAcSGA-oN zjYYz@k3+gBWoMnSC5{%C(-u|7w{`td7JT(_#-a%D&r??)XBqPX-TWOHL@c7Js$xs&t+&kv9iD0qB}7u5_VWEQ^0N>6&s` zOJHvTgt*8#!NxQ*dOf)4+1%ynoM8RGu*71{)_Y)kZT33v-6Oo$R?pdCkI-wIaOXpN zL|@wqJ6m-@^=urRcb8?kBv>uWeT9wh?(!>3C|;o~N{okfN&FSiPAJo2y)3?F&8s2j z9$n+w>0$jZ40%r4-Ld8%FvlNkVt6$~-92hz{lBpUi^cHY``Ndl?k+Vx{w=H>#pm&V zX0zS**PQ%Mh8*DkniWv|8hi?YOUVIN9nA|OW zTiE?TO@#kvmT~c)==ipfyK7C5|2tN6@mKt(-z<^g|XKu)fRU7@@VE_keYb=;t`l##ShPjxR`_Q|hzzzsveq z{M@=ARbSx*PoHItwSPM6La~PRft35QYdvo>>jR1Rktf9Z0&4X916kcyZ`-~-b02X6 z)pxW;!~X#5{?!wJv9B*INS`>SkG^g7aT7&Y(vK+526X(=H9b4DmkJWMYvhAZY5s1&oz9Tj2 z{;sS$R}a}fN{m2#7VkSzW8xpln!NhXHs;J6{4?Ux8C4p=f9oaUb=on1<4cK0Y5V>4 zFC~4Xo%T0#KO;`F_SbPIUa*Xz0y#b9@6>sPW@@#>``M|6-g%{@!F);PvqDV*YsD&t za)sYi!+7kE&Q~RL;)+@{|15RvVyAA2pT&!`E5fEG(IT@wonf?5%LF-7gGHHt)5z&G z2`jBkkM#|h=*_b)$BuOVPRp~>%JSf8P>xoaeKxkY^A^q3sxs4qw?Q>pW43QByz>*S z$Eq@GU|oY!H2UA|@mpH0RdCh-PXjs{JKOP-91rj|V57BW|B}X2S!V0v6v5~$W6Y{E zl_qMXkZHC)4zsvvmNn+v*+$EW1a8S*^}_+LYBQa#{TcFjla{QR5-YfwRG#bn8`-HRhav z$EC$@SjNs4v3@#YiCIsUQ%R8pEmvNeQ?kVNa)cvD*?lXS#=Wm}`D zFiDh-s`t*;e4>unhy(SQKyfsC36t}w?6iQi!Eau9or@YTZXYA^BD(!fS%ro4lrq{UnQgV-wdh*m;tk-V<$x zXF}nC7kg9Df0^e<$w6Q484kMDh3dOToI_lr zB@5w2l0?{0bG%Bm<$bv+9FtZQ^@ijN?H~EwujGkAdq24joWAQ zE4?14UE~2X)~fC8`TMo+`W$U;&%DSxqqioJJ=@wdzVRQGZ?Dh)raj{;-nfOlA9`2& zD59N~-=dxFd!ca)WxwFvZAYcrf6M=%{k!kJ#tQO&*xjv1#oBM?zt+Cx+uisd09n8B zIQb3quFg?Z`}O?i+6BJ%8;?`o2;S8@D${;H|Fia6--yNu@*CJ)-J=rick~{N4WgNEcqhxz^{)l#)uVZ5&*$5W4_2b6&a!~Vj zY%a|FCjRkl{*>3_^l$PXm-2N1Z~m@~XRO+@wEcWL7=`IZqG4tq*S9CR62RvX5UA6sr{sHY;pP=Uc%m=(-*pHg+@A6}`am`%W z8KE^?{Jr-bhWp6Vo|K=uhKsqQ2l)bXIAo~avyWFl-KlA!Cmi;$}d~>al zz0aY--R)lWxYz5Jo2h#he(>Xr>PudFEq@DP_j%oG2}pe{e~b5rI)3OC-ZGx@TJDy> zKBo!~w}$FPudglRsjn3R*MVC#3os;*;w9W7ouVfj2a93w%0MF<&*%b}8{IPxsD>{cZ|AaU?yNKoMY!PrJ=ji+gD>-AVT(17Y2}Dvr4Q zUTxO82muA}|4AeJs}#`Co?f3@`cl8D0PDO|E#f7|G$w&@255JW+o0Ev6gJLlnH;|H zlVrD(8_xG<6I;uT?sK{I|J}rXm=rGYNxnO-LcmS5THYJxrhI{<;=9>R?Lx{mUnw`$ z3&}@(jodUZq<-+_b5q(!67yAY+g#BG==5^tSIDQ$-MTg30 za20t#A;0oTx-4R1I;Y-S>EqYfLB0$#(TxzFsOWuDb=P;aF<#gN8=*PTQyu0@Py82- z{Ag2z&IG$xrOMtXuSqlG5dWhs5k?bVdc~^LeO#OFP!I7vQUeNkyjQO((5I*APR1dD zN173)6N|mVRWd#XP5+9IA8ACGOw9GlRhjriHce80nq$+d7@zs3pVWAzm$yp5N3=5TV^~q|I&oJeW*)nH1!RbY<3F9kNQ@$9rxq{wTRX2R;$;&LFX$4%hu2JJrpBK$nvKrRKD9tHPw18G%o{v_uN9MB59JaT}r?T-E zVf?A8$2YiffZPE42P}>;n3JD)QH5(;Ss$Y{X9nOiz3GQAR+?z;wXLGJuJA7%n3!5~ z&P%ovCB1D`YjNwpAaMd?MQmx?oYchK-qETTzMhSb$#Jlyt#e`%w|aZ3Dt!kVA5-Fl zmh|W3CLZ<9S55ii8so{!&;yO))hfrO4lwpr>m8SS+o)fyaa`stBcj^$xPnQeNHuyw z(uCm%BH1g#OOX@UUZ?6J@72U*?3`!si)v4=)r@6PV4zpM=}bb>S#g0igY3aLEr#WF zv?<(acro<1p~EdtQ_jj^1wat{dqTTD6C|{S3%CDL&IScP??UB&$H?c}%FpaZ+(0@W zDO5Au8+vp2yFuQKx*_g(qR`kdJal}xtL@mCSMVDMN8dtKLx<2y!`s@9CB8!55Oe(h z*uWlOUQE%I11!2Wbbzsz?w5`ccY(F$H~I1 zP&3B2jedL`I|}z2-U{s=s%ZJe7Z-%yA3EOhCgrZ2pFoFW;h{BF9Gfy@)FELQ6FN5> zOPLY-S;3ZVH6s2%&#|d9rX8Y&IJRtyQOcTeZVPoBDr6cZ&j@u?8r}%)7%FTrN)3}A zUEg6{Xm6ModS~ch%Y&3Kxlw-bw0^*_Hgs~RzvV${n8GLzsEOGA_p022qdFbIhV+r` zjMHf|8%9M7aiJ?sr!!~Pj|LYegsilD6CG6vk_H5M=z6n5){@}ltvaa?UG~wY=hOl| z1N9*N{)sxH5YOiC6nQ?pzrQYc=p*BKdV#0`E{La}2;O>xM#LE!X$Lmc8V14obL*~! z*pFObXrvzysofsL*Pm8*K16+FALDk~0pVKXAmRTI$U(gQDRmhkG9&to6KQWZ)EWf| z^Vk(KXDo>T0X;SRILm|= z_~!4-7{^?OM(R(>_CKhb2^k&HY&=AM1pP%9$5WSJlQ-(rLtNQ+nhs?=;*ZprH17Xe zClg}84r+QweZ&{3KB?dTxy~dcl0Dh*C5#I%8RU-lTu(&+hdmfQXAi5?W0&W7f}OCO7wch9tE7FEp`Oi1k63YwO;Sy$6L| z+w?*l4hr?OhKC$FDB9B|9AecEHE4AR*rehCL=K30%?TKK&AgTDDpM)qai~5z>gx}G+#^{D z^VnT~H0n9Wedr!DFu6y%QrP1_eMHn}j`7f+?6^|M!?ivr>K!L~=qvM6a*s@AV}zzo)JIMaw8V%` z#nnqiDGWVl79`Ir4cJEA<$N4^-cpcipb*S6U|DY+mCm^^q|tI9rB-&zx87;mtmQyr zEizbaAfR3^Dv;AXe7o)K84w^u4IHi4h&sTzKYXI?ZDK7dSYjZk-ZZKRaOioy0gw8) zC{K1=a;?JDI#4RKib~~V4#j263lG#r4Gza;t!1xmIhn)Dqcs%WaR&L?VFjI#RD5<;uA;e5mbFVkBxxeBeaANmL|fa`;_a%$a%k6ynMm zESnIu^$PI@`&g9ml|(=G{wVz`Nu%u3QDz=zB-qwbIv&KlrWh))(^FAS(^uH0%}cyf zPWANZDEc!XMMGM(D&wk<#zl;$Ai3dY`oS_Ydn>O zTbH1?qR3?|SWTz0MVl2eaqEHH*~Dcn_)fR6vzisMa6Ad$iSg5g-P1SNbP7&5!Fc7s zLhuMZX;pJ2W?^dNMdRu^&~@AbqK&vUYn-6DvYq>FL13Q~4^D1&x{Rc5tXu?qwAgh7g z;Awixs>m922G#4dgbk}$ZV~6FB$fb8Yp0PS1};58WOe%rA2)p=Z(3`_lR-~Q5MDK2 z5#|;w)J_MF3^M5H38JfJE4#VJPG|!^(#BP(6@`Ta_G?+@1&1{7gd*U|8F__|agghihbcJn& zAI3bvXJ1qlve-vF4tWDR39q-wKC39f_yjcafFg+J6OABXttA^uU7P{g^uIkb)r*#vx)1 zWF96D-;RmGE5gYTWa7?Zco{@G(a{T@4-rpv7=qV9rQEQl$$v%-I-(057sQ9(lBVE~?HA;Smq3gUx8{tetw2K%>|Id;M?SDZ zW_W#5GAaF6UflM5+5C<=Vu;GHTGQ+A$Od@_ebA{cF$6uV+Vq?R2Evd*=zd3V0>Tb! zHoXH2>2YXo;k3{iFQ#LF*TD_*G$oNz*LX4a(zHxdFpQ4oURi5iX8}dbrA+%ZjeL*& zA+IQNlR?q?f6j?56P+>Vphql|omIM^;g(6Am>TE_%hXPlS!i6-8Ep&|>f1!pwqD4e zHUM6_2yUhl`yKTZkrEJQ*jS4n#cVJlk_&1~?#kqsh-=vB&;+S%iO88Mo~!@?Xa?r&-{WC@FAZ6=|Doh5ith9nIzM${0^0{J_Q0 zXV-9XEqOpSI(6(2ZJs=Uy<{=V!`eyPk5@p(;kOm|ivVSO8b3o3hihQm@iqDWFxD>G z5&Z8IGu1`X*lwVV)hYWBw^iM(YA%5Nr_nU=rjiAZlO(@{~L$%Lp zRtk7%Pxxn*KHFIppq-Z}B5*m3G5%Ek7?jn6AB4x*&&sjp|4d$=8cW^T>oiRWFG0~n98!H~dFuR_G%K7YgEycAA>OGzv^teHCeMna z3E)L3@(37SIR}qHZN{tR*p#BA@Txi1hfzj&%^chJC_cQB3w|R?1;3fr2JrN<<1A@x zGfNj(=@rak`j`<*=&xWlj+O@;@+%||QHG`*b!H{fPZ7+TQVexN#n~0iH{`phQN{QS zLo7%x_E5r5bc=rh$#t7Tb=YjC3fUf+r>yC4Fr{t_s4#wEijmckuF7|I9!#!N0}gqd zsYeb(0x;!pFttuI)Reu*6ei0c4V3?tAA`L;ChR$;9N7d30*yO=s$+1>N6st%#KtR3 zUa|mER9SxKc2d+Pjy8Lki6+}30i<%+o)Wc%W60((QESHd%FgY{QEHq5z^QJa=+<0) zjtO%LNw?*iaW=3;$$rQe$}8Cm=rwFSihO~-;#7YoN(rPJTbTCbJfs%d!;!1Q!7_`G zm5Lt!WsE2rjxPdOnwX74<0^J_TUo7{%15$WT#)f@bF% zDmfx>sw)`_k!&o}iBg1Ewcuhop3D~%&%b)vs|Y%VV3m6TvZjzdlun<=@DgltfypKO zmVHujkw;Y6-6CY&&y(}g`|{xZ81LGaC0#W)ZynqlGyi#b23u~)7V#)^=VvjHn*u{HPb#;5+d zIv8IOivxmija#qM` zSG{PpHSh3$3F9rQ`z?PvcUbD_$=oc0nbNm&hxwlF$lZ&%Md;41Q29j|7ZC1eA6I!} z^V{Xa0#6-t53RxCSeq|Kz(L0l=5k^QU&Nlq=kj6%fH0O-HM0D{o?~sln63q{WmSx9 z)|7J_!7;lKV`TkB2;{795IV98Rg7#;UU|PBkZ^lU9^p>*L6rwKCojL}f9jBX08>kt z%%B_(w$him#68Bl{vb41j_=(iWp@N~ zp0elYuKjjLRL*DYiP&Xi*I=WDEk9W5fjwW)B~$t(`%hwmyeeQWZxv*6ff^9 z9nZdLe^b7Eu~a%c!0slZytVXFcEFCCQso~@-LnG-H^s`kOZ&0|>~G4I&y^ZykK5fu zm3Ndr%pTuyQ>J{fG&*~na8sgupmZ^N-2SFQ`AR8&wzORUyqr;*k}bU>K(c(e)FxY+ z5U{bFRoa>@Z66?8&M8&RzGN4GEPq;hJ^Rv*@r1OFYT-&N3T?C^F5vC`6X0))zwcdd z8EnSe*88m9y#X_Gruvg-SF3RCx_A9<8+VQGx@CLY>>huY^sYesZJm3nU6*#n{-XYFEh4Dwvl~jjC~nNlqHN3Nn@`p*$0DRrcfj^Dn(hM%@)}PSze*YQj`{iu`~F- zdY|v}Jg)P)-rw(W9pBF%;1|anJm-FY+;2CB#n?c@^7XRO%rhZ@vE}RcHxAcxKU$}Z zmW&??WO&3$)+!k12{eDiN!ftZe;GzOiCG8p*AESMI*HjX`URFa?UKfI0%srD-_yz+ zmklI7vM<%TIesGW{iApHw20%!1D`#5SE`jiZVu=mlE zd(ZR6FATe)&)Nrb*4Gb@qR%=8Gt_4dYoR~c1+&*b8Ger5EgBaZZZ6vpsIPhy{BVP_ zKIBoX<>K`~W2fERamV4f2OI45-jDWBi&25`PP@c$@8SIi8{GBrkM?rLF9mXG z=HIq__fXJ@{gK76Zy;Me=?qHwp{tY9qf;N5pQm#^uU1|tu8!)QV!D2MVX``^Yl`8z z<3dyQX6F>kb?=3}>dh{rL%SvmN!8q)MvS{o3va8ryNr(PS}jnjb2^Qfcik3dt8==H z4(}oth}DjrMohad3-7BPyNnoi?G~O@4|E!_?0PJ$Ru6PFAKEor$gEcFY-ZebUg)h> z?P@-%yn%kgjHiU5AB+>ZQ(RmR+xf z-Rh;TxI??93u)C-opFr2=!LFosjj#qyVeU2t4liLn0MV5zE_uY#U0+YSjeyT?u=vF zJ+<(m+Pf=`Vb^})MfG%N9Ls-PnPTU(+b<_i3OBGto?M8k0l6fplj03bk+uu2AD{fc zn=wI9iR4Gan(IEBoxhVNg?1ShxNCNOHoGKmfZ%4HjdKe!AI)pheBzV;H$~=OVot}J zE}xvPyEhCW;6f0y0RMQh=An;c*WCm|zUzV;mlkwChShxc8R+u5(Zq8dvf;Y`x`S%+ zeN?-=5}J5Hm*@Y7D|1hGL+GQoZ+yz0=0@Z~NOeocKG*K`1*w0dOuVb(JN}B`jjIpZ z_t|$t7UHW9I`*YD;y-HsLttN{u^`^?Mx{pS4`<@ArH){~gO2{}LgF)}{>wTIvkM8& z6#Bh%uFozcJyY$E)7hOBzY!+gZ>qyGE1npp*zcp0HY=VGCfkqJv78l83OnA9)#;io zx)BELx7JaZElLbK)_+mw;cQVtn0&vx&V|{cq%f8Kt2*CjJ#K`_^jqi%&3Yt;!TbGn z@@G8~!sPl->71VRND5Q#kI?xrJ8>fn)^D$)Jv)&Yrqmy-^I~=)Axxp)QzvS6A}LI@ zKUQaR*5JmfbicU{_pCwUs$##NPR^`B!m4clNgc;ogQV5t{b4!-vyC@aq5ZZxsC1_?7qj0Vc_`|NQJ z<#+?G(^xO4_45>!>b$*T)FzUxapZz*zhcplj^CBenHc;kTmM6y*(;s1c5e!C8f+I3 z{rp9bblzWiFx&U0FkOTFf>ytH(JP(RD|55Q-?-zRv4VDN-lF?Dy;p9{R=#mhUlr*; zRy3j$bY*m=@~wN$v%}yCzI@R;owHY-&s=)DE&iRoNEO@Mwk>)=|1a1{%)fJgdh)79 zzp75l3_W#KzhCO#pb}%9gBd#acjF?_?5x?(FLfldbND_d>p&dv#Ls0qA`aOnKa+F> z{%92wl|0y^6efzXQLU2#QQ8xe*v&VSd{L?sP1w!WNuem?i9Ia$8$+H=>4_vPcdH@) zrrN|?Y|a})-c7{`3O1+JP;gUcVixQ8#t^b8J3+)cwi*g-o|t%#9e88Nw|RWx8Frx6 zP-xR&Vil|Urio`0I+2N0ZEfP;L`?KztKKy6ZXTPcz*e<332y35%wt2|G(k4yC+=WF zTAKtmwI)7cm)Jweqk~guuoA8N; z*pk**!A;$X?^y3Qv5-x4|Ol64@0i z^@8QHi zeg{ryz6`>C`0})C@&>5G;ro4lLiy!c?29jP*}F`?^Iv*@iOXt`*c6)x!M42p3w9!f zjc?l%*%X@a{#Q27Jz z;G61?Zuq>I@j`6scl7noi|H?frlz8IKQCs!keb?$X89}uBHgE2qtiZ1WJC#1eTlaG zERi0?KQ$EH^;se_N_=W1TH$jsE{b=G8vXEdaYmHr)X(S(pNrF@1gFNLzke>yjFOz% zju!gti33MV9ntxpJu{+2roKg={_L3^B``G-{o%7`W|YL#dbIZENn8}))Vt^xpC>b- z#HJRbqdrfjM+r?$MsI$e%#4zn+KcA?Y>36?O6pQ4vOkF-`~p60GH`j19avlX;w{!wrK zul7tYvBu}oi_7D)5pTdRLu^$VUP6seqbHYN&o<@!mpwD~#-@yyapQh8!!q*>XPX#a zn=wRjO06+xIdwMcjaa(&(U22U!i_c2QnRs%oA4=}#+7KkW%(KVwmW!jrjTP(CmMf7 zYb>9idDnI)OPeJ`Wy+v&JDPo2a7MZ9EdB*!2z(0B_$^v#*>xs1^~KQ;%_-5w`sn%P z(b?cP;NX)jL}N;@@k#WjWuva$BTKf8Rm;ttpR)hE5cu12Sry&#WiNY^WvV1P{>xt0 zCihfJ^ugO*?yA%av%1kLchkPlGDXXHB@4~UMZ>*P^JfL3<-Ah<*cLytPlI7h`~|w_ za#Y7OXM7ahaCx(Rnms;*9=p8RG0hzxPiI)>ZZ~EIDgwmCktJ+(R9t6^Zma95ixDKw-#g;?bTi6cH)6Xu4bhL0DMAG$_m)cv{ z4=&TMFE4epa393cS(c^RLCA&=-Evu~0}Q>fbcN-T_V}X*7wH$4OFF=?`zl>%*}FZS z?ZBUYdfB@JOuHlK+RM}J@$3hG?3?qSKXg>3c}uk%jx(pDwz5|4eAe!W7Xncx=eORi zoc;WwJtSpXw1qS7EIo2-aYg@gRQpo$v`7nk+-dsdt;v| zbRMuAc+(HQ9He=_{fCI(`0c<7JDs-$`Ug$HiaZBdKvrwCsxUV2E}*LQTO}E<^DbCa zYqx?=SKbB7YS6&Q$igd*yrR}B!ZZ;{0ntyW#e@4Q8pSBzSj7=?H}kXO`OhXp{f7lJC+*2~u zPW;Wd#P?rP&A(tLIrofP4<#lrCb2T}amWbUsNp}u62CCQSW&!qsIa|S>bc{sU5q6> zF*a)1=L}jI6Vn-qtnz$zG6gnjS?BaxIT8yQpRt1Hc`^mIYB}eOT8|{AFlMp}@*S6P zv#G|P(``MPc$2XNQVDgluTDLu+^Uzj&M3yJ#d`_*(XKk>oKmY+;s9H-^j6+yrNk<> z=l|lP{HH1Sm;7>B38bI2@X<~GW}DE>msML2SodM&kdKU93AUdhTa1TIt#}~qpo7MS z0Qt(uWNPgM0VRww$NR=ro%*ET(vwvrU_A8XEIQ$_XBbvCTt9 z6)u^4BveCu{6NX3J=?TgOb$4}4QmrjR%Sa3c`kp+{Nt@^37_k2T*(q_pyNk=!3=~u ziupvfZL)#iZDbcLKHjP3_VI4xW;K@m2g&9Zzxh|1e;`dKE~~bIf4ODo`OBa^7c%+}*}q&LYgk)iwQMDh z14?9tLfn!1kVU&X_MxZ92FRjA9m~*N~XlNRFz_Vw&W=uZ7 z1tPU_&A;+qMH-<^_<1dm>S!|(uRl^3ZR)~%>W`a|qXwru13p9Lr&6L%&w%epg{h=y z$C)PFruRv1KxogyWVsO5Spsd5hy#FiPCAnxWuwYl$nVH8`DKsZ+p=R#jLO_()mMb{R4pC@M+H#m_z%9u)r)_zG`|Kr! zxEouhGif*}`MBgQG$@^tQix03vYvT}E0K>&-EyD#jw?}!OW3lQ$;Wxi$E9qYn)!h9 zR)|a5vY&Z@o0gADd&!0MoVnJ%o-W3tEqfU`QSg!tdvYc!9i*S2CW=5El!y%~=*D2irW zv6?}*Q_{P5a^&_4{^Fzj4wb0pcwLsSdLG#09fjCF*6_2I7Kgtpe3c_BwIFyjGPOC%a1&Hwl%d zn#!^e#mzz$sXnr4L~+wlSt?rAk|=H-dYp=t?IISLghHv-vI@i^v(RJIi?R=iMW&(h zRCn16#3J)h73x*l??exiP#LO)tPs(|EEG=lm(3@7n1;$xPsyGpdYFeQQzK+Q5GPDR zVN`orZQ_Jks1h|;_62dmG*p4=DH}zcFb`Fw#>#FI4NPd#RC8HwqJbGrk?JR#Lo_g@ z$x=_sIuZ@cX~(Hye;Yojwz8_kMl;$mu)(Mz{^6rg&w@CVMsw%1G8JpXyq*8JIDzCc z_+S3c|59)UTaD+{!7e%i31u*Ag}i=QPpj8?;jo_$G^77gaQ?+d*|XXqa!89{}}%sE7k15hS}P<_*dES#{>c*wNUi4`pYqI*E4DprJG!gP`)~J(7KI^?=wX zU1*KS#As2)^IplWTFnuUOS@au;xOt|-n{#=y;iq~mD29kG!g2tyb;+TtI@nln7dt^WoZP3p72dNVC?{0zqFI8qs9vwx~r%L@Bhhi*y zkVnt?YMdvUZa+hKDJz-o$V*6;g;?9=5z0W}m4h>ZBrEVo*=TmmIWt@VD7KE0nY38QRe>h!O_|C3aARQ4np@hCuqF*8S#!%6lGfCKx7In*hIwm>0L3~-#_-mf z4lrx&C~cU#CJPX)9c2t}uAKnhTMtMZ64#Cc&#VVz4D;6vfK_W%=_bM&6v(tzm1!ca zA%I@%D(R-YwPQeqb(Kuhtu;Mh-Wn90<*vyCcdSEXnr^OX0iUdwq??FqDnNtvl1x+n znh~&TEhQaGSd#(LtfgdPNo(prmvxDBY~C6icxYWB6MJh-7x-@NEghQ+4)gP^y=7u= zu4w`vtf!@8iEGOLQh1u5$*+^V7z;3$aaxPzYRLzijg!_qflaGBxmpUrrr_s8;9?M< zRTgahDfhX;q6rAh;k$SNP$~1YZpe*Ph%KpO0Y5)pWlh$*gblg98*AqOq~w&!Jm@()`9E=U?%~4)eg*=XWkJ>-a-S+pnt|YnJi2)(jEwH`2Yb=12bv$&ha7_sCwvLDG6@y+hW9tLx-kmimAl~}G za!2Z7*06kpm8WygumY!*Ie`lL0e(tL#$&-upsF%5)8o9AL< zzcJSdi`LJD#-=d4ghkuuQe*oV7J`ITB+pnYCXFCr6Dd6Q1!GB&u#V&(8^UxEBy1za z$5t>3gkq~m-Z3iXA)(kNQgrMm<^rMEI#O_K4D+2(Y#S*#wv7=Ycv?k5#yT+h1W%ht zk+E->(*#fJNP)2t%m;#}ZKTB5I!2o?X%)#g_73xcFliGhHnxa~B1~FG3XM%-HVKoq zky2xO7;b{0)dtVlTTBkY&}Kt;Y!>54Ftpy_AA64(AQ;+ih>xveR0&O18@yw^m?}b( z&4%dMJSK$DWW6Cc_6f5@7?G*4bUsJljWNO6Czwy&Mhd%$3%0dY-Oci!95y(|USOtkV;wgb#&R&m zxqEgS>|<4!mfSsu4VJMIOnmO1{Ra0~3+4c}n^TE8Pt?Vz6k5&^nJ_Z$NI{|;2JVi! zMHIluxm#Q&-1$n#oPbWJ$6TO!c1OugXT?O(47)dFr!!+hXtCX!a??36@ic~R&;*R5 zpQD*~bITdy=~rm5?i^X;40-^~uRBN1IGY|#mHBP5vXeYZJ<&3lF;WUlz0a@cr z`XyRe_kf&n4n2m(-mNOzf}{J=Y`azETJZGHKR657mJE6zEvUOnt|gm(jV9I&)}iV2 z^R%dVs4ZlBe@*|TItxSLb+jWOE@%m~f>9e=Q+`I10J#(_g)b zAqoen^s}_3?iK}*8(~Q+>5i8_NTHvmO?SsD93;^l|KKC!57Ow~w1eCOOE1_9szhl1 z1ZyY73a~4NobvhvYmd@f9*b^P<{9VrCmRN%hHhu-?A|w{k z0q1|{T!g~vb%^j^a4xdIYIW%He|Ijj#2R%l@e4V7AhGHla{T$u9w@AChXDU+XAcXk zW``#K2WJmUtYHTyzqa!P606an%>Tl90)^G@kl>GUp0L1bcYy7I^MobVxPyV8+t~oQ zqSgW9&v7

    |>{@jE&jSgf4r(BL0%Hn3bV=wRnpb#6qiAUc%ztDGBAD|#Jb{2|Vb z7AsmE`uq`!znno$nB&k5vWx{Rqm$oW@wRiL?TVy@M#db!vf>%%Ix?uwN+l~>=x1#3 zODO6&hm(KU4W*EkEVMIz^DmuTyZ6I-D3h#hA(he0FXa?tHIzd(?l_c@z@MbZe3GM7 z*hU>c0|Qa{Fh!Izo-Ayyp6YwNql>@9DaJ-U+t;9jF(aLys3?EZuC%~LJXJNHZ^!(-HxLfH~CA@m1H;jnp9uq4!w+ZelbNY z=S$>|b~P!!N*!7m1Mud1TX{1|8CCG-Cu7W4lslsMr%%#NR$v{D{KhBgW-Ce^A^a^T z>82|R9p3!$C+X%ZsvQT4`;>C@M}Dpp+b`%XP^)JJLAUd>S=i*Fzk+r>YcyJvBriuI z*C|GkCkjJ_dOYD#l!@X{?jA$d_?(u`?Pz>(U7<>5Oj%0&E8h_78xFf}&n8wkg0Usb6+@Xp0guw?W1|_s3 zJ?wB*a$^CFx5pN)N@*;j9qmzqSCJcU(?olM;8m2yyENt=F?a~Mv5+R%a~2*#X)LC3 z_2|Qw$c=Ysl0DbqOO(bE(2mFgmm%gQa4AYm5sj@!0S-D5Z_`A2F2GADF?VT9 zJwkAAa!ese0XYr#rotG>INPQUrV+J^JvH$rzy);_ufZPqK$k-;c?u z74Z-25hN+Y&!V3{xMV(d3&e|D@8Kdz!1d9Q4;IYEZq|zVNA+yNuRCp&feOPrwcP&R ze{dpY3zlOgp@+Vi^q7*8;Au`=_r+1$kZ)IdAS4*v5}o}(++6n-&9BE%(fGc&rS9F( zBOo5innZ*@baJ>~gwibzW&UQ@<4$@8|L)X(zsORzB=qn%Gmt=%3D0*@xepo*i$a;c z*?>aE)99xUJj`F+0)ZsgdN@g9a8PjgV8ZOx%}}v#-$~w1an{=c-#(B&!COk{w`lr3 zOYr!6^jw-kPYFD}lztO5GETz}?$L=f)t(mkK`A|-7Ed}rk17V+qyhKW6k~gCAj+2>$yjoU3Srn zjuD4O5?ol&5_S=+Bc(2BXbFc1#*thXOSFW21jk5?OBY(gG2+Nbx{Ct3*e>Ge$Rn4B z=wgQm=8-~|3+Q6|2(FP=F5l6`juD4PQe1@4o^}yzBllhM(Vh+wOd~g4PNO~TBREIu zT|S^a9U~Y z5sFI=+R$O0afImNh&Hre=NNhBGJrO8Tt70B>7t5mvRgkoQsGjCZgN;>9=YQZf^M>3 z=Q<_v__fP=`LC0j_X4d(aF5kb@jZUvvgF)kIf8$zdy4(>Etey%%Pnl}QaN2DLOx|o-z zI&)HXaDh4_tl+s9r5trKt5no>U42BsrNlXlBI>A_5C|QSeN1&ZS^mJ;o^snkGbvDh zf??;Qyr-(>mO#|K#ypixz6}jH~(Xz7{u|ce9!82gQ6=$VISbBAk zouvpaBK9R7h7pI)DvDV4>YzGn5ZOd*Bc2aaq&O=pqR^{j(fJ7BK*YYrYha4tv&Tg) z^y*l4zC!d9vCVjPjECYZR79xvC9?BALWPKZg;&COz-Nz%obG*z>a0gRC1RWKVwefV zS$Prd-j^1gPY{=h*ao~lW&%E|A`;d6(z3G&@tcTk!Lwit6lY~bxO=0KofL#5apfgm z0b>B4g^M`$Mx#2PA?^}a8u3DyM#Wh<5!K#ki_Qv!7jfk^UK`U0pH&tK>5aBTNr*)F z4-?VeCO=p0J9|nJOr3UYai89G_2i*n7{BGlaBF=Xg!2NFF z#}ISf1xkK*@!JT&ZZ}20Tzm)OR=3+Rze4;sglo4Od{#rG0#kXb2Gw~+WFAwQUt`*d z61ju9bgRaq(^cdXCPrnJUBtU*%ck=K;(6~Ds`CY+nYhw~m%`8$XB9+@d$%k)s}OO- zl?J>qh7O-q6^ZZNvg~X@>?_O~i)e~G=deswdQ1G$%Zf=xKt*csNYpVHF}GI{LqZ%Y zOtm{HkC1zx_lnq8?Ef1YcDk^EI^j7diP$8)%I|CP{|yWCF5IO~c+VY1aFebQ`jY%5 zp{q`XX;cG`IS3+$bd}Uc@t1_Hx)pX&4ZP;q5RRm)d3{9xyUC-Pb4&-wU>Srtkx`(QA$q z5kk63?7QPX1zmM5d_isWoRdH-k*?6DJ$?vJZl=>=Bm>tLsxoboJ2P<`fXdH+3E6q6_&j4kTUcIZWY6jKfV``?>H! z4NN~t*LLnwVHl?Wrmo{$Od&f)h4jj5&bQDOqjK|=-CSs)66PssyRh#R;&iVEEbK{N z1mZ*Qgmf6C&mN)OI{^)==nF;|=WnO zK6LeTVGEV+IVXiUAZ_ROwfOJDR=o=kh}$K7x9!e8fW5!@le*^5j4&_E?Q=U1)wo$m z?eiBz*cRSYONR6C-uh_0a6A&ykTKc*+n2lM;YZsAdREXrG_q zTzL>}+o(JRi9mXy9fyTDk>*2ICj{-0Cs&?EJA$TD3-%%BI^HK1VneQVe2W$=L+Ehc zVhf?6Qy@5|W0#!v1AZ-iik$O9$%scPBaYl6EX|x@>RT-gP0jF`fvJ1od0-ui>Syo} zzmBdMzLiJ93Z0p3zT^T~`AoR);{y2ynIgUq3gpgb>iRw{P?*bP@-20f70i_LeFQ=T zG6j6^Z`oDyR&BV@dAKgp8 z%)>Y^?e@0|i-*<@9!nI=P1iGwZa<8a{DHnagy;qTy*KN=jyC(bsEqCPH0SBNTPywC-mx14aBybn-0;T{Xpc#k* z_JPAd0$>WX0y01;-~)UCAV4mF28IB2pa#GKD*zji4p;+J01i9?E&@LR5ugxo2gU$h z;1zHc*anz@6u<)L0OWxCfIsjJ5CCohr+^Va6Q~CwfOUWq$O7zvcYreR1PBHe0STZO z@B}6SL!b$W1@-_2APF!B-U2Xy0{8*503SdEP6F=%4d59N2CM??Kqg=d^a4si1rP+x z17g4(;4JV7(07)2^wh=iv8pC`eVbL*>CE@&(c06syTf*YD)odjHc!e%oy8tK8FmO% zjUedR6qofo3q7hBw*RHlq`FSHX46zQ0m2t6*J{?%*B+g45LLA&$lDOhr~v=P$0zJ>tGpwew|Q1J28dsLdcyIx zsxm>)CbO&q;Jx^$&hCuL6N0NviFHNU2q1d#Nu9$P)nI~_&7HD$fZ)Z7I{O`u9kU(h z9h;pq<0`SRSfyBnSk*o0J;goQz2ke(y<>awdn$V}d+@;vp3M8`uxf! z|3z4kxBD)2+s^>MzR_j2D z$g3p!7enV=+#gc)JV!-p`$-YEDxdim!{$BQzf<+RN119>ND;Y}nf{*8d1v>0>T8ct zf!e2}h?|ua{+_V;GwvU#uf0Y&YcG=`h?RHzC!zDM?k}jXJx3*Kf0H8eD;xYLVe?+@ zo7C6dqYSl@q;*1Nn!h1*9_^k(z2-5>S9_PVPO5z9ZwQ-rcORf$^BQHZ^&+k3Rp$FQ zLFZ4oS5dEdj*8Vzk=AcjzVL5?Rb*GbuKh)QtXh#!nOZAK4Ln|vUiqMQ>gM|0%Ja3i zdjn-E?pM0jp6LyQRXnMTtR3(DC0#+Obg0$q{ROS4sJvYJy7!v5E4RC$|9alYSyw6d zSpQh*d2{zY%zD12$*75Y5{C1ZCUVrt{VgU|Ht1y~q!!g9Di>5&sb1UJv*R|ZP-}Ek z(_u8)oeyJA(zG7MxSzz>-_*1p4R_bTyd!Daj$U#P!@Rqx={OqW&W=$g)mx4Fy4zxu zZ`Rw5hPo?Zo{-iHD^JzB_MU+SJ*kYS9qk>L4x&`r*J|~SLxUw6CyfKnCCKM`qL5XC)wmp>LX1qQ zt0?n?E$Us=wra2*R|YNFTa^1r+LvyP%f~3sb)mGIq z8CF(kVzM+$k@Z+&>OGh+t9)Y0IhYQsN@Ch)7$d8USuzhymKC0iXD#GGz%ZuW83axl zeKW4)BGy+tp|G!}-I)Y#8Dq1<$%(8fJV#;trivL(9HlyDY{_}7Anp@JGF8lU;wm*T zV@l3oy~%S7=3-i&;lx?0XU3U)o3)-N5Y~8O8EPhx{F-&0=NIgRNi&);U|r<#G7rcZJX{KEn`aG?4mXSDE7fQ_%j(H9 zh5C^Jo-H)6PV&5lt(p8tA7n4pHj_#Q4b40|Fb)%8oEoc-THAHjC0Goo_Gq(YHRnl% z#^Av-2DRibtl%L-s@f4B**3-Gp})}I%W`d}S^aoAp?GuQ9JRwf&^Fm*D(gv}2T(in zEzvJx$sv#jus)N5bTxJ#tv2!GSFEc%&F0{0kp(od%)ySEfD=qsPzJ-Be4n+K=N7Ee z1YBGm_0en-O|EC1=NX03ldBJdju-jl5{MS;k|{W@rmL|dNVu}88Gp~87Qk=#R;96aXjtm-H`o|8Bc zh=$C06e#!=P#5!!YzL865YTOl0#Q*y>QcUO?MHA-5Ox_s)bT_&{u*IlY&$Pb4q_{F z3w1onO|VAX_iFo5oB%{g#uZhW=q6Aj>KoB6iqnJy$&8|64zF0W>)|3G^D?8Bmu_tF z`kJ?+a9NN$(#`m-qrNBG&*R=f&PqQ=UP}2WTEppkw*55ZlT35!N68unU(5CnkZF^J z8l;=EJ_@Wzv`0Z2WFjpW5FJz8{uLhyD}S=;x}}7usk#8+BbQo zE$N3={xHMSq`55U!Yh33KDf6KV+%S5mT|_a9gU+vj4kO$R&3j=c)FysEyUAwB(XSh1PNKifG-yeYVx z69XaQhPW0Puo-5V@oG1Q9GKC?uu^|RzF$hM9GWq02R$8-9BD}la5g6niaD&?PvRaz z2Bhy=7^Fo@g0c;ZKQlN;m9&>dV`{X-3NzS2pT)g^EJ;sUG^RyMtsI^)2PbVgf78TC zTyR6@)bC0yq*PhybSvIGe3|qkE781c4A^Z7=4E}Aeq|+@m%}feVg+%=lcetx5Kw=! z9z2N&uH>v$wqT`82!(>VP!@>=uIg-5Mz>-j9EA#)9mBgYK2mg6FPpKFBiKN1njOn> zVSaSnS+|U4B|ta^J!SS7@51!xn6qZtFDp#~7%7-N&RRPHWLiZKenCgfALk4o`YBhI zYL!J0g=v~z6Zt7n_Q2{L;Wn(^BrtvW=p#*Mv9jk@RnU6#Yn+b^omtAVt*T&63BznZ z?aTVDLS!OLuZcZU0`#qxpb_T3vWFQSDLAW^OWxl1*^A&R9I{VNd0Cl%eA5qP_WqSH6|e6%3CJOR5bGh*F^(>u`Jz+ zNRWrwo8Hbi!TB?&EQHW(aXb42!$o=Ec-fd$7-0_j&U}aK=k+ovLLBmTPTir4G5{2m zuiFxCL6yzVWY-7o+YNiJIH6C$B| ziFNE3wSg+D>x4M-9f_aZWldIK$Ct9E4H%Wh6ZS23xGx$5hs%<{e+67Hu!YPB=lH1u zu$2+59ugd2#in|h;aoor0H(4`t9*hA%+vIBMmXnBJ%F?9j@1joW!R+Y>&$TOpGE*f zS(;T2K@w(YdM#s(Lsug7+E|4ZWZ1!RA6k%%sPsO#5D-DA07(%+H&DMezs z+@W4yW4gC<*`e&TG{r+~o9U}i?!5E|i>GNGQm+n!Ef8m}n2a{+av~i8HbM5ecVx6J zFDFd!z7hxx`l{6(oa=3IIgKtFdi^U`w?wYDWgNpRK9CMxoI7pyJCUvxdirY=VcOz% z>V(8AmQcs9UfoT(yV9E$ztbk9t{$S9fd37Xa;MGXq_!Epa_1VGNhTWbZ~J|9B&5l3 zTki93YkY-t!*VTUa!~u?+w6a_za^6l1h0zIqQA0r^W`eYIHK+*8VFn!rG4n0mX6Of zkhscBv-|4a{Veyp^nk_PG`a+Bvm0!Ga0XIW57W%PT6AaT=1Z$uc%?RqUuB}%d_C1& zk^4cq%EBwHQF2@1D`&S@uC~kpzER{VJI(cLaQCO&DCs5SKGRhpuvhZV-INAP8-1Eo z_x0QZL}Ey+lsj1pt`w}olguYBELfh1FcGD?aO+!m)@ z{mR}A_C+$@sOH2Nfo)N+AQJ1=&JB^7Ml~nJ2yIK!V!yIHOOwHhQEr zMUlH{hBl%ZH=txIMMOp-nH->~myzI0c2m^KNSYx>D;n9{;3Xp!)ol{<%&53LHaQI& zK~kmSm{Tp~s|htdk6ljNMv~O1xa~xv@SDJK&aC&cA*Fy1FG0$2Q}>Ko z4u9RAqoA9t!pW6VY3iO?%jItf=J;YxTI5S++amrNU}5k?@srbY%7V#QI!F;$Ax$c_ zkQYq1Ilo1bjGZ>f^mLj~&$QyM)4u7p&^Ke!o+67A7g^j)7az*_O|eIvG^?oKO3z!qOSsLaDHM2l*r5C>dbM=UQu)Ri9`K3jGYl=aKxdW; zS}G@;;jQNnyf};~_eb}Z-m-jh1N5cw2Ko;lD?f#@ah=YN-}7IC)&Sp6yp}dDT5Fi{R98@p>lk_|Ucd3HsB$=N7R7^%B2=$`{f4 z_ac$866>794&@=_NK`C)J^Qau<(}wi(^#Q;vB0QdN$_0pdg%sgF=UN%x9MNf1+Y*^K)1-W-Lg5#Il zFt&Uat#A*NyCv(1L>&F)GJLVzn-Z6_qx>s;SfpG7eWA1;Rh*VgF(3_?ENjs{);>&l@-1j7r zhRN52*I9p|hyBXC(2n=+A`MfniLP_}avu&W|BhC@2ZA7yuZgT5{dHF-fWv2Sf~6e+Y-f&w_n7i^eF5%+wPb(u-t1cp$_i&x>LvoN4${cq z%zJZO4?U3vZAEPX7K0gN0du8n*CU{Q4qgWY_z(7wZ<;IRxE_82JtJ4w6L4zqG5M5v zMYbyg2#!#$8xK&u*MxIrd7^U0ux=-SbI{8y2sg_5MEwjO7=(M724#$LJkdSF4iYAw z44$FXn+9cW96O_5_hE3H5@9lr+t3>q3n(6(LeAqi1kVW7y%>5;Zc5rvIip?oJHT-8 z8hPDpK5LZaiRu~Sy8Qr#L1r?inHYXUa(ovAh{xhKAmcoBr2$fu*hDRkV4d-YApASa zL@ZtFXz+>g?*ZQTV$(MS#)a!@0%iw0DfT9Ja9V7^h;jb9M*;5#n^C*Wi)ZV8251bP zC%-ehlcmKHtTJv;w=~#nxqEogvTi$oeNd3BY<3p^oG}p63< z^0;2zdVq0hu*oOfbGF3`b?*Ys4n8Lbn}5oF&Je6Ht{TuV7)ja7c+Rq@T{k_nZ}KT~ zLt)%IAfB>lzRR-cU3W0JL6I=g$3?O(s*OYHC;?rA*_2`v{q)GAizmiK>YfFBAMB@i znl#`d*%lGw0(BJu9|oUNCQTaBBiR?V#wF?+0yYPKQw&Y6<2G0q)yMhj9tI2yzAt@f zIj~Icy8p10{Ri}QvI<4%$FbL`Pbp$Q=YqW)eJ9=CY@_+Yk5EJ586`lO;t0!xS9;EF|B3% zxH+gqIc-{%;lcKB9o~cP$gTDMI6YWJ_BLdW7zh(|M06j9(sg|M8OjW4N9F$>L1IgZlB(}V@oj`_N@mE+M&lw&AO{4Zfm zwLstDw(_i%Bb}MT5o*7Dhu@ax3>})4!>0;osfqfXXpI&D3Fi-l->Kd9t9uiWK6I3# zi4wy<7q0THdmGJ3F+{Q8vxTet8WV=tKumbQaEMQMYqS_esZ(Eg$v6D%kL)1^iULX% zKP3!)9(=*yV2=7BKj}_se5>%1Ph-x?;m$N+DIbnj;fxjaP6gq&YN>uP87m^4toU4E ziWlj}T&9}x~x8}+Sx>jomx zI+^iV!gti-IzQrTnEaGFweX9=`f8EB^u!u=Kkd#c;p=K~Z?`07x$#ZH@xJtw741$V ze7xFz#}>Drapz%tl5mG*TwQejRgFGK0ZiS}C%f}66u7E-OPhF-u3(t>Ty!5>0iU{pk3(ls zqOL%g=-h{b>2q*@#XboSMdzSx3;bNiXwQgd;A328mbsSB2-W zeS8H9>W)5lI}MVq3a*OJUF~BBLn&1sug=EAs{*T{a}j-F1={K%K2x2INmqqdCFf%M zSPHn+rF@J!V-mOdS4CX)D%adZ?ote0MQ`1Z^R;$E+)BLfd(lnrR)W8;yPMXnq;I}g z-Hcps2>4pKsk_DM`}U?M{U*DTwyR`iquX{h%}?OXF&rp= zRs$8;WVep$48NOij-{VET5-Zvq_WoSTXm1$sW*>tr`ReGt^$>h-A1Y(`;EMLoPLVE zLTi-WP1Sd#^>OAY?g}GUhRXbEQD4orK>P^fynp5C>f64WZv(SOj#S9GDpiiU1y_&z zHf4-(&1+U}xJgv&`8H**GrKBOYS-xbHKmL&%?DRLbz3^ulsUp#q3_CFdDpF}`kLQ* z>#xia?h514LzM|`N!84LO=;^!qb&boh%*K$j&`|~oa1~en!OGmz2F9`M)_v7iDs?q zjtaSX`^KhdG6x+W)u~)@e?)H{|>Z}{$|uM3S%yX{v0 z4gKD8W2xry1t(~D&`7R0s$MzkrcmwRTim9X6~R1zd{nn`)lH~c#n-d#H9mrA{@AEy z<-D7A^=045w%1t^Eb}U(hLyW++|`o4hHcmI|Dua8gn#^5qhauUeBs2U!)M!XRr_CJ zI@>W?9dU`_Q~UGk;7cr@IyS0f7Y^ySXIJ|zFzTliL-hF~&o3PR=w9>8=R#M1LNTAd zP~_zWgO68hR(-yAsoe17Y2bQYJY>Hmxde%(0#tAiuMMnJ>YNSCbGJfIk zM}`^}AMVaLZV*JmU2WXH&w8D8!|DHF>^|I@%o4YcOHZgN^qN3u(nWer0TNV-4OFD6 zV5Nux(nElR8j4~;X>sfVih@d!5Sk5P97RPS0Rvm2$}Pq2DlLl7ZJRjQ|Ee}TaER5Mo~W`YJ-2%zzJI<} zBhZPJL|IZ?gwAc52(|tg(KoUuR{EIj{{OK+t*hmsQ~JbuN5n18p0@71A|YK}5987S z>$r#+4$!^%Th@TL%ji<3wM#@6N48BrZ;Rk1jE8<{pY`5|N1Wm|{roKgmoz=JOCMQp zi@3_!+IA&xi_j$<52MmI)+WP^)W5Vu{FxvS2f1YCfh;YF^l#mt^}FOH8xM)nQ`R>k zc8=7w?$7?Z*2Av!Rm7W-=!YMvUu~bMSf7s=WPQx}D(|5HYT@@ejcH$vJ*-M6tsNpx zaAuhwbAK1RWa8mex@;{JA4tf3|3?F`PjC3SZ5PXpAI~%_T#vL06=Vo%2wM zW-cDO{@Ivy!0>7dT(PwFSG|$ujs?-NU8Ntb%_H`4o-ohknu~=RKeI2LifHa!5EyeS zU9gsjkmndOcjVj_4%L6QuJpaNLBw{>b>@!T+oGXH&umM-Sv#>0Jp|o5=ve5V1(Mf! zw}nD=L1^Sb#PJb+)@`vdtJ0y!<%h4czv?~2)3n*QQm>W@j2;SdA#!R2V zORKCqBl1Q{AKK84ijS>-rc`>{dMx7Eh~L9|)T7X`b6}jx4=o-4pRU`?t=g)1_g@e~%FHgZnT~M#}lg`Lz8JDdmTJ z#k>=#=BMzg?OUYK0L+S+8;Kl{1>XQRHk^sPJ-n~|X~sDejbod$Te7c=VjP#`6KwQHRJ1KurXfnUyYox-kF>5#F zfnp4Fa`V96hR2aU!#7#G(;q0uNKNh>IM(nPghYNuM|v90Mb-}=X@8gTKrKdW(gRe* zW7v}&OL8$Xli>|5Bg?4|6y`k#S|V0D-eoSzOtv(vuqQhmQsQCru*skStp>Nqe71V0 zLn_D_%1-VdFmDKr>|tN%Y)S!F3=xxi2Mii~BCFZ{olU9n$a(q6!vl5=F_Ba3!Op~# zMc6!iGGsuv!85XqeX(srehJ&=+0;cgG*fLbZZ~n}Qt4)X0yv z2uO+Jr!zQ-IrC6Z6=BDgfeeV1U^r$_udz3_Y$P#tUVG3dHe|YkliQ|}ZzT|}If!ZO zj@>f-8)sA7qVkkVV>tJ>k*5#O(X1rGEeBN_@5O$dZf;vtpAu`-;C>h}dI&yvLBh=j z5sepPA5Whex$$rp?QfltB}%+8F`2vE_BKCe4fvXdZfuKno6h5?wb|vx2u@)J^&5YW4V`|* zIp1cNA0sfOIjG(EIM!$SCTDlsgS;4_DV;&1#<#IC)03QcZ4dJ2*G!=YwHiBrM#eoe z%ha9Pj+V50wkb@zBtQc?e5SW0NCk9SO>at&80v_b-kl&b)G0HK=R=%2Jg2wtl(^>X z(2gE*nVgeK(s8~j*rY$o9_#2yD^qaNNJ`=h@I_d=LHt<@ zX~|g;PulYDwGbcfTXsvvka~+yk{kaOcj)01Wkn|`lwUvnV7MiBNNz=qAH#jXj`@2( zWRX4JsgdFYONK26^5>_AI#<@L;Q9H}nZq*eD~c;feh{yX>(ss?nJm0a8R@r3D5)wg>aIc^kMTY?ID_)D}dt-0}gw1@9pD6}!4~1)40h?8@K7 za~cWn7$UdGC95nS=d1DTxXGm zV`a@UmXGIUa`T5Z+MP0zRabH9XYbl9{ZrBCw3-yYce5Wy4PG$*%M~lmj+nOw)(%`ag!K*CF<3c5S4m zqYSW?&RB=dzuAmRvFO}&j?lyW_+8JQ!j4RJ?+G1pCA8Rdpp zFit8g2U&~Qs(E>%S9b^ zh-j^GkLPLSx>ytPpl~7typPfv_cTojM75&Gt-@1qFfbs{nklRS|IrSaHfz-tZi8eX z6WphjS|Q{D;VOtLGQne7WHkw%g9a}w{yicxe2^RtY1TgNVVV}G(`rb5EqoO60r5nO zmp2?w)_^2oPJ7m*1fp9t$?d`$Ag2(9TD~4NaSvkuz-F3MCf_UxI*R8`^q9MBcD{s|Yz;xCCO1^g}neN8}FMwn~xD3D-l8 zAi+a*Lqz_tW2+E3Q#c>Q#_iFu?$bG@YC$KMl08Nprnz1yS*SMdj2C(<)B<<@Ich!B z2zTx|IvVPLD>Fq&LbaHuP0<_S`!G)kr_TW6vYmN|@)~*+_5lNa$DcEm3G!zqP!^yP zFnNq2!S^(=ee(#rJHDWY7*~6y-hC0Ja@-o#1;0;FoR81C&3Y2VpNU z*Ij(it>!|2gwek4=37=Hz}`TSf~vqRbq?Wp>(~Y$4ss4|sS99CVU1kSL8c|;Ff>5> zkQ-0=XB;FzHzBPC$v#Ip4+JZbq&?xCXJWbUAVqb2N_cBvarjXh6sf-MuR%K*N?F8bsc+LZ1J=rJCcc{=t4c=7j*3Lv8Se0*>Ow> ziUQOG?yu8`1CMrP_Aw@y_<)AP!NUw6TQaTAPGpKvWS|;wN1X&5uXtL?+qQC+pmf2Y z(ObE|8G|4Z))n9wi2VfH0_+~dj$bq=G#?R*X?o_~@|D*Kuc^0??@{1hP_~|xw|ZqG zVSze>ltZm0Zlzu}^@dkg656R*$djnGq^(((*Ly2f-XgrGK0(ALy$aw&q`U^cJctp(-ORG!JZiK^fm$=|eq>u+Tc-0oH@H zy$vc~5)M<}Ae!7?l}*_~FW%geh3lh989xZ<)#q zgeK|<uri&HO_fI)p?A91<%HSvidUZedpyLGphC4o9M=4P zCd|B7zVZeEe0D*8LA@c(O7t36z5|KzFX->N<1rusK8N@j3|XXtuK*?EPL)dpF{(5| zP1AN`G-X_`*Q|1cpiA{YoY%D76rC|{*lSbym7qX1M(ozSzcD&}d~L5qYs?Z#w%G02sBGvzE1ub`9>MdlTzd z)F2;un4>@qz}&?9l{BbFCUQhsCh-4DfN&oJnPsI7elYz#0g`mGL5+Km^@U~!i@_wF z=ShJUNH`)!Cn>u@g8P=Wn>K__Drr!OjQLv>q(LJxnIpgwqKUy}bdvHxG6VoF%rZ3= z!u8_h)11)iuJ)z8EuabR2Fu3)YIT-(lw(3|!7OLRN^*TUk*pD#F3b~ifna|oR-C() zv!4}!Ovdw#xX~OXmN_jH-lKB?Z(jmDRt#$hx#G;%;wErJSQ0b^xQUKGuCX{)i5tZM zD?v0Lc(sl{zVQ^0S|>PVR4W)b1{3(^+;S5ilyNz>@^@dJZgC-FWMHq~JVGaf~F^cw} zL0&r-V@HxMEXCX-Miq^syEhbqOW!1cLNX?uC|)Fs)_32W!>}en3kxw9iS9+kX#EYF z^BDFdk-{v@N#fd~t>`Q6n{yeqB&ou)m^;J+MUBognk2Qt`+q*d5~ z*+lf$iA!hblgtZ0V2p@63+puZZ|cin7eWR z(S1f51Vi2t?-$LYK9c&f8CE2X!e-3hDj@NgsiFku8FaTB22afRNBzUJkc}xTOmO|P z3sP2;fSu9q_E`;t3l~Pk3N=Xo zp%ii}YmY^@a^W2eC=C?x2|r6AWhBd@L+ID;w{k%sL>koHTj&#-uQ$yYbgLH*5tDQm z()O5imtm3%_?vF!k7^Vqla{q!dq$;S*byTxkyYMl_hj_ElPwSpXRNAOcw^89+Obl_da6s#x=S&Lt_o!9aiSZ;}D74o) znYZ=CW~B>OC5%2IltI{x&_7d*bJxCD&__~YY}_obf36t+Nc(-k3`vB6+YG;QdMj?N z%UZ1~8yV}09^uv+Tsg$JRrCnEnjViTdW2tVawUN=Q?%CkD(VW3Azri=cUA97Fe9sI zE%qwr%4UXp(OUdf!z)pYM@3hiuWDX#XRIx{io3e@$^pjJqN~`eI#+fw4itSat9_5H`=t2-e>wm8nm_&WSxAAd^*om2#mrQQeH#A z(MXH;>r_Y z+k(?j06YobKm%tXOQsrS2)^vhLxQmu2g)Ku2BxkF4mvs0!fbtJ03=z9p9WfL$y6nn zxu)aSXQR*4^ZPY%OCmE;JxN$56*iqC6LIT`OA@~T(o*D=LivHl10IgjU zj3o$o6N+Jb2_oJuFJQ+ALcN4K*kOWLugfefk+sH*kOK>037fejDAmG(gIGSWY?Qo9 zf?Ta4=ODEmz5#WLV3_W!Tq_y8gB3-64>v$MnRa8nm-g8<3F-oFhOSgEv{|NjLkHSQr<^3HmY20i1OLl551OhYw*B6u63#}f$XWioi^iE^p|cpfA)rpKyqrNP7om?fjdDu6+bM3xv; z2Cjj2bWI@hWVt4+mLJ;}3S1|KBvGm0!a~aq?Y+1Y@*iy&Pl!9{w>03NL@5ztKA8{E7Mkdc}OR0^=s}9sR!6H|I~Z7ZO*j zHfu1NiA(hFT2ju+)b)`4rhPC*#VSnBbylXW7vI0WPmxhe9HDn;ZE`+KT@T&Au1}V6 zh4?%DH?616XKCvt_FML;GVT$-(m!Y!Iq#&_LH3*VAs82lkLjnhZaD9x)rs%7=u>9g zA%3R6)H>|^hFS;RZ{8=*xIuhNzpDi@NVHXStPZR(=pJdQIondBAs9oI`qjgt`VJ3OH=@pbs1#^N!a^&(Lx`67(?_Un(uJ;bECyR z#xR`d%YFKx+SRtL#*0m zQxNcXlpKIFPVs~NZ^F4C!1ae;UXTN?Q(S;BHqHRTIC2!xrCqQAUE*q-<|ltoH7agY zyi2aY0Ns-J3&?y=I%@amiLP%2Dkv+$5z2t#J!sUH(S2P{3wELE2}jZglvgUoo126eR+ zxS{e1>go2%agsB>qmf-B1-d9t!Uc-GQk?kA*3tc4zZZm}dI%TN?N#EWXZ%Lvy1o`D zpiBtamRz{jVf_6GyXss zFBZt4GzgBA1jPl&jQ6M&eTa}Gv2b`5SUYC$)n^vFG*HP@kggH_QQgrhBRHmmYz=bM zv!Dl6=Hi&iSDG2?3P6G6j@(Zz4RG{7N%FG#g80m~Q4M-Bp*e$(oayOmK?S%qr}7PE z!v93dtMoZpbI7GRGeKiPU=IfbM{BX&dN%P&@-u$#p&nFh_4dn>PlIBoYX~YcW7~;-bF9>s$#5u_Game z_UCvwri-Kuy}&%x_N}A1yZVY9=g* zzdu+U?$zwFApPF{kqCG%0cs>w3Hhrk8Dvi?{qPIW_n{y=awX zO2^EzN){3aw!b)Z`L%bMTcUu47gX`0@vkDd(2a;ZtcuADY6Xd*HwnDeL zZu8ot<_|Y1FZ>ILh3h7-EiX#EB`V}y6GiSo4tT%t0gAaf zW2fpJ;RB=>n=fDVeq4Ua#VB*9`W?XoE-&0KS66L!y+Ph7cSrfau@}mhExZp_ymbAG zVwUn&sjzfCOnxJKN9n-P7xI^lymwXHbv>N+M*fc4f%q5Fm({%ODvrB;A-|FP?^Ich zY%63`w~9PhwKQA#W2&EGUqCM-y>%-*T+fqj<&G);J460o^s&@s6>qDG zBd+hr_vMbMd^-L@4ZN<2shD(qmv&#_n8v517eZi5PNqWL)q#9M7Eo&|?;%{G$~Uza zG2ZzV&6(dFKZ#w|s8n}zNc|4~)OlIg+q2?=>yj{l)aI8%y?ZK>GQQhx&MEG z%&&UaR&B#x%i1n=!*-`s-Py1^&kt1nfxVW!UFL@4PNBLCaKTc!%Hmgk`K9y?hn-?| zd4Mh3Rvp8B&Uz_z!)~Wc-G#8G=O?PZVLxZTl)2&bW=&mcSlV;ZDk-c=)~Zd0)D?tP zJ$J3j#j0dmN*}g=BV0!dD|)U|wF!GJ%TnsF?HkFuGhw%%@2h%>J(q1MbJ+2XU|o7x z_H+3vBkZoMyOM`(-iU)?zH867SKYww%DyXo*x`+6U2fR9=ayB6v2U~PN*%U)BVBiX z)g6DqzRkWXbJ*#PKwVl`=5y&PH7v+viM}}(7GBYmJ170-0pP}i_;`&kLZF=d!yPX| zzJ$~jgQJ zS#v^f@_|iG!YwL&QK`N>MbJ_qFY+v7bIp{_mT3vv!BCyvjK^#(Ziq+UQSxy<^F-|PKaKIYPsc|l`I zdsc8_T3Pcic^}TA*3h(gqy+X4v2V8zHa#nU}?<{USy*B`S zBJr19+BO?JUR|N!W|HcUXp%j#e|FvY-rmO*C2rLz{_rLQaK|Tmua*0_RA>0BHHn_s zG`n;BPVeXPS1#3={u)gJC-AebdXvxz zw^@(z^SuwsV_c>(2GyFxPI%7xk2m!$me0FPWe#d2uKDgfiycqv%`BI3(a3OAO%(o4 zob?{B>g_DgchSgnR8JKAPM9T)7xi8$_jD=Ca8yea{l0N_$N25uvGN|5vP?&fM1k+P zS(owb-jZ??mw=3B)kKl+?z7v*ul2qvuXYK@Y*tSc`tCZrY5ZJoeR;UcP)4&_qS$wj z+1=w0dgsfhT!u26HI~+V$AaJ4nZ5bt8ZOB~OPglvfwE2(TiQJvGCoxS_^`nD%<;}% z&+=r-ve|di?3VFMy-wH_*(J&EJ7$lLmsKR^EsKCxtN|6txyw@D>&J&G%G_E~lHf~- z?|WybdaKI=Tvh~@+-47sJ5{XYEK7VpHmfq;Qn`|mgj|yUet6byyrpU-by@fO?%DY9 z`Cg53Cj$7R6qlgix6HOYUvXU#TMC$6F2*mg0NU zMw@Qru>GHF#^=!yT_X<>Lx#|M7yxa8t{|77MO*4We+Z6N61Vb<#dO5v{A*LO{Ics8Bx?Vb!74sM=%}w zIln8G1tw%gijEj|*yQw>I(G5|M>gbCn>KgwL`QbzOqo6l@q5@njf9S@>zG&cF})eg zPvL5HSmcxe2F(*$HOc{INo@_ZNQn{44z-*iv*m|8h{GrJbFz4LnN4&-h5eTSde zo<3&wIp}5Qp_JFK+wgrMPjr4InBNB7?VLz?4Zn@t7y88b^lq~ULB~5MQePu)E9?t@ z;&?jIY%yrAQ#Hi~2HtK3f;k7g*$n8S=JZjsv7l$2eku20N8!M%YlD_yNsw`;U+O)?QMnHXo>-hd zX!a`TX6Hc4J@`@NhkZ|sPVX|S4?5C0ka`cfDvuoiIGzuh?6gmbgMEd42zsJ*+Rbd} zVFL22(UW?!q1FTi0FL8NPlY66NA$}X2}ovaG;YtPdkMyljGFBihig*-4Zm& zYD|w)`6~Tk>U478GVNDh+2l!!*-9&4;j7biNnfSf3kxfog7z{`$bYuE{=|1j&8^_Q zZIAN4*#k&yQxg^3ME#pgZlY{ka}D*sG3Vf>oF9n!r2&}X&H~JMnoV>&?DPHQz&| z9)e~71l%%!U9a$MtH}t-eW*;c5I?y7rQ-Ek-;tV*kWCNIQZ1kd*S(aze#Q6qn%_d6 zK0HgakT_`hQuX>h->)?vLW~~nq~3uXGy@;*FZw>NITdo_;ZE8e@q-pGm9O9N{ao`h z@mz@7Ly#+gd^UXvzh31V9@s?tCjav7s^k?(yJ+;jbzau^y{3O#rNdMC% ze{*;#cm0~LQ{WQynAB(8>t(e`t@rbe34QjtKJ-ti{KG#lv+idfllkoUQs{anc-gBS z;?Q~`YZXMV1TJNN(>N|Vk<;J9ciLBL9^{n0r1}?=oTR=eGNIaUQyai~mVREvPUg7( zL_+^UZ2f(_NA1DDSFD@qyH$QYkhrh^ zY3;7Sde)Kjcghc>j_;Z{{*y0HQr;;&kT~u$aisrUZG7N7Ycl0TW66OSNKw zGAwn9gW{@D4(e~K{Xd%gpG5NSwV{DMtPAN5D)G{DeiL#1UuzWtO;~^vD8@tQHc#yB ze_ZPmSk3ZJZ&Hqzn%g;Xtp9WEKm2i%QoO|6_KCy&Z);-$r&xpOO)Bv+bN&;F|B8&Q zYKB-z5{ri?Vrquk9W$2H=N9`l0+XqUs*A#NZv7e|Km9Rs!n3v~u&muNb4h7#tUn+y znYJW1_o{y=FgbfkZ7yy?qF)_gmG5 z2Mu*Jr!CpdY4j%t54AUECTc7S%;5oz$geF6bZY za}W8_>(;L$ZjIRIe--qQE-ke-;fyl7bBn}uO*|Y+`PL?E*@ya6tzoJ)A}^0jkjrEy~$TIbFzKVOmODnCb0cDPpx@7GEEiJUZ7~wur+^V0wMf#Gxhe&A_ zpcej}S8}$9Tw3d4QToZ+BH{q&1@lVoUnuiGXAwQjOFvi}MeO9%G56>GE_%rb2YL5M-4IOU@zY>zvynp$5+^OTSp#MI7f$Fkk2177I0b=2*I9EfyioQDxfX z92FkZ1Kv8E)0qC%@|m6W6i2l!PG&5zR3^faWs`SQa7?Q-KhlF!%CyN{U1gHA>w?;tOsP}kBxj)QUjElLW9VmErJdHE5f?c8^siRWRyPmjZFdHJqmhMm^+sUp1Wq5;Dq#HZ0LoLltK1Ovib^r=Kj_9&II?j{r&C{0EU$Tb*5`mk?y>`r?iAEP#T zVn7PO11t8Cj(6k-axp5C#|P9J>>_{Q<9BHf6k;?clLmwu#3E(b>KzW`c-eWW0jtO% zW}?cx+CU62$IY3Gj+0^y8k`^aco9C?*`OQg$-dCBy3P0xg`AYJXfvtM5Wq=FU$mIC zY8c`qWyY(|3r@NWY-lKnZ0T$w$IH!&4QK$Myi8d%pEPNB6&XIfoVBO|hS_&D)JIMY zFXt_aO_u$NEdO(PvF&k634H3zN^&${N1@ycZI5$GL`)3)EgL6ddw?Y_5i-#o%>Elr z9^4QsGA+*e-=s5`HT>b2o5()G)p|f0w*zTxkmn;sMF>%r_-($xnD=Pv`s zTAHR$jC^bToc&6s+G%i2V`^;LwCIRbt4fxYWVrPpq_H5jYT9)qw^b$EN;=$rP#Da} z7ftJoY-&B1WhE7EJ1E(BCieF9zLBS`=d!J2!W{<%!56LUY55VO)?HcklHoRk;*BR` zuT5_sxzV~SyIwlnVNkR&H}>50zxd+^)5k}?w7$)*mkDAu$Bs=qwk@hoNi>>p zo0&h=bn{*u{do7dUx&xq zdos&3REh~>|`liX{=KJC>R0ctIxNt^gPd3U(K96k)s7*cH! zN!q~Q&bz^VJ6zu$p7~QSd+^S49}LH|Ph||LwTLBo^8I;D+{NMf_NmMvjpQ}U&U`E{ zjr)TsYh*a7{;8Ay14?#MOBP+;$lt-c%^e%=X)nuk(nuCq#_?Tv+1!$0llFj&7S&{t zWq1BI-Zk#4;p+B)%og>Z1o<4demJ~+D5FI!S!~&Zznk}fJ3l57I9X_A6VTQ} z9m!%VyZIr!DRxUfK*X86POj%Lm?bm&Nsxc+Fs?{0@8BQhm9dlaRz#LdcmeF>+!d+i zdfpJbtg|I08NPy8-pij_)ybsMhD z*eI%tG_8p>CJzXMk64INtuD`L1Xh4d78Xn;qTpS^;;HWC@Nr?$R8rutM);=JVbNr! za5YR8t>-?y7HH;IkSt^|N{{4~RlXjpM7|~b9`Xpe6?K{DMH@awek8mNauu;v>#~Pe zTDcC^i2UX+nzmuNCI;oLsJrH6XtfJ`8yS5ObL4^VD)JtS+$2yCL`g zKV%sX$v{YIDSDWa12L_7b4q_-vN9)hnUdn_l!sxMzx~JZNhGlJVYaQTBmiFa5%CN zKW*Ghe;C@#GOiS|t#;{?l4Y>#6sLLY{Zy;Agnss;? z!@I~+kY`9gR0A=BHoUHNUf2h66Tx?$)@rpNmjMjTOJ9}B0nj9^22w=!uw|pp)g=HY>2z$-gjnkB2{nh~CWaR3$VlqVuVvcb9x{_h_gupXoAElgug7*~K zPh3x*pN?ZH{17mhgaT8Apd(CsN*wen{DW=+4R9DNF4YTD4B3lI_tJg=IfhGnj;Z_A z^j^Z58dy*e(+83blh;l-S)<54_@6;D&ldc;UP}R&b>ZM*E!MZFMn359uSX95%`v}) z-_@OP?k}i8289B5vm5#Veq46~+h0_p5ERY?HxZ$W@Ht&oXKQ){j2#Fne|YE*qpXUx zE{u?6hXI2V0_}w7>6SWM7epY~dqDPY3-l5kY=2{|iz4LNhXBC=_tD_bbOE`cN5I*^ zpaZx8S^_uL^}{w4M#!-b0C;l{`U-wicfh%!AOgwW2f~26py1w@?f|x-DB_1db^z=c z+)C25caEh`!`MNf6zB#WLM0SU8!_vlL+FGOz>ec7Q^+J|9(vUuYrvB>#uiS?viGlU zF8+kbp_DRY5|*dU_MrqIlkhwvb_`_JWCc@T~%c%biJ0qGl{-Dgg1_T#s7Qn_^a{xBx5VWc8h?AOY zH*L+hZ0K!MIYW@6u0?FqJaPUPruo;?hEJ(yk#|twyIvOfZl_Xtm+*!926+tiiTHvB zIz9>jF2AFK{0{09=|%QsD{qa;X2KHnJ5mazOk7V5Gwp>{RuI~#8OU6eGHHEQ*!o_@ z%38t*wF9{cb(XlE7PhWew(<($cj|A*r>L`}_1R&Ty{eV>2w$lmkVdGT#5!u2SudjU zBH=Oh6cU7SNOf6Z7QM=qcL<-UFOi2)Z;0T-&EE-fU3QpNuX<$@VUaqAR72Skqp9Pj zz3|E^LO866G%MfxcGX%(=Zrg4&eI%G-|6Glz0k^hs-uoADLQL>{p!-|@=)7_B z${t!X>U-h1!B031ob*3+@~lIzT;(-_6KshXoja~uSw>4j-}i`48~3Rk`lna^p`e#B z_cui6k304XRb~?Msp?1v^a=NW?kH+RigI#T;I&6!zB$}!17GzoGCAo2PlTh&vY`cF zp1FXZLo$*6oCMYaEkN@JQT9d2)3k%n_@cMdEP~JXqbzAgzna+#&@m?Xo#x4{YUTiK zV^_X%WF!Z{(x!pLqmD7&?^J_oWE@AFB}X%Ww|MxSX%LUx28xe=&knYozffb)#l$3K z^9}>=HKgt6%2($uvNT}H#Dr3wFxQQxf&8hEksME253Eev(T%Uf9b*N+l1Y3y?km<1 zEO`ST&_0d?OMzwr571e@unLqlz&2vDD<8@2VYR>lbepk!18z9WiWUwZ(rL!??YJ7O zWW{(Pg#cPBIk1MqxY29jxu?yKFwokR*#x6-GPN@ z44#xxAgQZ_U01kAwmYoQ3==}?D9F)09>N7x@WM!YRh*YDzw2I zC4DG(qPxQx{0+gogA27W8%U=L40U&4Zx!y5>poCufdTtx1=n?7JKrkUgY4c{XoT5C zx?6Ba_ciub(H@2FBZUr_c+yUOpaObiM#L`Wi=3$|*WB*|?)xmD{AlGNs+7n*lSYMV=5Xni9I_0iXB z=8}+o#j|_+aEx@YNN9xHSv?J)eIHe0DUO^q=<7dW6 z(lz>a?HjH;&)10pzP^)jhXi1r_6@h4Wpx7k@qMn0T+%tZrS@UhH>DsBx}k47;|2*x zJ?+D8Z!Xjc?RV?*V4NpCpdZ)%;`-+N-zE#cxVmH<^_TJcVKJcE*V z3p;@2N#YJej-g(pPuoyVz&_!5f;b_FDkTG^j2%XwMz7C!E{xj(d5T(}IV@fwLOBK7 zi4BvgkfPj$y}^dbR0vV>V7AzC$qEU|P1t>GjWY~Ig<&A;ghj~W*tBxIDasceo%vh{ z=Lu;-&1O6o!v#Q&z`kQ6GKU3Pkz@toaEK!;0X>^JEEcqek_r>WDoO@HC>5{_tfF*~ zFr@(Iik;3hRc0zeLeRp_iehLOGZunGZKRk&nR_5xP#e=trI^tWENq|iX=so<H#$Yb>Nlo|wcEd&k2p|5AaMA52DWynGF^|Wbi z3Iq~>^_2+{qU6FXu{GF!Ni>2f57~u2lvbn0l!n-$C&)D_Om#>+dLj)bf>y>!QhXti zusP66j#z^eq!1t^m^6-<5dmQaLEKQP>2yJ~9McT4AC?CS>JfrCQOZWh4%jX9sIxVc zElc?w7KJWNjgV*BK*rF1DG_j{HlzgYml`3*w1C9HZsNN#BZNRH{T%EFwn2(5O~FB2 zU|Hy5XT5YUQMNH99yW=O1u1Td8%!M^E66?w@kA#Gv6U#{X!}es;JyJ;jcUx8R-;Uz z`D@rx6b&?Am~BKUL-PgMK9CkHPmQSo8^p%Su!Sg2Xc*);L>i)j_JVjo-ouv3(^jmt zuxq&MqHx$Xd~|9UxyyME`elkQGT4Y(hP^ITE6utObISCU2~MO2I3HS5kk$_i)}q=I z%vl|kn8PDg*B)6lugd25X@x3UCdmpV3DEedp*K!*}RST2TEY`F`_YjBVCbb$WW#qz+DyjXimI?23u(g zePi@b*sC%hC5Td}NV+oafG{m{PsR(y%}C-Vv_;wr)j|V?JbfqbfXEdKh9&(C?ts`8 z2Zl7=7WYZ`iaEoWejoQqv|Esrg25G{y6LjSwHT>F>F$(0=`Yka%McyV-^ediHfsQ#JbhMv)PmAPj5soIM1ZN&?wYk2+&1w%EJ3i8EAS2PFZxnH3Lp}#VLz)YxIQ? zLr}TtvTOFMGMtGc=uIi>;e8ll5qeYVdbz&!#NW{(*s}urbr?J7`|xLl^cDO3h+k1p zGwas$;fUENql`M?zRkqPD5K0e!9I85HB`E@czT`kW<^E>@gV9(dYyD%30)JFD6-#y zAw{>uy%Fvf-EYny5_h2vr`JjK9VgnMzEJ8U`i>CeQD4&QWH!q(!iZ+{V01h7jf}o} zp8yd`N1(N_wh(=#J~S~Ct(F=syIGvEmDq{8h_#j0SL=fkmFVlxd$Er)iiJL67+dHb z_($o{qJ2AvW2p0)(E@!g#1ho*jA)U*ZNyio_t^W=`Wk&wAgX=@cVFbACBu#`j+Vo& z&Dbh(KkfD z=6qB9p7I{&o6@gEZb8=xok{l-irUn52bC;(&vMk3{u#Hd8s*US4V^4-PhgL96uv7L z^_BjVu7W=zcu#+HAN?Huc=~`~)P}AbsQQcn(WqTrUr_a#0|HTQUFT6T83Q6wK3(rn zyHFBzmoCH}rCWkK(ywD*qE+ZO=nwFd0{3)B{ps=eNuhftd#t*aP!I5PDHG7w61S}O zXmmBx7x8mx_Mq0?m4=eZuos^3>S{yDWZDbP5WA{Si+FXZILXmkx)3TqO%)PnKMJMm z;w}istsB*+U&37wjk5)BAI(uc6nlx8LtRHvV)zRZaq6QBbOmRBNF02$onGSXFCM2f z`kwCN><^8T8-;aM(0%aIX{yq3Qloe1udvIADB;m+RCQ*fz>I6xIn-NJc!nx8PGa;1 zy&gL#9Va$=o*si8l!}uXZKBU(^T?`FHlk66qt;!E=uW)j8XJKq%~4F37+M$aD7;`g zszuMod8C$#FDQ<#@9IQf!aEAs2u10DOAN2+M^R;z1o4^uUH9lc&W;ibs-s`&CeF=} z1;prMdbM-2_=57Neb+1W7`|EH-kOO&8}FH6tN)00#9qBHsQWHMiVriY#k!2ReD zYDIcMrfUk-lF1jCDWgO8*zFM;&8O?{(FFl_upq1AE~mGxVr!b9-X9eW&Su!4@*1xL z&R3up<%@gDUu0|+bKk93hQA_q(XrU1e0>TNyB~59E~}oUn*n3S>cC$eMWX^2=W9^=xH@ zvgF)j^c>1(DSZ;|;d+VXv*{esiyE>qdg@;G6|q=u21lq}!97_o$xGB(39=Vf-0GF# ztR%iyv6$`U>Z}CaD=V9_>D=OcZu}YsW?_otQ_M^q7(|hM-}hU%Pd#Th!TF}t*7s`xk5Fq zQ1rcZakQRp`5xzPN}-6h3b@cvg%1=<=`UTVmP&ud#p*DibLp4Kf47CZ=rcj$fZ4T8H zY73|>p|*nB8fqJ;ZK1Y<+8$~Ls2!npg4!8s7pPsKc7tkxDnJ#XN>F8}3RD%U233b@ zK(#{c4z&l=o=|&1?G3dL)V@&Np!S364%GvyCsZ$}-cWs@`aIkSKp^k#;4|O!uF;K@s4S+fhY9Q3{P$xj02z3(F$xx?2oeFgt)ag)z zpw56g6Y4Cev!Tv`8Vq$V)Ok?nLtOxMA=E`s7eieFbt%+kP?tkp0d*zRRZv5qhC*Ep zH4JJv)HP7oLR|;-OQ;c0zk<3R>ISGAp>Bd|gSr`NB-AZXw?f?pbvx7@PT-3K)aYBbassIgGvpzenn5A^`l1gMEnlb{}inhf<2)WcAZKs^dI1!^kPV^Gte z9*3F^^#s%msF_f+pk_nOfqD|^DX6ER=0ZIK^(@qLP|riX0QDl&OHeOEy#nK&+sP>Y}zLoIO-iHpgxBB1nSpN zpF;fx>NBX{LVXVP1=N>NUqO8h^*gBFL;V5j8>l}*{R!$@s6Rvf1?sO*e}nov)IXrU zgZduo2dIBSB~a~99Z)|)rBIzv%c1@S^>1iZpjCxd4H}?Thvov!1dV~lLaPC-CbU}6 zK7&>pS{-P0p?wam9<=(DK5LYoC` zHncg=f}zcYHV@i-XbYe%gtiFUVrWaCErqrW+Hz7Nv`x@#&^AMhgti6RR%qLxZHKl4+D>S@pzVgX2ijg}`=CWZ zi-r~hEf!iFwEfWHp&fvh04)((610QRlA#@fb{N_bXh)%?Kud*o3|bnrHfnQ)u5ndj{=W zXwRX&fc6sFD`>BweFyD(Xg@%E1MNp>KS6s7?PqAeK>HQiZ_s{+_6M|g(B4D)0PRm` z1ezV11KLMu6q*xSIkdl^{SCbe^s3OSK?n5e&|RRLpfk`}=ry3%gkB5!XV7ayuLHd< z^v|K!gI*u{7tk9(=b$%)-UvDm-3+}k^d``oLT?7WIdoU(EugoA-U@na=xw04h29Q& zd*~gYcZA*vdS~cepm&Ad4Y~!o09}MGL6@N`&{gOfbRD_@-3q-s^d8WALhl8=H}pQx z`$Bhv-VeGvbPwpB(7m90L-&F13%x&dKj;IX4}?Al`e5iopbv#U4Ek{BBcP9jJ_@=& z^wH4AKpzV|0QxxSfzZc8p8$O#^hwYsL!SbDD)ed4r$Y~dJ_Gtp=(C{DhCT;+F!Z_5 z=RuzjeF5}^&=)~p41EdorO=l_Uk-f*^p((8K@Wi*3Vk*7FzDgX*FawjeI4{Kp+`Xf z3i^8J8=!B5z6rVw`ex{n(6>O}3Vj>&?a+5X-wAye^xe?+K;H{}AM_~b(a>X{$3l;T zz8`u#^aIcnpeI64f_@NsGW0{x4?{l!{V4Pl=&8_;K~IBz9C|wR6VNlDXF|_{o((+* z`bp@gpr3}G3;hiAv(V2$KM(x^^o!6hLB9rAx zLU%$hhyEAzzhP8?Q58lt7=Te7h6@Z63SYdRB(E~1dNd|M#1ohF&f4g7-L}s zz!(Q35XN{I6JSh)F$usL*bE~Q#ugY`VQho39mWnAJ7MgCu^Yx77<*ytgAoNI8b%C^SQv3I_QQyWaR5dF zj6@hoFb={aJ7<7*gCVSEGQ8H{gXJcscD#!DElV7!L$9gOc` z`~c$(j2~hA1mi7?pJDt0<5w8J!T24_1)tqN;3SOIHwSY2Q>!OFnO!de5?ny}V_^)py&!&(Q{y0Cr@Ydu)&!}Z*tPXqZ1#j79<7l4YINR)#Gh(Uq**ShwfZyTWVXjZe>VlNa%`n%WO++D|UuPt%~|G))vp& z4(y1HiHeGj+i}3g{>L=OL`M-vCp&}4WM@#pVLHn0N57TEqYC`%!kkfrnix z46WlR;s(wmqnv(pl+&+Z9+_+pqLb}G6_fhUBV+zQ-&d^E+)>0i9e3>~iLH>{Wh$O? z)V_sto}@M(a@X$Y$NXPDsQ>rJ#}LPNjv{V?-%PKC{esm{#U|O5DCMYn&^^uTRDZU_ zG^KEM@#50pm!U6g-`bu>JwN&~u`IPX>kjK_s`D}AiKB?i@=ftdaz7$Rt2Wi9g(!37 zMILj!rueWWrjxhRij&KZJdb{1dtrMO@?!4u1$So_PrOwzxzf)Eky_j`TgX>oVPWAB zA-3hVmD@x1hV2cDiioxCw(X4E8fja!Zb|4;cGa?_Aq&>BW0{;i#}krMlhgKP+D_Sy ze3`g9E_DC$T}%Gsq5s(!*<$~|t+0hggslz>|0>kB!nSf-=%;7L*yLWq( zEta*#MMQ<|3ELO4eWi_cR;&JhKIy-f3yBC13k&}$#J0k=qGINr@aTv*TbwOw``$g3 zGvg{|Mu+VQ+Z(!lg^k_pbm5lSR#gJ<)qeok6aEhXoBsh|8M|uf(vSt~*fC7b-bw(D zRRVDI%f!{Oq5D_-3&6(^vez+(bGHp&GG)S)Ny~@ZJlV%4+qpd%35S!8orpPa%ds5` zPh6C+WbYi?6x+Nt3zjX6SQi$yY85*&VAizI;IM@eb8WNO#ZM9$+oA1A`x17?MaL!V zKb3hXdH3Ff6^ov>ph=#9UBo9 zz9(#N$hMXL`&s?}ci!{%_MH32MrD6BVk$m<>}`L@Iaf$75JpzupotYE8(Rkd^Be+gO@wTC!$ulB?a!*uVTP zyx8RvqIDfBI8VohlJX5qA^nB(bW|-VugcJtP7~+;v2od7jVq|ht~m0z^0U$19F)oQJ)BdHP-ZZRT|VsqRh8^2u8~ZSa)VFQcCqu%xrytMsqh zmD{-Q*v@&_hcGf7L?tTGrL^Ih0X*sQ9jW{74XMF8i|#qBOk&1?thj8JJT5K&&Sd|V zCUE{^N$n0lb}Nz1SFZN@uJd=4`OaKn|58T*H_qwjV!vau(P3efT|9ZoH1Flq#kR~g zbIaJR`+fP1X~#CEHX(IvPY#^O&N#WBh&FPNbzV2c65Yk_D0co~iXx3Yw!2Ud=UdLp zUQp~TU@FnMVBf`glKsq5uf@KL{8;;1(A{rhL{u?5cgOjLICsi-ro{X&T|)wDZvclPd6tbJIa)7`W)eMjcbEVu3a zx+&|Xtewo#SRWE;S~F?Q<{h`hdAj^z$~%&F z$JL%n7ZQOamj1;ur&Zk0DQKF-JBN7rL3cFytW#;+73qWTy}a=J+%x7%Ana4@aa?(odyXn@%r!dmBXZq(cjslMQ(2vepWj9GCeRGez zAz1^;?6W8(K5h)nbVhL`o@CN^n#mAnLlRH2XgtmO+!;p~=Wxy$ z;+#}`k^JFbY@cLu>hujq4v{wW5N*SdAaaN!uJjOfC5KE?Nj5iZ#?|4c{8Pu7uV&53 znQ(r1p4s`$Z(KP_9Pni9qkK5KrOa8|6n#AEL{z4GEFVZ45201vjq^kJ+{;-v(o6p3 z;sK6h+=!`{ho2sGe2n>O=Iq?@mxkt>$$MvaZfHnar37xT}9g1JKK*ZO$*=taGli3et!6U45`nOUraXI zU_Gt1j#gbqtIQfUeElR_VC3kn`#t%MY1tdkH7T^6$xME9@X?pIdj)$E!Rc>>o;|w=s-ZB4_!H0d!H&cRd&CZ*7*-S$Bazp2(_#YX1sK5C} z%DjT$yxAAc)Qw)_CiKyLXq_RM19;Nx-Vd+N{mzmU(>02pMdIq6a)+nvIkjlybCxV9 zrqfJWc^RcAzV%M#XR1?r1h}!z+g@ajX$0-gd6MO{4lVa2<#gaZGLV#)&~j3TtSq4` z3EU{?a^_!|GmgCGyq27GKi%_`Y^LHOYOJ7r!`}TtT*)ZXk7T;1^RxrqNt@G=v;l3j zWbx9FW$WVIc(Ns$%uFQxQle%@&x)Q|lEM!rEj&mggVbednteIfj!vW;HK;)Aogd7T zKBNU{PQ2cexxHff3UsZGJkEPgf#=m87ew>zV*$@cJQ+}CCclm2CedJ-deO$zmDVRU zJCY8b#M5^=f1mpNPP>qXv>vU}m74oeX>?Y9o*0*j>qFx58!>ez=H8^+(9?xH?R1eg zETh%GCoM?Z@5#{9WVJ_3<*MTy1)McBeN4)TLxauqt*4{0iB_Y7s7%|_skG{v?fmw& z;aftR47CmN@uf}jrtqZt)toDbnnc-R!}l+_=KeJ3!^Vt_H#fbsv1EiPwyf)hej7*G z%&N_2b6}*`_Th&np8awMPnHmt^dY?nOBS$~>1}3iVQ~JOi)o<*G%S{ zy?0}8CM?P4hc5D6*>4T|)RX!%ekrqWH7B)9A1FcT#$)sKXtRkNFEuyYJwj{M#5@YXh$JyZpLu%~&W8cfznfZJ$ z^`eVb(S#-k{74nsZ(H7MGaJs13|UF5a3g4d9|`bayu;kWdaT*spTEDaXkUI5JFb+R z^Z3`H?aM0&avMWu1-Os}9&`;uZyfDpq29gdRKFv>JegiZ z+#i#cFIU{=ovp|^ZcM-{pOOI=2b<5GA9mC8rcq!fXUcnVk+&{wKH225Ej@03dVKoc z!mYn-y|tB$-bTJ*%V&8xTADV}jhm>r(Q`wqwLT&9Lgp_H4YrN2jo3V5bG#Q{i9^>4 z9Ng&zFLHs7qr{64XV)@&SMrwGKf20R*jXWW%Qvs3c2H+Ft*3JzU0ulYpV z_{ecvVmx@##*}|FwZPThiX3AC29Fs%ddjsid{O@OlJk$)0$RkZ-MMzxnw{U=eDI*? z6`SWQ_qHc6!+i$~@g6fKYk2m6Y_^i9dpbVns6RP3kUkwsp7wU?L+pCL%J*YG*&bw@ z7CB{0v^P)cnyw!`eAV?1xk(z4s@G{%(uCeDAm@lbJy&3FTHtJ&?>^YsbfCTIKzfd` zzoIQTy7*hNSToUc4gYypM%_6Q(VIp*G?56}l`A^c z`O{4D=>1Bsb5{k=jGUU7R5YC~K zHsv~P!`PeKk8#teG?6wM)3#s{f0>w06LT8r;upi0H($dISbCAxIZ5lM(MIN*vC~PL ziKM|;f=W?;(Q%n`dNVV>n)%ht^(=YkNuA8R^>a4_Z;18cNzVhsl1$nhWs8{6;r?s< z*RW(T=}<&Fke;55{oC%G+hprZaRE#EdpK35|KV9zn-j&9WjnGnE+&3|)Wx08eG~Zg zzH6th4qX$zGNPh3s%Kgh9&^-{bY)1jqd%Q^dU8@8Uq0TM$ay(h7MHhVXjK}>c{s{T z%gdSnh~hz<*T)*g&gRUD++{h-GJ1sa2{YrT$4zFPqRIZY12=XYsnPj+>5gu`bgA#l zZZ9Zans?K|+(dnNKW{&e8$(McJRLZLKcnaOx$E1i2W>Q%N>fhx@9=GM*SD*sJFV)OJBTOM@4b2P;1~Z~{*yYh zujl5``hk@3Ykg}nU-0f6shdXHctrE|KeupRi?7it7iqmSw57TD=y=l5pVS#b7&E;_ z?r=R<$Isk9Eq0RG*}{{g({84XG~A8$rEO`IOXGMVkeZLlkga4lOS%!+`GT3gVtG*W z*|u4cGq+T@a8*-bT3V5-{XIEc;%vmMIJ+We#fb_ouy1mda(!3F&54~EHO=g-=0*HW zIkbxlokW988>#CYT6JizD`WZMH|eC_RwA&ZgJW_r-M}0;8*^drC6@FnrteH4Cs$>z zN@F|I*W4u1#f9XW){I&?dPx9F$D95uFSa0_T+qm$1K;|+>0!>eA(wT!(ek{RmNj&9 z?>3aWOgP$~CpFLia`Vys@fUc~$6@CBghdBO&Ds}arr-B>EWb^^HihM^J`tMAI<53Q z=WTCD8A|#SLZ>scSFM`ee3orSWKiXXO{Pj3BrC`-x9Km0vDYc03z&rT13CM1y^{Fl z{!7L#7{}6Z(~@h8&n?LES;!xpc3^VcB$lrHrye-wxXSf2*`{q8waI%e&8DsB3VN9K zI_1Zcg`_oUMSSwf+)}!fG^ajfB5i!;CQn02Yuc7f9Zn8zE!c9;_WYA9A@25>oU^FR z(T_QP>u7OOnNKP|hRQu@OInrIN$ks?%FRBTeu1@juSjZ7X_7lhaz@>?N0Ad{^aOd@ z?_c*OyB)WPqWTjcO8A1<9Ch}C*AW&7GXX*;~#iuZv6!^|?XyKWV!@oxAj;%)oPld4iiiK7RC5iT<+Z2RD`` zkPn=NH1H>FLW#nXho)fKV+3u}o!0)R&ajL2JZ|c+$1@)WJ{V%o$oIV5`?P+-OylVq z&d2^2<4YURS{-R`&$9!0GWr>5NIt(!H17rQg`^#+dmG8?Hniq>e= zuObTAXZeKRLi)4B*PS80w}aH$ zPWrPcRA&<2#{IbO4SU?V%#&~oT}0|~V%W;9T(Gg)(T0}n&rtJsNI$b-RAHV2tSmgnUw{K%*M zzv=Z&3}JSXCN^SW`!mOK*Mx+Hu2{Fg#?nI5%vCWd zu6C6n9nZKp>y+8sGNgU(Cfa(Vv3`kp(O0X(mNr>sTe*4p<^!I5jH$$ynYjDZuG8Bp zRC^Ge=gE@=?sNk~I|jIr0C&2O=`zQqAM@i;7iR~?GcBm3IeBaPuLjD;*7o}xeKa}Z z>kV&gf12G)n`yPJop$JS;aq-?7YRPR!)^DVePhgrY4sf8n&-s<7iOQc9on229d{%l zEB3~|rvuXYP+EVP-~3H8H%~t__435LSx*+dTa&x)O2jSlO%5Mk>{7mp*5I7^_Z$Y3 zS(sXu{Gc-Og`U)vR-?5O`|?>i87I?nS$i~j#|4hRHR6JQ`dIV%bCb^dUl??uBJJ7@ z`@ISsIInQ(?J?%`tAkJbWb{ilcXYPqrVJr1{7ExUViwI=1%XG$9vOYu{HpZPlcHDb zjq(oO_9Dism#44$hykg-M?I5S(#^qCL|#+chMK6GP!SOBKa!TjJljC*YCi_riNKdFx!wJ!o~K!y4lts0*z_dv`oLgeUEuefZ-J zsm(fH(TN;C4BF|-cx(cW*vfCxhrE^ymrNk&?ImEpB$2B;R@5z3SAwm zXrUKbU*3wD9P_Q1KJ& zbrSpWnOW&4kDX$jd1VfX$u3R1pZvK0QT_$>;L2B*I97Z9hj61Ex3~Z*^r5aT>1T<( z`HZaNIjN^u=ao{2z+{ykyPy2nJB24beYqvnJej%-vg8itPh3p7e((-UdeaDc#*3Vx z_shtA5?@T?NyMjC!BlrTm9{rUo!WDD=XsA^l_A~3K8thSy65m_Qf?&QI#B4H!cU-G z+-Z}Jv}RJDPf>M-wP$SLoL5ThS3DWIdjm&1GaG5I3AC=-=khrIrK4*iR;PJ znP-llXPx)T9KK9i!QsNhk_ues(G{G?Y^2)6k#qvSgoWBNaBZ zjR;&9uxR0wjT3AmBmE)|`0*RBo!^+#`0a#_9C7Bdw08mfsq=xf zA}+KOX-4Z1rCUXsl3&smq&BTXy0IfobU1y-*=Y6E!Xo$Cs-H*4VW&s%#B`_Z+tfdH zrSRuQW{*xCbKwF%A#YUPz`R{ox81aruwEweZWp(SGT~j8y3Lb^x~W4>jpY9*y7S`j zhpjREC0gZ?@Xqbb6`t06st}AJEw*3Sa@Cg4dR6wN-Rv_s=j}2_cP9OIN^w$I|D*g^ z+N~FDMyt@z4!H93F|BhckSA@3`576PK;qe(&dsI~ z$@4BXC!d>=Hy_v?6&IDT=k|^d{SWXPED@vDhO7%;8xd|}71Oe{yW?H$VPt9veZ_2! z-y9#`nD}~8U&gj<)3Qy=SUTBc??M)FsoqC8FUOe&oiL@prQibrOCT&4lQWNQ}WES((`joaK)#(?c73*)Jb7?;3Z4WDQ zhA~v6ftAJAMC-`jes1g5g+;9RDt-V@)w_GIqKV#(bSdd0LW zb65869M2tmFy&mR|9?wfq`!S0=PWC8^kvd-r4$}4^G)SP({9~qQwmxusSkhZboQC_ zbF5=38NtzXQ~arzGkY(%?dI2v3K_jDfTeQzmeTWfW=yGLi^(~tyb(wC*crOV$uQ(m zbrNZ3Xrz;=ES&c_ZgK%s>_c5!)7puB_!C)a*(o`!^Fo=UYXt>9NPgm-%HN_BIWLk- zr_otXzp_*IsuN1>esn&WMly<*P!1!xMaY>SOQCId7CWx--Xb{iCu2sMMRbXjLiH za&j{&=*v#YTh2yDucF#)T7L@dWYBuFeuvy){P$(0&(HmQN50ZM$L(4sKmMWLYvcEQ zX?xOlok$_(7^2z82-d5@y%}!k@{@fsmE#@E*ALBnJ@wo1kN>&n=-~K@bH1@Ju)lFG zVC)^7$sB!7Mw91sw23|^F&qgX&uIXC&d`p|Wt@kjW@&j%W~3vZt5h7#Xf^s-Qg1#h zJ3Xf&_2rj26ehbQ?OyUDpVZ0(l;F6O` zb2M$t(zhnk!oG&{U6w;z9jEON(Jtn~xH+Wz4ANmL;VLDMr~Pw|gqpUE-VwNKazcwE z-P1=LA9ZYgiY?uC`0jqvX7Dk74XqY7V)drgwv`8#z}wV2K_ ztuNm2^` z&Xf2v0dzo5+KE=D?1_OqsY}c+NT2g$D!bR&mUi_bUFqafGMQM4sm0!QuPK)f{Fe40 zb!dk(*Llhkt~+TTNUSWGSVEIYUk}=s##QE{*NzRGr+r4b!UV4h32r{dHZpQ}Wh1`# zr?TAP^{~YG7jux#=bSakLwim7kRdzh4UP^Z>&Za6-bAVWdoGZ6bED1LRTA%sthAFU zr&wn}siP;8UUamgs`zKq_IZxW73suyJjgaZa%yCZH%~q@6(3J4bS1Im z?-Keq;mE>b=V9goea?*)-1~JNc_onl;mZBT*WL|C=IuTAaU*8Dk?wWB+|Qh!Gpex9 zqwbPWa-o=BAic=x5_+0g$*WSQhbbmI=2T3sdkjCE_UcEQ$*nI8 z;`7TcJ@Fp$e^&*rzg{({fn{AH?}BJx8mbrVX=bJM+!M(@4_^F^$h1a%uGSNr4mk&TAW<;>!~@_S^K!S3V3Rb!U(kYvYP}+Gq!5 zQ`%oSbUwCt=WCX%CFykakK}MMJ^XvWwlvyg-{`E*(H^Fqn|JPPOd68zv>QXeY)EC& zjVQFCY2BuE>l!92kA|uNs~GhYt(3p8a0}B*O{y{ zx$n(j?#=JLf0+H58JInLuf6tK-|u%VK;Z-ID~Cd+7Y*qv^_LqjH8Y?;j8CWmeg#RZ zOsPq#XFx!O?mVU8uXnKYK#@}}!1X+SbbkN)3sb03Hh2%g6E z+7fmc)!;M;#3%q)4Rl2va8*ZFBs4hT9RjC82T!984X%sGUiU|9?{03`E$FLr6dOF< z@>+oLXNk>Pv@UW_xdcCj_}6^*607`}g8BBV?E@&~gCUMR$<_i{mf%mB z;ktGB10>eX3M5Gw8pium#^l|y=Vb;{w@Tg7z!+k>64wQ}N zJ!F!pVyt0rOV;bmPGCQ-=B)JT)=N+uc7 z{|HmxNK%L%h&EstKL4HqO?#LnS+eX((~xuCVhv{S2VbC&=Q zMiLtX6Jt%&RvWgjrMIv1zC|^QKj3S*YhFuN4#{93og&r_*Y3mx3+2K3$E1SOfz3o6 z=|yW%NmHJ%_r3q&F?`a8lisd}xf)eHEH3|M*=v(O7>B>pm8+6IVlM|MmdL}q%9`@} z(ndKVtWK8=6b@&P%M$4?tO*W*9Ztp~A-K>cIBBQaYQ1WG_QS(xFli8!nIswDHZzIp zNAd(Gz2DSumt8r&^M%=a2E4^s4U@qEhWNu2w+t^3duA9J;QeoOSZ}|_>t^;28C=t3JHI=pS!D1b4&38@$hp$=5oT}xb-RXkTNrND6>7Y zCbRNJMQ%m0RSEl(I#J(E?4w+kZQX;P z+12l5;q$f^&zfLb^ZIYL!qh#ofRGy4K4$-ffxx>MLtU*U|%1;rmoz$l6fW5 zIGOd{>1t?iS8K)Q7UYygg6EDV2Tz_!38w9pc#SLpogJLWD9(m(1F*g&1o@-cL^aBua$8#cz^030W<3BJTl_$7@OSIK>d z0iD;IHF$kQw}^E^)xG%TR{6otugI&+ss0!XN?u8n3C`m!VIF5m^Ok5yxI{?AXey*K zq%62dGn7sBO*x$G!C(qrqAuXUL%2(bY>NZ?0M=E4fgCc6xkUKhVaaZ~xG!%obJRfQ zGgs;1d{ty_XtJf1MOFDVjKqY$L+Ua!s+74^dkL6L$l=gOV~MY+IBvYK-u*O1CzQnSu^o0);8 zeT@Y>(9qUZH&$*?zqfT?a}#UQVLNbeycMSB!>Ws*%QOz+VJfjEq3&{{ZW4POH@n~* zlQp$gY{j_Mb&@H1~sa1vOb9G@ZS}){Phx)+_ex}e1 z%L(|x3iQPle?uIfOVSDd1-Na)1b+Q6{02s-Oglx{p0|k3&|_g{;!oFx(l4F7bRzC} zYcd-oKG}P`%{GWl2)KMK;i!Mqk#pWr46xvcXK3%>AYY}87t{5oy`(w|ihGq|2(Ntu zUfdUaIL+;llQP_1umk&^*w>*D{%RHiVw#a!Vkzm zjf%mdk(~QF#jO2D#6)&0$&%TUhX23JeJ6K-$QDME&hM2`QhKt}x?UTV*W%3V?K0Bp zR`G2{vK00ZTo2kp)W%J~YNIum3AWlepF$}=hk*HJH2;>uB?@5v6`KD@p{fFRst-^6 z2%4R!`7P|}#63^Iu^X+Z;L@O?pgf&WHr+q%*W@g^iCecuIMPzw+`L+0K@yYSUD_ho& zZEfsgHN`fMeSfI9QJP(pXWzy;IGMWXcn36lHtes9iD97ye9)N6&B-muEoB-pj!sUy zmY$rUp2iw&*russS!c;6B_t&zCoqs#LC}vX%r49=C}6;w^7ZvS;^WVN3vMK6NhKF1 zl_r!kuyF;2nR9XRd(fvM+(SGA4>SC#c*1v&Np$JL-rRwVVclZZ8Q1CIm#T7zL57w6 zGa&ju2CzyJON0^~u~diNg^ffANx^h9P7c`MqO)Ibj}=aGsWfI`YW3qg&121v@_xSv zbD0#-FMcN$%6?nMW(=C8)0!eC_L?Aw1z`G%wvD#LeBHNr3DXmuLCwIiN8owi$S@AqWeAJjiCeWF{;^3To? z9j{wDjl1jA1cN0`PaW>tiUkuB>n00%MIooS7z?ouR?*=*kL`7Lb#~HpUFOxWmxU=+ zj~klWDjRZ!6JIf~8IMug#fJuzK#eMm$xFDNd_66>`N|WWOg73O+$}gPG$J_alzeJl zGKLo1VGq<{;qRQHm{uOq*tXQ$<)=4z&~+i=#>l{kBMg9V$LmYbe? zoq_Lf5bUKIZq`&))-iC0a&d5RaX!Sr4GbliN+sQn?}+VTAPRR-_~Tr(h8^HbMH@$$ zpSEWHXY-sr_kf{xdDf_y|7>jG$&1Yd{0e4fE}C*#5aB zh}h!z8ce{2Xxg}!1r@OP6|y?uSFI!#x+{q8@j`wsP*@7Ks4b`%Kx5Ea0@shhpK`s| z6G;;>K=ZY@20xcGZ!i<4yoF8U;HH<$!fQT{=m*r8ROwY}3UJ9WTzd+)gg=K#&q3um zm(ghiEpM?<8%?ZiV3yk3Z6mt{9e1`rRC$EcAIZP- zT}d0!^QyL~Fe^6@^q08zx^}p<2)G$ni1!vxEmu>9cM!sN_S6O2a}H;m82(csAQj?t z@}R%F$@Yc%xYkytFkg2IrVbB%S6rLZeEm)vu7L&kDID2QGsvRbJtV)|f+E9B67#F5 zgqpa<*k+~?UWoAkU4EyqKYLXBx(qOG*bSb)k;Zuv~AClbq|!SWu{Y)pEbfs-A@s%ERWJ`x~3rMuMuIEv;)CmR1O$eGr#& z9K~nz9C^*zuH|iMSflWgvsIOiRx7;XY}d&~s}z3ZY`@}d<$~f55+OkkP}D|6TsQIH z$$PER{&UgrI?jude#v_g(1N9?C9B}@m$330tv`Cc9d)|R{=*MNa;wSf)epYvRBLNzwSL<4cFDVhlKApV6%17J?UYy0DK8~l z8<(Lu4c1eAB{HQ1i@(uv%@^Cd=4((Q)AJVRtQmfaG-^zu4i(f{hcnJ$2i5ww4 z1bPT*?lWxpl_NvaCp4(?jRd}cK>Pv&X=t1K-!ZmgbWTNpG)YF)@ z!z(`b(836<8{}WODDN!Zb;P^Ft!6wT7 ztRsU#I&heB#*M3y##O=w6BfRD{430Ef<67X`gi;smalATXL0F^B|sa%QU;obHb5f= zf{He(pd$s@+5|RY0PdnLH^;Sf%paurBrqa--TKvT@2U_Ax~km=tncf-5d6Y#AojS> z9F+`k{*X7@4RhN-xd~Pp=E#XFspKl**8oe0qw!W0;JWQqhAixU^Agr2!6D`?@|0!n zkv65@s4`J*Vp>Le=C!`dzw2kPQJc?NhXqE2ghZSWF+wUJ>}rNGyn_H~K$gERxi!3q z=7ji~;C~#i?3gCh&=mIJf9#-Hk4PvnDvK&MU_!7(p(G0!>_aO|R@)A$q z4!q;vE6_fXWqo~Ls<{9?s2jJ_TT|M#lUa9MWQ=n+$<;bCz`mf7;a`Z`X>gG!kcrO% zm;Y8%=x{m22yA=NmX6281e;(VG~qrP7Gfk(1C!@yLO~HXhn!gCv(9~6WYM|OsPeGy z&wdy69Rp5-c2rQ+shfetd&Aib?{v>pcV-zCU4Nmze!eaxauhknIx_e(zN60LHV-6v z>ssyEF_>Hd%i=(ffg-4&<8j*6g=xzY91`{?9<c8ninz*)oud1~8?0#Ad82ay=R?k(2|pJeCI1{_ z%0Kj4wz4FcKZ_4(5l#zRAE0w&r>(k{kb!@54~eP!vsD8dZ*3QJSKE*4zS#7$;Gc(m zy%mvYI*f5`=mul_MjXR~eA`$9CD9ZUsU}CmK^TQh90fO?mP@jfC2<7D_~|I*KEV;` ztFdOudYduHYf5@b>PI9iVGqy17&je+(pA#+^4lzl^B{N{eo@C?@HFIV;v4AVr(zl8 zYT!>2JM%Gau?FU188;QW;Eg8cenfKJVJ3Og^TWuu-!Q03dxZoYQSuh~#vF}F*JXdC z+VTrKm0<_nV?VC{VoS|kcKw5mLu%a&tfk+zec$%Dof+c)qr)Z8HeP!UEVp5BH@$Yf z%AO@AIYL%4MW$F8m#*XPX-ip&zxlAlM4RT@50ibKofeHYr4EAj3eOt*CgTnPXLp&n z8awQ>a%yp7+ZvlXs`^ax+5aw}RC1HJ>~_+(Gq*4_ver3RX~;h97`)Tm+1T1R)cDk} zf-T|A$nmv@cRQQfn+PpbZ5mA2U+z5UyFFUlSMnkoCNmIAox`ufmIvCMayWF%Qe-8v zh%t@L&|*QKYQ9*Wnpu!lnA(vvTMpJq?P z8d~Ik`jlU|Ok_+|zOK996xh$2dYJl{`ZF+0gI`^!c-nsnjd>CuB2^Ge6ofQrOMA%# z5#OpQEu#+y1szs$7CFY+$vM8I6c$O;3062oK05!M=$$~F5-p2UP1uU_kF!^WFgGJX zm}s1ACAjL8BZ?eZ>i)XDq`=D4{*VmTfndX!3*I>}#)ga0dWo2g6q?V=BCbt+@ zvL}`WS_Pi>j`1jT>k7*V%M8yMyWjg$Gbk9Aum`@f*|AqQtTephOzoMvvrUn0P+QN2 ziKpRa2q1fXZaS6OmRJaS3O!m6-Eys$2d9$uugFkoxma0Jt|`4vA3S-&UCBkXKh{b9 zH5O24AQ>Ri8Dhx{A&9qFe z?wD$Q={m&*&D zxJ*eJ;de==iMbZ2rjF- zRHLXkAvHBU<66t*Z)Hip#aXvACnJIa&UlCzG^hMRld_b#_25C{7u*c89cOGQ?#|Hg61@I)1 z9N%(O+sE?mF}AQLXC&hr!!(vx!aSk_`{)an=WNc{G3cZXCX^>Cm~7anf5(P>bARBE zGMLYRXc$ANgvPkrv26^P51~193b7OSQCtUj5nd|hr1In3PWnqq2b3iZTGD*l{Zycb z(m~OI*!}Vqo+r18POgq>9gX#gO*3Gli!(1I zE4~mll_m}()?E6x2s9YjsaU=1VuP8@-a6!#fq{nr?cr9Gs#SiV%6vZV?N zlzBcUS<$053yUdUf#V5QfeBQh$;V2d-a(=htR12i%774b#i$F6CNgLx1S>S9cZco_ z-+o5++uE71Eg#kuGb1z~E!jtO;A`3pY1=&q+|Qm5j}DDa(`R8-3MgNP*_o+FlKrmv zb=R=&gVv99f3R?8^W1XWGu_t*tqolnUUR$tUekL95{LLmN)jvmT_(xsQI@o6NXu!T z;9%d6i<&B5RMeMr5dJ@6?mxnbipH-bQwc0Yg6DMM++wsrUJMQJ1#+Xn!EDs0{DM#W zD%oC4*O}Hzbr%+PDMK1s{SJo*@h}iD8AKD9rHQkUp%e1r3oaGwTxCPnc&Xc1b~>}! zxi?DEs~9fm1L6M?bAJhGFpzeTo}%JjWl4*cv{Y7$A)M3d~ zZ5sASd;b1Xn$mI^ui^85eup=M?PPdwyIGB8Ya46dX4bCT*3;j5ul`%ZViqUi0aQa} zJgiY|!~#|IzU%n|#!3<{(`p<}JCy1w!1KDGMVaAL2OW36sOWRiXQR_~*(dQ26UGwM zH>(=q6qhO^7WBpNC9to-!nl|{>3ZDF|B%iZ-LpE86?L`Z=C=$K58@#zs4l4DRO$cG z2W*k_lK=-lCm&}9t*C&;fSQ1tyHB&(9yi=FoEgj${`rL%v#9LitnwRGGBm8od-`-fl**TQFD z+>gdE9doj0GXwbX)R01k+3RUnF z4bc(ZGgOocZzEV@qkU&Y+7LK?o3?Q5ZYU$tbhg=}B<%VP`KRF}&=fF+knOmVg; z%+{q{0-R3R2BsUa)fp9;4vro_7BiuB{1tmjGhV3#oFo)HGqqCk1W zqR_O+ED_U0<;Gl(znYkIHKFWMmvt%|?HGCVOk`x#ndop4bBYR#xSXu~9o@-oCGPk+ zt`9_0#p`>=M8g;RE(vzwc>_3)HMHJ}^_!8=sxf50>wYla{~d#sLy%54yY^U&YSr|y zyZiRsQNP8&4-n9Y0Z-{iiQ?qmbk931%tnUr|L*7htxv;3X&LD*EV!dAX%k9s(tg1q zK1#kKpIC312JVggnp+D>#Capmus~aXS+(QQVo-e02%j-9Am`a5JtDpQPB}))q;rmO z*LB$F{F@i*6uU&#X<4P2rAd!OFpH5U8$myX&LAdm+8R&arr>lF!P6~p+KR%{xRSu> zqtuCzFkdCj*i^G=_o$wt>_%m1@`hmU*9oM~`ra8Ym`!+p(<%l5Qe87hQ$gZ2tJ!;Dz+r1G^UJsul}(ii?w7H;r(grP^&PjGwGTv%*}_Hr9jm%qqOx2t5f@e8O{lo z4x>~XmeSlZ&?e}J8-=iuj=~&uw8P~%OIG%`4!(R0UYDSe0Rt);Goo-)q*b_?tB=0O zSL7Ar7MrHaM%NZbrz?IC-Kj}>k~n?|EJe`I;AL=BmuGNGBwrDHER7r zV=eL*`Nn$5W1#Y!=oH28M7L@Z|MB7b!BJCw*xpKdi1UiATX2SUohjRpUtLsD+T`5g z+Tn>)obU@TTy~;FhlR~Ku%sGhcEBtnSmXj50!s#2R8Gd(ML4bLWy{06edA0guS+Lq zU(30gr;*6Q2E0Xd%ZzHwZ(U1ex!KfSOQGF17seP>h{z?%HNu_25q-E#MVtsb85(G% zfs>8#YdaanXxIs#+`Ik5wd|`o3Aqg1qRy{4V-)NkLZWxQeRzS`#vX?UEc~?+8;gU+CO56g1z`8rV3vWI#}dyNF!X ze0&?W+7#-saJLOke-9hrGxJ&&uVW$+9g6adJj~#adN4wr2?#q8a>7!GQ%!NZeUm8* zCLJ(iwB!;+Uz5Ul+*)F&v&%%)rpBCo)Aso8z^DwgR=Q0vV;nN%ow|OIgc5D| zYZ(8c4`LP(f--G``Yt%t`@qDdm8QeOtW01E|ENejmgt}8*IUdwe{g(d_uSZ<&2`AJ z&9&U=v*Xx~pu&MNm{bL87zh&c1{C)kevlcJq7W2A>1fO}Kr8$lKW(#TVF3ul;C>OR znIu>#drf9m`y$MId~8KWL|(D(v8e`ZbWOp9G{xtlTh)o*T$wPd0S0|OniXdzi6;0$ zDy00Q{LlHHlO4`I<*>RE=GHJnbimnwv&YUd+#fWiN;eZQ1WQz+je`t=b%Gg)Re;rC ziL23)25$ve43@YUEosgaQVH7QEFsJakxfeC#yw&|nOxYI&V-;PEO-E~v-aJ~_&bnqF%yh|UZY#T+G0ya$A)T0?Sa79KD}n98 zVd9nQmF$t6QI>u)t&)MIRDh|cwSxl#=RkvG?5@)5Hg)!~J!*EM*o5uNX)kOlZ#_8R z`PjFlo7KuO$+s!)=%^mdeZ=(ejD8*sJ8=^+Z}4af>1M!{3NSvj&(49tL^LEK@AE$A zd>Q=40D9#1ditc5{z41f?9^z+f_^J7gUwH5=9*Z*Kphpe?u=PTKv2NJFyjk{V-CjH z$<4LC@{Wv*{C%;$UfXUyfZ^R&)n}j38j=m6d;Z$@GgCz!#NrhS+cl0@E zWvpt8b6qP;SP)dcY3m%Sx|P?HI>taD6@@d-s0aI=@^uL|ie4%^^i|O%(fK05xTxiN z;myLEDKJe|&4@3li?^mVO~kgN5@(_#D-oxyBdj8=B2#tQ#`uQI4VRgXbUg`#ZH zjimIg8zA3)R-bqXl z=94J@bH^eB82nub_oyJB<464iOl{Y?;@l$zIxH+J`K_V1v$Qn7>P902{glWd$~n>{ z!qxYLZM2){K&(^Tb!|2}zx+b2Vy~$7dUi!tMbh^oSjeE1x|A806_?FuPPEJPAiALO z6`G*l0DJ<2ICB7u(ey{q9z^X&!X2nVbKCh)VjXS~ZW7Kk(KQw2m4%f|GqxCkEA8ju z>+S8wXwgOy`e%h_ujsPMIh*6UXAgN(3Vey25@< zivQ*-V(<+v09q3_<2l&84IK@@5jTrrGZ^%t!8foO&f(@!pkTrMzTGc%RdLHpZPjfw ztTG_5Wjk(pOu->uk*t8v-{a>LZl1dmKK~g%r~VlqL8GLXxS@(B&R)2z$%q{oXuDVY zjN#I#XgnN^N*9dJtqC^qKkD!AdfHm#EIJT#K$M}y#x_-nN)+#jTGH}M@{3b@;(v_0 za|v`VK`X;|Q)#uy^+`?I2`u+1-%jvLUEFGh77m3vELb#yS|`luKh@9TD+nUa*1y?* zYdvTosB6(|SG&EULC(8=$|VwB$R|PqhAy7*q5O!k~nq)SB5 znUg``$1X6uALVr_C0|+A3=QtkD8(}b_CO8p!5aDo*F;Qk;Vz`ssx_OicY8WUo1ZXT z1{IA5qi|NF%Q=^mCp<+bM8{%}$hW-k#)TxsVNqrAmA=I8OYoHl;u*f3N-a(;O)k|; zW&gKw?efg}7MWcA&NHR%87wM%HIz1>H7Y|FGqQL4`K56uio3-VRvj$-M(1JfJBpDMq7JZ z9x?YT)?w>z)MnOXGuTNB%Vhlo%qPN-@rOhv=}Apbxt`b_|D)aw_Pl!J{)o^sp}}X5 zix?HkFI3jZCX0Sj_`KoAUgu6$%Tm)>-J5}Yp_HO^3q5+3U^XSSl9&<{bJIc0Pp6?1 z6A6ZmLYO9nVKAG>Mi@rpXLy8hsY%<`1Lay?&@Uq}3(t=wJ=RS|dA0yYIJrU;m4K z8SA{pc8i(D4zZe8Rm`9}s1fNsN#C&aoWxM#F)S_nhh#fd(n9cG`*7tU)H;==&kn^8 zUg=9_Fa)E7aE=Z~v)!`&T`zMP>)t;BRT)r z3e!l9s5l`bH8VZ6CE=Ougz1O7goK2JpFAfs&{dRgNK%&aPc+c&@B5yQ**3F!CR@yx z*)U+Eje)e;Q6qnyfGQKVIsI08QwFn>HZAn&Rsutce+4HAri$Si-Ozlqt?-Us|EInWy~YIil=~OKJ-ABuo3U7afV2$V|#)naOieV{PKI z#QT@PUIY&qbb>uX3fJ%y@n3ato0UP6BinYj`o}_;ZkocP1QrurVE8|Wxj#W+5EbB* zHl9M}Zyn%ji3;IWVPFlvMu%I2W}{%ntr_Ci`~(A>Dq7Hm)p-rsw}mAUK!4xtvhA9*t1V3WzQ|emeTxcigF7$3V zTtWeb>@aqIGY%lc;ZR`gP#m*YhyC?3qPFfdyxh=}D9Om`myk?;duT8^p zUE<{2<2c#w#v$z^JN-8LF;ESioEtwwdXg3ehMf*Lo1@K2 zj>9AwfY7TfnU9a8e~n5SL7(rEQ53#Pn`5sFr~M#{Rz@V7h&Gtu*LYY6hO{mUEphSz z7g-(@8J%jt!k6jrMGj0aO!T^X=&IY@0@f204*ucvv;J{5)9!}V4YTz}*Pm1kslMCv zN4u=kY>XH^;Ohw_d$~F;M-xgCDP2IiWUcKa430^ki6v>E%h%ApA;G>%J7isMpZ&89 z#GjibSBSKhpF*8S3vXO)hLbvM*ddr*2HWG{AOp7~-eTGrn+e{gE!>^D+shFc2*JqY?P8(+;5yhmYArAC7T} zwT+d*J`GhDiWPfBb$PihIjz@VQ!Hdm_@*>Yn`l7+{)SJ5l3+3Z1iwMm2v&i!COTsQ z%^k-ti20#AJL)w{^#q;OUfm8OCXWSRz#SseS`<^!=zAD<@5Pz2re3hH98BWiGy@`u zkNCe`Pue8{f>m4O5Ne;aXdq(q_wc!JH!4c@f+hxGOo)KLKZVa2(-hLp%o2Cqlymlzc?qv0k!z;t#SA zzeO2hAefttMRa0eLQ#A%1CK|f?YtrtjYfXB%w}<$9oqw+7K2(GI5022C&wKtsFYKm8b4dfN4wvJb$V=;?3ZL<;@n|3?1J-w}C4bKe=S#DJfF?Ao< z-l|@qC+Mzr>)AJ|{p6qQzGO3$5L35SVUuo+fnaqg?h3|pC&xxcVaf=sVmLoBzZy*8 zjTqm+Ms?hX?}YFUP5CuK_?B9ax*Kttn*FuCEF4UNBk2&Fo$j6Ho$Aw5%UZtM3Dh!R zCu(MTxn!aT1+Us|63@?p+#<%kj@Tmf_!B!&=?hJ-G6L#UZxjNReNGAI^xt*=KQn)Sa81O`YAs zY<8u}Rx|yetA^}P7hhidJ}%5R_{d2=27jP9qvga{ef3_P>r`aU!lGNh4GcarFJ<8> zs*I^*XcCeU&z~KtS*czV3v5%z)HhdxVA_UZ0q^+4eh+JBtrL34FzH;gk*T z+KkI_2F{!~Ud<9SqDr5~_ATg(+wjYFTNadnc@Dcu;AlNg8CH3o1r_{*@N&p<$e_AUGEk zw!(aO_)3%-lOjrGUP3nQkJFEBJYgb}@p~^ZRaM(DF{3%$PsGY*baVgLo!bPKIAiw` z6}4OD?3-uze(r#26{cn8h34%YtZUzae#gFg_#_wRCBSl~T?T8`(-Ao3_)@RcmSd)4 zMq>;&1vV1x68Z|N*5Rs0xZGgv_Vueb-!fr;c>3T)-;Zq@#had~HFvQaUub=A{_+JZ zZG$zLu$k%ORq1!y1fr<`RCL5SIygfgX1T!^5i)!HGZ^l1rlcG{9l=R|tl4CMlPqwK zldOVqeiKk#FGpVJ!6XxyYgKud#hDFDTGhHgycENf3Yf$6@jt^(8bagY&`%bn2JOpmlt~<+Asx%eswaA{J^o<0`IOs2gSD#L z+arWaLb&%*VQ-L_N-w~hvuMmQ#-3Q zY;xc3$uP`ofDM^o#0>EB+V~?nkNE%4-cjD?yra^DEGVS@`}%L03~m*J9$k33@N!WC zGeW=QjuG&n0#U^c=UF0U2LCz)^Fm=MgYkR{*&AvSY8=kMF3`mVH0pu_fi<9uYfzU4 z9|ceaT~tL~xw`0`q?!1l1ICA7r{WEL7#G3SRM=N2IMg$(2U`i6Q6;s-t;Kzsd91IV zhoOrp!w=v|F>I0;;wCYiq@)J0gBW_19V~GyvJvzadEfG^KU6J%GgpcJ;Zm0(he9hs zUx|0KSG`xY02A>Y(W{~>clGQ1Xu8x9zi`LZzOu%FTT4Ny9uzu$vxIq$u;EZmAB#&0 z@Y9tA;ci|ZaUz5G)eC_Tb0pd1YJ%s1L?YBK0J&?hq#$tCUsv2%EAdDp7JPSD(J z)oj?jyIFvjA%N@*P4>Iyo#Z9pmkFT|vqm8cwoE(}i21ox*v+t#&_V`t@g%XbG_>FC zQfJCOsvErBc4uEByAsoh!6Uk3_o)8&<~YS3XM5n%<1&zaQ=Y6V%8V|cO=01F*y>v{ zz~YJwoKuRE8sFUcMm+F@X_xM%VWR=zc2h=%8Ww5}U)O85TlRevw?-V*6u+%*U@ zBw9FQ5Oz_xT7~dwScp3N{-j#b017GI1`Ek8Zmumqm;OQ*MeNx z(a4cA;&9c#C8v>!yza=t@+6p>33Tz53s<5Oqu-o*bNr2e<}G$b#+FpQ#LmpN>|6Ov zE&o_c*04<_OYUzsG0;TCZWzles%*h%mT zM8Fk{pfFqVB{_f#cj9!USJm%j@AvhNH$7#zn^ZI&xqu6!jiQ!@>YqGv!p|qfMdTs! zi1Ccc&|zaLievH=?~3ZuvrDtek_Rrmjk^;Ex^Zxa;m4`e^5lxERT>iw-wsGp3H}6^ z=}4!D17WTVKGT6ND%ky`SAe(iu9bUH$vIz_g|$sEd0^n%!s^_njCKZ|QzC>EP~w(KZi=JNT`mlW1ta!l1`?$dMqTo zFSv8Q=>Adirz?peyscyoXDgjUa|1jf{5crn&fyTHi!+I-+rROXXA8Sm33}`He!uy5 zoC-4p{NxKn8$bPe$*N6#j_jM4PhpZ6W>2KKk~UeR;1PPa->!gNfebgG&UewGps=vx z5t#-oOwRc||9vro>0^H`)u4HUodg@CCq_nLmG!9P0EI{Sp9q%&tN0vT^)cmZmqZhx zL`%Ag_Ba*jrDP-87i%F`K5VD@5ExMRT#}Pj~@uC;kpbxv3P6VjF=lxQJnR z@gpm^T%twr1B}yWw)*S2SQ}KE-LmR5J;1h^bXyHLYFn<^k24R;>bC@?zcr5!fQlMu z+JQsZ^$`}$uHe>MTzJ2sH}6s68wT#f2ONbjH1G?2L`f8}m|zUJK@7T4I6fB>zzq`6 zP2RWk756#eFHkiDW#ffU7%q62ccZS=Uu{ghrE!G~w+gihwqx+QHuO?LG(ZZM;D%)t zI_$I7@qxRK7=G1gJGb6qggZ|2C-F}LHQaiv;nz=C@gI@^f;XhG;uk;+ha~|N+VZ~= zt_%oYhJ@z)C3^^dgXe^Bj=wg_U6W-+G4PG1yiCYNl1VU&dkR_nQ<}Si&V<*8g`7Sv zl-1cEA@-<0jk`cau0LZQ8gM$mGt5$SKx7}gFD_e;jjF7RZdM!;HKb%0W*4QtiHA)L zA3~MFC)2ps!+*`whQNQcER$qI0pYv&nIlcy7Q0byCdG&1H3Amg7PR2E(Dx*_hz?HQ zxO$;_gE@Pw_r(Gi>T~C-!{xdoyD>*wkM>Cc6Ky?xqeJ5ZD0J#HD?v|R&}jq#`|xY z)a-6FI>_GN-|bT8hO{XzbwG9Z3T;-L)}P*+!QdaGT{LGdCcHTu=gjfA{9{jY2Z`jM zSb7i^QgA*Vj%0#$m3u#n2livoF}!-7!B$z=b`UpdAk%8WJ_A7mXvf1bCYP2FTuAr^ ze#dAdr(!?K?Vxx+>?UxAQ^7O5%Ev=0=9~%s%1wh``Drw?U>U(c@Pt70q)<;n{vX=j zGb)O#>-#oQRpXfTIMt2=<}~JnSqV)J0wMwe0+J;Qf@Bd<8cawQ5s{p85)c6a5$F~S zqhlI%9LI5zx3iaOMj4x}JBv?}x_^y~^%Ib)8Vv=j^@zzdwnzIBMl@&0xMF zX-K|XKAV3?jnqWpqSIOGO0evc+k<=+Z%Aj?U2IHg*_HIaDG5KxlZlvHL9fBlxO@e= zZxfIP%X?t5^vyR6rVqhWIx{OXJ0qKcA(^6;lKb-~iDDT)X1Iw<-9OBYq4?*RKtP*I zMQuKn=H_wV5o;Tmw)1DrAze}1^)1rHQk*dOmwt`2ku${FzR{!Jx%z;pzU5%GeVJ{6 zh@<#f1of%b`o?QD*O^ZKi9UCNwld$hf3Fk6kHsHk&0LbT41S>aN1vbo&}P4N5TK2OJIaR)MKnRS%2yk8t4|)jt{Izi=UP1(Xv00Z(LY zoPmXmBNTrgGYMF72589}(A-|R62Ue6V_3sIruoNsn8+7E1Ky=V>O-qSOLs-EnI0Lg zX-*72#}`x_svpF;+i^^XCHn%{dRP|^229u1H5&j_oK}Sr?7uexqcR?Pv zr0maY{kQT9u9Rd}JXs81ZH7GtB~li*HR6=M?T;9EKgiFg&gGvjNGN8mz~F$wL~tcG-~mu>2U5bfoR;w@6!A@`wqVtHo_w*K7x7bI1l$xSrr*oskIu3 ztj9dVwQDr$OxdQYY5~Oc?@@zqI4h#qz>_;L#N}i69qu!Vm%~GXXSfzP!?)1f5!_Aq zH86!+gHwbmpKKD1lfBp5?AyBsM|t4JsC+#Zj4s0G)os1aZACw)!D97u?9UiVT+Csj z8;rLB+E`T8EguX zDkXUrGB0LjrFJI15yaYR$Lu0Ph1`Z9SDr(8ho@du0b?3_xEz9K6lT(4(36j+P>=5> zTnx~B4AQiGD_28s4Zeak@QTJ)=tsC^P{aH1W2rbab;H%VIHBE|eE{>TU}rq+XC8i< zN1Ts*E7^p4#-O(ZT@ASCTj=&P=yapb6EV%Len%8h{1WOE?)1jF<~X+9itQKbeAXwx zJ_eq0zblMrUm?tRP+}i%D+JeoP~Am&*Hz?2H2;YACz!x3fdqaD4KL7$U?xn3%uji` zkD>5`+?QaI;-u^;OfVjh`%q}i|3oKVO{43BuAp^=w zKxc~p4AOas^M9EK69qD@9wri9Zhb$$p60yy8=o*=(1e40>>W-lpf_o60r$1-bf%8d zlYbQi%#%kEeww0N`VwNd$>c2*_A8bV?lr{nuQ8V9uW;5x2Q-e;4md_<$;x$w+u1u0 zI-l45$nd*moCRHBUvJu`S=-C*?lnd)W1Om;SA?R<{B*r*q+BVKxM%a<|pdZ%9DntJYtNG9`cd|Ndn^i6VeUYQw3S4 zQoih#lr|>5PJDF+j!U>%4Cd?K#tqsOxM2`kO`T~mn*(NU4dLr;cCg5m=bvUS*w z`0BKr{Pe8Ea!KpSA^&H#?{eN{y~%jVT*vtTmx1{h%B64&0X>|JdV&VSb{y#8Qq=oP zU1uoh>6XH>eq08#Vc7sK0~Odch(?0Ct|hqLzgr{@x?-7Sk+D~V22@sC=Jm7=tu)pH z=b7QmZTNY%`UvYLr-tDNq}OQB6V!Dos0S*bNAtCO5`l>Z19Bg{pg1}B9R(8y2~OmS zVIp5l{pVN>z-5AQ91U>-_Vxzq5e$RRAPhgFg1Cvq%I3Mjfblg!vSHS#)w#J#w3-`5 zwuPtqr}(CLiTJO@aFEJ!%5+RWz@Up_s+5z-XYmIpx3FMukeZ|A40KRO9fBMK9T~KuPH!e=`dWK7+cX-p zPh0PFcS`p)u>a>i|G)F^V<^m#X9;<;E{Mf08lr_BQilnkjuR*lgP!nNAH-rG4ROL} zIxqorZ~~~2m9*4_&^^tQQ6T~j$Mr|=wXqREo;{6X5dO6DpMgv!3BZ&Mn~9;Bk70J z{1{B8(sELBl5(}qvl0J{Ov74UlfW|AiOX;&&8f_UWnhfU(0F9a#F@yi5On0e0!RKU z8Xn>@f~jvHbp^EqDT4dq6zs=SG#KC_f|Fmv{1SQ| zKWKZyT*fphq-9g}s&{w%A#T3OE^QTe9_V90+>a@Dv?x3de*bn>ec`MVU&F*z6h^~8 z2p&~f4@f~(K9fRKewc9Q-}2|b{;#*#NGWLyQQT5I9PW~DG8vXXq!dvKJ0e#GGxVfS z;dqOU3(W=f%(%YJ-x5HD0Z&-U&!x=^yt|cQUO!Hze8ZEoRJdtisZdsI`m}}Y;mQbd z+)Uv3nKazNW`buR49;K}1^HYuQPe3O%j)FI4#?z>DTR;1kI2``mnqgNmVNqre=d<| zLns~N8SQn<$7RK?9XQTNz@Cr4{qS+kFYh)y+;Ve!TN|tKY|XQ|&(39?%|4UO!0ADZ zq0Tm(Zf=_;rX&_8txwo87)!~wLn={RQ^u{=mr9KPngFpWG285>~?HLy8JK_f8Jdziss1bG{bikC`I0YtY;Us)X z%a=nmQM4-lA#0GYwUx>LK`DY1XNcTTzE)wVSo?RvIi9;hbiszUoU>&ej@7C#X5S6o zdwTsHgAZg-LU##3%FR_>tm<9Wfz4e^8+i4j7t9vpZ1kh$vq3@>B?`RLBv;;lM~;-j z=~H8r6`Bg=PmKxYejPlW%1^yCG|5o=$ORb!}7rb*2R`(n*<#nTeP56Io!;kJ#ip6uFiroH>0)fc_n! zd>oxztvngD!ffJg4zqlLIKvccQBD_5YQ!1kD7q?o4|9mS^hvlYj%{W=8M!oM2_hNSh~14yBYgz z3d%KLf6kGXR@c@w<@P3hqkEp^bhzC_aZ{lfu9dI19~Q19OmU9LjpgeV#)|d-T5STt zdm@HlEWj(8a{3NdKmkO{FdB^1(MSL`Y_KEz$~#;n-9FfKx9TCo72n|{RAyazLt5jm z3v8HGu=Noe2J1B;i4vn|8IH%P3mSH_wPjTm6_x+;bN{$X_`&wjRe}^TmeRP$RtXM^ zF^*RCRT9%rbCvk1v~G#pfHFu0<#*D>OIg{eJ?DSbxy;6HiMEOii4GsBs=`vr^=L++ z3dhp0s9p)>GH#M^6o<1GNfTBrHBOK1-85N8OXuWhd1p)t`mQ60l`> zDZiaK1v?&f3}xWid)a(Q*2H9_#6TfO+eg?(+6%IQ5BWcrzpi8M{IwbB;T98*rDof< z8aC`Ezh$||NEBW$nLPP1r!Hj`qSauG=grF@@Lm%$HeazhAck04Ddf_%4 zy9+0Z868+m^GWa((Siv)MIVT=i?WTrw3CH#SN|ybse-vjJA~MW*@ZLk8%&krR7h0A zM4a$XOVVg4A*+mVj0MiH7s>&rH+*P&eluu*9pNV1*!J&hv#zuiwX_^)+}otzDDs7; z#1rS4;KYqfnhn{OuG-tB!wh^wox+Y2s1s#!%)-;xLgFadpI|;xP}$dTD(}nhB-d(^ zzfE~~PS9fh#PDONi%n@Q$!!`JSl$n>5;2THjy@RW7;S$%OSt%)zb@V;*e29EjDc6b z%N9VoI;Q`<&K8W5n~4}E^HXX2NV_PzW0!WZK;?fZeOJrerR{=kkJ^MVfG}Q$;~_-@ zQ*biPbuT1*!yWDh{bK3R%FcDYb?n~9JKrq*)54jBadbvSdR1x-12!`LnixtbV-(ND zuW>m}sW)L?KX~w6&rg44TyCBsS|3MA`C0H4Je1=i}15#+$=E-&vJ=w3!S^6R{f@tv4f_&s&AOCkRbNy8-p393BNjfF zz}VBjpJP@cCy32965IxhU>h!?z17$Ww{_Z@3I+=)x2_ zYO}kMnSJ|yw!f|NLGteme1SeP@PWzwI2o4x+Q++7uv4GF4B-!88O2ShA^4LNe$t}( z9Da!C!h8IT|62Fsn0|gfdp>$Sc_-z5K}z+8(0 z-x5i^q@ueRCYaZ=N0tWdJ95hROu)4xKi>SM5vG;EGQ(Up0LL9#c2G6)r{gf~B&=k> zdC-aquM4jXFVTx+GY+M>r8zMRskk~xLzA%Hv60xu+cEejRgGH(R@!+e!}BzlqCdgu zpbFDbl^Vv0WR3%lJA}*;!DW%k{ZRa_lDSRux4EfA{0<+}t`RO#F2^#}*;o0`${q^h zCeIL$5RWhhZu}@)4i`1?;?jR3GCz_ZB}O2|r?^KS4${`U)vcE}RTzzwCP~|#Ffc&1 zZF->%Q!EO4*~O*1nykASIM|1K;38Q$dRpRuMhTf@pm2hnE`zJ0qpwF?veQaxPP7w>O>b_%;6X6d>k{tFZ~mK z=*J)KYwW}qv^jT?=)?Zybe!)=zgT}}IgB?zEl{RnqhcbDM|wK!b>Hbgdzf3eTLc5Qe;-@`F)^Yq!b*|MVA zs>+J1*HXHfpKzXl9=fg!6qPTzd_FBLEhDM^+>m}2d(!-bM@(c)^sy5W5@s_MbS(L@ z3e13MFvz>n+#r8>T(aVCx>jzNw`9YPp*_fobNj;Z6Z`QrCH zMY~419&?Spw4ME>;D_?>>Y3qxt(>lLO+*_;<44*l!YT6Lu}n?&*TNqwUeq%~w9}D; z!3RSac=qeyB1qT7bR11{!ElLaL}a>VIHlQ(@GE@9HNY!msf(4VwMq3FNo=%DxNYzO z2Io>?&7rkn6%0J!mkQPxUSNn`6rPxgI^YF5=tZpsG1(uQ>6mdK)lSru5_T=5?r5b5 zBF>U9^H95B*T$o4R`tck)HbUW7A9j4;ScdMrM2*#y_B0t@r$vNJcI8x;&(L69rxGK z|GFgy<%fwbr?MJ<(379MjX!?RDfjcrkJUEwDm1qgk>DgePseA(r)SK%2WROaoFss~ zPU0lNi|?5}k;&7oWj@Mdsb1&QVy!_{M823+41A$rXhBo@R{%idFnh{%A zQBa%Pbai#XjuHdYZ5nzTEUUEHr!7N$z298%xayN1_*xs5x`Km*fiYCtJ@bOnB#QC8 zj0-m5$+$i_{UVz zl?yqEIhrY~GmaClSg^g$jIA%JEHABMunlI=<{GNIk+!KYV%u_>@@n$i_xCssx-am= zDZ#ifroe!OZAmaM7sl5EWd~pQ!J^|A`&k@+21jLlo&UJDzpbT@Y2)|Mg2!We4#Uj> zDgTVRn4NJYJ%@o5#bmOjSffV2h2d6FR#tirTiqFOfgZx!-{tJpDBd1skYUbVowxsc zmo!D*LH@DmE>}Qz*+}&sZ?5lWH#|_4Zt7v+h8oQ;;pY-3v+KUsUE1tKVjQ(}4Nld# zX2e1&tb#=lTnZh`EsUkpYEtTw8Z=T^N7UIa_#e)_X2d?ad;5oGpct^CLgyS>YO~I! zdS97Y;it6lad{6}_ce<2QOm7Xm;E#6b=fzK3^Y(?o3|LuxA&-aD|ab1@MKF5mADo; zX#{Q!UlSwbryH(-jo`uwdzenFrn53HUCPYTFJ+w+N<`nY!llfi)K-K_PWWXIu8u3v zVmbB#T!cw54eK7UUYp{&zLK8Y8Cp9-YS1bLK4^R)+O2phm+5+Q{MNM>@ z*I>+o8;k{I5cfjty%Dosb+ExH0-@C&CZRH@iy@HVlx6%nDzW$MZP~2bYFp?ygIMEe z6NVR!=zF>a*Ai|by&tdOEHp(Q9M@pX{?_q)Nc!Ts`E|qVnysy@{v(q<%f|MnRc~`) z^fwp-bI}+MAS-;6Gt9zyV5R}58E%n`-%Opmai*(xR;ijLE!lH&Z_GZ1|Kgw2!+3cG zvBgIX1q{bX`8Cw}+A|Fa&CG3hA;TA-p@tf0 zOJAzatjlQB$rWmNq#(3-D;?r^#M$3Xdm~QLM)i?zQE!8(cOJY>PEXEA%7B%tVB)%0 zo7-C1c`uN>#1$_uTuRJ3f0^ON$?!KSx#fI&LN@~)>exY_GC95{VjshsP~XBi;$-%~ z{hsZxnW*ZfcH7Rn&E+B(0~?5wS-*Fm(=AI;WtU04UZuGBKgelgSmFt!|4^MTznxlF)cBJ;pjnpPbH+qUoD-bP92K# z51xhpp!Q)O5zDvWue4`Sh_kY%#3R8YAzhpOosyOn^{Q~Ag_Zirq6)s&1p_SFRHA5D z_fLkKEaT@;r*jkX3ulR`IFD1_C;b^-g@P=uh2SZAoBc}XIUWVN?2koH%7!W#oG&~f zY4o%w2TePDI-J_AMOEFF^=9Qpg(5Dgk+|*9*IQv;Z^E{hG?Z6VGvGt{?yC6@$F7z(;F!R*)+kQj<4hQzaS07qnIn#qD=(OzQoTQvjm1%Mfu9M(_t62NTkgc?%it@n`z8~Z6fTw2!?s70jY;m{cabq2k+SQ@9i}VWV8G)`Cjry z%-@>8 zKB5+paX7;-&08eEJ=*m#fS(BusF=gY0wMz$eug2urlO)EqQavL?H0M>9KSq$7FHI* z*qVXsx!Kt{m-3l&)Z@i4TMu?0Di*AvFXQL+I|mrxdij-9V%GWWb2$uja5FKaPmnj9 zpe|ia&r8Zz7q}T=p21!W`cYxUVTED24A|l!vY_vGeF}o{8R4(@aMz6}{yK~$uoV{5 z;WjR=CVnlp?48oOmh=GzM(w5S@&ekGVTm<=o#N)eRs!oaa5@zbc_Blk=~ME;LOwvE zy(4|Xd>K5;M@l(0E}vJEa*_Bwm6n}+CGqOEWHycOAhG_({i6dIp3#OER7l{FApc+k zn*}a7-(QdzZ!7|(+P=2(!ou?G8YY2yg-S4I2bekvoZ?-DIK6%ILk4~wT<1%wv@f>l_amjVc%avVyk@JCp&!}TK!y75C-zW2N)8F7{x#WsPy;0DN8vbCX~bQ;P@b4;(sCDR}ba7=Vi+-f0y;1c~3>-bU#$GU&3&+xi^9zEq7ak#@V=#1mJjA z9JPO0&q227T{$qhFiSU$h38j^eqht)x)s%PM7Ii@-yQhg>bWQ#WkeM{a0jYjl0k(5 z3zzyq8#rgwpu(_zLD0JdmOT9s0@EGUAi1 zr8$FPTEI~JI0z!ggbp-haFphc)R9I0D}2|t**71oce34XqNA~=c{e-M)qSV=Nwrg% zTcJnu4c4Q?vBIjh9X=cB!SzfHZl#ktlX{Z|G|scV{IBHDRkvK1yeqQo@3Q}3fD$I9 z4^nnZ|M%!^5=Kwwm|m0tvr6j`6}%{Lh5!0SyE^-72dACZ`n$~=Oxf;^YyH*ttL#f0 z^PQVJSkLN%_4}_i3;rl7iLjBW#U;Y%-MTQSd5-Pme{fwcZi|?d$8Y{SrtxvL+?MbYsqmVxim;N+VQhw1x<{G|!+(YTL$Ff52UiY(Kc&z^p{;QJ00uR98X%4Ha+|mYT`~^rQOW`rD1n0ADI> zDj&%0h!|pNJ)FA|r{JVH4W?{mX<1om1;cNZap&mvp~i<5&l#><#$TY4i<63zN`%5; zmk8HzR|c2Z>X>OT19*G?ltJ!gn))(^5Qriymy~X>M;}26$H; zZUSv#XYOq3!K}nO`ak;d<4W$M;2=`jQr=xQq@Krm>~a#@=`*|x56fVc+zeOUfy0zS z8&?v2PKUPhH}F(-W;XFlwYjCZfc6d#^H)9~ag28vY5jDnqad$c1-5fj2l=V3^yBK` zn*Lg*k1wYq;a8&PQDIYNQEDRUE%NAeZF6ZB!HG*m&!g13cu%3BsIS?Y5w&3zVWrz6Mq;d~E(|{x_YT7p`EHyt40|bDjj04DnFtC)Jx2!O)%gpw zdWrL(GB=yLE~!e&$;!Wy)tB^#RyG@>8n!PmI5f=nxQm2AIpr2|sayrLXt1e+?d>qT z&#Ln;pVdQLKGA{s_7EyzxCH*S!3ph#936`njGQN+7Jvf6{?ti4;XVhdSYP)XHrGIlrmq8Mu#2`|K#!^qP)TcRzeh% zOBMKU`AJ9aBGHC)UWblKh&p}jw8j@z2X$s4R`6|S6?q|G-W%xnun^M z*XXrd_aA!U3=4w5R>HtIDs{*_*5cGYiD+@W>N#-|1CG!-h^?Rr=Lh*`wA>Ud2>uTh zRufVYQnEwntBdaGE(|{ny=1Ulz6BS{!0j(2e z7FBc_*XmTL7l~fMeBx{_^OhbQuoP8v8a8NE?kW;-zrkk&|3QUUg_ngFsztCP92+-= zpMra2Fjc-0r^;Z@$YvQ%K`8-0q|py(3j9!)pxqGIL4cWz3&iGMG!|n6A1u2Ge)Ld3 z0U833#sC@uK$~E|r~gyf0yOz_4)CM7Jwn;?WGbroSbo&io#AY9fB?c`_^GHP16rKd!MXPx6p-@sb$D%bM7 zjJ(YJOAG`L@Nab>lky054RHzC;lAGI>%fZLf~Dv8#nR&QXU?BaJTqb#6|`E6GtF?D zo!|_$u@Po;zqy;@f59)&7e}wbmFj3^B7CBI0~XzZaW4`=;zQztC5FfBg9Ad3Iv?8| z$5>N221=#Wb4f>LPU+>s)lC+y?&F*nTYhEsP`HPW zCa|6}!}Yuwtqq3>jJ@$z`snH4_P1h~WX$j~id)QmMQm(gy3Q{K!^WbPYnyu)_Tq$I z5k|!mRq;Y&oMcgF#=?}2_qU(jwXPe{KJDUe6J1!oYv3OE2rsMJ2f+Z54k-@F56Rsc z#%2aw^w02R_;JDrkCQK-k1P6g^wH;*jsY&Gxc@-|!au~GAvnS5;fW#Wq3|`*M2C(w z^t3c{GIpBhiOU0oh{f_;7+p5lFxXsv`^;lzK#PX|K{*ka@|kH_nW;_ZztPQNV@-~` zMMOj$3q2uJ7Hp&ZBa^aJV1pKF(&l+S9m-()&)o^<0uBVN@fc`o;t4rzdk1PYQ48b1 zT7%{cxoX0HPDSNK~*iTE;*3nBxF81SVkB?ad* zQ?t_3Y7=F8m)Tg$W1itr$D%`G{Ur?UrXnO!2{C72(GW~{{RYPEt!D4eC+1GQ+HHE( zMxxFt=MIZL?O_o=*hdcUaMrZY>v3XR2C5$Bzt&A3YJb*Jh@C*(2WCGYCQ_Ix--A=7VDeWH_F*|i zupdrn0=?o(!V5#=}f({k9Ae{6h^z*GWcT|AxXbyv>I)x`^ zqWUnXt5c{B)5u*=S3`9gPTVD+sfL<&DQ+BS6JCi5D+tRC%~6YBGXm2BQvDhH2O15+ z6!{vQG6+V0wP6W(6Mg8%wRAvK#1UoBPY45T_E)McSD=(>z|B5|HvKJ>lOpdt?`-d& z;3L6-Apu2xMc&1ksh83+(;4{8jvUVQ&GpPpO=W?lj(7xk`g<`Uu#lu?q-LaC)Jtde z)~jkRG_T&zrX~vEuY8ZI9+y4#d+qf%2`)Bee=L67BS%AeRe6_b#MLxB<%5W``FBpw z_CD4TRdw&^-q^CDR>Y4zN4(q)dAj*JdfNq91y>le-TBS=6?vt(C8eb`0vF&Rx0S$b z%HP$`!`s`xAgDN`lz~cNO*D#%D2U9BxUxN*O*@hjnBvdyqfvhl#>-dZ#J_s+?;Frp zK2})k@&&YOP_Xj|OWb0_U49KUC^)urO)yr9V_}~L?!!77Kk5-{TiN!$9UZ$w7E9GP zuF$A8U|-+A`~1e+@_i+ig_dn?tZT=?PWz5F7@H4M&cbZwI=&V|9({anz*6Tm=7T0u zgF%K{jg!b8$KD;S>eX7J&T5xFi(#F|BT{a#laD3_T+u3Cswe+~o1pkykLz5`7ty#7 zhlv*VBYM%^0wcpoaxlSR#9n?H)mimy1_~960wSUOG)3VlD)Y@uu z&E%R^i%{@(4Kj$B`+$3C|Ii4pk<-|p&d_9G2Gw1Z-=PAo;3GqyTN(!Z2U>oNOCbso zzNALVKDmcfZ9;x}T47?=`Qoz;!kWuI#y2K1IwJh|kvN7gro2Pb@>GU6862Z|8SWx~ za;N6-r|9dvG1+G&Gwm?1-Y05rw`nuGuG2Qs-f!ePh!*U?>1ZzIEM#Z|(_xzwx4~o$ zoQyl@ z?)Z)Ei2ohva#si(-GE1*Q*gA4;L-2k=z0o|qAh`=Yw+kR3TLb#2Jj87s*02r&fimR z#KN4LFz){I*9>m`1lUGOz+=PbRA)i)Efu*NYSU>~lkyVtHImrlhax@0ycitE>l;yA z1E>%azeaKGw#qf4n}sgV4}4=S6RCr#U@gxV&~8VMdMMjV4kXx&jMyBiuUKeI(<|v3 zu+l&)Oc(Zm9D!#0Z@L9421 zni;zkYq1>_J=gks8GJhYafvz&Dg0})*S*cC)~v`<)KTr(Xn)-NBLc>mx?apobp4OxI4ze5L&9k_*X6ol}) z{0u4%#R0hB0FJwE&9=d;JlGHqMuL3^{DyDI-lMsO*#bTPW_sXV|9+oN5mrDZF@(Ba ztfM_pnHa$mOsD-K!;dHjOM()DPNy5Nx2Tqp2WSzf^x&T~_XSiCEpX=x1f-9TvfHO3 zU~Lv?s;i)|ONDECF5Lk8#ke2c>2}m6#=ceB<=acviEb7idg}7PQ7Yn>V$={|lX8Z1+TnHyokQW!k~_dCSRAbNpAsML=$yK%9ozt9Y3>%jD#FkZy# zKpf%DP+^9_rh)tJ9AR^0m+qtwF^zl+om!ewky5F3iM7W?IyhtFv{e_5}kQ z6z-(EsQ8u&SEwNfEeR!P5f;0(r$b9@oz&gp$Fy|7Jced zXKpe%;duUt^~gTn1mhWQf{a(C5{u52o+)QED71hN#CD#J>N>*?EB5&<+4t=*K{uD>^fQT> z>x=oa6)hV@J$07fXue+chX~_t5Ps%eZl>C&7`x!@iDmdfG5HR6OFom|_vz`q?sS%> z(rc<)z(;YVD2FmN8W->f2{v(Kpot$tLkk8G41x_1gc~SWEB~7KYPlIZSai9w^*73I zGHVY()zbjbgS^y)95&-Q_d%y7<{J%FR6nl!SQH> zmN->_TMAB6Q^2koE;GIS3Cgg*qgxpasYXe$fH}M>U=A4pbGYdE?x>>?A;HlCMQ#n{ zADNn?!iB(ql-H$CmnT%lS1~Y6jfP{f#LTVBsBurJm8i4YqjCRrfe>zQ%y-&4{-0$DQd^n9f4UM>);1QSxM{pX2SMW39ztVe$ zhtbUdwsbK6VfL%t87$mLASNMshS~a=dZMoEkdA;}uK^J^mMbUb?oE3tEOTu|?d86; zF4wF(ME_c8Fx+h7WcKdhk9%M1h$_1`bT4n4Unf$;Js0paW8igS~p-!RN0i3%5M|bXH-vWCL)(X1W zT5dTFi@=lMQoa?Ia;+ofCY5q4f($POhLh5~6!nN)1g91D_>77}8yDOp#u*(}?6>fB z4d}*$GxM0{p70;Zh?!MNR(e|XxqgGoY^+VRPefGI@sQZV5(X`)pkpaHD)(vly;!M_ z#@{`Zp3zX1tJFhdm9Nq>`c2BqjAxhJJ6K%chFSsW7Ik?yD?2ScJ9v)SM59ZPk|7N) zmy|ZrnB=cyKts|MB~{ua*Q;H5MD+hL6rMl>!L#rI&f*6eYS4_JKYRiH_yq-9xeo-# z@C`7AYoPfC)F9kHAXcHt&!*x~(*YN3#<3li>?=VzzAga_8SV{r3hhtgq!`EJ9swaP z5+{jm{N98NBlc8JUEI|#ha@%m7j7hVorM(=kT8l>FFsww15S(RbJcx(H7!O}q6=QM z7?n)4>;y-MlQE|SuB>$2W=3^%=Bv4!HUbNa%-JOze(O7l-qm&g}Fyy6f(6$Zu?H)-MYw*Bm5SXKi% z@!-Tf`A@iJBBx9AVbOfFrq8vX>Fl2M4onu|BH94M1@8_MO5z`J)c;tP0sH>)tDO7! zVg0OipjnV!2m{_Qo4$|hVCDiauqhj4cV_73np8CA)|8jmTV7)wEDku^`a6}nSNS$F zaJL^#-@}?dT=Ofaz;VS<{GN(KYgbg&#%Wy^Y~!nvU$bBw!ySefWD(l_3br)bVm5gX zw)4@JhS!`i!O{F17|p%;q*uAgX$V5FNK>r9>jQ8CJXg{CVl7UZ$EF*z@L4j9NqwJo zHtcN3xsaA@Hn=VDntw9`pW{5rHzGVhd6BUD`h#lA69VGy*wYEeK^>3Zpx>W;eg0vR zXB!)gYti}`Mt_-U{zmdL;cbxSU2u?jf5P3hXFwNQ{d(`opZ%aL>cnZ^&4JH02o)34->ii( z7BH33r*gV^TgVr!KK!|%34&{;?(F^b)Z-z z{4Nn)j-oBLo9mdFyW}6tv(LBM&%y-NAGb@@ueY&orH*BG_E7QrSM2TcN|vk4;!G|izrBSQm}H=G^;Mz-aZ^r>*gs0U?QScW=^ zX@d|z<6F5lQJB$wv3@80Vj1q40e_#CM8_PDjLqN8zDs?X{!IpBeoMZ}fN!GxWBg9| zonYiT`ZUye5)-fTeWj+w`l1_ohibIy>%yFGS0?r!&HtGbGBUhUnJ`~NF{ zB?OD*>xg0^zf$YtR4KngJ`sMBDiXBdEj@xWUr)qPMH}J~!9sQsPN~pk-`sont`8s)@E&zO z|6IYjLI$`2w4yGTW|Sva?Mh;!96}reofr(Igo4=MQnd*7(xFVZ3?~M?Mt&JSYJmw6 zUpcYq*q#V)kyn^!=>9KxKguG(_e$d|sFzRR7APFV@>!Uwn8?qhcUB*KtjuLleUiG2 z%SGA6>9V9hM;K!Fxlx2$pa>GnS793821_*fYsrB$y)3 zW@B(nxc-sg(1;^3{t||dqihaesaJt!IYa+5YJKT4=_(KkkQU=ZP^DpBI!w*}v%uvR ziyr29#Rnh8W$UmoTLM$h0&{`EHTZ}>F~seHM85GZ*9hlPM*D_``6_P^kTS16S;FOV ztwNn{1l`MbtrRe_gS29vb@B7exY6aI>nyP`#d z8hlCkK>8GFnIJ)GtKexe<@-KZcp9u2E>KLv7Y;-lB*@|+UMA%dU@`w*#=VEd{30Pz z7No3w=8{-xh-$f--=V@C#Y4ctsX_jxaPtgsUPKFuY4z1hw%`=aI#af{qN}>Cp23D8 zC;%NC9D+fxz|{g|$5(mV=}THlPpB?oKM&D(>6OMBw4iIMD{6}y8ScE4ccC)!(+X3I zH7~GX?!oRy+!_3qlIy@PM8{s;X{+1f()q~d*k%RuBw|=E7@MOxv;OWue`6upz43qXKu&^H-)8h2R?wQkh>TI=5q%>zzQj@ z_)U8untu?_MbqDO7UEJ`{u4$KMIY{y!3^lc(Rcd=nQ9!H!$Fqes&S4^Z4Jeg|2N zU068;UJ!=GLr@G+_!%7(5p`I3t1v&FQ8)4hBJqCg`CfwthBGI;_Yk)ncG3RUp0=*` zgS*QPNPHxo-l1l3A(G&PfP`Fawq8i&Y-!pxv=%BpxgYL3gQTz zWGnV#(H(Gw6PS7zQbDpwPP<{n%XhD=wFu7*s{OyYQua7tXp1wx~(v6z5c4sn@y623Yyn9I_LrPb<_YIKtZy ze&RcB;?lpKb`UCGL@*b2&{0Psk3<|{@U}6eQTm3f4&ZpdvfXT3>a~mYml-te2UXBS z+d;4eV}nmA@@=QnO_aW)+VgW;1*3}cpxU73BMlua{y%iRcU%>z)VO3xL}U>InJV!n#H%EyzI z(z?r)^$a*u|Y>z2?ej=M}!aH4~{p( z_x9u5L5kmi&j`$d`8W&b)8H@%X2AlSg$rnOfV~7>hxz!r>Mx)YqI(?|!0Qx0AH7Ix zVPX4x?i>=>Y=WC{4*z(NE1G<%I|MrPsRXrtY9E(FCU^-I5*;0^?sQ6xbNsua+4ssU zB8ETs+59pIw+w&31;2CaCir#SY>t_H*+Ii>oJ;gPYxS!4RBaZGReC&dyX`V5;zrJp zV|$$U9NIPF$#&eX|DxPQK*=}3fKf= zlP_mb@~W)M8MS-mtUJ!pU9xOXyD2-;-aXKGgK6f?2pok#Jc@y;`R88c1kwK!zHt3d z_yYVB3kXUvmp;>Yy7g2i^F5@~*f$G*xdp#~bONOy1*-`RpsPB|`%6Z4m#{uMUV1LZ z44)zaw^dZ~p+viQ2L?|{AdHH2j&hIma@%EStYO!v&wkf7KHB(Ie#?a`nZpc}zUou& zh6}{#M8V1k4*PW z*XyOMJIrwW+2%Wji{~N;zgq%8CED{ow9j<5IFu;cLIW!RM}NC~7XPmJOp zbYz9l!(lezGveU*rPHW$x0?t#J!r$zl3sw7Z3ijiXbK1KZWp zI@)lD>BVz&c6LNYct%*dXsT_jcj!9P&6gN+# z(TyI46tvJC%j1xc(xkXm={}#`s)2!U9VaXi%<+33B*$w2Quw5Jxcae?5lCA za;XZckk!a42TI`$(>gX>BiuGDDOeV8!LQP{CZIcbG_El2QhWsiVdI!U#kI#>jUTz2 z{zb-3x$7W{yS-395Y3|*zL=IpM8^c5%rRiURE#V7E<}#8?oziXw`c|mXmElca@H*E zK$;DMA+V5|JTq~2{2a3%Cdgi?Vp_$Hr?8VsLWg65iXqiw!;ZePl4A@6DT62ZS#)?+ zSXo#J^VfbUl{-Krpi9SE$Jk08-H_5;i?jB&SgjP1J6k>6U#B+~mzy!+JQGwQOeC@n{>$j$0JcTZr)GLCbNiHwboh!0l5S^T52 ziszTp-wc0#fAG0!1#7?8!cgCm0U0PJ_>FXGM@o0^TpcQTf6~DOYX(gyr6v>*1S+C7 z;&OP!9w~dlC;O<}gW=!AMk)~rMzc!s0Wk}v-nod z;!7H}_u9t?ddHb70)Or&#sq*mXk}tAc9m3{H`{eHco6Cc?8FV+O4tDFMseMJ@pe?) z6Mu#~fl_*p<1;F%Oj;r>+9PGXq{pN?1!y9GzQLqp6QP^>}4 zcmM0~?u+mV1cM|)nFvi&@RQt4HQw@Lc|OIRUl+s7 zRG7mw;3m3rxa*6ar%XQ<)7(3FjPPRa_&7QXs$Qe01xM(q%64gnG@(*q`fdylOdN3b7Z;G{0+Z42SVt^?G>`-0rK&yRVwGD$z zAZW$pkB~EjIS(Lm03+{$Cyky^L14*FT=FG_^Jl@59k}E!Wh=<~e4Mf*SGP7aJuEBi zLi@LuU{)%yOcQF*?c<$ac7DqYV3MFeYqQyMhnXg00mgLvnxJhSI)2Um{XsWO1KGmO z6*_emUUtq-wjOOJZ0qIvhKjcI=!}@G=sO32_<^2G7&pqCKqe8@l5nPMTKWQJ33RMr zfT47BvNUooN>$ltM}+PPGp{}7CZE~W8MBXDuU)TwST>&f)%jl-Xyi?Aa;D%jfj*#s z9g{EfC^#=BP>l+#p)yWoX3mAs=>@A-=8~5z-la?{j*h5vH>k!_rP=bb^LghgQd!P^WJVcZnN!RhOG8fI$aOw6H9T|8COHCLOG*(SRt`!bmR7uw^x@_i!aqUkhz zKO1LWTr-HrZsDx26S__{+$@772370{oOQxHDA7~q((4E_one+A%$LGW2Kpy)m`dzT z9vGghNy$u3?K^EQ(4%H!6ww78ET#>k^`rG;1%1EI3SmPjEV;}~(&7-EP|XMivOs5? z-$^SCxi!S}Se0|ReW|q|LehS;*|UE7O(^Bce)7kvsTZrXY5ps`PvCoK#r~1;G`n;@C#K=ODm7tWx{QW@ zRLO98(w2lkk^f1lG&nN+RLH!1U9}8qR8~`v)_lJ8416d9SLPL)U?1T%wuv9$R{|@s zG$^*hfPGs0plYfya)Pz+u<+X-#K3pI(F17o80Q1Cy5lOl;Hz!$ju~uJNh>bpG{hA5 zz7;Y1bkk0JQ`~65!aGw>?hbx!-Oau{faL^?p$V(>z#TWB9(7b$wSYfYE!xc^*i7al z^G)$nDdZGiN-CcBB(; z|AbDfNvl8Gq?^G8;Ti{gQ+IR!5w@YTaJQI9uP2uCM?nid;An7l(%r3-jodAJh>~@CD!d|u%*mb=9}W9D%MJb+kBYX zR+ibH-hEcEmd_Y;qjF)Z8a!W5{P8UpoME|g$c63tp&s5Sg^vxgSa=~wqSq{~!Z*uN zBpNC4hS?qH3$aZgkaD>|4HzN$_ZXX$EuKino?m}{P=l4hW}Usmnd$l z3$e4md7xiFN3^%wc9?aDJ4Adbzmsr}!S>~D6AnM)A5d;+tEOB-B|D$=i;aj5^NV$q zS;$OM^iy(-*yR3!EcW?eBVZBMpB*6uRa`3+Lvgb;1g}->1QSr&^+EL7mV1XveKjy;dRz# zO=XOoh53TrVKXKFRSnKUEIu`c0;DjR^1~1{=%5ZKJG#upk`Z#$bSPpVxbL{A@S0_z zdG5YUkee54~LTWCD|t&i?KfHcR=PYb5HR&Ef`T%RdVILhp8R4 znN#V1{c0DL{i_;eK`ee}3>T5YGnB9Jt5+#|)vp$gk)x)A5q-f|{YAysEDQH5%rd8S z3AS=31TTU+Zl-s|eipkuUf`bClmlxNu&Cg?-+8|@-)n_z(D*evfX?@Vup z_``8_@eHg1H@JvyUx64-^Skgg=xjlEn$tvQf=gi;EX8FMde6b-und;tGK%+tbAl;0 zPRAJy6jMjBNezy^@)#E(&REF&RB=Wy#p0r*;(7l}?JUde6HIa1V?3xl*rKLf^qgP| z5NJX2=k~l^aCixwgf@F{DXvgyiGBLhJ=i2vPMk!WM)!4ukDTHnwP|=NplmcSmlsJm z5mxfLI-IV_O=UkHs@m7R%Snk?xeK?woGnq##=S4K#Y%1Go7_Eo0uy_1LeT%xgJR;P z@2G!J|GEd;eZ6t4V$z_DeK{kBn7H)lHX4^(h=v-yyB&x2PpI1ddzE>_fIGFE_cY=> zSMfg?aC7hZE1{9%Ui_Qv*}hsI8S8R=7H0SUGZAsI@?$cqs_VU zJ`ANIhSlI8T;#PV?ltry*gXW@CKPu6PDY^H5W8s${EDC@?8TLINK8zqdXOwIB~VbW zo}$`|1a<6fpb3`zMjC#?MFcN@1D7{Y_{CP@YwUHv&A!W(t!=O9D;cr8#KQd~Vtusw zV2Mq>gQ%-IsQy^1YqyA7t~4Q-dD zuIqQBGPYP~#Vp^uamlWH30qrIT~<-X@T(`eAiBDxyuGl?xP-m=fJh)66ER#5!to+D zOOzi>UkQ zm00=iBqqRjU^RwTa1oA8@OLE8O!KROB@SzKx2@C8*Jgowc>nuOm}ykTR$~USUb1V$ zf*tu{w!W;kysCoXH%xM2bZuLCM^U$N$u#!kSMVhmgco(WU&b*9g1~-)50ii!Jqfks zUuK_M^jdaxvBo`nu5RpY?x^l59$@--V=*Y{JvbNVE=EhOCUX|vX#KwL_Bg}ug)!o= zTD)boW`URm=Fx*6x?z@KDO-UVlg0G*JbNVYgD(hc9IKGtyfXENvY~INTwVi z_G=_tS8L`=SYW;q{(YuVDO-b~#2RPqT#m18%9pTBmGzgaYZ-p`1b3RQZZGR9>@hB7 z;R&1|I0O9+z#spCa((V!qnHc-fWYe*2s0!!p6A1e9>-#=pk&~w?kGDfV8SFUETTp# zE3eOoba-P7-?*i%$+I-PxsX`6_gFL?tgsUxT#XK$7JbtJ`d{!XsXj?Xq>;my(?%D<=x zA7u@F3<3;78TcL+(6|8f2s}Xwp8!R{lM#YXKn+X(B>1x3(>dR{@tE!oCE}l59Q(35(1+|CwpLN0v zqgOY^y`?lG1`v*`@w_f~YaCNyHTYdeKcK}(V>pf0{CkAoJjo@|g;fPLiaO&`)^V-w z)^(csdTf1JO+{rDGr=Vh$JKgU*6kHmNA1!5A3EW6!!j0-Hz)juv@}(k8l7rW;MD1L zN8XdxpE{^_o{hythw+0QNcGyVHCM`d3kS>h)gEaH9P<7#3_g}IFoTj$3B)GWGLen! z$Z5A!1`b2O7zV(HI@5i43EU)qt#)f+hj9sOvwWAv!kzgNwy~_X;&LVPEq9XGtlzzT zq3YrP@$kvBtMHm>2@4;&5uD<@VT$*rxfLiU`1lq))}-(;5F%XRV;a>kgBWpS3%}in z+m70_e?+9Ox|hr|#Z8rcUVk;zwjY*U!zEwAJJ|bpIEHuI>3$rQw{42Lo%Dq5YAAh33CAFt6tJYiV~E8YFAK?I$o~}cX;?Dr zA>?lrt`^LC0QuW6pT-+pEOAjx!K|(KwS%Uh2E+ zfaMiCc4)ZbUn%eprsX#@pp&F=(b4f`rtGK6?+FHpLDLkaa1*5aP*V&+CNzd568H5M zpY72p5VPMsnE0;gcjHp_EansUl@^rTw z*GKUBUyOo`9;ug=W#ty-m&qTb!6&*G*^~H2j9BU)9UK}xJ&xcOl3g~R>(%CO(0WxK zlj`74@jl#j;*V=walt|SVAz@MhWF}WMG5Sc$XO*@PQ(GjIJ*xQcH^g_(J~uYz8};L zVU7rSs3NAWPu5Ou>fR+9Y&djN=d1PKPX|S!>>-Ej9_o%7w(k>lc3KYWU)wn>g4@T4 zwm>C_M{otMW;j!A{w!^1seO2tTcasERMKD7+mL2g>EA08G}l{Ym09_Pg=IPS(mO@(9f?o1aC47Hj|(LZ3jteksehU;#Of3!RWy;v2&*Y!A?l z@JShbDm)K~Ai9BrII9;)CoU6RFSUbt`{4s)cvFRzU8y`tbh%mda-?>yG23gj(?K`T zBGfU)S>_?L&vYyHF7$7d4#^nEpsvVj6@`}zE@#}5ftqd}D_b3F6yX!*=NI9c%wPa@ zSmvD;kuA-MQ^*Qr#pkPX>I=H+hWn?wum1~P6X>>?Vg4wMpW_^oxHdxL_?E#?w(#q$ zr>Q^gOJzY`NcM-6YZmX$-ys^z_J8bi=jgZym%(S`k3~0LEYkUVABJ;M4ifx`pC{(# z;X1r6QMyjx9azWBo#f}jN18N#&Nq^f<;T_^**fgPHa@KQ@gguf*{o8lnCJzzZfjay zhciT@rEbq1{$=x6g!}k+1yf2_Ts6AH@VeBH=xR_Ot)l@XtdOC()+r{(BDZzxMj*UL=PmJXxYI8>o_|GoyBl~ za>3PGaRz><+q{nj(e1C{jTYE+4Hp21KzP4B$2Z{PbsfDd&U?55W*WoC3=~i9f~)8O ztHrn)B@~>}Bd{2yxSmSuO6}>NJ4N$1E|J95ksAUx4}`M$PcomKer}%1!kGeM8CoK~ zsIAy58juG*@W1IZBEqGx^Y05P;9r%iiJg6?d%b6=m#DSPtHP<$wnB6o){=$G@sn-1 z!?3}Wh4sTAx(~CS|Fjb3?tmSp^#d&GkKiZw)_udN(&C=hQxRVe(ZqPkeB6R8&+zyqnBl=6~w=seCb8PL0c& z&*f+3XUU7s)tsw610M+I{d_K!Rgifxy-4Rg>$+J-YoTe2IXhI_-PqX9z!D0xcq z|Hv11QzF#I5mGC=lqO7&$=lC;DJftR%wyf7q%qOc6J!CDZ=|3pZmEUNv~HQlkUC^i zf5CyqNP<(WOOzXfze(U872+J|?&EEwzvLh;ax2ki;q8j2^`jl_F6|EOHl3ZUWrt0@ zefjCs)2CBYYZ}YC3i_FBsuMqkc?;n9uG(Q1ZHDo^M~C2b25wI9bEvecbC*+Vwa>A5 zi+@alHI8m~)EstZn{HPlCGWB07XQT~St9Q_-XXB*^o#3$ib2<*+;P?PV+R zUCq}0Y>A>YucUwp=K6N;TM9nR8@IpWqCCNb(E)zr>EyJ24C_T zBxui39Y@0dV3>VmZsXW0s&Te@-DUxFByk_l2Opmgp>Q^IlYMUOHnsMboJ4~Se$_5b*6kwb4R@rns0oTbo*+(r9p=J-H%ioyVrok>K9I z4h9#)F7n5sn=ck=(SJ7*LhwuFoA4#>pevgzdMZXFMeH#>cVkC0h9?wv6*CAQ3g%oW znp3My zsIn?IE72E?mii8QU3Kji!MHz>1U75cZ>?S}8ZGsF?0o<5Z4vIrZ(dnRUcS8d+!Mja z#c_@*}+?hkL17)4)yFrq}fJbCWYHq+BMJp@o{c zyK+7g^=F4XKJlghxM&Dw6A9Nn!FSWGC?unNAwRTO>!o&=V_ z7q|q!pm7B+BD&nq*P2UbUhj zyT$MV8)6w~cifr5H(@IUv(tXd{5HpZh(#km42!^u3kO;1wAZD(ETiSPD7K;WOJVtG98$Ei} zXuheWNYdXcq3J*pSU@a8ipBZbIeSC{*+CBiZ~2Xg@E@wua`MF@F%9Fmh;SyO{CXUAoX*>*K9uBr`v4FHndguR167N$0?%sh>qSKu_I&$!)>FIB9fz%6XF7*!o%Xi zPKG81$-HGADK07b`fOF%sp5G}vdVJ>@`9Y~i{~p+(o%9#ikW-Yc2g;>rw32pWFCxt zMxBEQHQt0u+!en&b{Dgjg7ta?Zc&MviKa=18GJ@%_M{J{U1#9-7{LkZ%$3x>(}N5Q zQ%NRC=E(;cw1suV-m%lI-o4aQ)Y9Trp`!;kgh9m*T$sNqUo?z{2zV1;p15xlMjg`<201qb*yNEysg17n7gQy4(ki<3TinR z#ul07o8%a^WU#^9cY`P&1Dk%dnSk&C3?I>^`73Bil2%8p588A!T!@?BrTk=(%Kj|) z-n6X|+9Pv7jXL1%67f0(7yE_LoZi)qQ2hQoMx&y6>hR5gI`s zDtH|l{y-0ct*{(gaXE!w;77#fQwvQ4<6b9rbhQ6Y=M$4M7M`S#{T_o`+xJ|ShJAENPO;q16eyS&Dxgae4(@hmwooDX}ZfY7g?WQLMH$6gm zhs%rS3j^pDv~h*kb#;iRU?-FiGuP|dUHY}A!d!B%)ph+_BJ8atmY$sl>JF9Ii+bvO z>YdxHuZWQ2-Vo}pd*FiiXvh?_Z_J;7xdz3p!!Xh#YwRp}ZdS|g3_9-QGcQo)pY2x? zpB8^UKCN${{fpYCrsb^n9%lnP%Y@7Xd4fEmFK#sXHgg(EN7vC&6;Y+qV%=B6{5}l6 z`B1!-Pt)hp5-FKR`tCe~vq9&A&j)+?x&|BxuHDDhD5?vpO46k1(v0XDm%8AFWCkZ; zHbGG+&X2^UF*$}TEY5_va(FL?8Tw!523~}7u}THu%&(1@EYT7 zyTq4t*^%)px0>!Um_G$)X`08&TQ*s^~2(4LOmUd4Wv$}6|xI*}qb^1Z z%oFLM>A~j%8GL38o2lP-60a}S;0oouQw>8Xw8Pm1JCq+nhambphH->X9OV-ADLxV2 zA|qU)A)iR&Ogv74^}S7w>>qY!8~ZCJ3hxRvX*@;>JA!kH%)A_V_aU2@xHLLeI2XE!1{(t_J!>5sMKBgj%-nkP z8%-nUz8x0&cs z(UnnUQN@N)Y^HyPU%C&2GpM98S$XAL38ex(cr&~YT2qP0_-I%f^c-SG?p6JM8dwHC z;?~e-wxvsQEHaPCU30v=+}ymK18OYT>VnH9m6ucF&&HjNt8uD5Q7>zhRbMIl)vSu$ z78L9lA~=V_?{bWsZ5^q-TmFMZDeJ%MsGgfybWvuYQ4Wjgr_G`w$4pr5jLvUWE+W>RKVb)^2kMKWH5bJpBlVgXLQ=tQ5w_X%2o9ay0q z4a;yT+3@t6wG=$yHjyJ#Oht5Qbg_9fn-P%icixBDL?xBVN=xP%QZj+k{}_W`<8dkp zX9jLLV%%xZcHO@8{51T7fsJs9J|j7=FE>haP4`Uq_Ve)ZKI&U<%NFGq78R77jW{Pw zi!OF64K9PSKU96I?2%P58))cf=6x`( zIKJd$MO^2}&V&vI^hPLtly4!yyN~HO84kL#wWH-<7JOrr#ljDmO)6!DXLB+X@{GE( zBZm2Gf_=PiOiXN?G(lj}QlkQ+G79E{nFQ_W{g-@t)L}UVD6SbJ63UvkQG5p~xFSNhbsHH-MqISrDi5w$t!v)(XP@m0o?l&1$$SvZ<450AEhdOxa<=o_N* zH3K7@PnY8vVhM>>cm%WHh$W_4Lh1pmGgGSdW6>2z>cONQaD^;%?E*y)D*EXsXYZzs zXLxtBI5!A)MxjHp;sE=(>_*C13S)_hG-rcj1eaWeCHpCKn}Z9k!h-!2F8GBA7r1~1 zr>g{(?8hZnDgJjTCkd+~HXPs78_pI!k$;!^T(Ie|B4QI(xHWH6j)tf^Gx+(5$Npc4 zaGp@6E}49>}G>)!~Zj5P*tB-F=XotdPHfll*mxB}8 z=h|}U^5NnmqQQpawQfyzouZc?U?j1!9@QBT_vnfaF4W$zepjmn`|YipUtj&X*1F27 z%(}aab?bNPv+r;I_a%7qJj`K6@v#o%($ULLto7P_X!yX8*|2KjDO@>3?CiUo>s`y- zL}*GSwI_G=3J5pLQ&uU~46lKYs6^cAi60oQzj}zh1+Uc$4G&$W3^eH^oSCQ{?-B14 z5gwTAEAu?%oKj%GCRLOs70&BSDKE%s%IZji87Z)f!6f($o>6J|5BZ{ktr-qkPI6bt zrY-u*57(QrPaE$KP2SHwdcjBG-)`FC-6(63RgD#b$e@}HUlMvSBsoatTj<#yb}_sp zqGIGpH_WOB)}Vwvy1;3z^^UlLxQp>cAybh*#KC(E3{Bu{sZ&VMG>9jo=`f~Gh=M2|O4=u@-11sI?jM;Ch?{`j(_KU=`IZ@62w^@gHY#rUSlz3>SrEOW3}&tLLv|FgO>F zNZ<%s(*_X|sg^WdiyhCno;4z8(46)aRBt_H9x3iB7LnJfq4LuH`4C8tTo_dJ=Q1~G z2;;1Xjos}71J=!UqV8_%c9S;k_UYvN8<$S7pL-qp`PXUaz&L^dpa}t}N&PGo4@-{V zN^jf{q|jkuT@frP2T?UMNy8I7MLK15lb1ldPaZ(m%RZl7^P?qZ>7Xr|*(XUvY(5BKzrr=Q3Sk_WdMwt00Xt1y4y zsq7*AE@b(G6Sts&dk5Ep3D}OJEoh2qqn7~$lE4R((1%uD;N%4J55?a}d?NcvB&KAG zPp><>6&L%l8Tz1JbXF(bILlI$emKK1%SBuBGm8z*4g1-9m0xsEO=fv#`{o2Rn$~&O z%35TX#|z=(eHCoj;^2dU$)U18# zJ!U9=3W__}=utJ?4z|R~tK&eeO^LneN{vswbE|ca=sz(BmOwc{7-@&^>G*_Ni|(?v zrp8{;+3>W8^AWYC)kmvj^|JEO0{FMFN1l; zm)O9?-WsmEW6NSI<7%S%V{e{(!oa!fm_a2>Cf$83R8Lz@?M&5VF!m|vkD&gS;+<$~ z2)1kSi~%=Hon4>4L#~%;nr)e5=YG)1@vsNegr82qk}g~_4okXm$t3LR$8B_UnLvpq ziDENO2#J=#xm0FhW>I>vSr+TG)@rwjS%Wp3Uyye(w~!gZ6fy;iwQ(^Gi{V{@i^pNH zE(LGT!o`!YSWI!6+(mN0v&FLdP_ez}O6~Cmw>G<;|Izg^gkS>y#Ph(=|IU7VX{yfV zDyw^Boe#bh!SJ8bNw~lV-?m)Zd64b=S2@hc6vBXt1a0KMP<^ zii-5%KeL@*C_9K9T40<%Hq9$AfcIoTpZP6Kgj?~s7@p%cUQ5Dhp*`&r7VfR$wX#yt zAFZc`D+HxxKTdsuSBGsdHHlNOi-xx|f6e`-(0yncO7n0%Q3>C3S0Qx*Q^8OR4f$3H zw~tuac&LxMt-zwC`ZbMd>ID0Zq_0%KmQ~U{ zdENP41#u`We@`%uweo>fRPxDaJ>Z9V-#&3Y8GxPy`arrkzdK~zQAD2vcp@O!^$-gxzW#et*o#MS>U894eWg#+YUTl4IUBWjqSj@oZ=ngxza3_8!h7X0F zyi1Z>qMKKqSDuH$*^F%rY&_oR?So59@%44PdTiOJcdxC>FdytFt?2Fr!1qh`8FUMa84VWw!$P|q-r z2nG&4omdNIT4;tJNZW|}ZfUkml|6A65RA@rdT>+pk-3T?JU-kj5Xfx%O>Peg>Tx}ORXoFitR z2!l|A^Pz*T&8bmTtMbVWZVAzr<~iruU$7Bj0ya?zXkw2`w=L?mVxPk74%nJ15On); z`zO(X4(SPQ3u^q&+!pNEK>ABd`{qMEU6&(#Epvl*33dr_31i^Mw-f8ZO#9F0jG*np z>>_QV6uN9fW`n$5&frNw=-p5Kn9MunsF3oWQ{bswL&Ts-2jMBfR%hevD|RffAo>Dq z^B|AupHy89Js87p+l7o_i7!*^S8UzyC!-KZ1hpQY!9UU&sHq91IulBP4;@%@( z5nhp=QU;FyII#kZ#b}Ib5>Ue=`iRsq+A-#Wgso1mPOr`ooX1ZZ>92lV0KEz%O8=yK zE(yuIlCH?C%&L$x<21ZIL15t|E`$c1mqnB;Fe*GSPNBy>%KM^ltR!-bbqaO}vx#Il za~gQQg4D}OG8B3Fh4RsJFjE**(ulQ;42g~iiw%%5ho-wo+-7>BV5;(VqvHT;;kM7m zG>Cz#IxpL3<5I7F^@r1w^K-bD1p6%FZzn#IJr!wDvgN58&+WjEkFyzKV2jeUGK}Pw zqI9QB*DQD41G^kId)Jw;cgt?ojdomc&h^MU)@s=5)ha8M6&GG?Q`9Lsa{3MHS%0Mc zO#>6WPkEHN^h@)jilim?Z%#bvh1ZNLSvw8$-Fk*mRnfIE4biP}UGaS|+$R*gyc`b_ zr$DD5#}EM>_0|NwHEqQoOWBZ0bV20{f{pmg{8D@cHnvApziOPX zjc!mh2te{8%e(^DAv=}7pfK2dCVm39^@9{ z8p43nZxai_P>hBGV)h-3qU}QM!fm7q9kx+kpIx8BV5|@lebxPC$A!15%RZzaM43V) z5QkgQPxlI4vgGRehugKxHS89;SDCUftNy#LJHz7^Us*l3uN`F9)P2^X-*xX!|I^Db zlNrIouodDbFdi0(aS_JRFdwfF=%G9{taeHCv?r|Z_&xrccWv27`c*F5PS+@^^Q!Zh zTeMrC5Ca&n0%`&&Fw{mvoGpRb7);v*+l1K&5uj1tm{Wg&!NlnZ;IBerXN%cK6iB(_ zL_A0rZ|dIlg;?w0M#qJo0_UpQ%PvirrUZkSzFwY^@ib!x2ZUinjIj6Y7p z`(grB)KN`a10xIFe!J^_Q_LamFhLP5({(<$$F+Sw`)zmY&8Ktw;Q(%>&C0z;)PEk^ zO8G=&70w4Q{CXMyw|NtprXMJy8x@Ut4SCE>`beOo${Ji?_5{ubLmf24k0kIBMyag9 zN~+Leo8`^f%{dH)(p~~hy#KVDNrWd#P|AszJ2#0QbWnFtTTs20lr3<{b5Pg`UHyG8 z!^jnzq5g*cf($f^F#i^yIn`He)xvXqk zqFsDUQbIyPd{TT;Y*MU@@uflpQ93RPN70#5XTz&(@wD*2`yQo=Ha& zj>Y>#MEI-7o_r#+is#>?8{Hnjj7Hd-0#Z@h9Xbh*CE!Q#jtM>y;Q_J`*@;vBDLKY$ zQgLol=De%2@=NEs&kvn}O)|)2a1nfFh@VM}Ct|5&bauyelI08+il2a+K8+cFyhnO2 z32C>Mu2t0L)#fu3v`e56xfwY6?dWF`f6`m%#fNLfeJgMjnb1 z>@~AN-XLc%j`ofGGam@{`kYegDIE!#^E1Gln?dt4Fq3e)a1TAHh_;Bvh?+f8HpfHI zJDqcE!coIJ3uweE@TsV0{W0{53$@r+kM9;X9T-65$wWFJz+X%$m$ zBEygW>F9dwL#nq#;QFkit8=O^ROd1iw0p2yh-(-FuJGCfzBU~<)M)tXr6n0H=qu>R zmtJFirM^-hDFaGyr_UTbXM5f;e?iIiDvPQE<-TRIDp}E#0+yIovN1R#dVh4XR2G&W z)EL+rJRbgad}TsiLNf!FlX!?qm`J>r{B%64U)~{i9At5p7jE#z!@kVRZL};TIx-|K z*Mx-{E{EU|u%o8ZN7Dz>Wm`}0J|kvq@Gh}(Z8fYhDK!&at?|9$JY+rbs@eBqt?~nc zzA8Fg^nQ7KvXi3^O)C8;-k5(uAQ_fpGA^gV50VM2!em?p$rSpH3R)7&F?{+@;liK7 zaTSD9_&u&9p1~d=?x74E`e9<_bS(c+0v`(RH^eU7R;tiu8(xLeGXfsfZ+ex5_xshW z+V3h|l~bjtQv9jX_#&LU1CNQT#g(9*<2}bjICul{=~lm1?^e&+0oJ0{tlGGe0Wa7y z%A3L(8rGeI1%>cly~i+%bM0`|aom}}@Nd)csOgL!Yp(3JWFG?E0_)Dge&#vYp@eqI zJECy7z@XhD;u7c*S6;*!1BlyXDQjQ6I zrf;df(&_TGPEjZL(bOyS)C%PiBH@ZA@B|$(7}gWorX^(+cGLPKVU*uXmWa7qlW0Y^ z!jd}JRslv51?!FuPPp3+KW1=Ls|i09S~{F8IS%A6ViA?~8E$M&fcp zkgH_C?!SvcA&pvvy($JW>1xDcD9%m(CHS+ zZ;2SpX%YUyP8`%YkL{~{fRcXXgkRj;sd(s?#0LQXAJaB^1~E&;ANyR zJn}tU#P9!()!;rXCyy%b)!uFnzQ)@5*c`VBWR#0_U$V3;NE+rZEihow58ohHOUj3Y zDy$}_T5(yyOww*aZXs@h8~;49bb3GZh6LWg7}_z+A<{lNN5a--)@0Sn8H}KhMuz#n zsywoF*+-P}ofjVx86FJB&EELF3$EIU@8R1kTK2P#r^df(|Dk_l+qRlLeRZtUU5jru zf6J&yuS&aI25dHLk%0vxrtmP%Ap3%wcGYdHUM?EA-J6`Wgz{hLrrxBgk6 z3wP_Ps-+!a<^;|JT`}t7dlGmL!)d!vn+O}JLd-U1HOL#X8BCt8l!Ox0N4Vd|6pV3g z!gP;5uBJ}OPi1G%g-_@>lo8l~-4oCaYtV`Ei;fId50nL@98bxWur~#=#_svbYW^I5 zm`=jg?)aW~e@1`SA^#8lW$-;z%$CJNjKS^Uru zH~HZH$O1$5M(V`5(R2pif4NKmz}!c7yiem-NDDis-uci(*XPvb)CoT39PIqc$5gq} zTno*Sl>m#Ov`yHdNYx&(DYHr5Bo`doe|jH%G{sYRn1BD5ngaAIKPKKBTR~s<{@nMG ze|0a5Hods;`u3ZQ8MS;TE;K+R>uL-3%YvK5W91AyFCci8>MiN2Y^$#K=!4Cc_n!A7u;jKnED?{r09R&3P@PrhLl5;Ip7?_l2sf-~$H~qU&(u3f>r}fj;|F`s1u)T`C#7HKPw_KudMXBHaCNl+u;6 zC%i51exnOUt)@74iYNFR0SZQu!ciI|vtSmC;w&7UR!7rNS`dt+B3dKr!>hG~IxE{P z%Zb5Iv>S(yxy8s%fHj4`;D;o_BK$z;K?b);U;!0q;eWu_denW`qu*24dW93R-hz7F zh8mdFF**F?z~?rD_8on!S^eI&wcS@nFF(wA&cNFf2$Z}vyIbBTKFfk7hLX@vJ#`LQ z*cMq8TbAV4=C$T^Gw}bh_1_$;hDZBKJ^eWPu2#AP) z9T8Ch5osdQr1#!LK&0=2SfVDDn8X-0CMIX_40->4vuNJs^ZiH0U0%c7x%ZxX%5$E_ znBxEBH3c)-J`XDCyu`f3yd>r}?G@s6$Safq8+mF)umN(TE=;R!sN4pWC6p(YCoy<} z_6rO1|4$d>-=1qh_dLiG9KPftVK=%3yN<4v$I@@WNF9wn`Zd-Et%ZDz8e4U#DzP$| z!9%o1=t1Fdm0Mm3`<#LiZa*79ZDAi_fRyH@*bR0t^L;MuS?r5=QVam^4ueI`y^kr%DmO9+V@E)%s9>bOkI+C zM%tY=i4u)05R=v%VH&IGk`y7jWd?+^SssBn3AKDMYs|sY2YM5%RN?Lj2@4xVLYs+ zaW$$DSUviGiu(-56WjpfVFQk*KuzJF>ye%OF4FqJ;>+z(3Uixw3wAr`c8CGn-=s@N zb7lW=c-f8~US;xJS%i=`-8Z_%goQiG6Zn1}x1aC_`ROu{!E2PtxM>t`35^5;xvdZ= ztgJs#iD2>XP`sEzEj&*a(vdrY^qsAD+p4)P_AS$A|H{2rS%1C0J?q}tm&`jgnz!N2 z$tY)1EnS-O!8>#bay}q9o7ST_8+nvIO9Hd-0Bv>P|2mrjA^%>vlbj@BUr<~Nm=M=p z_gwE--qsbB-;%WMsM}N~x1H|^S4vP!wv$qVK@70A&ieHDB1e{?W9l7PWINXTAi4+*jjBkyRMSsV@5_HB*6d#Z8KZLQB zv|tK~1mo)#Q%*=m8VK5F+>t?4?eli!1I_N4C|H?S+|Tup$9=2=R^% z!HH-?C!a}9o+SfodKsTeU?pVWO3a|4Vpxyhc>W6*&wcSf_}SqKZY=RdRrCqPq}i#a zpb+&(^viQ1J$!5ek9GK!hTKXQ+AloR|AT;r-~r5_T7~YzW^U?Derh*dZ^i4qG>nP; zCH}ih9&IdN56%QNxznJ@pQbr={EXn=L-4l>h2Gp`f>Uua9aO!)#6M4CAA5CgnoqJ9 zgF0wB2xNFW&KLwElu(zmQgf3F#2M^CK?&KF!B1hT+Q&wY6oILI1FqGEwYUWrXu$$h zK}#*L#J$q@%Ox~F_V0P5Jy%fYD5ndO@{{vZm?7FT*fYdKnED^2>qe(&j0DDDDD4>H z80K&|MU^c{C`la6BKRK)_Z|gp$^r z9C_d@ETmkay5Rlc2sHm$x@y#t$QNh;Z5Lt}`i~_kOJXoquq6JYp`frpf24*(hDQj0 z1&#Y*I>(O6x9}7Bv&3e}&P_|S1hEZ;M-Tp}htHU+{CFuh{wh_D3bLiYt*L2aSKiim zwEHIpRC+K96eOsCk=n5R1B>bK9AfBu#Wl?-&0d6GOSl_S{D!((ex>GeqeccBWD;QJ zYsn~5fh_?Iel-lRphk9v3sA(1-Xh$q#U=J)fLuH4a1O&q{Jr!;0MJ0^T*^tz5srS} zL%yNDp$wRQC*AxX?!P~68*K9-`|#n+I6WG=%j3CG_n%wM9VLf-!+k@&8QdX;S=4@K z|2=zm%Y1wG-tyIRUF(a?{v2%<7U#Sx>#cv_EOqH{DQjnSi?s?h^6Q%Nx{`(%7$*}z z$C($i;*ZbMWsPW)Rk|2-*ix~TMo3iz)=JwI2$D}n?gGUkf0(;K#@Wp1x_MG zJy3*IeYgr{!>WE<1#>`Eh9*>Yd{|>}i+_hma^R|Ent8IB2(_s6rpwJqE#gGh9cLQj zBqbb^v4hPi%r4F-W%%y~YH5%RD-fK65|{%L8egC?@jm1gDi}<=-(*WcPZjk>>v#ug z+Ysx}581>@c{cHcFyDLSyV3V-lCT?Z%Ck+CbpEBh#N4ERr#$4=xsIDe{15Lt?01BL zy+6p-fvyB~6~(WF6zE}>BhJTCHQ2lhc^C5H89Yn}91h<>t~>P)acBH zj9VFl`swU`6+aDcJqA~6gTj0&%Kx-~WB`Li3#L#3xKx@u1`#vwC;| zvG6Q4$+Ns_E2=NrU+LZG+$MtS`^gCO4p#%AgOq$%xh`(sl)F7j66JW(`)Kfy;GiQu z5l5m9M~6nIX|Ww=DpN8FQ?f5qN8O4T^m(xBS^mqMpEI5_*YVPSvERR6&iN5Of*+Js z0y@gLL5f%5T?91xGE@@sg6=ax36`P~E)_ce4-!y@WvDFw29yabMP*zH$`qf+pAg)j zHhEDar6jc^jTscu90!E5rp>Ri6{Dx?46!^#Z2j;2TUAo!=q3&e-S=@)h5Q@*`hFHc z3Rz8HaeP0F2US$)2L)jJkOfKu1vM~ALymD%T0=(Db@jBc!A1>8h)<}GU^wM2m|#HU z)u8>f{XzRsJ0YkNPT9IRA0MAa!_z;2Ta8-td|0F8t|VLv=+hBh9>%2(zWE=6lQ?_SnLv#j)M8C zrgIbXl5&%o+rpt1BA7qRU!^Pl%RBl%UY9%|*!N%IdIJ|jU}=;2dcl}&J9p!3 z%Q@z2RM7{OmFTX`9q&QUm!NzLmEX`XE+I#+{hDX5$1V3((JsHlz)SlQ{X_=Gm5(bP z%P+{U$!}-ibO-PBm@@}2K8a_j)2Q!_Um4)U8v--p{6g4v1}vD1H1|0)lhyp^KXIRb z9NflrWK_DYkw<_N`8o~OKz z1%`)*hWQ@1j|z+mI1_N@vH_b%4Mo)pT{nrzS#hOtrRPC(4uTkdF_n-WpMD{O0T~SP z1~}M5?fynbywRk{kj+ZXNV|H4fnY;Yy|3D%dUxS<*0Ino&oWD3K8{N_yukWv*zeMI zDzRnDG7ECEi~kq%`w{kANMLLSj(thhr&gvGrtZGZ+W1=THxFfS1cKLNxOOF7DsIsq zwAksn)^Aaepm+62)|;Yo~vijKdsoOKOavwE!bQa%cZehSP2;%0TnjVb9 zu?r2}Eyr)TNt*m5-1M5R#y$d%DQ6R7tDTOLid_wR+8BI{eZus#387hGa$#~o3L~RE zg53|gA7a2xaHtH#Xn^A-Fdh$%CW^z8HU3EyM+j@rUv87Ug*E=-|1{Iew`UV^$GNC> z5M5_q(Sd*{&`5(>r6TvX2_r#&fAPVitEY>EkmE8lNV^{pG7t>d|0SJ2Y82&$DO5Q7 zg)+6U_$v}eJsY`U`j5pwtUY|01Z>}{<7L?y$QHEb^rjE#q_F&#-o#*E=I*Oj=_aDn zRIrwpfurdSSN3vNN=|Yv19O(+C2hEbVq6JdXrTqCZQBbcweSmE31Udnu^*pgBtzoeQW-2hT;7oSR(8NAq;Ay z3sVcy3a>B&v`3(Okoy4!tOY+uTOGAO`q<6~oeu35@}7kW1&M|7jqWQ%6{G4xNfP!R z#W}uTK=9Kw^ufvlMM1gxf$WvNslG|x%px@J2N7q2GyA}FF?BgRB`>*9?+P2@bigIh zmH7rfl~A|{BM6G&FA(EjG}PmCg5iS@u0{c~ncy6M+#Zg*g(T;Ls5{ZJvy3(dm_UFo z78yX%Zb9j2R2tIj>?J++jUWx#Jg*gUIxwdTJX_IINDpG_E*h?@l^hq^o01UG08ER=ZZ{I*i&8+K@mq!96Nk6^faR?Xf~zJ`wle0ltxXQ zN1nixjW~to_Q5=Yhq0d8ePw_3T=DW)qbH9XJrRDI zQKW*7UJ!005pE-q-)8bgoJ@~wI6ySs;St&?#3^jIP;f6yC`v3$VlYNXGw+kLZv_Zz z`wrETBQVI^7`0;ph{)@JXR!N026q3@zYeq|sJ&2V4s0a4Fk=y})#3i^##Mj7)GnMl zps9|Vg@0zyunV`6KVb7B+)N)`O$_W+_pJA*G-IC^->JOSU{lG0#!NT!A>Z3h1A?rv zR<%m$*1Z1$45q>kVkZ_Geq~#t$HJJd`` z*k1D9vcM?+(IxlbLvL9fou4R=5eH}(&rKodz*Z;3xe9m#WU7+s}i8&E|jlG)p z=;U2l7R9z@mbG@xdvJ^n&a}j@Tm>ob^;IyZ4XD9J&sLvXe)l{d`92A#>|(d1?YOF* zZIEG_ZJG1ugNH9$L4oPUboiS4QpSHNP=J(fKRD}>WlU9O==0O52~Bs0;NSYrtFo>wCu~dqdcKMbH5TWr6O^$ zH%>ENZ2rXIttT*XSK`v+G8jmld0&cyRD5N8ZCry`$W*FX;XKtP)h6uK+$)7?r3LdV zzi!;3y?&hrPOz*oWMNFxv;N-4UF+{ko>^9Ou+eXOT2|a*H`ecz>OLQYNoBA&2DULnQmm&gRbQ;X(4?Ng`l7NK z&Q@MlZN{c$T+T|(VTNEe0afZG&iBSCCW~zz?)k+V#>wN+9ENX`5y>B`=}3&-je1H* zw_347e^$eWMDSo>26Y;(B5=}i=i?rM2VJ8AqxPNgl|xDju0~#(JrGrXExzqS>v>R& zf(QmpsMIr;(`Nky5mH=1htvmL_iYyku^D#hwyD;_*YXkOaYm#FCsZ%L{>?5Gb^Uc# zr3UPi#=*|^p^hywok!N?9jsEVxXa+dZTO@d7RA7J=DrMvsHDbA*DtndUShp*rxDKG zw4~aU&B(c$ccqZ&5*Q_HsFS$J3#S?{-u2YsohM9-O^Hp7OJ#5co+P*c9AUc*w}ZI^ z%~4AXTIh)L_)XFQD1hH6EWly{KH!2r=pqjV^thkN?sZl>Omy2F*|z@1Z>xUN%VQxK z^+{d5S+{MyQ@+UFp~kVss@6z^X$Hj3qSC#}xzbT&xMqj?DvN3z_T`QHcRF7bx)$## zc4%s2ovWQH9V@b%uePUl>SeJZ=0R2gw$4R+3U}u-zjHnU^|@Dydy=aN9VMKT6b-3E zm4`|W6*AmdJVro~ionnIqJp)e^IfkW{NKi<$7aN3FnPQpFWz%xg@>7d5 z*XM05Q5#)|c2FnKdu{}68EV5esw<&2xgp)XgI(;1GXrtW>2w{oEvn^gQw)RaaF-Z% z;YM7{&yn4MDv;4wh35$vz+N=Ky)@^~H4<1$Mc`b2oMgMi@q3Tgen7>f#iYfgGrMpj z$zE2twp`g_lSHy{SA`DyT}yv|%Y&xPx3mVVs=8U#I^ACLC!H|402ZGIWu{Y#8PtW^ zxW>5a8VPIw>O0_a9UNC{!lvb4E=m2+Klc6*$8p{yb-}f-$~T#;-J!C=q+FZ*sqOAy z`;&%EU269Yi@VqzH+2WCpL76K0CQttgK+ChRD5-OU7WC;0&%+o&emC0WyWR{UMWed zWWXGzkO-XNj|vVe9DnhHap5p6D*8(SsS#87jOf4@OHiT-XJ{WUFK>4rW`WLC z%J+cx0ngwX3$`Vno2t#eqT1ypEryoG-%Mz@#PreTp$1`EN0w!FN&u$*be?Q~8~c5Ze)1JnCd zsPeYbuHt@^YwR9nTUB!{#^~)|-SdBttivzlWRMHE=L9xW5jcM@PO)6<@Wkz{A54r* zjZKTa!qoAqWY;ED@v2>=2JEwz+x_j2u5awpxNT96<~m&4A7^MB2PvFR{HJC*gv z#e4BnFGZ!GjR#gAysX8-hJ2V;1d~dcUYef{SBd`q!f&pvySiF*E6MMz?~k6}iePRH z(F@Ainz1=`gQz_z=w;wz{~@7SZ35AP+Fq=sfr4_PgVffAD_2$+v#;LX`>pj&y>++h zx67;A*d0Hq-P7t~%s=FOhgWky5m+g_2tWMPdXdvZ4`EI(WM0UM%VA1*39(et)ZAoV zrq4cX>Fa5}->lTBecQUCgH@^3?K6AQ4U-CC$$8kpbW1Urim$m)AJ-(7Z!Q~Dl;F6k zUBc!nOfAV-QMjRe2Q%_1*Ftn&F2eCzTv#uT{o|MJuik1c!MVR_EnP{&H@J=b0dp7O zTzU^aC*Zvey}zZv`xZg(N8qhQp*PwP@D>XqLH=_$o=w%B@B`H<#EzUA0-r1el@CGX z@KRxD%c%&Qy&os;S?ct?=WqMqlS|EP6Th9$JNIO!wN!UCtPWW3c}%9oK}%qo4u@Hec5(~_W>Pp zJm}c|qk#-A)rE;vkW;{JKl_H@+5^=Gj6Br$Dg_oAuy1m{E9tGh>DRQk+OMpYwa>6k zw@z=aFKJ8fWp1J~EyNA6mo?+qZ!wj)COIcMC8p)3<|h|2u#@sPceb%~VsQJgH8DPr z;hgSp#Y)ti5nKRhK$pKAROw$Pg0{0H*wN3?)1k?a&9BU?N~<={VEO5&PIO@*?QOct za=TrT5&NXQqrc!=295h*CSB}b<=N;|(#o0?n&j=uW-fwu7ixovCYqqRyw3ex5Cc+$ z4YazMc#qgW&xq~J>nOk3$RO4IJ6#%7@7=nmz~5SPQ3Y;8{ajO zrwf0`2i!e8hp53Sx&~K0z*)c`g<}+Pt~zeBE7fITdjl-I2h=+lvkK;Hhb?*n)yjsO zC>mPu{MDaBAZid;)z=L2Gbm4~`%UM1H9xl8rob}WjN#W&5U57D4U{9!)y7ZOtyuI% z6+Ur*+5drQo;tjb7#zsZzO0d~E^182o35#_Jp(tstA4@o%WiYa>0IYxi%Q+9F4m&evdOZB$pS?gD#9C8 ze1jVFup_)C{2dyb?c&v-vU&nu91z4wrlf`s;<$qoxNdbC?bM02t<3C(Wx0*0p~0@+ zv_Y#;*U4!R)TVW^w61ETyO^@y`rr4t@6KSw zZMZ<+b-%M`$f5KWt5mzbYE>BnZqOke(T6QGgvWqeHW=2rb+Kq=iT-;r`V@oh^a-?d zz*S19&}7EGfX^FYXAF2TaquxSc4zn!8L8kF_u}*6eY*6Ym?g-N((c<$B|G$T#B6(8 zZC81d{`-<8t%zck~4>Eh@w4?4Zu$$7=AW=5;wad z(OA`J#@>f23X70fO{?#&A7Z;V6IPNQU1@pTw^` zagyQ2rd{md+fw-QJnUp(5-jKQ2DrRGq<9y!g-8DN%Ckb(Zgym7JJI6Id(nsvEe zl&ccXruYeTC4zf=1cQh+*r5XIYk@vqrv1ah{pN;79f}SSFvl%a`!%76Pz>t5s16FS zs|P30mkU$MlB=}S*+bR`ZG-F?97lz;1lJrW(FtJF+)|yBoEW63C)g;k2yL}d>u_dk z@02{t`b{g5h4NTp5RzkXRqwK{sN-r#i~mjU9+6xmW360=@3ecQ^(ozxUme)!zTIuR z`sM{|n=RRA1O4|Ko)q_H-oEsZf#0b}oO^1`3CD1;m#amjTa?2Yb9oDJby;No>~GID zRHr?@)EWn$MS~T?uaBlKfMf!fA>}7h{x|)ad@D8fvDch39MbF=UXA+inD%>4o!p^L zn?+ciuw~Fr0)|vX_^GgnFt4?`Dqk52%0A3~cPdeCk40Tz1?wg9O%RiR(6dlL`y=T5(p@)kcQTfa65+7zJ?t zK{wnYS#;foy(6?bZ;63G256y39)Z)2I~{Wk40etRi3&cmKRU^Pjm$_s9Y6baR7Gyw zO+l`BO%$AGPzx4-nG`2e!PkT9f-6+R*z`SV4k@+_ZlE|{SHiJU{F}O%7he!xq?yEe z;0%W)X390Y*rKMqn>l?S1*Js8=ZF}}HR;oO5r)ThG5A6PkEk%+U}JyFT}!^&f^+rC zby%3!@#b+Sj4ABSyp#NtdB~5UH1geh=fXEsWmN8k%c<$v9$tNDF@q0a5dlk_iwj! ztB;!>4nKbUNJLl^<3@#^h)tXa4O-YqM+L-Xt}9)FmMf0I2U{}5==)OI(qoviK|+2d|`(` zJoER+$lyKBd&lizp5m)UJP5RK-q<3rD$@#3%6Vfc?>*YB^2Klq`Frl*`?+fL@C94K zCycz7)p3(-WW%p1-e@F*zzuE^-ry(EoPq*$aFeiupCpHidU58YF{&i)YEt&))TRsH z3EZB#Va`Eep-1+ebdO?qG39=yY^D`ab+$p{We z%qilD+i-$gA>&uTWT@Z_N9NJo9sX0oN5fPu8mCfxG#HT4Yd-qlC~%G%K1i@)BwF?( zEZ39`2U6(6zaek}mg5QGEV-os!LS^Ih3mgh5kr@b)peVSc8WSGJ!IC8^j?VI0G~%X z^YXjqajh^_icKcmMskR_+JB+DKN~(nuyG`Q@LLERmQWbT z|4ZokUW1XihK4=`2!k~khHGeUMGApbRKZkGp&+%7U@E9XDymbMjvazf;BLwz^q_zi zb&R%+zO2r|7u2o1ypDOpnfxl=i;l!)ZuqHqWt%zM`>YHUF2S799`tA2PGX|6&Hz8P zF4JLqbK43VN*MT>(%rOJf{V>+Oj%gl2@{^mKtUix-Hz+d2%E0~}L-+;tVTqW+Nqh)_T$qIM zbY##3{DgvCGb3Y8$DWR51de;m#R)XuR6t-R9>$q)n1Y$T1ZP47%)|()4>}2^j-2ej z2bRN1{{WtB1m%Y}+&g%~zoWTAEF-+jBhE#M;$2_?`Hpkh%)8LwfWHuIruUxBE!j9r0ojmsAdk_>u_?5#;xRoPIXzqLbneYj} za|w$nJ^{9ocU;0kK7j@bO9(#1Ch>a(8D58nYWNW6!b3Hh^F2u1H#(|X>$UD-8@sFT zmj0lV$BwK$L=0V;cT{TR>I-P(w%vVZ_x~S|&i9A73Bxl9T41Nfdxd`N0t?9O!~Jwx zc4}@)p(KMn;1uZW?;@~3g_H*u2j}k$XH$JrJd@oRbk~Fo3QT9B1x^JEm`X#aAKCBV z>)>kN=ED|MUaL;8HOglBzDT0GKg;Q=U7ES*R`!9~z-qq=5qBRu3D5D%rFEQ-jg(tX z@#WY+o^n1L1dRU@g&#SeHN1~}dJN%vf_6}W)9HOj!h+wGqs<(R_jK@3bFIvR|OL zI&T|WIaKs0`#Hl$_HfZOy23Mpheyu#{PdSb_warScksUxIQbWzoKM3|1vvZ{9-dEg zcO%J5zEH{)-jm@;>NIG77kBqcf3e7|L+tcTz_ODf{!2O%wE}Q~!?G?fw)*W=SQ!mA z%=aHF&3ePz$XhDX{gmekF9vbV3+Wd!v=dp6txkH@_Eo#s-0bZ9j1q>M zEhYRoc*KpvM*=C`4T45+6pZjFbsFc8kF&P<8AP%-*9B!fED8vc) z+c;beaTEm21Z9jvWr(AA=Y9eQVGAA{{k4O_uN}nIaPY&g9Ykd~C{J1s4yO`LZq5e0 z$yS61vvj^PWk2Q3B3&5;pSu4Q|`;Ykyq5P2_Hi6Bz1ORLJ=HWKx5xbJoG1oyZwXk zIRsnCI|yHh;WTu-BXDdX9(y;+U<|r~6}>V{;K~T0xgPW;{PCOIaYKqfF31HRH{_4g zxCUJanh#fj`A8K#?28Ks?sx_})>9ZU6V;!A`g#h_%tYm9puC>KiMX9KTK72IcU`a# zCm+Ds;RQl+E)^E!z?4#$-~@AgV8em@E*9AYWYU&ry)1oH*MEa)9Pu)GLqpjTqMV~u zXjaZ}>Xg;7lrp{;yLhwbHepvFcIkOt+OoB%tUR;0quUx-qj-b^Ca;% z*lXqG+`6AFtj=yqZ#Pb2VG0fq{vkh2R>m3akqRj2i&#J&azME$%o_=& z=IQVuq6_QkNY7I~Cw&Cwv)P zrvr1Th+`4QP9F8Pw{TV2TVllC&uuF&YL1CNA0KnES|Zi?*|4gG{i<1`-Kj@@Tc>|+ zD+qT>wIsNXf*M|#jL`h%!747uVUXKQ@y*yvUT{HQ^FcJMR`_r=<^7=!ZU-@XiLdEZ z5f}7eUL1T9|I0Q$_C`=^X+)*9=C=EmWW|F2_ zqTOob;A-w|;8$Y8_T;n{)|S_}w7U0tm2|LrS?1U53+h`7doSN(TJeQpJ`HQ}YhqjD z)fC*ufHoCu;$z`tJL-h}&e;-f0gmMtz*ve~fIGLte1@C$nq*MvidE~om7T1u z_ZWMX8nGSuO%>HmwRSDLyIqQJvHC@3Wp>rIg9Xnn|IXaPpP?1f=*S%rR>uQR96EX= zJRASd2cs_Qu@9-PsFEuQ6$#}rkD_22!z=zhrk^vQp3DSeDtOyoiHm_n zr>k`Ty$^xs@TZ&y0Y_BF-PDCM7vg8ZavB`F2s(lU98p4{3$_w)L3heG?2!Ll&nUNO zXQ4e1#!zhnhI=>*U-J%hB(8ABsTwP8Sh3yDN?}|A%wl*;2qUl`Y1|Jq1^au5a3Op^ z9m71L9hmBpvOC3Ir0J#MC*IFM4AgTwa1k9^8CDu5u)8LDC%Oylu8JdTsi}~ z6R>0dx?l!8Ahid#(8nr|mK+s0s^Y!lJ>py#)TOv8oIt=y16`@;elkJb%uZL=4U^L#!hVf5ngwVoYjTbqw(eR;Tr@M^fWv9t*RQFcfU5bwWH4f z#))wpnuCIn;d)J8fw>}@(_qeRCCkwK4Vcqtj!EP-m@gMT7h@bTajP*XHp#LOT`xTy zc{(yOQgp+j_gOiNO$1g1X6Q(H3+-T@QSQ+$(P`@JpF-nx+q~gSe9XHE+)5t!iPoxp z)vniVIv6xRLtHfMjV!I&cC(GwtGh}EjdEDd7ycju#2$^QxHEAVX2I7q81)Lrz8V;z z8ud|Sq=n#@_=6aJKrugG4Byjg_$4x^fE(6VXtJ>VPxusO4Z>#T0&g?K*~C%3xEv;- z2)5(o#%>ljzeWZWG+_n<-^uv-AcmJRd zJQe3ORluW!`Wk-sPv# zQHzf&h3Owu_ttdK9YvPhh9)BB=Ari}id|4XbrNWFU>Y@wi4W(9j3>XVEavCY!=K?; zVrBc2@_<^ihN$(1flNiZUMAu-&l5f6oszXiwFc}@UH5KxeP>b20yWH#2*=~jM_n0A zk-!Nm%=?gUu)mF-vJH;$5Y#(nl>N}sD9tKKuS%(Bzz4sgbn`sB=RT*Jqw=oC*Ty8p zl*e?7udq?>kzNtrC%wZ%4n#4^RKQ_@+Qbzz=(xi3#pg=Z;^c~S<(v}9b1t#0(i1eK zIxKEj)-!FuN|7CXuWKc+ns&qKhB#hHF@Fnt>v6*`#eXt<@*tN;a|Ljj_~RNIoU4YD zRbh%F%ngTC3|ys9kKac$zS^L)P+V)o{?_~Cf$W#g4c~5gq0-RKD&F4uNay+YFsltV zUIPQBpEr|~(}}3ojO%~E#sAdH%ZFzZ*?O3~6}G9?cd)pw1?diP9|Je~c>0Za89!MQ z+9(xOWb|>3l~51b*$vYl-F?HvqJazyVkmryp+uXrqIU=AdvA4Sboj3|xUcaOfnUIH zu6@+*GouH^OaUY%gl*i^etv2${e8uq%HB$*hwmEIjdtVehz1&<0)CCFaAK)83(H|D zjDyuOFkpC((e_)xV!6qCe8*Dlxp}wdaaE)0l~!tKh2;{6qeoT^5DBcKU2%pXDr^>B zY3I|%S0ylp;javG7wLTGQp;++%1+komU)XsJ#!O8QWT9&#>RirD1*axM8eHh#9l0h zbM#Ieho7#+E#gWo7R1kB1}NNxIm}u7*AV>cEH#MJU>c4G@p56qZ-0POo~ylOAQpPBAh_Q(YDj+P)Z~qoFU$a4*AHBSy#Ed zpaRt?IJ)kJ*6`&mS?V8ez5TD7KZZEkf@MOl?Yd_>EC0I!GaRPq26gAfg>1^ZQ;WL=h z4GWnVe&rCi@*FjQvtb%e0Wpr1zt11=)8EvAV&JJ1_fsY91wGepi!)i@Z5}FnG?-;@ zj#H5G3P7tMjl2YSJjXARz*E77Ll(D+=6l7cB1rL-h=H171_Z z^+t|~5*C&u!WZc^-f&$92G?MZJYiy zgxMajWt4p@hg(6ioO7*;4XV0W+YY-M_6)Ii zjc-{D*w)@+#nt)^W;bLnYJs@|Uoz!5lTPctd@t<>rj~b?07b)5zJRO;1rreY!>XuD zXD&r0GQYweA$=3DHb`I4oeEmIXPxm5VP$ja!#7C)E_A@jdWy9MYajB<&#k51NRBb$m(Uzz<~R9!{F!}td=;1LC{8T^AvsE)6Vt5?6k zDvcPES831E?p}%Wz2JSpvnz-7`@#Er_xlF>*+lmw=R`;AaMN&u@N3u0er^Df?p0PD zZLH?|9=c@6;&!MbIj)7)Wk%(5V#o1t?juszx$&6h%VTYpp9yRiN#0_vMH1{Vr zi{MmSoVyQKMKCx-pFlG^{7MPO$!pj%nqYe@xHA_)kH0#|T?IuczXCLAm>&zDWdK#- z+C55u={`J$NMH+Xg4>mG&hjM{8tnIPq#$Y)r0shLxqiACH+16{cbC+4vn&5nf!XG; zi4iJqu3({t7N|qpE5Z632?uJPGTZs2;bqBR44-zJOQj2)%1!Gem0he!*REEx zMy4I+NO2BWsGnh%=yShO=wVR9c%7TCXyaD}FP*L`k^ z)DB@^w0>XvbJ6b%e?iI}lBY{I3ze)dpm`0yPy?ROsw;8gHr%9Fp~Zsgw=nIuyD*hG zhu;mscjqY?D!`Pbpt`1^i^VN6ob*urIRj7o`Gr419rwk^YKr?A?-BI>75rCF*f>*Y zf)83jVGwK}Zy;zH2GP*+hJgPv^nW9_u_@ddlIvV#Rjyyz&05~FYO$_kI!7DBI z+p;H(gSWa(zO{T|U(&&@E8S6}*L?SW%g^~Rj_E}$*aZ9fa33rZ<09Ng!)F48UJm88 z&StxwmR7®7xS|E3f<>F^QT%!h|Rf!IYnefMU*L#~^gXQ2k3_;wn(y)Y!@5#%`o< zOCB)rq@Q2(P;Cpp@Za18zYMz&Em(m=;JcQeqX|!GEiq2fMNQLkT^4kE;q&`L&lyY{ zgv;~;MG$QTUA?>>7L{soN~iL-3_R-N=RAjfFa(OdsQ6s6mY?`sycSnbuvd$46Tjjo z{z7pRaXnedPkhNur2prwfjy^Bcm?hkPJ#c0<}$I3@OIBQyY&=r2a4oJ&Tb8FN24~U zOSGVqRu61$Q-G4!DkQdzhq)Qc#T7f@Yy!d)E6FaT_rN@J8v`4(aTT%NxYh$ zOa+bj63yW^eIsxFr_UTrgb;bOrs(}6p<8i_ zwYp{1YSqZx8|CpbQm3Jww;;Ya%?=gxmUcR^9dGMkaz4!0N@C&f^F(`p8ICE&sRcMs z)N{=nK6iyr9btk919%%Eroz}S+=dylC)3>R(?kNAd@=2E=zx!$zQseJ*n3Ca%q{Gj$F&SeRYom@CS8FR#CTt!alUqr zis)vpugtT{wOxdjFrL`i*Qr;D%QQsJIL>6Hs#3W=D|^`bQ{~$djRLJ4?d#WB*Sov# z+TAOJahKuKbHFmqct8S5^vRWBYxi$*Z*^&PZv7ZD+!`KFBru!y#A&;5tjfwFiMXtd4JfGc>KthKzV?;KAlG5F`Bnohk$atcwR;8gNFekuRYg;r zL&Hx!M9dY*(2oxOH(%prIbUNW#SuY6Teh}!ONEN4qr$1*_<_ogA}=%~A#1&q?X^vM z-R^`v);++cF00tky;DbHqZN+vtmj%d%{9OrS7NjTqVez`9EMma#==Ul>PIVB1_%0a8GWrb`+7!)B!l(W z-mC9r%-~w8EyuUTr_sAsWZ;`?f6X$-M1;#VU_Zr=$Mq!3{hC9enJ}}hj!lj=OxGLf zvQa$xbO}tRy>Pk(juWpeF<=|+lz*4^Bg4l@xmdY9PvpKPxei6f72@(+tfkDl)A|O} z0~4he6DBc)u7z`5N-w84zl!Lb&aPJR)Q5s@b% zlMLB!&)zvFJEydIsV08vP-eh_*&r;1Id8zqD31+t3UKjr)jO#hp%YPAQ7^smD+Ad* zxQ_}IQ0e(9;cTjRvPYsTgJ&tY&HqM*#5c97^_rVm%PzexweFtYw)^$Z_48T$1btB* zmt*+$GNJFG8pij&d?J?~py3@UM8j9O95&A{?_yP}4O?tG+paZL)Lgf%W9`gs_E`D( zGzPVX-(tXkQ|2{C5~!%Kqel*&NY-UxT+WZVgSm%#SOY)9{RSZn{05)Ud^e;M39ujh zMm5E}?QHY6mGa}|TnvXqcMtT&TI{V2AqHmFoA-G zZh{Rk5gKr!{9wDpZ6q0Pxwb_{NmtoyR~TFQbK~8cBAMwEt3T}X``E9Gwp3`=^>Y4-=GYfIR_)fY*}i+d>zOmG!%c_lj`d8- zD6^ORkQ51n@WQDUI99xJ)TTYn`-S083w+z$dt6BPt^6mlYACjsai385Cngavhhj9x zVj326A;hZEsm`nET+G?nb1@8@pgfH1%}lMC|FoYm+kk`3Cv~_%N7a1m2Xt?>=8Y zZ)uqHkSut;FHR1{ucFEfS=b&8UuL~)_-*fRUT<70Z?LQK)?}|wugEPeEv{o=TRU$_ zC0|KNPtDN2%>IGLh;FjpCH?rMV_ zm>6)$kKrj?(Eng~&DMTcK#dIWmxvBLqV;r;GR7^ILO`n73sdfQKW8v*2+q?(t6|zs zP&Ll$V)5$=oNz-;%E0~Z|Btly4y)qY{)g4T%vfTgH`~l;V(+oWnh*=%p%>{K;7Awg z0wN+HA|k>O5e1PhU8MJNICKO=npk5uJuxOGH?ARTxZmG9nB4Zg_bt!+&v^!X9L`>Q z?X_3^e1y68)prOV{_o+e|5d=eKjuhuVIwWuZKSu;tjdJ#Z|@jvddQ&T5bUI{9;|Sy zvoG&pZE9>PY)Y8|ST=ymUTUvIEt=P!qYE==XLWNuZHp>Xw!f$2e*O0ho*aTGx_n#D zjz^NlE_Q3DQNQa=1{M#Xp7{SZQK%v8Cp~?PGhLTb=7%m$={@ zf7}pWrpxkdDTKp}N8rSC3GdOlIhXS?^UX?Gz0J!cxX`M^gdNK7z1m*>XMb8UzmnuS z6qpz5RQIrs!%lt9oy>r!J(hdW5{VX&DB26BN*8ObE!xd0?o>Z6{(3@zV`+Xe=n;Gy zwP`1eR0Vg+WZj0HINP|=ko~pi(P;NG1`|f$0qmmXTBq$!`9=ALh6ac;$#H&SEhj5G zHhW&&AIpJbFaj8G0y(arN*fAWayzv$*@L=Xrf#+jrt8B23iVZx!4-54 zFskq_HPT1mZCH$N<6;^=gP(}r;j7Mt`|`yOg+q-8>%D5;1gYu#c2ew6VOB4xy2e@! zOZ%klOxGK{MQbgz7Evxg_#>QBp9p~;*MBPpsTYRDgxz9(710b&_eu3kIly70E^MGI zmf0J+2b_*Mbvi00Z7&N;Q-I5ace68m(tT5XyQ)~XUg=HUN0uIJmS2{ChTq2E^mM_q9KeHASan!=STSQE_!43F4Su&CjZ4pvXqEU{`Ef)5|(`Iw_s& znU-IMm%g!LvuNJ*Bccyoy>#h;Dvvs^s$Le~|9(A8v4Gi(E~Sqjir`q&wpJOjwMA8> zmDLQi#t~Ff?LEz-^-n9*l$zJ|7(q+OB@%vQ1UJyNFr^%36~ZE|4Au)bxZ(Rw3mJS# zfeQZ?F+5zjK6g#l3hsLPVVDx|!uJUW>&l5?Q2wUu_30mR1L;A3J@l>LL+)RWKzz*58DDy3n`8t8JG z%^Yobhqm3QyJNdcArk1J)pb$D4Atn`F!S!+Z8(vVlyoTZP*6bNp+kXfGWP3dgP>Xmix^Cy9rFX* z<`+<c#Dl9H4;o@8)E!6X8c zaWzhc)f7zbB{&&Yz+_zU|4x3thr+8df3c;0_uw7avU}(btnbJ5546>A%L5%XTuwvj zI77O(eX9j?%oJTLPOIJ2VKT%(!T{D#2{{RQ@r5EPW2X>+ov@!eENsX)>iZP zwch4m65g8%+2*m+TGD32UcX!OQwGdrT7*nGt>IGh#a4|Z))NhO;}V>x&3fkc>@iM#_#FjoTcyjqE(bJ}<+9U?&9K}hVTlcNlxD7whZ8BwH-Q6F5tb-XBvd`xv~`UP*%?*IDh@Z9KH&J_j=ebz*^Y z4Dda5oHgjp4#V4hFsBpd8|1QooUXmFk2K@7n=8NhMA6Bj>Q`!F0(DKowfKJd2%|&A z;(Nyz2X6COwfB=vx{Vg>FLwrhxB^q-(^(;aUqNj5HEGppSL<*tYBmxR<60}WySQdDahl7uhh)Ae{h1w{F*K&fN?yg;iuco1Zs~_r~VJ zqXA(d&0pvvLHMZy65Vy(PHc61$#C8?1|q1CU5B;(jYopm!Ux%p(w;C4*hDAQUuZht zqIHq|S54sK$J)qvHM)+eXpXDkPRZ{xM(}_5mC!qay>MTB!iPIPrbosZs}S=r2429r5nKn2duaYk+)OkL)vPx;Gw@hr{5&lwIWQ!GBGk)E zk}qfH7N*|00Plzm?n@#JLl1`^4Lac~XLeKWN7G9ez%TUchVMEa-f+CezDX+fh<%jC za8?7);#vv64Le4mgI_cvEQk3baaSk2twF=*f+xWXI0cX3d-!r*z83Ij;1n!?*-*sk zmZ=KSg~Vi&=FY9U4JPat!?zyxd~4mv{;vbIYfP6MK{Y3wt-r0zfK_%@eO~ml*b#hO zJw)rUp=Z8F_JK5SQ?@*~>`VSXQ7i67j+ncw1+#x8c_ zH~PQq2ZjN)A@qT5pgn}zuuTiMEuk(}CDkO>>ZY(kOT5dTl@0jbtW*XknCE!Q-Nn8!BEv!2Z^aTwwb|TrtJX$U}V4>}*uwb9G z*53JHZZ9mvEwpiwSMU6vZ)|@oICB>EV#O6X{&j|-b(Heb`b|@w^OH0hZ)zPv~D$R zHfZ1`BGa+eWNgW>Ac!8v@tIu zpYyOC2pI6}cjmDFk4BOo`R(M_LUBrr?sB-suCrd_vdWi%5smSTKlpe}sPZ#~7qhZ1 z=ce9F1V&`CUv_+N$kFidkf3(JaOR?%-o$41!ozUu?l1~EKEL&FHc2G~#iaQ@rGFE7SziT~`v8;Ak$he84m zsH6iIJuZ1yZmH8#%9Q&QhZ^+TNx;Wrg8gmIVBH?3=fMGCn**e!t|o=ijEGm zo4q&ri#t+4LoMtl=WNc~CD}9B4-27|f(i&ExKS8^jr_=){;R~XC1h;Ui12_)&c9fY zd_^OTwZOSrIC{bPISz?PhBf2?pwgy(zj6qX5l)}z`6A|Se*T2>0fuiU!D#;dUXE>le#w* zxMgE~#K+{jgI~Emx8d?{Y;F3ud~Ghr??)%1z4lY}^;Uk3hnkPHFrN#I7PJaAA~Tuy zd?aTxC93c~)n6hGrf;Pm;HNMZ7s5KETCTD9?!)Cj?Skn)wLZUl_b2m4cDxo%i8kcX z<~V=lLR`FC98TH#1x$uH9k7e(#2^2tOHOoP@r%)z#%Z`5KR^oCZL88_VbL>q2PXX$ z-eWMI_7Z8~oaIh&_7g;z^WMtwL70%j25#clqDIxPeQ z6Km;hi)+$4JFd0GR=HOxQF6f;ORS|M(hl1y8Q0QkuP|@YYvN!EW)nx8ZjFoys*ZZG z?Jz|F(`sRsUOxNAj=VcoC%(?|nzYWAYiY4nnuxFS#gpRe-b_cgw(L_*Oh?1Jm`C>E zG)tt7CSKPGQrbqb= z7N_K|t=y%2I@I^D`a5Po$kVz`!$Gtmx*gI1_j?QsQ3rOJ>+UvV&}8f*g746BHJQ;y z2ZcHNTX*}T*K?b|4L_w#i+p;&gLl^ilPu7kdq+w81n5%+k+i z$KEa{La6ZBNH_d!GQxjG30tv6q{jIfL-A)C2FJFD{V%d&X|V-|^iiA{j^yO<{h?om zV2)-k`w?2Jp{kyDvK|Y1N$_bZtjbF9PdS+4J6OV+{kr!D{pWx7=l%u{h~OdYxLFSm z>__<>B8*f&fm84RPvHYPXzUb`uQ;I@A`6ze*;-0FY}pP)RZC8LW=qm_`5guV(1S9* z>eV+NW(_ZV()JZ8-8aH!5V-a!0 z8P+(}1gTLkwhi7=!1Owp{ioLdK6R{#*yAeP8;FNRcF&V?FwcQyjhtJbDkk9;vLigh zCCxt7hQmlL-jezR=OTrZaryS>_|x&H<4#v)h3YY$a~)-u9r*hs9U!{Xr+*D4-9eI@6Q$KR~g`X6gmaxe|A5__Cxjg0Z1CtL|r z8(@}h{vRPM58@`x#zd^7Cnz4*Y{MCyHtcgC3RrsqBup(;u)1y2gB{u?n{AiuZ!lwj zt^TrQv~SStiOo;;RoB@ym7mt@whZ4i3X=G%DZ|Ck+!rMyMTIL9A_VNxN-p_i;+4ox-$9 zyNUC|NFucvweGa3m2u6@vSzbp9ffGXGKnL;EyZaj$PD?gZJ?rn8Fla%!@NHX*!yF3 z#7cVG>YB9Hj%#VLYc^@t`cqmX79G-R8Q0Px>WgkO2ea`C*@rVMajNlzW^}+?N|@dN zv-R^?P=Vjc9=L=jF;ojeF%2vCjJx|GUmboi`&p~%8Y^ko zRijo>SyfV=}==*DT>CO(7T#%m-Tn12gVV*) zhkyz87tgaPdSWs9<=As#01xO$--v?|z6_o=1TQMgH^evCkHH*$@Tc_DKQ&$@6YGG} zdR{!Z^AiJCsg94o(*)K+Oh8VmP;0U3XTYgnNTgEpQwmcG8GdpfenTY{Boh2Nn=q1#Ykk-6)uW=gB}xao>Wm4B@Nszm1G3cYAP z=@C76b_1XNYsVk-@;O8cs&GB}3M+1Q@Y5}C^2;y~*1yTQd`f?P=|Sd5-hn>W2A86q zKl;qe)_W#@7=QOXha0hqhWWx70tfi%ctDs=j9hx|3 zx2(Fv^P*JBlqSvE&Eldb4x07EK^ygATg8L+c0IhOm-mMqftUOe0=tu7^Cei3p5~Y4 zpW=V5mUZj1zN!6a?*TT~JKHDQ2dOZmB9M+Mud3;7dd%>XZ(te~RvT6sQYuo(c%{0h z>}Rl84>T#`m9|E%0nst1VxnTwj9B#KR}w4ffUL!#(ur$najdhhGZHsHl2}Uzt=eoV zMc2krVcBe;;9g-SamAVTIL!)~K_6BDDs?cU8r~B(>AMahNN({G4H~z;shw;&Vi{!N zF0*xMG-W#*YdUiKvwJW75D)J&5{f@4>?PH4c^8v2lCu)pRkA%mN1#ND)j4~ulz@^4on)WAU1Zrc8Yzaj$D(%wcf75tey+OSYji) zX5DC8x{qsW+OLo`Stz(KFq^m{V~>;+-x}~`8(~r%(3LRLD3|5;ii1{P2tq&K0?tB1 zKmVFqIKGV7JN6qlo0VH~3WZaj*IMX<9!6j zfrfFUDPb$GNsN7}r4^>723&XHfj+k`*H(`AK1Y0wU5soEyL?#1wW{8t{=J3l_$(ok z*y2ocoUV^k2gGxz+753k;XQ*qb`^hySlisT=$6)sZmXTrM5!fucHt9NzumgpZo=wY zD0P(+*!9S7Ay_&DrP{O*!n4Exd_aT0+UCA>uWh}IQz~r~MhZ;@cMzkAwaq=N9-Dgc zT-Y=lH}7fYU;*Y4Ykb=nr%8|*@L>l)XA*pq=j{!WiFaIWV?PS7;QD^Nl(*OcQpKzRvC&owpd=@n(p^*Z)l5ymUR)$5dNE zLE8e*p{wnc#@)L_0)tzIHw?QN_>>-K?rrI4V+I5ZUHBXA?rrI$Zq1+ut-nookCs`E z4vWoWnnb=uJU#K-cJXReD(#ymtmbRXCQkUaElxL^xTsq|r3q%# zPRI#jA&tm<8Z9bp3+%bZV!s+Ug>5?rUz{fg%{*<~oEtpY%KFll!fVpp|F-_$L;13? z_ldKbk^ZN)ZTr~!&HXnO--=8b8VSV0{jT~oojQ>z!?Dw7;IliN@C4Qn8@taf`m7sl zx#nhTrD2Q4ANWqTcPy@1*V=Llg>8#Ti=>5vC0I;sCfr?JR2>vGZAu4BYlc~Sb6Kc3 zO01TBvJF*rD~wop=g}9xw!vSR4B@R2{;f=^9#!rwhbbExyVymyc0aQJh5@r1mcyRtj@kz{K{^1_O+I^9LiN}?AmQ>Wkn8L zON)DhL%nr9H;UQB9cgD&wZkccK5X6VDiN`Ara>+X$&f;D)ml2gKj&8VV+Nc?(1f~B znOJk7Rx6b~VS8fV2?u6{?oe$2i*sQc<`+q5e`68Sv zy!~1z8|2Gw4r2^x(9aV-&m6rv(Wd-oH2*WdkAR7=17wNbZVkOp%$v>G`<-`&N1s^K{HxnDwwwQjK>jT}LnYUU^)*egGx-BYoNTDp zV9r+57q=JmGr|KfBT~EWeGLvJ&Rk2&{#sd$MGY5?XNiqnk8P8z)Shc?b!o7zH+{3C zZb&(xiWDag`ml|^)qrXx%n(ocW*8vabPT3Bp_v*^Z?l`go86cOF3gWqEE-3n%E|rF zuHivJ@7O(w0f9rn9IUt_>$nSunRM3|L|jhf1>#7u}`Shf;V_y zpTe(bMPDpRyn4Qb0lyo<3*@QOxX%MO8lq~uEjtQxDnTP2ycnp5DEg%539oQ31{YKC zJvI`&`W0N=Na0mjO1^=s>+ve>g8Ag|E_W?EgKjsr@kaT*{4exVSoroFF+N}1Tbm$|;BLe5Iip$Vf{h7i#@FaJkV;6SNz^UAZ z4t4CH@n^oC*vRgg^;p&0h|+E`ZqaPzBE&mJHe%5(N?Xxvue1=u{TEnCoRP9a6?2@@ z@58qK)&x{7yls&C&q)cGI;J32(jkjBt4h%~aA>h?F>K-d@$^LAtV_)Lv?ygQCN0`6 z98AXy;)pY?afS&_9rR|~fog`C^*{`A*@uuwbirjIekL5e!Ebm)M{V%>#9UqB$kz81 z4Wy5z`DVFg+m|%6zBRrTex-5AXD*$&B-a08P<8+EJ)4>w*{;!w2N}=PytABhq$SO) zPorR}5mwbl1#gEnWAFb{^1TF9cCeqQk(*+l*C~bH^DrW{yJ^#D zS7XmLD`k!54Z4k-KSmL$&5*@J21lv1S6Z~_E4de#PF!%N45wQlGwjVagK9mzUH!(r z+On8f1Qcsu*;%le>%8Lk*!!;g5GU*mBu94~)ZDMz>CTo77CgxM#`Gc!<(N*c%5xG@ zE~cdu`+ni;Rps86F)XXC&02;}_BvfK(q{X`6iiw)sC(7VtBXxtBVZ*_N7f z&E+1g2bx@Kxqm1UGuB9K>;`SyWR+q7<=9}^U{KEmU=*>n8?l>eM2re49lZF?!h{nQOuW9%c z&ys~O?KMslVMG_hw7-f^pUlB2Fb$^QG-@Y~6RCxft-4d41$(FddTUFMT@4Fgogwy) zVpgx-hHGk)wiqhal^jaZiF8ds3T}he>*E^?pcR+Vhr+@S{=r|Js>Oawp$%_9jQLYN z!l{2Mo8B4=AcnAc$H0Bqsy6TdcJ|@U&vie;t>VXK8k)yvke+QXwP3zkV+V_~>(_M} zjWCcgfJ!PMHz8kaiE)8e;V8C(2Niwrq+g^zgIT%|L7fPV2n`RDS*trQ@y#=4VMgiW zMn!k}<%}HWrD8<;I%G=uVDtc0k8G`NDxn$hel#6yZvYW$+pp?Nz%v# zVXTM;Ds8u`w&#?}eQ%T&CS$2+a%}M}Gn_Qw&9?rg0M%NUp`XiwCVzoo4(|>*f;-JG zMK6Mn+ToD}g^&J9y5Nzi$oBg_x)7A{PeCRU>1K*Z|I{}?t*3C$oF(7mZci>uDUFvNcOzJuRi5kFwRg0+SEv=5t*3E{^+}KuiQfjO;yJ20|#!3{@ zcF!ILruB=gR@rg6XY!fzFy%TSC+sylkS@hzI~ z5k4crF=6{?ExdG`08rVAL*!d{xei~_uukO#yj+bh|L@zU{-dX0$o~&9;0M7d0%wH%s!k2OEy8E^_2k@!xXsm2Xk0_uH6}X{LO_ji!a%3my#`;J`JBXonT))vO3OaIA#b}xPp{e2c}AZhZHq~wgW+@y|k&&&(i7-_U? zlwVZ9$?%i%NO@#ZWai<9h|lF>9>W6d;e83dkBkHuI(BcAdAOBdhF{vjG*>gWIJo3+ z@geUWGJONvHaqsZQqf;>ztXenK&4A{FY8$AP$?@-?@JsxbDseg-=XBVENfM@Rkm+I z*wt8Oe3UOH5?G8oX!CHh<0g^m+H6ZwOOo;;gYSq;_5pt|nWl;6@(pS2Cb~MQDyb@& z8KGUnox`1vGq46`j^Ip~qk(g9F%7ChKXKD^G_bY0=D;dC>jum38((3;!=Gq}UA9O! zxTMM5N(&i0(s#I<1LqW?9a?0PtDCip8%+xw^&9Z+<-jV3nC$P;XwWG&;;z+tcJ8}j ze24pYIf5EYCtiE@8`(>{o!I)0%KnnuMnxMZl1If+|hEpjeDP<`Y+NrDsF4M-T+dghIXNyaV zDhq2Fc!qrhQ+|Y$RTOMi!IbYIWeo)zR50ZyNLleGSbNu)f>?VsSeM!5J96z6ewF(h zWGx(il0a|{Ek79J7vsm^A_=@tMc5v540d(X)-zx4SYgV(s2#ahdpo@(r82p;3TNC~ z1+;oqAB!_??t0-ZLd9B+pcfUFcP9T#Ap>)CXu)}WF*&%}Q_WR>#GkDgEqavuoqh%j z!C^!vEJf$y&cw~!&9v}G;rGHuIB-oS+M)Scm(?=XbED}&&klX=cbfy#Ok(6yuUYeH z2llr(;R!#VC_|Ki&3;F{gS-QMWra3*mY1_~vqZ8E*b_-)xi*>7wB+oI zIY~JTY@ovJ!yJO0nN46u5;7Aq6S5?UtP3vLjc=pM%6d~aEhQ~2ExkEN;ivF2HIdkD zKTvAGg8yG(5$w4JvCK7e{AVJ=AH~to@1dIi9;<2a5v~$k2@bFl9VlE0*#zuhCEAIg zoyt7~Q~B+XDr~3W7qlf<4D+BE=TUf=KR}LsVzPIMYo##@?<$8Lq`+hbG^rSq)2>lR zqP&iTc*h3Fed65XvJBXm!o1k*d0lbkIjIeoN-o@v1DX*WbYKZ3=nA(VaNUEACddTdBmq1vX80m zE4hjVgLGFy^ZA+tri13!qJ(6|r6ne(r{*Rrl19z)*=Uz&pXlIIhff}lh>188nR&9} zRC!FZ{JQ+s+0QRLV{ij3li)I>v_OSAZ4zk_E)B@_&-Tl3v}KDA7JFay^x9^pt#8?G z$Mz^2`%CZTdFHw0y0o^io(hk8_sXn+#>PCLT>Z!lAJV@6e4hDl+%P8Uj~KglNgDJ^ zOt_v}&-Q(NCZpURqJP5wPEM~1S?jZ@GlVVrChbN1E0c39EEf#O75g%STDAHCR(4Bv z!@m1McYNQO0Vai3Ry8(NcRF{mK2lGI18xj7>j>}CF&HGpPgX4x6QRS6-{!+q1_r+; zcof3mD2CCXiJAnb!VH*-GpMuhGjZMDVO1|JmT}e9ZVLNmO9hAT#E|`_GO2}QxgFct zplGY?b*f;m^K*!LcyeH}|3yCzFX{6S`|&IlUVOYTJdeRS_zBSq$ac?k6?szM8=rE6 z@8TB;W|ZsUBhK@8oJ})SeMpUzmkur9vyh`Nmt|I`H|XTDN2Niw0Wt<>QNeA88v-l; z1H;`vDd=_nFyWsKV<2Si!Axv~6B@!>R1A7q;>U|ucG$8{A9Mhd3#%D^Ilda@w+XIP zTuEHnnF^+7qQSOqtchU8LWtQTyhX>NO8~Bst!cMq>mC#Ul?*!bNUbnjAQhuG?Q*NxZ z8R-AM9;W8N0;X4>U?VNEfUsFGt<+6yA#%pWhjC*JBP^n$@zaC&zI3h9Qp}W=z{+?q zVqgmW;~dyW1ur_VR;p%y-{adrn9TfL1|EDlfqYC5cJ1MJ;q_Z^o#$=}93+U9{)ez% z1NY-eDqES=meHl1%1UvK0lu?iU9$;W+g8<6KJC z8`5=VY+-p`b#84LPN`qjw#{JECM{Hv)|-eVQqP74p7n2@Ad%{2Hz{@w=|3L^svH)^ zgW3ePMC{l#;)|K>82(N7F1r|g^#Pjhq+H3!8Jbk zj>|g7^@iKF?W#9rzkWRQUE{A+FN%Q81~q1giov>Q)HrE&LjQoLk(gwQ^NdT^V`Iwm zVpHb5khj-g{37Z8IdGE0b4FmPl=@`F#a8VM7XOANHgJ)ki-b<7i?5HXHxPw7^)SBWy6Ac^o7Qxx z`J(a-yc2BZ%g8g#pp1_gh8P@6m#|$ao#`DJ40hdyCvgb|QC)A#;i>uQ~U{4_=FTD?9{h!xD6K&mOc}x{Hzay^ zi@uE%F*~3%t+u*iD?; z*f@U#w;)f!rz+6(gpS6gzRRulGEfLzdjN z*!I-6^j2{%N8ky4CHcywB5^N$!hDW-i+lOS$fgN3*-gjSif2zJfsMv#A*kZLXy6EY zNpVqmq2+&@&fh~J8@?pkn!EJ3n`iH4?{*IN_VhFO^UdEE?h$-xT+YuR+JTk3$~IkH z!Ck-N`?be2*9Y9#wx`7GK`S>(43_5Coj0!@V zov4X(akavN1qx<<4r^*bw;uJL;zuwWr#H8=I3H$i1Puo`#K7@kJWa*@dghDUbN@@I zwQX!Z5mtZ$o}kquKaJXS>Y@e{{@{7v^WFpL>_M2~^}_w>-XJ!8Uz%Nt zt^Enx6IPK71cM{L0-a!+CT>G}nqQA!68r$N;RDR3&}k0Ng>0BBJ{R#}#8c{Szu(!n z*1guL#>}3rcP)3gV&~{)=Vk3*WymUv>aSK6#h*MI8GjGDurdTF zp9fJXQ7I==YHMoSYH#eV_%DIy@1gumevs%x;Z8arG~9c>pWH2OU!2$jHkInSlHao6 zdkE~uz$)}zL`+RUDB7d=otqTy3{$Yiu&EF=hvwyL*(Qaqe+$a%VYm$36@2J02bw z8>hmDDhOMrtZma75SAmE?aASQW+BMqs z)P4q!>cK%O%00>>(w#xI@u_|MAPft>)S-y*p!ud}(+yR7C`E2T+XB7;o#+e2=SvgH z81TJ;uGG1b_|o`t?Id=g5KYXUf4ti41seB(@r%yYUw+Xkqtl90%TlT>ve>YFp^itL z8Fwm75n3HmYITIo@Jw~Tw4br2_?d8+Xu~`@4ELF#)+$_6FJ&LWjBZ#_44Or#)rBjc z;MAs8b`8uj0EssQGq7a{cTn-M=g!SN^W&MvBXjjAxnb<47^E4TPeB9t5o@n1^9k~C zWm#aYce8Wne}o?&8S^9BybA59=V)u?m14qn$9JAd3MX@OciulI(#&aA_ z64q$(YtZ2~IPmL+g>^8ME{QKWSDbL+aN?m00XMF&0RujL9^FPk?8U%~0m**G5r!x9 zBS(9le*FW?)X!%FJP&yv^1=7R+4Ay|rYl_xzja8MPlc6-UJWVK2xrs%Q+-ps8DTyJ zYS>Qf%q?wAoD>#pS8YdYYrjP`yAo`P)V9Y#;Z*9vDV46(wl!we+!&3vL}uS_p|mO& zTSy%hR$>+nwynnr78`o1SyQlNjmS4E>y$(dA9ZsTU;j#$3 z$P6tOn0%O2{BspEEK-z*$if(i0BRU1@PhY7@Sez=?uBpB@Ct^A1TNAhsJ|RH;BqAO zrtGtOqtClvFhbGD*d{u?I<@vvJp(!;!Z~p?@AoNU@VHk{-sF!!n{eb7ucQLUUy)*Y z?uE3}^o-<|ghx7;*=WNk*T`chBf_I5a_Wa8E?!;$9-0_Tn-}Pv^V!9GMO~;^0 z;09-jgYGU1oa9(##DYrggKLW0$_E9n<6$lXr?qII1x<+rXpE!n!|fyXMW$=9pjz-- z$;)bHn07qs7-ApFKoF>iI7Y`{_Aoxwg7@$k(*GSood3%hOC%74-tacxs4yJJ}Yq4b+(Wpkh6wna6& z-^j^aW)oB&+!(50et?J(W4gM=y~?3VTE#g!E1jxcid{L}3A-e?3xlX`Tt&m+-9uE+|k^7nGR zMSfkrt=>(X8X6P5QFQ%S_c?tMmwDr4E6p}rw(n6H%t{0`=Cv?un4k4{U^}=zxUq~X zP~>%HU)RcI1GW7Pe2f_kpu}m_zoP46aHSvx+==7~9e~OJ4D-hwQDNbc!KZV?-lzQM z1p|el1FZf*v%|JwSwJ#jM;5p+pi6lP=TxmS4_43br;6oSDT(=s`H43Zfi}ruqj1tG z!&4zqArU9SddqR7$ztI@fy3R!I+szNd(rft6I-wcU;#s_y8n zxoem^VW=RA?fv54_7;Se2zA9|pw{>LJa^plF;F2Z{Z|MLLBJkW$Z)TH2)3g*FX z$iv+fzJ%QbcjI~34d?$+vKkv7TPikXZdAvO_~m%y=nej*-so5)HNI6CClC+m7?0^R zd_Cvy&-gXm6e$AI@#w_Ah!g=6&l9u&;)-PaA_B3v8e_%T@>ujHIG5gBZU1OKBvDQB z;>3*fjEsw|2~V|i*l6vOE)n73$AhE%;vrNAEN5}5nu zXBs{P8-gDK3m+m&p*^q!**8Da!g`1xlHZw;zcKXKWsD(0`1n>nR3dbYg<6jAze{Lg z^fnQkcz@nW@c#qyoZ}aeC%AMQETv%OoaeZ7Gc2W^qZ2W|&R@pWuvs5B;|d}7diN8o z>W8Z5G-Rl3h9%E&356fc*#=9V;1Y_T=SVzPn0@k@L9I3W)oA~Z6)>9_q=J|FZgNl4aM8C}FqOGRokAZGM$;qQ?a&doSTDKP8PB*(Z8o-`Ft%vk z(3!fjwBeMYBv_LG#~J*N`tkPH4Wm)D{$nK@$1;hq2#jgn zJxfh+flNfR-FzMB&qsb>U<;MEzr?N9o!KkQ809BZeKrpqUbu;nFAEx$_Uhhaz?@$+ zu0@Sa#%Bbhe}m{n6b{V6$loAx5rvWPDftB=mtrIheZLThUW(DbP*OR$5#v&a5g3%0hdSdrb9-f*cW=?()QQL(E}8$@}ZbUJd_Gsa);6}La`vOXJA zR1ljpuRE^1Fs(DW{=(03u#pj#?0Nmi5`Sml3K8ZC^hiCNwIAVW3U6UD0dqKu=6IGC zK1m_qDC>hSsdC#NsvkFvbZ`S!pUb{=y4uffDbc7hZ0PS(-Yk81Td zb{|eM-7L{*GG_}5@{4jy3ip*e)H)m3>~vV~#_${Q>3H0YMj9OZi8^H5#taG`s;EQK zZA_w&g(QMW8jy60*1%ij7G`Kb2F2IGB4S(X+T`6Dckb-D_;U;dQQl_GR#Mx4FQ4v& zU&(j+lsqgpG&Y36rA9E93S4jb={8A=1ADEt;aYKjgI|M3y<=HBYhPtkYH=kYBOxO` zi-C`NaWNH_awauxZa@6xI;MzBs9EQ;Oj1~%4Q}f8W;J$fQDuHZu9D$3V2Ic|K9CLA zw>ol|X9SkQa_T^#SA$>Q`L_6;GlPr~6@zx}I8R5?=Ezpm7WQR6D3jFeYdl;V^yoOu zl&6faF}_|g9`kJF&gZ-m8Q2GFdvGmi!ZbS2Ex^mqx7n2~t14C$b}}u<&>0y4SqHOx zvbeU!rk2`nrd^n31ogD5gX?}*FYhdmO!q8CSbvoKl>SBD-IBm-tfsq~|He?}HysS8 z<%cf>r-h}3=bS8(Gq8ZFmKU5$OG-~pF1yfUaG8y^jqnSNIvyPs6D(&IQ{JITSqs|# zfA|dlhqCvMs_NR>hmC=~chq>Jap^jmScARS*hM&W1VjV`q=QJ44gw+~qGCfp1f(9| za6q~sMVd$lDQfH*V@#q(O)+=wlexLSZ)`BR_kDlw`+ej4N7rzS>Qk;KwP_^MBSzsSL8jc&A*+FBpto~CxrM=V!gT`PpoiY5 z$3m$JIDj5HpdQO_sU#+@{p+u*U(uD^sBrEyyRGp=00}ZZ5m~9z{fh)Bi8kl{pm}(^h90JiHvDaV{6J2?|!J{ zefvMwo<+(#xJ!n{;2oTz_2(xdw)-7MXvI4O;$RHM;TRSSCPN&I$2c6%g0Z+Bi*Y!X z73!3q6RGm)03KyastX(QTctAUslU(I!IZ;zrnboIihbR#7KyP-y~P#lLR$%*XZY5c z#AVm-R=?@K`&v@bwe-$cUC1;_usDuv*z}bFPP8h}p)gqlL3{Strjh=~d)|W6WM~=2 z;z!zlj_*STVj1Bj#uCtlFHl#64YZyNx-bQGaS99O;+mo^QdY=O8WTPE*9vSmfcDkG z937=_Q<(D|ba!F*3;0(L2C|vOsbxtOnu+wV-9ZO`Ck}0x(5nY4LW(saXuA6)*HkAC zgZ^&ERo+u3kfBvW%G)>jY`t4bV1!pg2M8GR*=Q_evv6JoH2G}Q6xYX8U<03x8-(l+ z!TPRpKhfgHvf^xvI306Hc!YCw{v3M~=kt$5yqMfL`MG?KpVKc;=4{>>`I-FfiS)Qf zj7N++CroC*e8`_X=l84<_OLKdP}t1^@FR%+8`(`-}6H38{I zG6L!}OABVO?l?ijWnL)Pq|NuMo)x|3gtLQu`iN2dIZ9biaQ{Ax4#v#mobVMJjT>EX ziuR(0-SjbhTm=ixfe{BL@Q^+38RHS-$>Cw4vagZXFz@3lF_k%+e^zm(kc02K@ey;T z=uFA!l9*HUP5jHGACg6i+&gGT@Z0Yg7;_p_&%&tq6Z?<5op9sOKzKr4@ER)w4Ut3a zDX+0kT+RGzC0eY7*aMd^2nm`j1`7s6@Exe--S!Uf3Sl-2^XlNUws(Ui9+y4j9`y}W zgdB(e~5!_h#O64K%wozP7 zS9!#{Z4lhpll(riQ>tmW)~wQuK5x0x(|*UI`fvKT@ybt$A(XO*0>b=5{W+}FhvSUq zx)q!8BlU7a+F99B-B7~`WBaRk3%h>aT{z07XQgGQ$vD2OTZm>ZW?jrml5xCRr@%3Z zIf=Omc`z{%MyI^W+<${QqY*{~W9hU^BVc0xIP)e>66qJ|d)SY|0R}7u6T({<2o_xo zZ_z>oi<`WK4kK8g2H`EV1&h89;rf-xio~;QOu(^#V*wnV6x?yX9@H{Y%N33|+C#B} z0#p35`fjs*9ffkn-RfuemwSISk(Az8du?&$oMH(y^dRNkv5YyFbuQ~{7RQh7LSW8h zoyj_#wLOs@*{Ui`U_eLsnRN3m`Xck+Sd|XmWrw(8|6Xw_UA&8d;KKfQSN2{RLX6-Q z8yyhsALY+shB3r2k^T|>;Q<`>8-bkBT(NLFer9^vfc9Q)D{HFc@Xx_=-oj~sw-Lfd zM4H3#SK5WMOj6c`tV9{dtF+-;=6qIMR-BCEKWj&4CM_p9FHx?UNFzPMJwv=WJjjF> zhUSOnYDUmB|5V@P103#Sz*V?TcndwjqKDxvnuuW0#akFK7_A~$4Dc4x{|S2P&oEwH zd4u2#yo>t%@VRn2e%cRG;mZb4HleaugGC#RB^G>TgHXxxnkXlDn`tjDcJp zwT~0lTM&GAvx--9=!2iwD+g;1)`ym~P_*vGS-00eh{Cx~Z&Td-@W zLx@e7MMRMq?M$yvFH0*{pW0@ z6~X62@%_DEp+BIEV=#SaJmI^+Lg+>dRxss@$j{74jToIMBM!Z_z*&Uv@{RU$!%w6O zXKkr9p?}=H{qhQ^)SBPe-nXc#m+C&&y`$d~Cp(vWE|&voKW=2sx1YUv>J|rc`>~Qq zF1vUosY)}2dLnB*TX#{HBQ2gO9CLAu*g*i-&cg%rfK0f$~ z*}{!ms&~-`x3B+D2&2lJYj$1NsOqAoou=1!)y1AZbt?AMIr+K#vjrSX@5L!hTHX9qPsjMWkD!ralx(l-iJV$`7{Oo>V-_R5OV85^$ z_5iR5kWHWh?XUvuK0vSd@jnu5<5xkOu!@DZc$8p1s6#%gGhu4PccIt%{n{MflkzPC zxQ;2hnSWRIR3n4p$!L)Ta!02AC0$9+rJ&mZJ$^SN!W8%?xy_u^JgygQ#EHz;QYOYf z#{XD=H>#R0S*u>NlRg=2eO~mw$hpeAL8r2dnzvdsTGnu<*mF7Oh8syI^diT^wVmlX zb&LD`Ci*i;E9$jo>lvSKj!U>CR-i1*+d-)42ZWq2F@Bl{P102Od zC*MxY@SZ9^pNYlQQ42%e!rW~RZix+v^*C*NHbY8J6e>>2r#+9okuEREElY+Ov2cu= z#a!oSs0!P);XPxC4^?p=a}~~Mo>N^bm=kS&be}N#KZ+O^l|}>=xEvI)oW-{)f_Xo0 zK7y>S__0s$)_#r(9IXW(vC(K~hSSv6G+9wl`MC`i#e)L}D;VJs{6u_F%>v10R4Fs0 zIYrqenPr@?w)X*S<1NvU%^S$PD@tMI0KS#NI3`^X2t0U?4`%-l_zAa^r-}3zHUQ`D zMWT%=WkxikFynGs2`4P?c?N6vov6vm2GYL~*}~@yU>^gY4{abY_!cPwIK(AX81YT@{Xz4Q)Dx&n*EX>Uk-@n1{7qDS2VGuN=Tg&;!$cGzDfmGHCqY(bc8HLYO-&1o2?A3NwdIV8zWxAmz<*7yFmN%-Gq-4J(}hTQDx8T@P9#3~euGR0M{0i)T(j0+iwnOZ5- zVvgS0O?uV4X>w9Za!N9XkJuA9+IN|yMx!;Y>6YJ5ddb0Z-jLuPb z1K1*c#YEvk2b`jgDy2p=Q;}YnR>TQ&Tf5#_+~Ct$Tp`RS@WVU&VIB*6`Jagv-`$TZ z*sO}onzVW?84WQFF!Qq%dEY~t{p)?|^a5#?bB0}pC5KBH@D{R(Md*32^PX|;61QmQ zX#428&VKmfdvMv2MFTB@tV8UbWA?{*9?!2Xe{l__8Ox|CZn2%~;dyZvtvp+Owk}Q= zXIpJ@4@)+pcj9{zS`*HMoC!J;)RscS?}zq>v~y5(l9(S9c~j!uC9cs<(e}}`oj2jj zXW+Uciw0Q)TZh;=NADYcM%fQ_@Wt>mw%N_~9C=1fTz#AY&avL)G4hO?32g~yL(T-B z4Z4v+L+^+51-1Xrom_v0@usWDFfkLa#ZMj_`bm@jQdrG;hlP0#cZApvGno?xz4=vS zAC5Q0kGIV0a-w(NwTe?9(=}5lpOZ-R0=m`O@RMegNO~2PFy06lZ5SmHzT-C&sdCl8 z(5nBz4f7HF7X)VEmpBW)WMJQ9P{S`#Op<1CmCvv4{inBYtztQq9LW($1^JqumS+o;2py(N1TTmsuLP&OzV z>LuDinGR`oskRbapaq8+JN#%3svtooYb&j(xN@bm;(zOa`!h^= zgkMI481U3W1)OA}{EqrX1#nm@eAW+ru#@pK^|SJEJQf`p6MEv39)*qRF#giLe2X{cBg`Nz~ zL382~lJ1%Ap0Q7|F?`+ORYzo%IoD*Z9IRw8lh-63HVq*S0S$fL20|;gyVTb1MpOCt^>bR@tIb4KGwO}5*ADLZhn^!2d(e?+m&r4o&g53b`%oaG7 znpf#pv{Q>V%O=ZOu72b)zn-m0tV+6a(f1}@?1mo&;P{B-VSu|o^*~NmgsJlN+l5XR zzcEjgLQjJ#=G}&J_LtPd1FFJQ{-8J@Z#Fzsbgh0*qfvuKgTxbu|J9_^tlC1-&|ukY z*tES_BDkg!Em+PveH|*hS5JS(`JJRcBtyXcos(Mw8le z)p3>a94-;5k!B8`!`!Va3OCT!$2C6`z2gL%e(@aaOLtXjSF}^h4$JG7_1x7FLdA`2 zRYJvuGI6KN-RA`2n22QU5#*YC%0=Q4$5+L3I2-3_!B^})R` z^EUWc1Wst>D~J|MXWfx8o4a*o!A9Epu=e|+H=MAipSNHY`%0}Vjl?%=-cx6JmAgLj zW=q+I#JZ%b;-(jQiXfSv9ZuG!SI<_)RmO2R2j{YU&(K72BVQbN%vBfSSuc@m_CT!H zX-{!9?KOiFd2iy2oYPFRMV(Hx>E|oJ=7U7%B86AyiC$pkSLHaSSahTL`{5r>!0v@n z63hc%0_9AENtk(v^*|ua=uNqq)W_B0Q#QFW>1slaW&-uYN!B<@d)3vQ^h$lPSZ);$ zV^Fzy_?)ZaI9!H{#lzT-qjxRXyt-gBZNFdptmGvpSPk%&Y`#aaeT7*?JKa-fRb^eq zT^}KM+{9KVR3%o3TVCQhGYCHwcdXoi$BFI&94ke2`>T5NZQj$;zFH1;G49&CjJNFZ zEc8(9mz%rN?^bVhUgC}_ev(ohxPAxpU_vKoNIKA*&B#iVrRM0$sXebsG*b*$ZP8k0 zDXBAQz1&n$Q!4>S#!cVcRLdqr;ji#iSh~=R5ZQq|XA@5ypUpufW)zO}!aNw=3QM_m z^k-8tle3bu|L&&c-IbXHEBRGWDc<z)I0^OiKo6(k32nZ$ z50Ak#FzP`gm;_$ELNqIk0W~sGHvCITZak=YUi^j|zQV9_mtxBb!-{rlb;GLBy5_HP z;|jJuvF<|k#Sta>I1nd@rcr(F>adci;astv_el9Q5&xm$Jco-%xKKQBl=;H#YYH~e zraM)SMb-h+0p6C)b1t+jGpy*K)-5&-w$)sn*e@~>Hj3jq7fO=+y6I|RYD0ptyeqpO5B{uY>t$ zHZ*Y%{Mg;fWyJJAk@;m~g|4I}&!gMD&8=C&Z#YhTOx%oZjhnq`RcmouUdOK7|EPBl zDi;#b4z8T%a5{b^8kZ-IvRtUSMzNVTiaUBSEH@iA*R{Z^#HgZ!isX5=SGmR!R+uGh zRpOPT@{2w<>8kx|0mzDGuWS&c1ir@^tfE*^rD)`uFp#~Fk(d>qtr<_v??NuAaUJXR;|G z#V6V8qPs*Ght{`1qTGN}Z-I@#FcGDPE{ErH_>sVo?d-{rlOZR9IZV-pvrL3V@ZJNC zmIkXW@H3}jMw^NsTUrLo>T^3&ZgF6V7a3E9cl-2jnU>h1%nOxq>E{~a9_yyl*u5w0 zV;rM>!VdYya_US_WMbM3=*J7}nd_>zw+|Plf8yT~7t=QmuT5WSNGdv4buVn5RV_iQ z$?67+Es=39)S)n@`fbboo3`~7J_0|oIYMk%yXYnnrl7@bn5@*m&u@d7xP`Lt;_w0v zz7B4Q$YCsy%v^|Tb%zPV9>G``(+tZwC}d9HXGgaj z_Kxs85NdnU_0-50bblO@yIVk^^SW!V);@X2Yg_|U<<655G2v|^+n(Nezb z7p6fZwD%3Ev%EGG5$Byh+rBdTajWD?$C~~{ZL{kn=zNrH*I8zUDh>s@6u8=-+wKqS zZKN;`j*V=}L)_FCXnh+bN>iMA8*GHnnTYa3#fJ)p=|sQa4T%na5+?~O*bDLt1s6&* z;%J0b&@LYXj{lNbyapF*pwmwAv;Ltwu<^%tpu$~7P3FL%aKGtxu{NjooJrNDFqgTJ zFOKY)fmaWD!6aCIbI6-btMjjpI!P=TWgCAj_+*|uk~6LOw%6AGUe{Zjd`!S>n+p6X*>Ap3U1Xe$_{`^VRk zvex6p&ydyIaI_Il-789DdLuBsKRmFzM&S@@67&64wndJ)E)uk6k{c6R z;yN_qXtds8lTdRG-|N6bCfxm?cd(D~)bY~wPq-4) zW`U)tIQXVlgOX?KU?RtVauY+C#uC4xedRXQ63BrHB2XrxIHDjzE|TQ&`u|3pAa*N#MWo961HxD~tUatbwD#+8nr3@xPpTOwOk&)II3oS?%K?1I zcEZdCSbYU_wq{TpwBC&ycc6q5jxunXKT5Xw*5IsioTtFWl6&cHu*nJL+rs3(CW?4x zSVyG70)2h~PPhXTc(rapZ2%N-V`vQCfI=3X;4{L9=?h`q3?J4)gs^TtOrH_l;3X+t zs)|vD%9ovZm?`;573O#0PfTR~k=#hxmI#^{BzBT=_|yOvF)(^5arsFVT9|!HRWbB0 z{JtvXbfOLYefS9*-WuK*Uab*9FWIG7C7W|Ng?Wsh6XW1)oRE%_Q*fH3E#)B04+a_t zj0D1kdBi8u`-pd>45p@oS`w_#OQ47G>w~z|59gYOnjA8YOw*+Ql)cOUv4rbqd2c>e zZ1dhF#a$?YC0gjg9{>++kwL^9=Mi0qV59d(x{GihTEfyEc>5fmcEHm|_@o1#yud^z zEHXTWnzWs?dL3q>%I)Lx;N`EQ4)yw6W3_}EeP2@9Vk!KjR% za`)e$)~JiYewa5cbH^XCZ_oaCUb2S8hmHw)Fj%g-h(*Ebf*$-@tGZkS=kJ{kWz3aW zMSOZ{=B4C@_@^TJw&4-yLx&=@)HZRQmFd^^A*zdoldl*vY=Mp z!11dmf6wGNiNER1q2Y?)!hj+Umh@sZb3vY{NGO!1P@e^MD@-uY8-~uA$mtZIB9(vGyx^1kr=&ZCT zEMz(h3cF^&L$Q;0(tFL>!V;0;@^fP9)+wzwC^3<=l)E)qcIpp)V0h;}_)xM4yI30x zQiVLmNJsQAt9OgUlRAAc{&DYX?hK|4KpI?OV$F`bLy?bvJrj$$%-o{ zE2lM|D!!Cjl%k0LCKkqUIP?Y{K=6>KE<9s!t;zzFv9dR+5X%holGku<5uRi5XQ&|^ zjC`NWHN&MxM#FN0&bo6(0IZ;JHUXiSX<2Rfk{fyi- z$0ft5TSmk3g7SR}IneFGIwn3nKI43bRtoh|cholB(dk6xg|gzT|D3D)GYmHH>BImU z779xYlq!paP6NIZXR?0bhrFlT$L>9CHT(%ljcHSeExjvXVHYlZ4Q5@!;-8_m3v0VH z46uQPPlTn!#I@19(z?J-(o*hS;ZSSVDA~aGkqSocl;fCT-y@@;ioimjVh%QUU;-1L zaXvFXOFM-gSZ}x0M61(@7L>`WWHlVW@C<2V6izvgnf9I8G)xhA`9LuTx*d3hIiGPp zGcHp*nFdKc3~Wu>ooR-MB3{J(dq0-SW#k!?;VMoa_Q+_2JX8@}$ib{$(He5akG)zc z)O)$j*9KcVoM>UWyeg-b<5x_6&Ez^{+hy$S$);h2K_z}=9IWldCMHpqm^*Ai{##t6 z<_7I9G*h0DpH{$uiLjdpudu(rnz!5A5B-dgi}nO&@OC&uuw&u1%3j`~nr(CM_U!X1 z?xgs28>&6TiNA7I3^I#x_D0;QUt~aU=5^(_7I6H=EFw%|ZdG>GT))<8*<&;4Aja(u zK9%V5b2no*rVfHN99_-g=$SZmJ+3gRG@vlG1;*Wf{|kq4cOa34QS*UphJ`!JdMIvh z#n}(=qhGn_kbtAvpvc3))AdAHoIa*WgcSl~d~~0m+bhiNSJx8evOr)lxyHyHWeyp( z;&~MW7WtM8JB15OQqG0EL{Sc2>ut8_YY%HvZn3P4PN z#wI2qH$FE$Pntr5w(ghiHRy1p8S=D()WZMX2sVMQB*vg%j|CkIiVos1&;%TqsK6tE zkwF}uHv%6<|Eo2daJ1f@5oI?be*X#9oaM@H!LqiG5p+U zCNU!+D?Uq_LcO=zN(~Jx8 zrLbDW^g=xhjvvj_2oOmvA+u)?l3DvuSbweZVn#T=^5C&;eFuQYL+ zNs%Fi?Hw@l)*nxSTLCjP;A>OSGS)TXSGVx9A2^#~+Q?6NEg}>S@`akLa)lr#orU?W zGx%$Qtu9Xm7qPD4JAKLNOM0q5GJ+c)OoUHii2oFaSg6H*f&uR!V4nEBWF>h60Shod z}uPBMoKyKWf`F9^EqTg-_r?$WUHjL#Hh zu+diCNJn%PrSdDeS2=$3OSW@{qv&wu!3F+>9Bk+kWsrV8BTjU<0qU+gmWCZp zG^a4DIHT;}W42QMIT5~u&z;!VsFRT=BRM>w4?#?H#L>f1hrK=b_)3FHchY-VEsCP@ zw9Jb+iTNCq;^slv3_;x(bQ8w%Uk=S>z)JX%K$Z^5m{SR-5)!ADv%I8*2q~R>iXkJU z07F{%6jLFE{ijMhpJF7Wu#T{w++#8hqERg%vpAU2fv1@G^n{Ff@x2dh zwUzGBZ+D@EMe;IP1;;NtL+&zJ-sxVcp6yvQA|pI2B%6bc9azR>HcL|iv|SA>O(kv4 zIr&+I8AXzjbSRJCK!iRa?ba3E%YG0Nh01cUDfZj6{pfQFl%l~G&_ zl}20$N(@Z&6R#b*V$yAaV+TN&8S;P`uI>tLXoT;L4_)YjtlV39FK9>$8dv#{h$n--Qp&1-3>BKr_1lU45nTBY4 z8917@JJWReB}M9G4%>%56_Mq>?1V3Y!7sYt3;05t35bdaoxb&S%5K#MOsz~-I|CYq z{voj4u#Dx;+#vYHd-!5DgI4d!Y-HX8!=mQo**N7rO!@yJK;r}WY-0G+O8mr-_v^&5 z-~Z6Ld{AE#xj_TXr7SGRMdW+nRwBp3S!9SX4*%6#2`B7(;9m@OVKVs!PHYp~v5Cqp zIH7?jSYaIBO&&5?-Wi^kJUg;zL}pl4a5e{|6HhYnspl`nU(!pao>D74U6VFvT2!bg z&Mo8kWs^IHf0OF*;Wr^N4t959JrjRP6tQkH_0xAUHs9UuOl7&5@(cwhBw!ga0f{EA zGKM9rgH+FO)vjC}di#27XH_4E=X>A?TjEva)L>b5gYLX)TDGf*Q^1@yoHGdHT5(+O z@VZ-19~T+JB3+bx=x{CKg9)fO!N(Rb%AmZRqRMsrtQMzMaA`cbDG;z$M{9xTKtF4$ zKWis0vlQzh8+(Ac-~NJ&L%ln|GM4y=yu|S^Yc1^9Q_@Xwa|KQrSn>l(#lYm_ZY&=}s187mDyf(AhAoc$RG`E>|AbMhLQq63c z`i6qdwB^>-N0*;-0_o@Hu?pLgot2tbI;dsWo>t37t`Nrc;5hh03;)15EY!jk61_fL zBhc_#D3$f5eiQf9>^#LI2g&Y(X}T%eNt%-Sq(cwF2f{ieeC4-97xx>(ejVIl0z0%Z z(ugl@$3uOf(~3Gb!Kn?MdbL<&hQ<)Ms)<(z8MxX)@ai47s?Ok55rFlo5#xV2B5=C) z*))CC0j60l&V^1D)CKQ8_#b$H!~=9(NLup6G4xFK+4+0t`{QN%vfR?$TCY&sL4zmj zUz_cxdG5LUbKH>&$C-z5-4U4B3-kU7n_+?OWol(-4mcC)pp~pf_r0COkaWCV(JFm8Nndy4h z;OM|({wFf@DX5o=MfDpu&JJR1+(kKQ=zu)*+QNG-%&h zcYE$_i7??P(cQXUXMstz34Pb`bg=L7a2MsDVW6svB*yTEHg@lXZf#-a4!Fk}TJLhV z2|W}Yemwld#ohGf+3(LhJ+ol%eAjtCPG@Pd(bF?6u@BGuc1|K*4@7x-$9kXkJe{mh zUx~<@O*3FMd+Y4exL4;h{L}r@{2Gd>W0P^`mccz9G}lk&m+gn!!g1~q92Wy~YhZ3S zs690;p$@+Ge)j&WVpbksdAwcTR@zp>@s=IJmwnKF1Ka!H*EalhKtqauFc2{GCE0Gi z)B#o9^NlEQr9ao)Z*i!h(07LHvv}k7%K9f`Ny+uqO^d4Mlnt|dO;iRFU3jrt7>{}b zFcunE6H7x|J(sYku;{Sk$-C%xr|+HVJH5(so$Gr4pxD4ufv1x7=#Qs=ISZrDak!NY ziZ~oFjPB>^n^~%~sgrNBb3`LX^L}_D#Ee?J&Vs zhq8qTqXzj=nk??LC0N%Fby_Sx+L&Znlv!W5HxJqosuh0Oh@LuqI`+&obxTbrZO=n7 z0mnUJFB($FO`f-R(f*}@lEB!&Qvs(^wCV4|UBaKmargxrAfEOIh(m4qp3iipl z=jVQk%LqshxD;@sf;u!9w{Pw@b)~ufGXHFUoEwR1NAar|SXc?OI$+BE9Tn8s-#O4F zXiLndV;hh4D!Pk1u2>h-fz-~-CRwZ7Estjh$~ved7u5BxvY>@3 zWcOv~QvXU0PBGqgdtG+8bD_dX;%fG@$4k2(%_L>*Yw8wP%qfy!&q<@FVQAeT9TO);n)Z4zba;cFJ_ z8f$;r@^qRGJ#nMrME0~7vGrvazDay^4%}kl4Trrm(shjliYtel$Q)Pv)Dve8 zZ(ouHW97dWb9Y$Wt8^AYvG>llSQZ%`dF1f1G#z>)p(UXuan}-ST_?vQQHPHnicZ&| zza_&c8K{(S-RvgcO+lN(yYD=L39ms@E0_A)1~>#d*&MNsvWc$0U;o=Rm?V`CE9)=t zF6g);Uz@(r1--8r!?;O*+g6 zY^vL-^y-dl<}J5g)xam2FrBNw&)L-O)O)EfxN1RP`z;HhLK#{2&t34jFU&n%bgCq_ zlxqeHHW0@KuLv;|M|gt1a$aGwWu)-WuX+1H>eB<_N2EUHgVZgQuEYt)*vv8)r5+h^ zEM1F=GQWOd*J5jJ=YLE6*W`cZz{h1=H@n4WbI|6{?r$E#=dVFaD~I~;4X_u5zW3DyPCAe8M#Wcs3rlu976tUt-(qL(L>#aNR>2uhm zn?r*fgPnt2_eSnLY9qe=@AWWQJD0+CWQi^W3m@TlxTu8>!4$375jv)^Ows9___WmY zjN}{fuk;OJA1nR^!2u>QYO~qgxLvm4g-cx^eHu92@_)%;~4D{grgmo8)?*-(zd?J z$2mV&t}WgqS8u7HZjY^A8N#Tz;+y!42}R1e|sKmmi7Rq;b1a9Q&EaEdx)fH*%opsHx;RLV91(RsL!Z7#ewp*8jO%1| zef5HL!*1NU1rwgbc0C#0iJ#a<*+<(Slhoa-`?U@x>HJqhso8JI0%v4B#50ppn3xSJ z1#gD^oR-p+IO16AS!T;d4DOOHZ8_g^{(8Lm(!IJaBL)|pA)eVg+4~~V;QTa#HNsm5 z@4&d{uvuS5gB*jLLtI6D+Z)q(zw!45n5>mYm5Wf1;OTv;uulVhSzHouK^MNtJY{vp z=A4}bb-fa`K_~yL&spC%A4!r~idDL;`mV3-mw8s2&~I}eUb%BU?ofP0LPV8OwP)Rl z#@LFRa-cgZ=*$p*GoNWbv0gd*uf@b2KOYm<*?gn7>E6zAYOil)YGxT;5m6o4cs%uZ z+KDvCtfYtgFwH)u>Ui~uIte6}ME0uUm!KoU3E5QG$(_VnWwFy0i@Fc>Ul{t0tZ<&` zf#ZkOo0I*ncu^*5_addW2=!_|$8!0R;fRo?OB)kJTuaL(cDnmUv|BXJACq6@yes2+ zSRG%TAf52$!2uZi6gKMS&=98(mk?LSD959Y(RKG~#e>qyqmU!KC0^_8H}2ZhxsTTM zS3W6yV~|Vvv8RZBV1;_=+RKYXZ1Lx=PaN(`&<|Th4B{pcAjz#8-C#FPWs{1MN|VYs z=)Q?pnS{cG%L&EOi!{>dh;yVXhrT+nmx*wWaE;i<;bgtvnLw)m+W@CjLkj!wBI9%D zkni+GXVP?4-!j|zM)Cp)&Sx?z(yP*Ih5@yv!)IiP9e(VFlYGQDF+LYYmAt$vYVHc9 z4zWeXVxIA;;W!bKrbFA~MSs0>sg=RcETmxDbAK( zPyrLTgeKxTQ3Z7266)fm5gJP6uVj_;98VlGY-g(3?-b9=M(oUxo{U^0tsMbi22QmyERCvTw*zHyq`S{|HLlM&XmJ_wpZ$xZ5nQR=N;J!MWF^?{L-SnjY z8k|cQg!EJ?7f5f*tyic;VDxtDGbQR`E-z=)m-p<qio>`{Lj*J8y9oiayBjHA( z=>jV)M~4p@s7rrIexC;)RdBuRR_|>A>Y*KX?!knYpsANb104dLf}CxRSRb{CZo1#} zdm~H{J=jL!ED_9vHG_4~ZZ*iSVTAG6OduTEF&x|3>q;FGt`%VFZR@_*%HF{Fswus7 zwYk2uMNyyKoA#6g3+4oliQX=OxlYN94h8cpk(YOa+u z=eBb6vin2S^lz4w1-tn z1LB07&79pUj{FsOZp7b+zmZ_N$V%Js-vRs8#kaEGO1NHD>Z=tb4ePjd561lno5g_b z6yy@TPt5RaVjAw&|588f(mtHp@^?hd1;=>e7sFv^vUqC0mWod{R62=a$7;6evcI3) zI`ZTt*1FDr`3*h#?&9w`FshX6X4QSS1#J!MxOErC{Q#Q{vT2ZWkV~+u=r^pRKg1oK zTng&=IgvsX&PN9+A2xu_FdvQ#;1T$AJAR5$EPq&_MA$0K9jt?Ls{wv4gFKcK@Pcym z!txO_`~=34CARpHD^55d`jD}Cf0Vqe;cl|HO=(QraE!xjtK~<+4~rKAE!vdOl-QVP zxx`+_&GAEqs!M-JewFuDOwn|GbOUw6n{V~O*eAnDPOw9W^FdepDEp%h$7=4^{9Xf7 zbaJV3#=oW!MQnC_a!P92g@(At2ATA@hzk@R9eG&91#)46A}{9503TR2ASk3T=MZ~B zJIu`6-qX>1|5o2JBl<|*T3TFJ+L$qL`aAC8OFYb)NS|ljmk$)BhFl6u3orLB z4J(Pg8e3Lf^kR204bbs(^E(j`>yzY>eKhXq`RMb_g*9arRp#Z?)y00lrB_ta(WL0) z$gIfRr~)XG)5tE>VYza@lEuzA+7l=EiyARb_D{vj;XGvXa0)cmZnovJVX+=d*QQO0 zO^J;cEEd`6xc(Jg_2`R>Kjr*f!u1R%L3&{=w{OAtXRu9IMuQ!LokCpfkBFI2-Tk`X z>xRY3OQVTCe!5}-a@)#x&_DXW`*{E+v>@|rF|eD-Sk})zDNW~IuLo%feT(q9zFTg z^?QdWHupJv26u=KKl-LPha~#0cVwP3a>Kq$N?}qqs4Cu-jaY%huoe85e!uE*mQCranej7=cm2*VbwOp9f ze;smm4f1mse2sDfj*x?nn8W_2OeI=4an&3gwV~3OzP3~gQQ_Cw+3O{GuUjHO~u_Dbh8y>RCN7a@%lnU+n6p~ zA;L02wZ95-?fQ9D24CSt0=pp>cVjNAP*xN7Sw<^XZm%?@m-7^gyuv)&Li;jjEz7U% z7r9N8b)!u5pW%Atiz5A6mxy$PhvcqL!c#aUa zULSugzAjCnYAoi5J0RGBDGs6F4UlPR)<+eaOY2nsyxd4j`K#`9Eoa^6(f z#j8OZu4OTM^5yb^DtRpj#*C+>hn=S@hbF@jik}FR$TFLmt~ma{aFQ(lz3j&tQ4Fh< z+9MiZwtVCYm_CxFG$-y_WIb{Pj2gL4r2dls{wjBq)%1}1Nkdw1-G;HxVS`={4R#LM z7vg3cWgBH1-FUa*S23cswnTe`W**t{TRT6SB8~`{mqf+%wfD1Y-P;m*y+3Z#+-~1ITH2hBL@c$fZ2+Z#qN1ls`g5C>_rwd)8{J=Syk-cMWeZ zg9?Z5`k|05wXHU8+FIU5P5MkaOqw|btn9&+(4~c4xQ4|EP)CMd^Tqvwn=(&}?ilr&!q8VKm{ZI+I3=(OGZuzZ<^sE>`XyCcIMH^Y1!O zV|-(LLxTBATLV|;;X7|khA#a!>HEx=Vx7k*V8=nDh?c%vzR+pytg2Q33_`-7;gGrcRho2$lx1 zbo12R64YZd>Qft%o3)bZew=BFlQ!X)tnKvjRYkSDjuV~_G_oL7s*sUqf%HF!ag;EI ztaeb_kDvI78&}DBd-+)Y{m)F1h;;F5lWdkf1yElBPVd&#WBW`h*MG5QdrT{)mHq(|uxn#7_s>^aX=zN>!o< z|ECB4&;R;S_0KT44k|>`^=t1XqRo7t^-wWT%Js5pN^`MBWUFTR;r^GVN1NiC5}Gbp zEVI*db^bfRJWl#H^M!)zW=(>29yEz)?i&F1>2PIKwA4^{`y*m(t^20#ms-&<1`F(7p-mZx8?Z5T~(0MCU zj4{kfbazCJjrc{Q4Sf#FtHJ0Dc#TZ` z+bU{iYHDZX9awgt#H}#%Qd(MSItQ6uxQ2NO!K(RK&gQghU6_R#s_>wNU^sL6u__#7 zJlCuK-@5hZW@P}uV`4vcenjrp2s+%Z?akpCT-f)5-@dI6rZK{CVG0rSdiYv4qw><# z3#4nZ)oGq0r!c#SgRdZf=)(*)c&RFWB%JN8ft@zp{8^mKWd1*-y=Qn7 zN7e?43EgdQ0$g$r*pkVJU~;gD$~kA0bIvGdBq3k`AtVsWIVY5mgfdDfpg_hXV`F0s zINPU()7tOemH_YW-EVil=gyCse&$C{)v2lzs?K@e@8`fL!}yfC$#)Z24*Iwp^=Yt~ z4U0e@7ok3lEx3Seby_hswF)fE%>S|M>)L7m!DY&gT4FvO&BssMg_O=SX0mT|oe<66 zPyMR!aSby{>-*^k8ANnl8-;i7!ETKLHqgbIpvSr43OEP*rdxoxqTVtmBF@)xa>O4`)Pe!FT3I!IbbYd1p{uQ zn$V02uucWn;YSphtCBx30OwGNEhpPL7JW(c9S!6v%A>L>DB~a0_UJiKt%1MO(0P82 z*)aE(1}4%wqvybLkQ+rgkcZVHm`SHpq*NtWE2pzTvL2hQzqstk=G104W;DM!2yusn zq_x$4&|YBpE&3|=X~wT=sch7)uzkTwwmtS2o$9P?*cRi9daW9+D{Z!z$h8=-9TQCt zYhILFRhU6M~NfCj>K?z-!?Oy_XC7a0RD@7p4;N5_1@C%_V**mDD!}ZiCLG z3+lija@aSh zL}gWF)TT8VWwR0Hp;jTbj3sIv~Z(h%g|Mn1|)7@L}K2hdY()i&nT&;$COiR_-hedbG zZdY01R+fvV;uT}9qCz4<-4B_F9mLir%ueQOvI#YfM=vfO6E~mBFUl`Ye{dS48Q!0& z{B;f&H^T3yy30GO+G`kiIF3iDYr`W~`|cRmv#yp7R<<@w4+j3KupDz}P7W2wCYS;4 zl%u1qvz06J3Mkl;s6sK$!~ap?%xPTuId0U#efDLlY+rUyc6ScL&%WNwDOp|PjQRKI zzT&RpmXh={=_%=F80Z^AH)^zdXsCa}u%1=iv2)*gRR$NpJcu5}=s)C^U@--|`KN?a z!nb%Oc#Gnch6%6qJEydC8Wg8n5=WG|rF67u*nt2`1}i4#UFZ5?9bY=ZmBQBPuid;B zX-z|@jHW_`pq z!Ja{DWiX;VaH9gw#@Q+t^jV;8+y<%+J}bpp*KiKdNVRvd_yJIIFxwwyGGITBq1377 zlNZ|;m4WRT%F-2`WkY4R)CyUjy>1GQstlf>egr3C=u)p&Zjx^<>OLRP?9pl8FXGR* z5!K7Qgw~A7QhAhdKl^Tu2$jddjLu8SKb?1)nVNp~gJ;+o%ZF6`STI)8aj zm1g6CHc?+yYvuVWhj!M{$=pTH)w4dJDY9)WZ78cZ&;1gM3cBd)iP^_;1yFJEZ%IF# zVfatDQlftgn`rl=?nhjYoEFF>&%o?+zos#UL&J1_V*bg3M5db#IO3n+pTI!s)m{Nn zPX?cnaZod(4dS)qG~yYUH@g?q^ifU7Mg=t;RHL~C(Zt&3l1qn6i>t`e*4RTQxKx)N zE4X~VtK))ety`7r#TM4N%D&RNs=mE?u;d!kh0nF1fIevEW9e>hS!GsfRK;LFzn6IX zdjz?KI0V^*nMYL{vVA$NIW;*|*_8zqrAC$P9h^y=JnVg}4^Dv+gjMUaH;M)dTZ%3e zG?q1&)1bbtSPA;C*YAK8NWYLLH%-W9Mi4Bw3v4%XjGd!BVYkFgpDi89R{cOnX2 zyZpBVGcZdDON3LHUTM&yYQ)8-GgGtD&o!JLn}YL<^Nfx;6dRrpC}waI9=WGO&!sL)>Fx;8Nh4@0#l_ zS|7DJcE{nKj`oR`$11t3{Vo#)EsZH3G9gEYh1JRMVd|fm=K@j#&Ia^1vTg$w6FT?) zzX`ywiSr=v7Vg2fU=IavjSzebOZ3r&QpiCXs_j7>%F%fj*g9s zKANVt=NpRLZREGR2xTp){%w~n=s5pX1_Gd+x~z*vWiKrPL?4CigIB=nDVZ zgH1u@!|dl}+Vytr3~aiLV^nHkYVny829gFgQ(47Xm07jw1#Fmgh<$(~vztn7OleBG zsFcjco5ff}SukzdWg0xHL~$i32w!D8`{9pOd4Y`X16`>Fmv5*E=oKNtx8}OMN^*uZw zdgJst-&F5Z4+d#{&{f7w`mkx=$Sv62i@V3cs2Ar^X~n4}DP_!XAF5DsMREDDIm%J2 zKv$O>$e+po4dDEp=># z&rV~Fc1yPVM){-DKQiC(#)J#j<>L+k0ybnetmpD^z3}Wk8)UhBl%0ly73yVEh!RxLDmZ)Rc3FdLO%~kG zf>SQoR1~`9yXU(1H?jw=D?a+{g`N{z;acue=8Wt7aC0bbkGVZKesADshI5&iyh>f< zvxzc1!d?6-rI)iO_*JkA?v3L;VC0a&M}qSvna@2Tu#-x_kNxo-%jGtYTz>Y2xrte) zvQA|&m-zj}WUHd$MuS=%_UoRj6Fm>Rb_}WBFl*>%_qVE#8+|hfb1Pw466|Ki#_>Fr z+?;$dsa-Xd4M0;H+@OI>ive3upWB?%S+crnOT!)p12+)E2!jayCiz;0R(=b6hp`y4rXSUA(xWPwTk^UP1@ zl7mkNB?n$EX1(sX-f$S#4ra4lvz@Z+lwuU(xmm{@)ZSbKVj~qR1V% ziUxF8dw6qL-To*x%PGSy&04q;;1zIysEyJ`aFsv4XD!=f%C`Sm3^IwZp8-AWqCBI* z1El@LJ}10{#KebGSFsQlIO8Yuxw12r$u;}WuyIZ?&XLXx&csJ56x@_TUC0Jq%%*S# zxD%7mQuBfX*`}iIw18g!cJC(9NqkHULQ3=sw6ioseHj50{+E5bMWBvX$fW}p`bzsV z21FSH$u}M^f@QFbH=)f+e0!yLoFb6D|?BbJ8`9Zg6` z5bguwkH(1^e=0Km^f?*sG*+M^E#4BR5@``;;%nw)IpsaKaPx`UH97%T`r*6gYkExC z?mtUGIuZ6VV2l0K6v?fxP?&ZiTX`yLxTIS~;)zRy5mzKv2_trnagK0h@I8DaPr)-O zw1I4}!EEYNa3{v0d6rogX=b9{jF9f&*1$&5;i&-^>E-EUX^Q$Yg2oO`4Y;2>MZ|mJ z^1419vSDdQraZt1T_RRsivY#H#xQd*N|iFz5G zzp43)D+I8hL zgYqsKmIj8s4#Nkp{jU^_FT)|6^C4U@&g6?>CdCyG5x)3OuJ}_5v!Racjmq#$cTIB= zVeh0BC60)TiHsL;s+N?&+Z9hMLdMwb9^3r31TioI%JffY1N%_~3EEYoEY2=m*RZSS zR>f%ZK%Z#`tEQ%GA@6B?(fX3hFay7E8?cp%Y>cQ4ubi4IE|7C1sD`ni2C?*YR1+|; zqfiZ_XpH3M68MsGFn6%EcV_Sf)mGcm*w`YVLw!v6bF@ym=a4j4M)jSj&C6*@6|T;% zDCV(oDzP>(p^VHWUxE& z{UxjM!+ouKY*A)WR#DF1l~Qw`2-R*S*SQiHr;n~bs&mZeh)JwlR76x{aGbB$N$h;w zS)8N5o@lHVmo9D*SDeYp$;v)clh}Q-BJrnFu#1_DP=@mq-h*1A1Yzs1KZW#l*MESp z2@HEKzXsEVChR{I@<>{@lMCXCGdWp#c^N~=zbNOjhd)1L77-d15gh9)W^gs-9hq4v z18Ow9H}=Pu-##(xV3qc5R>HS57&s-5&9sq^zOR;Fy$;)))s)ke%itzjt=x4;8q_HM zF*lp=Qa88&x~!$BHLqR0j5WsjJ8%{Jhoi@1{#INV+=jM zSNsecg~sDQ0UX7JkbsrXr^e1f)A0?OFoj6HjLP1$dLXo2~s1cZ~tP)H|lPgBg% zOYuG9f7btVgLO7I!?RJH{k7uBh5OxEp4q;60T&On`n8J7#U(j~bvYH;by=-Cb*$G$ zZwv1P_v6m_4$V<%QJFE>cLuNA>iI^qlC_Z2*HANzDTpaPR1$G9=2HAH11~1jsJaI4 zDwj(8D$%4Z&_o3eZolyrWNy3h2tvm&^tRky%oLh~f|(wWco0>H78d-}suxZmzLnpE z=|U4tgA}eKW)@=>T~@WWqP8~MCgUc}CXpuYB?l}bzMyqM1aG4UaolFI zMPtjT3w!xd+qbn(v`bm82FeKP2u1O}(#~Rs6E-I^RoJ5qjmMf6_nasxKHkYd5wFB& z&{`GlBhrvdb&9J~va@pX()yF1Dd(|=HDYa|0}ciI#n_7(^rc)vGb?2{1!(*~6F0mJ zzaohu>JYr|#x2Mcn&1%(9+y+bOrZ&;xdXf-u~OM@xXiY}l!bYnUtMc|!u&${$vNtn zS{hhvx4}8~O$IEy+wxt<<-U&2`iauV%mXSO*T!s(@DKCzinKlEEOtEZcp^)kJyun9 zta|aC<88&+otYhHfldMyhTlfPyiS;T>E}M?G9RtMQS=f6WQ=iv8KVhXY5rrlA&A_z z%c0I$)YfKQXI!gQD+)v-VrF^GzSptAS=8Qcd0zj#YK`beG$VE!%r_fsneb%WAGLhf z@M4Nf>Aw}nfFzixL!|tT>yRllks}y+U+#0v6q-mHs&G5;arSce^zy24F1IZ*wqhIo z&wG?PTRNL~>G{{{u$Rj^%P*8?c&B=taWU4BH`!oYr_0``9ck&ll<0lJQ|x|BE#4+7 zFeWVIke}F9>~_NAWR4nptf2f@{o?cDk~7&kMOEi6i@y=WyMDhMcu-SOU02hhbDq70 z3Pc60=nz~fhYL{(-)c2sVb-^|U`{mT;~HcN zP4Ex~UzJnDOrZ&;e@A7a1^J)zZ)tFwX#7|WSDWE>w^9vuAhS2KJBz`-iDpj4YJyvc zf1{hS>$A^irzdBmWTY_AH;i^ve`8NuSGP$$tD?L|Yl{)H?mpNJqTO|6dCaF^DIZQa zmCt#V`xK|rOL&#LoXW2M?(F=pA#mSvdIZKtvGR2(Zzk)u#Z*pNuiK2RudHb(Z)bS- z9|?-DfmneCgGz$KS7BI@=4RqpaV?XE1P)P|6F$crj+q@39WygKc3|-yvBq(e<9a8ol046Pr}}337sQ^9ONvco zpb>S{;2rd#9m8yF&6PSV*;^gwYx5STic{m#!pl6X1M6byV>%BHiHDE%9qSe|Sj0Ue zr3Y&RF9vIcDMs!&RAkKllJ;%RmnHZ8e+hy2qVoFK4avLCDyQ|7v{lvDGR^pcK9hDf z?M%968f&ShXRK&fYsr>o6=xUaF<{|Bl(LQT?Tb#GVxgO|_cr%43Suw?R}oVPHbz5p zFf>N7DTr0CjKZ-FJk|xqt!Uf@0Ua37tET_Toc{Ywe^Ai*!Yrk0T_2p%`48lGV!F^o z({O!qD_QS>GyQOWNQw#z?_~c`__SQe-`vRM5XW8CN@m)JqGArkBxGu{-N~1dyU&;^ zTOV-tjGaya*J2;1exLiIoEf0i1Jpv)A_oWV{P;b{2wBvw0j`1Wma&%cR)Xtt`;f*pi;<**EPFM>l7 z5gp?g=@Q{N8p7tZrL~{wU@Cc)n}7p|-HJ3k!BK*F?sFzo_Ry#ln4$~2bLN=RR;35~ zrQrlsEiOvRJd<_qTuoBHYA$=kHqI|5Ha0FIAy~|yC*>QNoF>ykLwV(){yDrqUMFF@ z{N!9!`kmP7@#6bAPu0>`=)6O8gX#{{=vSzV28uoVoV#s1MNni$Gy*Ru)qhd5K{Qz6 z_R!&u)eRAD#ml5hpvg?j%1Uib`cf$E(TjJ9iHtiGDU|l$o>#bc#){}jYn8bVNKXUq z|ASNF4Ci_zgz(E@DMry|u_m!b@tLYD%+B~D_ou>B0jK;=`46VE0nhv% zdfzYzVbdH^?Ne<%;@soh;u!FU72I-M0sB>PKQ5)A86T5vQ1}Q7DO@SF0}3BvAvO64 z=Rwpt?-Aac?nOe-9T40RX=ugG1jBxTuoV;@!XJpicc|J2s?U0~>5Qt3y0j*2W{)k)Nn8r2w46ILz)7k(CL5x@yJ8D4|;9O5>?6}&-*#l!|n zD+#bQH~xE(z6|H~NaBei=YN&=r+x4=QG_vm2kjdgDd0m*;TkEju!0`b}{Syu{sGts;srWEoJ);A=97GpP?$%#wE${v#Gqoyt2F+rVY2ysaa=p&gQ6Ou$DXZ zR25Ac4zOpE=YV=C!Ie}=VR3Om83Tk0@(lD2^k?8*>?0d~e6pItHBwXG8(=N@>B*`M zG_3iFJXy8jCkn5?IpVxQ|MOjnxk~Jdhu3~+f*D#RY&vEV`_&p-w(iMQ0DC}$zhx^+ z%1TSh1Re)2k}hp5XwGR7eBzsvACu0aq7E5O|K=E;RDl`1932o9bx=B39CRY^WSTlV zL2Z*fBMV-Pqg?q3EKN>huF`mcXg>v443rQcXXJwvL=Q`_6EKV?QXq3!wffLgqQvS zy02jO4}ez?zmnUI_!=vZI|}DW2d;xpaUKM3ts7#umC9G?)Ly9?XzjXuppDg2(lXO< zH)wI_2fZ~a90Qensj4%byZmn(@61~xL~3#86M&1&@pAvMbY{DqS(}+ zvj@-mGyDgXgz#Sw-s~&RY&*r9!4mQ{XSS6$qyJ&=fd=<8!GjY}OE=V4H5FgfEM?7h ze6b&As^u!M^#$h(tBM(kECMmsGqBO~F>kbMbMIxic_X|O6}@ zysSDrr1mP~yZX4(x>kdo$R953DPiylsz>tj)2{cPsD_sSS*|-C0~D&N-Wrla`a-m@%wc%EnqAayt|h8xO2 zfKHKeaE^7BMTWTu-&F$}$_Z!6;T)VjwFzo!s?L|4XE=8*kKns_5PzeO;AUr(Qd!Y& z%HD?e>R|P8kYmo)&;_y=w@&QUHIld9>RO}0J~@AeZ7B_$`Y@kQ^5TZ9^cQxQH z1L4%cFPs!jwf@(`!hf&G`y^RJ9a=YI1fGHnI?OxNGsJ_zdNmMJ0j>cq{w@!K9|Sz` z+vI|ay-_)^Sc3(RQrKAkLkG-qhFNwn)1tYbUDCL$W<`0|h4URb0}Qxd;cKaklFZVq z3WnPXr!e9%w2u6Zp}0ens$_58{%pC7^t_D1%wh(bsUQJ@iA=NOhE+d z6Wj?4VJ9x6FhUA9!a~?6JO@a<`F(0f9|AezZmsLO)xXq~tv*|Rt|YzEr@_B9Krw8` zp|uG``YgPE`uD6yrMLZ`g!~az*2jK+TJDTmT37Lf%Bni10l%itrkzPk&S2mYxbSLJ zTH3kv)C`8xyU1^$lG9FSBxN$d!FCMjfa*(=-x)%cDF)zn7^nR7tV}g*YAo2Cw5;^3 z3ya3glQ>Lyz(v$X~2_~DD!42#&)C{L^v z6gAfxW^1xFxm9@;1q>!#fg!r0qPRM*M!!hF1dx)b^Ozr{}o z>e30gz-zhDZoPfWwQ;qjz;*Mj$@JQWZ$ z_rzF6L`ENqI2<~4x$YT}T_Xd@ikM5wmpcthgQ_){qC)f8Cggy{l`jT%ckLBf;yY@~w{2@N zW*w$^Wp`IzyT!5A|I zf4!9`!!rCFHz~n-Is)|!amkwXT^8*9FE7E&Qdm-F)2iFEuYPcnybtPIG6p+#YFt(E7MYScPjCFi@Jlq?DZH%m{xTxp8RZR$}8ga1_XbJV67h zvZwD{-qgRO&|RpW_| z7?`0*b8qu2$y5SGMt1hO&ZMu@a@hopIER>sLopHYLj3kQEhp}Gx9SFG71$k*j@PEGT}y~#gHw@D$Xj-Vek-r6lI)|R@ijOjO`q$ zxs&rP!`&Vxm;&=41?N$qF&k6hLrB37DgG`Pk@FSRRaLbN+@UP&EnF=;r$8K2)CJz6 zDEJVf=+|D=cTg!@^S_5)>fnW@6JQE^M{qB^2eKn5`@Pa<8>poGq{5_PowIECE-y`M z^F~v)peUy-tD0%xHjy~DXs>YJ0B2WsE8j*#wxg=9uBb7)I=$gc3j?dDqY4RD@u6{{ zp@+PW9X#%J!u3R^4tunsX-3*xf0tfH*qlzU?MnBli+fQaHfaFTq7A8nwLkDpFn z1T*LaG$cP@U>^j2k1~{hbYy^Zm^kD_u<)K-bEWnOZg zdOGW{?7$8kjV5FEWa7z_iHQsj(8rJpTIVR&X2sTA$$yaYBLfttK~RdytH`U$sbxTl z3UCN?3G`%u<=-Qp!AIW$t$ z!>c%^Q=&{%UXn3hjjm6RstK(RXcFxY%yrIk%&-^naug8UK-47*MU`e$ zqS`X1mH(JNmvJs5HA5wxmD{jZ4jF?MLpJM7_Su|N1|8@lsOF4IR91GGv$ue0fX@=a zh`Db@Ot=f3`~`aT>{k!m;F?jNNu$7$W7(G|NFm+EY@Iev`lo4 z^atN!t?X=F96cG%aOx^jsMVKr5iuHv;}&n6?})N{@O@-t+jLnF!OX8|q-!U?6hCC-DBkh#zZ>=&|dy zucqKTNgtW)LQh5R(N*l=cEGs_JO{VrXkIZ^c(-AnNu$~HyE|1ng?D#My?Yfcju57| zSc9Et9_<|L3%Jq1Gv&as1sv5Z1pMd!^-aM{iH?ZPwY@&BNWB;S^sj%9jT~nJ5+< z-W6vY<0JBk_KR>>j9!%M@zAWQMeqXv$MBv?+-i(Kj#r~K%H0R0A(iS8*JfmwWtXRo zru@Q8HcQ_APm3TfB0|`Q*ILFqhWkQpvDWss&JLaoXZ%WBMjzt}d znkutdMTMZW$}LPA}|0Y45In3IUizn;JQ)oKX!5sUL?w}g46-zK%=6YI1k=^z`%= zc8$}Udl~L9hXhvQVQg21c3$>6Ckx_n6vJUbQ7oHcpgq&9l*)Rdv_8(<_C<>U+u7DM zP&L8eQ!xBja+)sZ2Yz; zlaP?8h=5pkF@x%qYiM?@4D6wQtA!c8K;5+KV>hU*Gm&*-Kv{uTqU9@{#-zcMnq*$S z_pb&(y&AysDa{i$HGsC!OM`0xJ|QN zgbX$c6h_lh2#<)ElEP@`P=C;^H|k3l9cci3n`a19bv8Wo1aR;qi<~b-0Gp}r*d?N)c4G(<$N~f%o=#WWu{FEzF z;)_-&a@Fw$E3PC|6NhK-}#lMRg%8-GQ36Ma}IOcHgLd+OnM{_1PmjtZz z-QlTrIgqWmUi?+=bInYapBqoKf+}|x@66dI8qDzj!S|u(brJT$)_*mD@BEXxF417G zG!J(4_XXWzot&n-r1MH+aH^7{gm>m_IA`95=2(6S!Ev|;<9LsnT+JB}vjbO+dQ2P4 zUu&fH*Y97!FMT~^jp-o^o6O0{)lGQ67P`?~0#*@ooUOY?dDoC7JNBsm=XQ8oqnw4f zlSI$yCeG+z-Ly$Gc)|98_Ve8WKbp{?tMHsS8(s>y5vFL^UfnIF0#gT2XS`-!%NYJ@e6m9(pleO%uc|}T3CGw zv>2EHmbj0$%@JVC8D5sN77{^By3Fb=L~ZTXt;TJdZ6aKN%|b-Yzw_EIs0ntVt@BdI zE!NXx+AeHIm%lPyxz&;kqH&onR=l7yV6No8&1Y3Wm5xx*{6poP`Wv?2djS<*IK+OI zx+_<$>{e&jVCgkxfcK|CN`pWVuuyHlQAj1zhC6GNyB*%Ug6+N=F*+!}3KMU$%|h}nTLqi&OWVNqLm8h2>C zS=68MD`;_e?DV1=Z0YN|G$3ep7f*LjFNRaazqsxN3<55XC_yo9Lmhtc)pi&#yT&a> zeb@$PC-5xnq93N-%o@&jxy)MP$GHC>+Aq#ke;~e-c+w$q23Hoxpd8A`N*bep%j;^lW45$CvgW)E*jRbe0x+;jP=SbPyLj{S+2%6QHF(e!3237{CXN zBE=j3OE2>8`W6-!{zg0X_J;hW3iMtl*S!qq-j|pVb#SH?KGjvT^h-E8g_5DgK0f&{ z@y;o^eH-*~rce>}-fW5z?uZzNAg#?8o7aJ~(4gJ7C(+I{>VJ)Ez zVKw`s*c{hPr*wM;b1C?h|CQWS8BlB1>g;4qhO`D121m#G@3w!dUCH7*=!a@3i}8B} zOl+wppsu`l#PEX>!O&hc?lEhy5Vf^gwi~t!YUsTwTR%OvS8^X~9_hR+s5u8mCs!A* zS8{(DE}?{qixp_20yel-00K$I;A;>JspFUmYr$>|?O+8&kKsDHqP?W2a8S8`^;7ZE zaMNM%stQCi0A|gBiYt5*1y=lAQUdH8P)8P>C>X-cgtx;VueQQ<^Q-V9#V^KC0z2V4 z?!@afekUm-W(USiy3Ok?MeS|YZH8?cts?wjs*|tH#FYH5{IeQ=Ve1R$iB+$nkkGRCUGXL)aLI>{RRGijh z+Bj{145kdwyZ>O|UU}}l9o^Gjo|mV$&tI{T(D_ffUj(ZrMaSSeWt@p0stUbZe*ZQ| zrGhf^4C|<=1HUI!g}5LkBP%l}wJ+(JdJcPJf4o&pSX^XOT&S4Qr2?YQ705sVEQWDh zLf7?GkCfj~E?_-&JImRsFjz%#`|%_}9yEbRO$xu|oQQ^Jt$B@Mm9}W0%zeP6+o@fI zx58d8=cz&c({lcV7Kg-!MZC7!ucpIgYC5#vs1czMO&t&G!eLdk(gQ0M%-7+#0W2B= zmp*hEh2#Brd_65Owg|idm}MF*?jJ*v#L0B8V*> z${WfUW?Jy@*WfpTem4~5(2us}Q-~Vm($U@#eqsKW`nxQVajnx~VQ$T%j?UraGpElc zo%z=CvG&*d>Myf9#y;y?*`AnsDm5{UfwNaIfl4enS$e#jfqhE2k3Qyk#PhH>gLPB` z>?AH`oxbfZ?bf22OP2Mfl?KJ42R{>6^EUrh_ZC}Gb*J@t^Kz3S5spL8|GuXFAsp&$ z>Tc`o3A)94d-{6&`3e5OD_5RdD#<4N0&w{Z(^bKYwphP^&kC*c+APeueeXpZyu+m6 zqfvO2LN$MSM;2ynY3XH`O~~D``i6l6qnPe76Hwdo&5mv9Bs>EOUBdlCa z;Y!#{eu9;&a3u|{KM`2H3RnL`@n^pyrf)jlX7y^irq`GZ|IuGA=H;fow(joW8?3vK z(CN!?`_b{u4nM+uM|6Q+k00s4R|6<|3QRvTU#jdzn$E!U1d|~fk};bG8#E=;xHkAP z1(uSvgssG~T`e}lPv*8#TgVJXZ!0gD+fh?AXEr`^Isy`{ay9>?8;60m2~Kv`M8 zjHG~`JX%7`4vZRinbl7PKJCWsnr}od!@nnpJaVe%J@uWwx9zW< zOBQq0{Y*_#e&d z)XZnO_Y;Y~iifVF*?=2c+g&kOcvUN(P2>*{e^pOCNArGHwzjk4a?yll0XwNN6_!t! zToPRB_I9gw!#4G{zl8GY?BI>U7TgdaEEg2E`fH)Qo>P$|hu|%)5N`2>G-rpI1i!cg zU+keUL<)D^fn9qj+yx(zo3Lv??xG>|CV?;Z;}5qR*MN;Gn2*~b4*#{KJ_P#-=kVP{BvfEJh5ryw>BO2gNTd!95 ze6>c6HVbck`Q=Zo@D7810^gCZ^gcm9e@XQS^v)6=0rj^urTlb-QVJXI66+e}&g|iL z>rvd>aF3|Ma=wH1j0%5)KcvonLvCOYbYqdL}TO5PsAvJr6ZL+2rg z>c^-d@B~xzybMcV0n8u9`Qs|e=svEZOyfcdOf(3%E1~-Y1+93S;QB9N{cZ~Vq;SKR zuwggFn{oO=*kIUgQg0?Co_88|X>8kGG>u&tl1yG@4=ThUl}A*actkWI#M!aMM*#~R?C z-59r;;y=Yc@;%)94DZn(JNpIPlf`?qHs?r;0!o|vtZSG_x=lwaId1aOHZ`l^0HMb`OKhcQ6y?ev30edLwAc)n8`O<~}Zey5mpA{_igt zKj-cf)B{&q$$X6~eh^fm!@|e;e>U9d&k4&8$qHJhj*E;@&bC^cg*`2>sQ<;ab3tc= zQUY-HcHF9r_C_^YEEsjcXX8LUJQ;o>OdKjUk8uwU3kvr+$ z7CRkeJ-j<@TMe5TZUy+`IjW+dyriO%X~nB_R#s+KX4d{pcE@IXO92-dHXE|}XY$YH zr83;iDuR7f-E`g)v{3HeZoX~-4AkHbg0)n3S$g%^S_a~lQ~Vq$bo>>vsVJvlS6}yk zBFf_yO4g7d&x77R-eLJ6g#jgI9&CYUu6L$SP}spR|M0+a-)fI~6L+@EsmLYQ-7CU9 z(lx3`m%W_ZQ`}yW9GMc49B!z-&sf&B!hn5p;YN4Qm6U_Yey4rZw{K9wc}5lb>>nME zMy}jB>2t#CxTjbr#x6K8G|cXh`Y|Se%F~^bLOl`pX9~G`XFJ8Wj>0lWcvt>KcjLvj z+CI}-)&n*WMZ=|5DC1hC%Yt;xpRG6g9ot!;a1P;DJaeIs;!>mKpQ?9TvcTNvhj}Mq z2UC3yTWGQ0>A-fxL$UEO36WyPjq;C9 zE0KY+Ke-iXNuRAusZKh-{|p;%AL|(9#NY}Fe#fT-tN(=RPbsX1Jw$lI>Q`rd)sjrY z-{pV4!Ig6=eDMwLIfVj)D8|u8aE8wo6BR>sSrh!!K>!0>TK`M$;Pv4<)xRf#6a#T` zG|;>&aWsJ0<}g$B&mE$Mp;b3=)-b-?HFb6+xy$ts^rEUOtLtknGF|wP&d5v8PcKkR zXZPT{D`oLLxfVmVET=rLtbpOwCOBy>nwOg34$yc>3cIM<%JVf<^};f7wRLrN^77`)nCT9#_*k9WLrfWp_`yIov_VY$=FEWWThQ0cNgNC6;;2t4EK)= zSAUfVGZ>J5m74He5=V5nS?V~Z3uCIhjF#lrL0)DQM*4AN1pa3L|7S=+lb=OP4)6@& zCvjjL5;%X18i!5_lQ4%k=)(IBFwYnm6;Z<=&bW;4bRyd%+5&4xHHYJ=Gaxkwq{eYR zbq2^B{#&X9b4cpVIbcRb@1KMJ4{`4umesYijjNHpx5kpjHnzCkd&JephpEClRyIs3T_fGrNWL$;7Ka!rUYmrOTwfj(3VR6NCGUW zyLgIBzkyRz5YGi++!Rbwn2jyG$t`h&x6ELXrl4j3sWyDG0asKBWI=}b@3m1o7Ed2{sMOC}SgIPI@((5OYf$^>#~>Fukj#nyKgzdA~SehQ&2sCueIXhdX%hs)p5a&dq`j{ z73~q>$@l);NM#I3fc;X~pn}_}xaTCfyH{J9(lb&sQ?dpR{-g^VoC=0n+*Z7< zL;vH1?D*WcJO++XfmZ%@=T1*}vf0fUEh#NbgIJ1A%1+2l$UTwBa&L%r$n-ndI|U(J z1fH9MRtkSyLqgZN95*{@V7kTycZC%3f}{ac+1`1*vE-99cv~i(MZROWzM-u_nsA2?7Ki82WGO;f{M56Fo-hDCEI zRKisR@6b^@gN}J>oz=B8*LJ+B$qrOBHWv&Oj;4PW3$HP7M}z)Ge1(`>G;3Dt78wdk zOJH#>%qep{T zih&&>LX^N_1TAPsJU|p+kiLKlm+;LL*_5M~RSQhB?XR566V?g~2hw1nPBk04GuSjR z+B@!Co!>40@eo)Z0cH$rAHy9~)VT1Y2g{Tx;Q^s^tSo~A6sHEKh>lN@dA`9FO+iPV zXS-XAa}(dFjN8h~{@{h|X5x-vm_-$v7bF*^7NrUBm+=OOI62O#Via9nQdLoLl>yyh zTuHT!UHiE9k!A^Nwoz}l>M_O$mV)FEN&>BbG_F#CRk#$7@*PHx9^0iQb&BC)Xw=6Q z1Ru~*I|7fL)pFG_H&=D2&}GLfTAND-OGh(4jpd219;nh!#aYDMqF=jNx57}+)MV9e z+^*FwfT9=z5jY1UU=9Tl0|XvP7-A}u@|@CHCRm>u2a~*SG87!9qaD- z@cL&AmQO-DUE_G&qD!~7pH*vBzouTxG{8oPpy7e|4YC)cAM#`@ z+m`MI>BlHdiS|P{!PlvR(t_&3YfLMe&`G&`>sh4~)@if$k-ggW`fU8gOBXL)WW)yJ z+X#TVcZ14=40$H^mbkN1i-liV`Nj)#(ekve-bbFi?zy4_~%^nKTge)d?dYJpKnV@v5k=7-G3gP2Dp z^YrC~@`VY;~L`_n`+EPl@vthNY)99 zFJ+}=q$f7SOfl$2#ihih#bq!MSwrPJWM^h&WnC7u4D;M6{#q`^mX@Y9XPW%mV`F14 z#9m|Mmn@0BriBe zhHuiEtxN; zGZ_l!;eG=1j`I)mJXZt?17ZSV({U!RlYb!Z|E+|7sZ}L27p?vKWTiTS{l`_JJ zB5^ax7N#cfElcC;V0be zP+PD;q(u~A3b%__%8Py+7q5ctaAOp2fW!%uz$qH0@Fo$zNqb#97w;dhooCcz{v@qA zp(UJDdkj1LF%vqx*zo(Km(JQ*5M~bkzHj z$Al_zdY2f`gZ?q>2f@oQ^Sv!y_*JmH!`{tMO3z(;3E)=h9F@r zLc`uMGz-B6X z-FcNz_fR+QfYZ^(FS1!GMNwCxvW0>sVOeHY#pQ~mAB1p(5g$^775t<9=d)T#g|N6S z?+2YS_LzTwb)clL&^y{NHE%qGuX&|H4D z)UnEvFU(IwmTH0VQBZk%f)0bQHJ3Y7h*g z03_v561UM@H>@JMI7@cd2l91>YJ!0!~e zJ)A1OM^#o=HdppAU1&*X7G;!Vl*p&Q>?tHNf&^mXDZzPO8^TXiI>p_zd${{~xAW<$ z?CtDZS3WFYP;wY{(dqFS@fnwxVH#gECH8@Kfwn;m?0JT7(Q81Jz}wI8?KL#0&4uO9 zaQPZqyypj^1oLnMvWl<=zo4B9+{(|^$9Kea#rCT6D`TSv3as$;c2hRHH*+XuyjJ!4 z$qu)EXL!#aB4*%8oz#yy6ul-|fL1~jBxz=cUI>W`iDN+ZyFn>f^&`JJHo%+_oby6I z^Jo#3PgFpf4&UzofyZIje&=4N9&K;7`qPZl#Q6_2$_Q{E24dx!;$fO#X&=-HZ^7TSRb#-p_>JA)aK#n^get-HRB@7G=^$pKZV}CCCta!4-XN=W$(eltf$G}%V(B-K9 zHA=zG)wM&cY@>F&#Xx&ebA3an={0t`l{-yv2&BYEUmzCFz_&^`O`8U1%YkGm%rF10 zQZPZ=1X|62rSkLGYS{TD3}HVFp%}>vDF;VT?srb@&v_ddgVkbr+CAJY%q^UO@09Vs zXuZH}Sy)*Pi>iLA5lqpRekc9S{TWdEX?!j0`3}Z#fd7jz1P_A}9Ol*5fC)srOiWKS z!bS55j;8P?rV%iJi)ers>2lF^;<#S@gI#hBT5MTCabZD8zG;a?m6f9YVe{=a4Vvs% zwRf+Nca5n(F#VQq_p`0|V7+4J$Z+e;iib=)#?VQ5iFpb6a;aYki;3|G44k4) ztDn*}Ftn_7xbD))nhCr`~A#=y54_+NBDL_nl}M79zOOvU$ApVlxV zv{QgXfPEkX^4|<^hW(GA2Xkq#;Ptc`RA4o#P>_V{h`zeIk)lntGTT-6v9CEWg?6Vk+t^n#S$1FmEAaPI-kS zWv_(WG=2nkh^BLuR=IMSjG&{y>4xKoeIK8Se!;JT5m+vkpD_%66@0IZztX;u=OWL| zEaer&u%PV63TBGt7qUel18OjP3}?gMFJS~*X*h>Mf**h)e1M7+*8_72dY_g6%j4)o zqm*}&60FFIF}h%K(M*7QT$2=GS3#Up{F!)XL9%h0d4}Z){r#5Po$IyO2YI(^rrHyI zll+qW8#J4onxk5TR|gAVv05Fw-q%b2tfZ^ZDc`Xk6x}L-;8MO5=t58+I(99_HNUayG#Ix2Z?fvV z%4trB#z~lCuw#G|gQnusxImG+Px%KSvl}%OFwIm@rUa*|K)M&+y(h>`%Sq48U~mQP z9u(lUV%>$yauUB#?S;j?E5V+g9O=8${Do=_>!xb0rmx9g-ZarE1xZB-CDKVO?h+4? z@3|uz#7Ah@JNF59WGDZ%W$stpk*(q*f2qhm&(#oo59iQDBLyGjJz~IW61Awrn#8)q z2Kgj5*fhi}*n+|Nvfoi|+g+s3sHZEla0oY3%0UXjG9ig4*zv^Sq`_nc%_qQ#Zcb`S zxt79=)8;{@K}Nw0ybG_5;A`-n91U);j>y7VI@CJEI>d^>4RS!JbBf+7UaAayO4(_e z=&0+N78vF0=UVgqGE9F_{^?-t0BciZRd6c*#(4X9#W>TCQ*>%gYJEx*1Ggt|fGPl5 z0+J>%f=Z~n)R544;u0Hb8fq45&R2Hw5=L?r1f`Is^M2ze#kY66+Hi5}Ra` z*bt)-lVCGui|k#>W0(7JS502P<0wU`1u6y0h9t_eqe+8FeJKoDPr_NcDzP%LB8i!x z9fIvbY(f}d|1q)!q-6OsQg0&m6mOs+QQ83|RX2B-uu~v$6*k9#1_O_|_s3~u@FHIe z>KNebw!%wzHrD+@hAJDCmmggq*?yt0IHsF{0&Ea>(7Hv=-78=%)hH}Z%*e>NoYH>j z6V1zPgie@EhKQDP*^rl5 z&XfI?a^LPE?feqUO_Xwwe6UPtqAWX}IFdA&#Gu6_oZ+!deuZT)kL7Zh%kvw(Crfi1 zAfKqCU@y+X+52kL*>7*&e>MW|cHokipHAqhD6#N;pJ+TKPr$H6 z$53*#`!ypM7pF`zq%CuRUkXm}xpS%?LLvt_@a+_$?Pb(s-k4{oN^f|P>g zdD|RLd|{gw6W~JEC)Fj@Bs1f*Rq&}G3m&j9N4Cu@JrmeKWV!fBbfbM+&NcW{%LKBQ zZ8NPhPBM6!g2k)IsVzqPwdHzFu{|HQK5F<*t(b+NIHF@Ww!LFtt+b%G&U!-Up6pkG zGpI}a_PHLnRxueq^I_n96>m0ubJd=nqbkSu7~pKDnMPTqpLULa+^>39@2SPrVfMYc zBdr?!*Kd?R&iYY4js2?*!nmshH?5`fhw?tmz0ZKxINH2ip1cDx3^55dXV%F-rrh6m zJLam%_b1+iTPU?)rC_yv7em{Hm)#3IBjgn<<={Ldy? z8d4#Ypf$G&ti`KnxQp8eCjSGHw@^5R3Pik~-V&Oq469Orq``tL0nVR*CG^8|i9y;W z!ukA}^9*n|hs9~iQ#5of-Gu?4LI8~c;uYk32sln34?Y~SFNA^Jb00&%ZVZ@Nkv?1% z!A%?K{NXDzvgwZV_|_&iBwkZYXG3_|Oqq@H52&;6yYcH$orN8^iP8*G4OZmW<3M6x zQcp62mSf;Xf1M{WPCJF34z&+uK=O-`?XXFKhUPY+0k!>DL$@|JcQp6j+Vsi3ujH$H z*d4>~f3h29G5XX2sqMSgOV_BgH6_*M)s@WT^ik51&r`J6Vvx9b2-IQjPTC_V$YX_h zY=(wJGqn+d$k#CUJ)FyL9N)s+jr^BC5Q5kZs7=FcaXM+vFYZ~%xvGdQXy+h5&lPS$ z*I1X>bQSiKzY;Eisc4YM2BkTq+N7Kk;A_gzI*bdbz-vKufmMvX*qlULL|H{zGn-YO zP*FkAK~X{H4ml_q>NV=JLxZ(<;#n#3&F!1K+Q7XGVy(f7< zJ&_Go^;P%MVo+KU=20ghi0F9aT4kGM=?glp_%?f8^Qaey=3oH9w^u3ug1MuR3v-8Y zF1!uPMt9P=?HS!E{b~tpu$r%ihc<&sitr9q${7;5pftx++hi*N5@onOj7zD&#-Q53 z3g!?x5IxUq>&yHY?YX|qK8+sr0#pMBBG#g#P){3IW-Kt@_QQ?~V9#(`sx(q~ zgy42sxF+zZhjEi7Thx>OBnB2SuwDE2SHJb59)i12OAa*YP_&c99Vpn;WyHc-m~#uH zlfa*WGgKrRhu~s=Q(t3iclBs*p?mC^*vs;4RNK9}C3{*2Avj zl=uMuDtSt)Td&Sg(B5I%rqw3jF5sU1N)xc9vOaW=vWqs07MPkxn@jE&%Ejo!sKy#! za!fsw=91%D6p|EjDKwtp7NET>tivwa!pB5k_k&I&_N(r?raZ}1VOnU~xiZ_UZuNn6 zL0#eF(PPnr(LKT!%|#Z9>WQJrO|2fidVXxlG|4?D5Ff=(N$D=*y zb0PmSffJi6z;X=7^@^}wOiyq$EE~mT5DpqxPYdybY@A)Kb>(!SZ;6n3Ayy+VmS(q3 zodGXayH*?6k#p)@FE!K?(H;U zzv!-Q%9BhHriP}TE48h3s}8IUY7ZZZ9(u``*e-fN6gl%zu{o`VUPKOT=)-8JvBn}W zON9lwOjwr#a|%+Nlbw=I4`;F#FyHu@?iU)~Y_Wc!Zl3lBUaNd?sefaC%lBQdhJld@ z@sk-Q5^2tEh8$}@9G?&?!44W$UxX!DK$X}JvG|5PuJFNakqoBL=W&MvE>hjqs?Ux; zt$}wEc=AvKO56dT5+jpI%`Tl}EyukmG%+;cPZ~MpV`88;qmizf-!)=W=~fe18{8H?95oc($7^H;jwPZ- zVq|hdv-{Q9S{(`<0`3-XPytlNgln{Qv{BSw#!hfbb4hc3fkwjr78-Ey`2vD(Ip8*L zREl8Gg^om3dt9fye#DU-`mO?`E`k9AKTvM6_R1$Uv|H4!D_^rPU`I^*O}Y)$<&SIb zGH%dfpS0c@9GdFW?$Erh-rU0)_UiPgcXxbP_n`PIrcJz$js_aukAroWfm8_W24@;t z!&{l1~&==kz zMkZ6*-TE&S)HYL+#NFi;VR*^hhMKP!L* z49H>aB-HXv3e*({ypP6sfVxtDn{Zjoehvo~JTNKYDl#-T~k=z`APcfH`ln=8C4h;(r zi3}7n*8K5Q)=C(My%XYo`u{10)1o4x1i?~hqyk1#7^MVJSUL%%piV~{MB0a+3vqSx zw~XdlT0CNNRN1JE^yn1H(b&42jM~)Fgo)Un8BF>PT!zr)JBS{^XpoRa2@IzGUrHsG z5M3n-z|syUY}74{GZb0y#n-V!9!gMc0@NUV9Mj=-I5Uc8;B`5C9rsXG?G^ncV+^-= z41c0hN|H;H%jGiIKx=;+e>(>EP=5^nIXmtyfo)WjX1Gp>A%n?s5Ke`8gnEW}S{^!~ zvcb4UjeXX9YwY@?*!TlYgq-)@I(S+os$q;2!+S5b%B(kQhe^W-R>=;-@;Nx#j+60ZE$A--r*a z=s7tne_GyBzQ>8J9W9&4pHweq#asM|x@(Pgl~UPpL3gp!r2UXp@5^X%(M*{CA0l-~ zs2HOgqaJIP;F#u|>XPGL{3_0$kJgH?=Fd}oVL)j!NL9Jj2G#|2gpWjzME6H`2^nOc z3rM)ti?_?$rss41P$=H_4JUvU^ruqF5-ToUJ)X?sYvMuzKcW==2vQU{@%?nCa2Za~ zzXu{yn%%m5?A1O~3*I5%M)=7`QCU;YQI^sA(Sm4wgJ?s^qchg86>Fa0l;-*u>;G4i zPYF$(F|+ExnxMAuq3FTr-slb?vx(Csr;K35L6F$<>2^V5hefSfjd8W0ytu5qtXjX8 zb+&i3w{|eDFeuY0V{j?x6L|bSKK_h?$NdB!e+G}=r|>a45N;DUSL{5^P{M$aV4tvb zH5OjaewuST$9IHP@>cXy3}oO6{cnP<`~MOsz2AUx{Wm}v^RixhwWLaCfU2DVYWO8k zz{L`I@T8rj4jsg|RGTze*m&pD?}}g{1Nq~aLdDl#XpQY=z+n`ZQbpJEJ97u*^H>i> z7uD0640b7k3l*guVHAFn!SfWn%Pl8Lrz{DNbUMwM53oyqcO@_7 zo(Zsd5BFtvZBza$x$P>?*38H~JR>*1Ys}`Ri6W%pBGkbK&IlS%7ZyRrC}zMG`jfPe zaz={mds%&a7mvB1m1M5cL*bo^A0`NJHKy_nDRvQ@f_*TB`(CEhq8sp#;2tWzDy}A` zj)4u3GLF)8e(ja(+3oUqte2L%uCqRaTdBremuBZ{PPGE{Gex$A76rxvl#_>S+(1QJ zMp%W}Ft`fz@kFXLJ8SUROFxjd;- zE{%2HX|+#RddP~+Ez7RRs%GE=T#Ko)u!o9N4c0wp?y9b5c);?y7W-Apz)-=h%+{p- z3lq%uc$JUfeA4_={V#_V2$?CWA|{V7&B#b@iGRTJVx9=KoGHzS^cOO=lt(Zh!R5fA zNeqOwU^0OwutfH^O2>D(h2;JHI7=DdHmlWSVRrpDeUCnl@s9Bno{dxqweb%O3^{w= zQOF#oa+D;RsL_~fNqJehS;?KTPom4BN~4Op%tqBdK3vno?!CQl;y{1&#psJs7wIO2WeCnMWtm~_b%1aB&81NYtf1(IAl)U09U0iQbrNQ1R8ZYUs$nwtg zO!H9I+-Z!ob(uB`v#URC8SkHY*bmvQV_a?gT zGZ;ArWuQ+BbtA09y+S>_1D%9ELa$g4zCJc8Gb{SCWP5CRW=45h$)yj4z%ZEhHTZ!$ zuA*`(vuZNx)iYQh15fj_HasDGcA|HqN1a=>K+`+dA;&t~LV!{#;6>r?x$mJgefet% z*h-BJlBaNJ6CQd+llO8T_`ePf%8QDK`NNgucd^g6%D2d8-or-(4(`H( zpHdL86b|jeL!VM`sGs1WCva#dg@H@);1f8w^VON;FCurM2niqH8BBnqw8@df3OGmm znil)Z(4AXtpD|c627Pb_67b9?5I2f(_Y@9b0?nPluL-^fOW-|RLZS0g+yYBr3ofBx z!&YKqeoM7avr${n+-%gV-gBZyFg=fp{yQDdl6f&ZjqOCJ*h{TUs1 z*8Ir=YyV(@FMa3RqE=#LI;GyNRj1GU&MxgP`7QzX@vn;s_`md>M*jo86VHo`32eiq zSfj{sqnHFs!D0+8V1XPiz_+QS!o;G45~VcOW3TNIW4V4CHmCG*MP?Oaip2ygI31`E z>(JaHbRakYQZRs0f69{n|1#Xy(OTi(DfOQXcMbQDsO&m$Vw27_J$CSFS3^q+1I3h+ zvZ1!Tv3;#&jd6{MIeX2f+P2J2(e{AT*0U9=ETm7s9(cVM4l}*jM5kw`XQ$=Jr?aR7 zc?7R;)o?{zO>?ezimZpVKj2ylcP-rvYro;Ywk?%{wcp`d>V@1*yxf{Sy7dOU+#Q-7 za-IBUIFq9N?#^BYFno}z@ghb0%L$2Xhx#rk23YIRtz2@*U z>SMS@HimRB%;LX>gHrAe-iv;+*8fU5-YQ_%1 zf^t|F2M3u~mhniWM-<=!9qtn966C_*Zm}nKhV#S_Dybl`@KO;2azxUtzTS!Xg%GkAdF9K}NfKYsw9@1yW@SWRxh=ST5#8kWty z1D_wl&uRRUTly~@_dgvmy-2(@W}K(XU!3R6TI-=t`5GJO@Yg$E^!%PA{W0+#{{7%} z@ytcQh-RB^wSl0u)uO|oL$#C7`RD!3*niEW-HJnBUM{9F6g zrYkSUE}I$q_e{E5$cUG5zY|QMC1WQmr%NBVfv_u84)Wu?&^Zl9N+MBTU7=^Y= zUw%P8o+e^@Oc(`2_zV@tAe6$4Z6y4#kG7+Ot=(}id@Z~{orNXI4+^g~R8;1SC4H+B z&pyJn#KHK!>s_1Mrh=-jW3>k=b`|~U>DY5WphS(t*mP90UALM~*ep8qI#fFZ+!ueV z2>$9&J4P+mB*7ugIn_DGwK(KAMQAC)BJ87WeNGt|?`tz*zi6$zmh*?J!@9uwKi;w7 zAyGcT-S`IVhBs(@6I}?XLlwqgFcppa+;ExE+UApN2S^lyARe|d3A+g11AVxM`ZTP> ze6kOm9-tEip&})s9GK#k?40Bzz_(OkU=SBl!Ii;f!9~nb)Fk?zm+i7nWta+DbNw66 z)p}J6;N3V9tm~`qX~>|AD!hqvagG|yL4#2+_+?-f%!M}x_fy$T87;{j8ZXNh;4M)D zF*2Rd?9{0>;F%jbbvl(_-COxl8RPuj(F;FeEP3#ypD>+CZC!HROG1-E68~T^FSdHU zJ?$?pBVTUyKD@=$1k?q0gpWkMI(rd_;)srwoa0`%JVW+z@l;iBgF`h7bEAp#sVTP` zc9Z6Uk|w1ZnexMh0tmQ8FqR4_2+j@8mI-8&&Lw*%c`=xbOU5QSb)_*_Oo<0Ei)ceO zt?Kx`GtNI-uFF2my;0CxloFWapX4WJ^_~MRa;`97e<}X_>aE6jzj)ucbK5j=t{J}L zcvY7LiP9e$KkpTuI`16n7wjJp<`?BF^o({FW^1xp88PXSwedx%8J9Ej5*vhr!no)- zVcd1+UaJYisxDTxQMOvHVm!C6sIA<#jWx2>aZ+{nz3NfnRF;vHo}8A-8 zQKYw0N5EpY+739f@}u%3$6 z6&e^Vg9C7uOixdWnm~)T!&$c5Y!BVtT6ZKyQ)nCR9uycH=pJSrB>k^wQ%{~xz zr55EC=P6K!XzzMfZI39OEo~0ZPhpQIoikD!6u~EvHA}3hSlnrg27xSwne^ zp6zyTVz_Pa!HjyFL7sNRSq@tr4&B~Tdn869+V;GAa6oY2*)ZEEZ{gWk=h!Pp+50cm zo7x~8jPAF-E&Wy1lk%sf&zMfUM~m}yh%Dzki6`lx>Y&P?l4AjEs!NJfiUWhD6sI6o zAmTORg*Un(QTqnBkSFGeC!h+6sEUcdKacrNluD*?QgjVuX@^w~+w2d2yrE{lP*r$3 z+%q^RIM_YhCdxBL*KI9P@# z!#Z5TdsAQfxcnX+sgu>(Y*A`aT2UH<(-Vzge{zD;KzI6TNo84iB?J3MaSqioT6e4L zp;{qp^Pb^e)nkl3Ecs=470|Ls<2nlFi60QKUyb%ZQ(!+x(Eb;&U-i$O%AWf@SA#?3 z#FfZ{=XFC}1kRy8{?3xPlk$uS=82i_K>@c3#q!XA*;pVxM62XEHm?99s##c?kx`OS znml&tC+64X+)qRvB$2_{(=x-IP^~*Gl0ga>SUN5?rk_j)lW(AUGgi}mTm(^~qqqAg z+FDfGvGuLFw_|@{Mut#Nm~RP!hSW)vAk8sspASW)Lf6Ej!B!C}<> zPdgAk_k-o|CV}(o@%#@IoX34cr&n}*3oHO;SiDskmf(WT)5m+e;5@xm^g7Xl1s%A6 z`bzvB!Sgq%64%C-E4O2Q7L2u^Ic=ZrQ@WyM8>I)|lMb}Drh?DMC#?is8Z|MOKyHr$ z9lgU_!N#27=5c8RpKwy}gkKn+Vj01ldysR0!W>vh?nBOg%%KCsG=VqQ;8qpbinGyL zo^u{YLzoSlhj8;VkRC$myK)EDQOl(19p@}|$bCKGH@5|IG zuyEuFECl*PSji-b7ff*rQmJu#1LmOw9Fl4qX7Pi&NPjN>0|QNy;@SU@*&?1bQ&ZB- z=@5C?P1~+l-@gAq(Q$TUvi;-QM~ry(Bp_X4UujmaT{p-Yb{aMt*E6lKW*pZ*A>E$T zlG2oNc7R>&go{0KMPP~&+a2F=sXc+gbUa9NYp|bh)BS>()@B@SU=ApaqS8~DO?-iy zBF@3nveO|R%?s|mXDeY!o{-J1p6s#cOC z)1W${r|YETF6~vR#y-lsSu%LF*Y<|fL)Y>_Rwh?1PrqQa^V)F!Ev8>Aqf}3W25u(G z4OXqbJq!pbSFMwV8YgEWP-iZQKqLw<5(E@PqA|gFI4uX$_=b3++;fQuu@t-k(-Sxi z^I(Ltnbr{7z!-gVlz;%jQGnqzgo81`aFB#>l%#MRBne7lBuGN!%q_$=E}P&dFerzh z2_P-rr1G2@5^wnkp7-MO2^fM;aA=r&cToK9EgD|C^i#q=l05oZH1@!AewZ4XqQSzP zxMvr?k7s1WlB%4fG7i$B*;q(0>>h+2pm1dAtFJJ4m)wD{Ll{QG$Q?5Cb!P@&*vhTp zdF_U@@l#{?R71Q?`}tel;vIePMKgZU4P%fntwM`vv>_NZ08wfbPA zg>{v7lC@W2@HNN=ZVWkC2VPxNlS_+RheusMi)y!V_0uizI-^P999)QNHsbNa_3CVU zUTa}1Ke|17EJoucamf1HFLWogtuMeynvTvedCa4EvS z>TITxt|aCs6ewr1j+>13DJZs?vNcyLn@YNv@9c<)MXyztX{)ZFvDK(euTir~AXdj- zauUoB;P)!u-8Z2R6Mj4HwKH`dR7_624ph1hRZ>nl9>1AM$io&4? zR1H%PGjex3B{Uc6#j4Llvy-h+MUo#28?GkaOnh(=oP_Xu%>DzP-NJfT7^jdjL8qR7wm9YuHty=b9-aF90-{H@%v!rt=0Vb;>! z(%aIH0e@ILii=_CgHd##p#ap0B7|&2qv`o$a2no0`!TSG*5M6e~tHim&wnkulro_I$A;(F8Yhj)O&chH2Lhu|x348}6;2j#@ zL0JOt;B0&cW>fGOXA@iwvtc>Trr_9ITn-Yj93`k1M$!)PL>biaz!)5W^~1Ox7Q?(D zoClH$D7lUsv2{*rU@>2%j@uY$<9hzk*M47U-b zl<(ma+WDN_DGS90UG`36X-%eNqA)ou)i2Mv*t0UQGN>-RDY_)OG`d8{fFyN!+$7pC zT3;xbeor(-JaC~6zGf)ZW6KtI7YyZ2Fd#jSTd0JxgtALKTpl<~l-lr3d`$sfLtnlr zOORh!p*lO5+gaRP5je;?xu5ZN_UGZ6Glp~E&HE#0_U{bqxgVz}(j!VR3zy(B1+IAv zm%|c}7(of37vsD9Nr5+S ziosstC93SBypKyps{)2uLnq_2#=Z;$!pc!x35%bNV94Ld_T29q&Ww2S?rg3i%$@mD z{KJJ}b#^qrudJ;)aFDfkw)b%GVc^`4qw8Str^Dz-XVzylrZqEgbOPU_5-KiLCR~;0 zHU5@8(k5%WZQ0n17cRzLWJHZ>1Xf<}HG#Fb@}|y3-Zc zveHj8e~E=RnVNNUd4Kthiib=eDyjlQJ07w*W+~4Y!s~RzuE4`y^6pLE?E!tdUTpT> zBH2o955qGj?QL6(+0u%_n%t%=&m5mTzjpiYePCl01GA~r39Bf*C`IA_Ne$(UZU?wy zL>A2PN1j19$S?GYB2R7gtoUh#_XK;)S^BKB4+Fn~72Sv$un48VY*qaji>gnMf;TN- zHv{)4#XoXy%ZT4bb4ujIy-p7A#`%YFmu!O;3%jRa;k~<0j9O-TPu6WGqvaLjD@74v zBSmh>^iJB^&-=`Z_hYjZBpy-Inj&8^9X2Tnlcixj$PmRdO}cfe)v|(-3fobOe$%d( zOlI5_ZV%DNS!*}rjy=_?EU^Pvf-8R3#^>P zl^`X9QrIR76*Lrx<@icbq}W7(Tgp$x*UM?eZhk5cscDTrP30Ir75zH(YI%Mt z!xp`!9sD~HQQ1~b}PXIy_D*FeNJ+#8&Y_zfCH z#Ty7l!MhNJ?@|~ArsTypM$z0Mu_76(sG3|U3KyFxaP0Ip+S1qacd^v}NyFD(Xn457 zZuHdegZ|M%L_J$ce@RL2N>QfRN|9SJEz2|Bo?Rgyo2e)OUX=6u8*Hk&1NHw!<|Bd!a{>0{Dh1pbl^MGC?_4Oz;ut%HjoO zxPU9hVFiQ?W5^_E!y}wW=a%qqHNA9D{2H%n$4{aG)=(Ua zMFiiz4{z_MP=6^dy$?(GQ@9kClY6lA04}A$=pKQ$58&JPC`cC%k_JxF}4XhBa`UsJYabR~eLP3;If&I_+958wGzt<&h|Z z{5oq=)B+#Su6u2_8n3;vx9X@+Ug#O-7Z?&4>K1Mr6)X&h^^MIt&Q8WOrxfL7UrsI+ zHk_ZbyQB1J{nM(iN}n)2*iCbpl_VPVd~uf(zG;aY58xZPXj8Km3#(wxXRx{&q~kI# zWX5Inqxuuv2@CM;_5l{xz)C65)P%5v`xieKe#@Nrt(f$_D2x0$=Z2^a4$!W9ZMK@O z9p6)NNGL1x3JVAf4GeWVZygmR42boMy>gtLifKzJ%FWJ7E)mv8+_b;1`lRk@)mJ6_ z)COs|g|mq)yh}$rMj1xQM{M=`!1buhQJww!-|sMFCnh^Tu6bBIarsu#0|uO_XnZeH zD%>Q<(8bjv%2{X^YZ-e*fsL#vj>?mqjJ;NwHJUn*0Pn_v15fxKcPq9xriOusljubG z_42ufOdy+Ok#3S^z~F_Kp~x!H0U{4?(T;m;Wvn#$w{mBZfdz$O zRDg|gxDj_ym4jtBO71f7U>y6Xl7#8P2>#H7>5x(_S9F8SjBYwx_n zsyMfQZxWapP4wg>zB*ftMvc8Uu$R!gi1a4CY>G%x1gQez2C;yM2uOD$o8FP$L`2vU zV@x!*m|{-aNm+wy$nQS0)su6d-#x$k-2d($^Z5hj8J>rkS!=y(-g(RV7CmKpu}D=M z&6RT@e7lls*P$^mnc#dn8FxD1yK9762fsY+gb!1}f`R!u^grPjVvLK|~~M8;dn@otz$hiLk(c3arDLB3t4 zEelJCjE#?p4@>k{MTY8M4y80@7U$>WrI)4DCw=PwrRCR^|G4^H@iV3i%V-!EifeT% z$BpRH8wIy=mHJm%4_t4G^EczPg57Lc?Ujb&Mh4y&_UXb=K8^Mg-ZcI)X{xXAX84sF zC{x^;$K^j!ZUiqa^unX`Ez~D_1FN+vwv?}xT$lSi^}6qIM^!X19wta2zUz$YCW{6< z*nwYKU}`yhXpqIi&liYsSpA39_%{W9C>gpUh3W1v)fv}GI{5}%O&*-WdsF5 zY4E;@-mn<-Z=(Jux*ubLAtc~p+(4E7WSHTATIzUr`~aEwuaWUqSWh3)^j_t(a9C5Z zQ>G_7oN!F#@+66)#=hMsvZ9#Ada@?ycrcmTYN$ zaY0d0iD!jxqrXAGj*xZX3S;)yqOZ#CRNwLVIso1{Tr|XP$liI`s6^S?-cxpy>BT1c z!sQG37Yg+*vOi-f*>}~s%D*w~%;__y&oGclNo^gRjXi}SsE4X-qa1I8Ep*Uk&s7c! zm6{bhUnjz-_(O@Fe}(B-N?T@W!OKLLH0J$(tFopfrQc^3kE?#T`d!I0rW&iS6#{O?}qIM_ZV;g!a zt{2}d-COBeAKL5xO(eW8V}7Bs#%z-8lI>*@mlTgw-!ujs!FU9XVTum@SK1ezW4_S1 zSGp}2*eu^I)0c%NM8?L&#)T#N{pE<8GT}LLa#g{r^#9!AN!1TmpBI14^kNmwRZReC zD=zJx2kj7|#1NPQ({AB?eGtmBMCm{jmeV0|(cv%Kv!JK>D|PC{yF};1wHr`Px6YLP zb?B?dcYYsU_+&G@VJs*zygj<^vDrTv9SZjHcZr2h+m_lrSM((VbpeB}V^$9&_%M-p zXgX?HoAtY}okPucYoC~uy__>u%~t)F5MgVCR~Ju!OcFp!mHM|Nh-)n&HjERyk!Z~8AHkt z=dMO|d}m|jKDJ(7tEjGFp!W>HcB*^e+U>@NRXf_WZWuEBem;-ra?eI_C*1;X*23S* zVS!FA>w{}uk#)dH4E`$2Q}DzjtZH4^%ED!m8`*&{$?toghZ5LOLre~rZ75!ww?Z@K0)!%2}80Bl`Y2)VHb%1T_X;#)fV0y5M z&L|evXK7zxyYNe5;-MGt@nMD!8?6J*Rmr8Ghc3*+88}~9Q8E)bm3;zUnZQ~+zfe2ed3t!=R(3!2nnYLTVLuX zIdGeZIqcbtEPYle26<^;CL6HF)6CJa!I~{CE3PW2XJFG7G&Tcc4J@9)b1% zYCiz`0kr=T*7ou9DSk5WszlfU3+PY{|CMg@J2Z+_E>Db%kB^N%niwS9S4w1RfiByh zQkPknpPiE~PpL~93%YOrRpk#?zc2oV=|lz1`8N{VO@=z#ts1S_vI2QgX=$;K!oTjI zZlGq!lJKj0Sx_r{F27fG$K%^Tc@f5mGF_NP!@Y1~ z&D+T2YKWz|pfbK3jEH38g+)!C)YH(_{3Hu4voLX4W zIEypEC_1w&vpl1cf%stzqRy0_DLo_CNoNzK34RGuK|BJM@Du^vEvWl|0^L4>x?h3r zdR2kL$#8_gH@J?LSC-Yw+n7#_q%-m|^3UaKrL#V340bLvs^8CMp1Y8dmBE;Evv%>z zOt@vc`CTU5aT=d-jsz^I0H*+Ve;)?@sm6-xnyZZr@BTIU^9>}*VIQ{+O)*4doIkU4569W_*Ndc;(pmn(p4RH)xX-KLDlt{ zBWR^@t;2jP-HwEyCuahlya~-s#x(@{{sDcZ?;^T_`2JfCc@EKf<-g=6(ctHZBKppgF?X)7-2oX4^J72bcCTf;5F zn{-%AOxWBVr*aI{?^6?}$6t^?Cyk7^!z}uUM$k&11+5xI|7wkKs@5pj@>puV*2~sd za49EU)h!9R@BEeg$CBsyUo+iU{7QQ1(s&+mH*>JIaK7fq_OxE>YZ%#I%7*b;1U}u0 zpWdh7(>{WqegU6uqj(k;5d0p@(S<%79UH9bx=Bx6)MJ05x=M@N=D{JbhVRiFF6!V# zVO7t6K_qc>9(k!!*WB#fX4PiYCP|r~h`r;8S*JyfrKGddscV0?VV4BEPZE0zGdmrZ zMhkYV`FiKILHl}^-#AXG`pF%zj1JcHS#@CHjm=kueqd-qM08wqTyTQVU;X5fl-3KS zg?X>~fzr?SJ`vKQDtH=HvS7=`!->f=I>Z0GZ-ys>8m8Q5*KsM8RhC(Pu9Eq75F@F0 zd0a_+;m6TzM%cNKbB7r8rQlQ4AUKnXtBh5|${Dbt;(elhj!7Bpz`qmh0vm12G=WTf z=MKCBX9w}@ZP*80g0ATYm_+dI4Y+Ge;a!+aM&PcVur6RDXHEW8Q;v7SVmequy3%F- zpvG0fkD-aG9>U>Q-G5b^7)oi(EGozli`wr!Ifz)5DSc5QFj&)&Jy|D@>$#ojXWQuEGE)@Q`ymg`6@PzCV*8Cbw{VZSa! z)5jM^tT?p6X~cfiTFG!)f=b&qoQ2z97KKh~unm{vHdsz!fEu@D1dU)hEFZz;FbkHB z;!=>nPGQ9J%K50a@UGASiO!LH+dS)RO9^UIdF_`vv%2)MSShj=IBf^MS-h1kttzT6 ztY-MfV|_Gi8-J6a1h;_%w*5<4Ybq=x=6mN`;c5qATx-`LOulpD5tEB2#^6LQrCbk_ zwP347*$|8Ks~5EE4KdJjlb_R}Wz8=zgzFS~aytkr#)Gfpv)iEPLB+7@=Lp;$z`Jx* zWmNgGD|@2Z?4YcGEI*-CQD#wQaYl*$CDs`y8LV2rt zd2lYOoyyTwhsji*{OaI5?n@kpsoZMipVNc_e%})>%bwtFpRNOvsvg@Ki*mCPNjy3d zZ>yf5Zm%vU;cT5ng=wh-cyJ(IR=o#%Ji8nvmA$IdatV5~AX z$tADt>Hv3%i+fdQ#UVw21bfUlE6T>j!ox&ro^P6Koa1H1!YogiX#?*YRrRt?`3{%u zbCvZ&Z3Deb8~V^iSG*K%r3VTn8SnI_}2Sd2p>kP6E&b`)Y^>C0c6Z~>(f zvC==4ZK8gg>KDfCAdr{PiZOL=>)@YLsOy{w*$Y1z^V89F6qdmV1}Py3MsV3Exbo9) zz|Z{?XXwWmP3*zF72WA2YOfBs_kSYx;MR(6bjlK94<44Ne17R0=00p7 zwp>RW-$CPME{0gbFZ=j+aK|l}41;Jk0%kCXlW)Ne{+(Xm%;{N5mCe>d=MOP;&*hI&}N%`}sEX69X`$tu=MDH<;C#vcsLdH?Q4gFhdC^>C&Kb zuNvpN0oI|)q1-{v)WG6lT>P2NPBfu8n;AlP#(uMr_7=0+z3h#i?vdvE3>J+-8(ph; zW5*-ymVS2G4V^KU2MlNrqvKuOUC2`WJT8#zg=Z%GWOP-+O6WnU5~R?LE0y5NGlTF| z|3n1+7!MH#ux&wGdX<_z*tViA&At8I>vJpB?7^-T?f(1fJNQv3gtQ(jbfE&*V5Saa z;s)%~g+7eA^J3{98lq*}I|M$kdtx2UeUI-DzIcQy)}#0` z=p>M+ho4dJkxr4pAXSEai zGUMbB9d08X?;Pb4;lkjj6FW!S#)<9d_)dO0m0fqC;anrbEmHnDje_?kP7^K}=JLrn zmj;&^FddHIbUZ>s>kKX#=JUxopT<_OATSM%;56YcrfTpm9Km<-$Y1gB;)C(^1T|ri z9xg&neBy2ZdntdMyz3*Jwyw#Xh3P+i223f;x{3>wI2qnt*VM<(f2i|MsZfu~V%Q0u z2qH*N2;~2WGCDa_eK`f&AfNn*`75a8vnS799lt_ZY$+ zTrmPGVEawn{sfAHlf%EPe?bt=bhlT{^Y2ds^6qxZV$!3`ICC;I6 z#S9IY^9bks_w{mr4fMBh&k43r8H%%2XQ~-)@yMTQdfZ|v(c`#RtT%&a_`or48Fz?Z zGRFB+n8XJXx4rPT8!#3?X-gVM<`3eO4kV3|kKhM_8|V`o0<|so@3UI$f{UbeMl38= z{MIsbeR#O?Nt&R2u|X9~oZTmU*!XB24_rz#l; zQu3!Lcr>w)*g2~9PgzPjI_-K)yR~{GI2HaNs7s&F2-9`5ail8dF58hGY&pNPrVmBQa6&XC&SLU7Sm71-`!mF8R_;~yS z!UxhW(FbCjVlHd5z?A)>cv{7b(e4qhkq06f&ITAI4(h<$G#r7y6CF4~Cwd zE&xravz4c-)2bP89pMjBV2jrYeoQBCiqs9X^0%>c-Q`zn%swdZYp(3C8p?Z=`Ue9a z>(D^sZ^X`F#H`Dr)=JXR;oP;q+n`(WQp{LzZzz4jGtuj~4})5~pORY+H~8gB&hM3b zh3f?=`D_Y8u$!P3eL^Et*Tu@oX1gm={!X^raGvS=$0zrmI=8Vo*hRK3_(&7qH7eI(Vfxq~ zUq6C3oZ4A#5l$tx4);v2?`snJ=C<9&-Ftdo7AxTL#xscl?4*-CURrAgA99o13`hB` zH@Ps}Or5JdQ+2wU0mET_3k5k7n~Af_Cl;!WSFP9V+xH4Ppx1NL1)nCb3E$(p&&$%p zd7V$yKK7f6TdlR%>u=?Ml?rMM>^7x&N4|(WE4g1jRvRZ?EUTVxj^7sJZXYk9ZWYh`8xvopQ?Adl; zN?`RV*w4V%FghZHPW8Aj@2iL3ZH3eNI0j2`1uYAV2@j3S)nR`wdM3YDaqJdr9b^$^ zdXxbpSO#NyczP>*Cu}(04l}fH2I|qA`FBJQEa?;Oi5>}_LM*9#d-0`j^@V-s)oHa1 zIF9h%6m(B4Aa;(ojeGXiSxDO39sBn6>i0=-(#w#46=K#_uDgV$`#{mxT-m1zvELck z{jZ(PoYVLvq6dfQB##7-crOOG@zN1)1=RB^MmQ;&Q|BtrR-LY4zTn3=)-dZWdXtvz9IWP)mB{6F^|*uojzuH)G6GfKZMP1 z%)6d_k7-1TK9&=acO<{Hv*||N9i|r_=)-B+-`3a3%RRL4P|?9+)ml2vcRZWu!2#i+ zyo85Z$cNnK)-9r`^&ER}KaFkmG zDf}`eC&fKfTE(fVQ`HPujqvsqT$@-<9Gq_N?Gds`YpY|IMYlnZWQmaDh37k}?Puv@ zz1LMk(5QM=KGa-0P&<^b%0;{NY4qmj6N^~WSi?95>|mpkpQ!`u(Tz4gZjxY>kgm(Z zhKsNu5B^@n4AZF3nUbOX9ac5AZSAa6$No;E4n=cG$K^hz2gmiGjJCk(iu_6@xD*(eGlFx3VR6{PI}kUt#i=+09ZiJlUfxQW z4oey#*f@*Dnj{jwHPFz@uG5jNZj+A{erH_7!rRvfW{pCYE)6jpt;*FWJd(T;yck>} zSZyU_@+*~GAZk;mE7K|kt2vDDz7$-aSWN64Z=3Y&t=li@>~!cc@6qd(;9KxJK^;1I zQ@F0LrMIn#>w0Oe3Hx37t>(J^`k?}q*>wJ@91t8q&_#wb)6H{|1j&(92Ht=VhVX;m zL1S3Z1+l{<+OHtsYEa#2`Khv0g^{4DK?N+bT-)KuUhOLC&l##SZ*lDmeW@~YT*iPc zl{sdcygPY`Ofo@@R}lOKzJp)zI~oeHo}l9+aMYmC5$2Pp;J5)DX}AkZhyj?#|u|W6VBP47Ju?uNl7l)hVIZvs;(u=fh8APgF*5`oVL768zZc4wd1O?wD@P zEXO!185c(2TYlSnY}m^0b76X_u*yaY{8p4fKydu6VzJw{qYh(iz z*A~|j-@w2UD&8)};g~Z6EI*m(X)ZCtSze_kEG(%1W8}_ryDHWTmJ%!d?e_Eii}$iX zE1vZ9-LtP`55at5W47zSlAw~kEKDkU(B5;~u|in218cbrL=j$ohfxNQ*j4#4bA9uLE)~zFr5upZ?SueNwp1IoL87% zP{6?aNFvSk&h^aAxR8D!JxjRb!`{KtgZ_f*&>e!?sbkg0%8$vlqS@?&7yYxO3>x9q z8^1!!M>k*#WyhZ*IEcMBJ3!xh2zn_zfffX2fXg!UM!thNe;Lu%~WZorTNvy_m$k6DowJD5!wO!rPljhwo9w_ zv0s)CG*=B&4dtoQs31-D@849h+q-s3%+~GRv0ks$lzn{jlg|d9we4xt zs@1*O$R7B_`U}&?ZBJ`|ki#VHOg4CvbgSELyJ5>w^Dzc>!JP0ceFC*TafuF29r%la85|BV)xN6S!IjP4yv+m{d7 z-91?#%Rir=ccnV_M#f{^0yaS}-YNEQ?BVFxV<&A>o$5Ru1Ye7I5(n=+aR0*go@xCJ zcEk0RoeLY8RQiX8$6a@aTzmheL8=(MgY z-n}-^)ouO24&HQR(20sJjV_AHXW)V+X$)@*?+LH&W6`P=KN?x{l(D9ktiT0YXyj0B z&NgQ^UTVl;@R885i#?o_Yr(>_3;)b|a51`v)r-=O*%QaWdt4AC%zXt^T+6a(2th*7 z1PQ?*xDGJ5ySo!0xVyWB;O-tQxVr~;cXxMp_`{KRa_-H$|Gf3rTkFp(*j;VAy1I6E zb;<1e<^ozbB<9E0_9@GzyYmxt0dy#^)gt~oa%MMKyZev__?I~gnq7$c+y;jRTjAf^ zCRn&lQiceJ0uNzR##T_Jg%`VAU*XO0V4F`_))rMWXI|^yqn|>>-r=Q+woz4T)Xw{~ zj$BR&78l>YRzgg+wB7i^GVsu&hAY8T5V9ma5O#i|%zMx0dT&YwUoA)phX8$b6;csX z+l?tX^L=BttY-j7j8cx%>jWc`5Rhp7dC(DBdpN~tYf&-PLDn}vUELm*TrWt~!dT#X z*q^$l2FZ=}f%)nS6VsKU{cgps@TaO-gZOy*1O2<(SpkeD1Ns~WsrQwYrDh`8b9UO5 zl6`IzFMw-e3@&YH1Ea}<-k07C-mvg5#FLJpY+ZcweBM6LL*4tbAWPAH3a?>M_^?JD zToS|I4gb9^d*efC4`By!pk8SA2kTR0N0cqk=oTbB#);lS=`L#6WlWUbR9qZiLrgX7 z6|Lp7^(~5V)NWUIaK|x}V*0QobV=1n6Vj&I zmCUND3Tn#AeO$^PT4eIHzZn)>rfCV5E2M(8QOgXVF$S%|)S)g?_+E)^fBgE;fnkn>PQ;6^czoo$%}dn|NYXO#>K+_}Cq?#Jy*KPR z)~Kn;7^2P5c!1qnUdHTv`;idKU5l!wH|E3c%e=JriNJ%z?d0wFc8>&=A#>C>+o=;@ z-RM-fKrg#RY2mLhwhW`k{c#l5zV}Tv$C}RvVorKgN=98KLBlDlB7!>+2|Ba*03GOP zv@qY15Iai(KTa>Fz!+7n5>*0)Ahf{l>LuE`F4z~3dV2<|d-*v7l&83BH;O^GpFQ=$Q{6}QLSbdL)mxEQY#uOveM(> zjA6jmPrR&jae{)ZIM#4i&=e=s;W4z^?Z%PE!vwy(1YT_j0=I&(GbIzXy0t#cvDQ>* z>#?&MnkN)!BKyb07rJunQ6Ij~yms?PyH5{L;B1CARxa2V+HI-$q|Lxgyrpxwuc_=! zrlN7fpSp{fUfBtKPlEIK5x}15>M&Po<9ca!S=iwDv>zLEf>-vSq$jkQ7R2?sd3G6s zz29A^Bc`icTjYJs{g%k7@Wceh*>dVTi2FzBkf3rUKG8P(Pg`d1s!-W7uNN)pyc9km zD4np=+rw_XRX+pEuJu`seKRHuKM%G1!=0-Q{FB)6D5HhpfIDWdldYs;E!RtPDPp!S zp=5dxIntrW+N;6FHWs_B!3PriLy}R)c5nrsX@aXLU>g|FzDp67-H*-eD93N1Y}H+E zl?bPtq>a2T6$bQ3(+YUAytU_W$4;WplGIJEi?a&{BbET?&FvozBHt?7)hX$6)pGG6 zEhBA!q{!gF`UnyT^CTu{etb)iy3=Rb$IF42<;KdE$$^u7Ex`|rgE68{+7R~>{PeYi zmr&{L`wg7ERH;uI!{KzxaUIwrFaQLby5&KJRKup>s903nTcz33-9QsLUI$Sjs5YD} z?6*(i*8;BwL zk(JWZF*7kVC?%kHy7>&&(L}nvvWI%5`>&FO0-@V&*qYdBhm^jmUWwqzjTA4>z56Jp z>$7;Hlf_Tlbkh{Qck8A-?mhazYA;MrJ(HyMUR00nID$gTV8pDZx4-55(Dvl91j#FW zpBZe&Z@+o_21%wEoZ1z+tIbUj{=Zb>})){s8vho9rQEr9asc*UfKI-lWD_L29o_uF1{(CI++H~7+#CIPis z`|mOJW#(F5i@;ZrI33^jK;l){rX@>6Jo-#SsS?^}vgA#~@L)`*h0w@gN!x#;{N{Qiq@lsRluR=cAk?y%;nn zHWC&Z)tg8xk=J2r3|jR$0`Y9D^%QrzH>pD{RFG}C{SiUr`Wq_fCSK+R^u3|VE%jFA zr07Kf3y9cnEtzOK)lkXah=hOtG^y>JtEqgJHF_$;kJ=Cm0|xt)+LijWggtNS5@ynx z3cH*wK5Yn_oN$j1o|9fk&uFwFH-`GIO4Y5fA+2ntsLyeDjhEO(G2jh+>|S|E+WXDP zmUVRpYtDWf-{_VAX;l4PzpX*1+1KKTT@J;8kl8S1nVo1+Ji(+ytpQ zzOzpC974Qhn_Tz;g|lPy?ae^P>pW7Z)Rq=o0s;zc$l~@{S0LfO69DROZE9?t@nll^b0v6oDRGaYLiD_u>~=ajjY5e$%)o&lEz_c_VNMlI)P zp^Hl`U~Xo^r)#ZkWoThzZUyrjETL%%D&gaP{*Y5i8Jg(}XqxHE@>0s^>f4%VKG!nQ z)VIb3(85r2TWjl@+2Aq*LFwmyo&j2V01UOPjjpKzE)yult7##mYp8Dk`W*xY8W?I} z8%+~KZEiDt6J1;o_>2G#kGTV`DkUQ=E+s9178d}ZWq9sU?e|gvLla%l>xXFRfgt2% zI5>V94&$$e^Lwkm2KC(ZdE7EE)I6Hjy3aTK&!dyI)w21GIK0Aq&$XW^1;P{r$(aiZ z^NDL(;8F|gfJSO);)tfMt(w8Cb3=C~ljf~aH&BD^Cm2{(xBx}-4Fl2$spRvFwLEdyc=fzcSL(cT|Cp~tF&X}#=T_b1{BVA7GvMy}aKCaFYd*y3=JarV zu@O7e?DlYcdf(P3nW~=J&*^@DzB0#ud(}2{)Xdfxzf^eSez!5#H?-9Fczv^TFt@eE z`1Ei(maWm``fzX~`LMQyqyBh*zRB6_=5lkpbCJEp`QYmIw3W@c^mMz?_tbQMe|mc` z!`|q8b$_zamCbloeAIm3b(gAgYjXak z;Ij{1_;7er$T|4>psUxi{>3a$jL#tADONjUGd2nHI~XK6ZVa0*tBAA+tBJrgIUlzC zbyzZ<3;f9fdmX6K?>PG_A)j2lc|Hpccz;`5rYp&S4-ht>p;egtqOP+Z6(yrJ5YHuR zz|Gz^6H_3oDG0?O`T{F#-Ae3KOnxcEm*<_&yKjqZe!#?QHY6wUq-12Scdzu}U~*sE zDhL;hmP>tA*VoaE2J?BD%FD{4IQedHmLHPm4UzHX%ZRT@Eo7qEj;KqhpQtw}1Zkz-h5Kt;A%8XVMIv4)mdPG9;^dzQD#KUw@D7aLW<(DSBG41j3`2Yr{~(& zdei%yn{@T0Gxpq2OMuNV+?k> z+l3{khgRdw{S&2?<)|NGCToX(F(P*-_VVWC`To4`MmwF)|#uV6@Ab%Q|f;I8l zOH#Q7ncbK{p`|N|NG&)VIMU@nI9=K7r$}lb)4yLu7vZb|>7sSj>k-=;0!ct_6)rDg zc^YgTqIyn79J5@mCHeNURv`_xaTd0n&5TzaT#gGPbF9C+uFSWA-4BScG|kI_gv>1! zb|3*Uq@-IYdvZ)$IoIl%Z|xCR{qe?2w{Sik^iMPig}#hTKq#wq<~8m?PR~?!89cQ5 za)IMP8j&G4Z=|svcEYE8i7fsTnK{Uvd2(lSVdM`^lQJ(*q+U^m+0E5t!?A*lY2w&y zzy^`Xi3_N}i87r@KPQz*I0LXEYcN2W-_X~76{J+Sr`eKn$~_6j4(;4D{lYSsw-5#9LRcbjyyZ*qwCRUm z`R|1^V_e6DxT3#}7Q&Biz`fPpsVP1aMvpbloY7-=InE`u-2T1(>~N8K6#M&v zJcFP7al)D9p}S5v>!oozQnGc*V-c9CL?haPtpJpk&iKv+4A8{BxF9~WRxMm5;reLt zW-|Ocei1#R!8_&8lD9EIs3%fO;!8D^u7TyY-$GJn6%+U*7-Nq3Brq`MB_VejAT7rQ zBEPOBF5xD(61~MTn9-}|4R@WDuE&}`5)T3fh4a^AjdHoykb=X_%im#KR}4I0gY72E z4=1})C47T_dy!Zhq=U=ETWl6ZH=L|}>|ceM9?czOyLRYVg*hZtv7FMjT!mBdc^%R# zwx2BN4)>A8A<2`Fsogn)Hk3_o`N+(K{TRjflkPIP1UYVw{Wefxr@H{@EDR@T(9FN0 zYj`FF&ZmV8isJ;{*TKAdN!Rx>$nneZp|)chc`ORIloUlOR_V;Ni|A~d-1h`EQ{1L- zS8+oHJ3f-JJVfS+C@Nh+WLi@gBp)$^R6!?pZ-EcQ>}_vbBP4f383r|pP7JlZuLWS~ z124Bu;AI)vobz#m&mBBS=aSj0-4$quUa)rz-E?NjX2-K*o9)t<6H6wt47g}dl9H#o z3Wx+dLcm}R!Yr{Qp4N-8P z1ow(M0I962cc_E0;Qmv$N%^MUy58c~Rs!Bfg1~#4uc4MYeX^DU@CI8^S$$xVoVq(! zKN$N7&>Kh5R&l-k9*x14>ERML_G+heH5A&XI-9m8=@_6I zU68Z@Dg1WkrO-HClNPygANoyaWpZxTz)8{^QciD@410%y_l4XnP+mN-CXtI19WNGFBn(1#7US=0iqM3D3 zNpYftYm&iBGkl)KV7b zdx&Z>09xrN+A{dAxTd|>ZJ+X>R>sKGt=BrpZp%tFP?DFR_{6M^4MRVQ`N`*yVzPb8 zl5iOI7g@LS%CuR#_kP+rwt|tyvi+VBAdcPaK8Jg-J?@;{aUm@hFBlyaLfg$&vMv~3 zv~)ey=87{PLg2oPK4`7Lh>r9ToN zaZN&e!OmJjCcamof8{DW4|NlncQe;1n3>|#<@lZ}=u;4E(7e`qhAmRw}hV`SzTeY^gq; z0UEi6To|uxXR5r28K~9BuGP=-6hJSX zxBGG|$S^$ekbdN_rv!KCekSr1F0!Hg2 zZGJ3^OdjM^cNSzA{R?J7~qs1w(Qcn4&-i)Nn^U3r>CBxGkRJhEfrS!6y z(UQ-AWATxA{)tMFHHogA#Ib4Vpdgp?;Kv{Ms!>bSSTh1Pm8_Go9c1i6;M$NVHF8ZV zEFfFzWQ_VsrdAJ1qH+`tm71+kpn=O$|JdtjPZI(a_L4W!D1EdI>uB;zBm`xwHntx( zd$eQ2mqf@sLMa%sC_4U7qhP2 zE2m%}%$U{R#&{E6R+8fHT;2fXh=@G?hOGW9xO~2Mg3>a(Y867%KRf`9qNgh=SWLLSk%yFbxBr3S=C^1c)pLvb(-6aorOrZo!m3Jh07np2EdtiT-dx0UUN z*xq!yZ#Uj2S-Op{QdkO%^HWfgDJSWzN?@5u&+@%9`1nuRQNm60)6t*oL37yvl?92Hzlw zA=RZ<0mgowA-=r=_MuvH|L(wp=>md!+g){dO`y6Xfe#uXjib3R5@W#*qEuDhdRK1H zRBc8fS!tnY)+TxPvvSv4so3fw=pmem=7NlgcX0a#qjC?Ob!8CE;e4?J#esgAeZ5l~ zX(8;&u_<|hwvGa1p~ZnU!6|}jo{0Ag(V1^1mm|v$0;cv_S#9`pZ4UyK&S;9ueZkq4PwQ&q z&#`uc-`A-_P8j3)ny9k#rSsY~rgSpe=I%<{_kG3BcIsySy7+R!I|iY+-l}FP6p=T_ zL&@6zb~yBTC7}4R1Ubb&6t1?Q7kT%|12$+f5HmjvF zAn!5Mk8cDg0Ba^yi}Vz|^gXBB@Km?EZ)rknw8V!CI)v#3zA7YsC0SQR|!g~g7Q zh}D$n(5h^b#LmJ}T3^IQv|c)ZopX_4R0LheM6|}dI~yl5MPDmhr&T4Y%~+qK?U@Xa z+8U)o_m8nu5%tvUs|kqyCV{7uW))A~@bN3A+umbeXq^XV#iCmNJ=0rZCP;M#ASKsuqrF`#pWy*qFnr3;g4B)jL=xG$p&*_r6 zT_O|E65j+i6~cr3J7i9}Id`pj5~i32TzR>ZHWiqc%mcVo55L(0S4^M|($?Tf>Z(Fi z7hem*Hsw~#d`;n)7NClhO{@MSk(D6hDrn@DWzePYo)6=nIOaTN{9pl0z1d6N&F zmV*LTaTQ^P${i}CLj&4W*s^>;)m|low^Ce#R+T(vXk2_ zoE`co7Gf3djn?ro?Kx=JD0(ur=!$T*>Yg2w!yI8 zuGS{qRLp#ER5dQ^HX8v5KU~gbitY^y%~xn3=hPnT7>$T7%!d?ukjv8AsNSwJsD-bZ z+lvS`&Nz-pm72hD8;2{&T(8`Be8Zs5Df4C_ zFfYJnG2&jb_OYm&QCV2$cKq6rQ&0SR=Hg4G$fyGO({i^nA*5A*Wvqwq7Wm^t@dVL6 zRZ5Xwow%PjxnoY=<}WS^#y(W23k8#C+Bm*lvz2MQSi=j{YCBuQk5f3+ZF`qpewB7T z{1v~%>G&Sp5uS%+%Z!4`Gl*|m9J8w&YpqdYO)WsYF|n-HoF3`g@+`xvm2dD^=phB? ziC~qWQMIn5%1@ilaUtMds4R@sby$SaX}d68)MmgG>6;>qD1DtNB~RMroip_P(;5OR zw!6paQ1geIf)tyMY3Db@UA647bn-7Eu1o!oBIvG-pLZ@3)_PM%70gn{-kXC zOE>zgr~5-2_=g(spXm_!%|IHuXO-W7X$mQY{?w4_XqwqP>lLkWRY9uBXC0;tNYyE4 zE^lV|tk!$hS3cwNcU33zKT`z)=zu?K0>y_);lKgVJ}Zl|B_4#hpA%ivw*&efO?9jh z>u_#deb9BmywGiE331;xtX~9v-yJ4AY0|@-cjO)30{OMjsAyU@k2ar&1o+9fb&plVIhX)a<*x#3tA}fy zNKLf8IH9t09k~YFU3lZzXp(7V!&PEpC;ilJqoRZZgYRrk3-%t&O~-?a1XZ6%yW>-OOb1i&@5;IHDu((U|3KJj+(sztY2;Ot2`a4 zUz#kEA+C6XEsOOIa;&~Tj#+Le=vwV#i zGy?O7rH}Ghf|X+--t%Zn%&8{R6WuQizy5&gqA^xgTK#z~rLQyZeiAtg51Y7{&A@Nk z33;LQ3^GaPH2IzaW(DqWUO(CFJap>`s@9!1*6W9#pF*FNkese`$=^9>jt# zdI+g(nVSb`J5r~JvI`@Q8d(Q8UGR@?!dQL`Fm3Lcp7hRQ$TOuye6UfHt_c1ymfPny z;AP4|0U>>FO%+3D)pgzrS@`i~HCd9eHi1uMYmBh$Mx=aNREbx;<9!{vC=3t-HXEw1oliyY>}An zJEO4A_B!k*C!P`a)x$&tXm4w8z(Y!it~+*~HBJJ=qcu+E748;Su7i%h(sn368fJI% zH@ts+1c*9+pVeP&UnD^!;hMSQ%T`c@%Ys@v8%f9VR9OFD>OSjU=XF5yOa7t%XZ%A) zL;o}X@XLr=b>PCzS;MG#1nFXE51z3kQ;pu4v${kaejzA8NYm%}K`&RwYQT-CK_TY5 zT+N4rI8P`~O;--zV$qC`51F?)!F9qlUOMr(p$Shwb~jCj6?78JES>h60NSe7`$3DDg?Pr-c*KKWHND`t~eyJ!V6u~ z8p^&T;cZ1;veb1OMn3mpePGpz>ui0WWNF-()ID~N@H}C9bB(=o?4WRG*{qd6$U~;= zu%3FQp_i(QBdeP6HDL;%cFZp&eP(t>$#+9o;PS?<%Gq%+`!JYUFWrate4~=fbZcLh zN-9}fIq6e*l@3a$PlJL(4 z%s;HJ|7pKs1{neWGUmw-aKm`eAcFt6Yr@ANF`1n%dO|vpdUB5@OK%j%{n$UV@)`M~ z$jin;T!s(47D)o;V1n*pN_2J6dH%Nk^>~BuovJtC%-3)d+++k_h(hn$?CM{r3FB%0 z62qVD!~Y3GroRapYQd$if6&0bauz>%^Zq=B!uT7a4AWh8%U7;q*53bw z91!?-?Bs;uF#*sGSLD|og2;g_M>{0Fnx{|3uk40CGTVC6h)TnKLIrSpK~h9~Gmc<+ z_<=&2DbQRDOJ2gJZar8l6!#;KKH~7rvI}T&gG+w(Wz_G6r{e=ROZ9pmxzbzuuzL}C zpjSXc($_dUc*2|vwgBamgn5O{TsSp}w#{7!%(+HYLrkOdrnmP9=b&FP!aaT}S@9lF zRLmt+*w3rGYkvh7z3rLBlJeMYr8MN>@LfxNgWE{5u>kyYzVeAMGa6iuRHm7Q1{eoj zrM3#^j66?wxdUw0U0xQPCP$RA4RGW(P7fonzM{zBu|R0TagwJ^NfNLypp3j!8N%LX z;Y^|k9h@s^Z~FCHE2Er~c^r{s*s2s`jQHs151)Z`)N5@0a9m$ZcE?akYDy#W8T8Xt znIkJ%c>@g@;1if7Bf(*$4DB-RdOvA!fT@J1PWP4o-`E|}>Q_2cz^+f$$9%V3esSzb z_Ni96B6>gpG62?Kuo;e3Q&;Rs!Gk?l?leg5Cef6K|GW zTlRp~x}G0{gTPmZ<5hKz;E3<6Ukv7w6w_gwEBQN(xW1ly)W7w^eC>Cz#N!>+s2Zwp zynhE?#0fP7-E@^6iRl_Fy~fop2|TqV1^BT$DP6LnRMB@JpWi=}_>Wc#i2O z+0`LQK8PFU2QDJ`(OrNG7tMlv^%H4__rp`ANlSXRn9%ze0s`+MA$mHgO3xY+8{SR= z6@sqV+?cO;I=L8K5)%-u-=A#B2d#HelhBr!zo?lxg2krdGX4_1pH2mTNYRWxVFLW^ z906dW!=(h!)6?V9F#vG^xFBg7!1TNan8MI8JYP+IyFOQ;1ErtKeojA^8^GxOQUYiA zNs9kZ{3h|0?w?a@)&UqPI}v7vhL#kMctZ;j0nOR|UODW>qEHxP}kk+n3= zo5I!VSlby*#D1*nb;!A#{3>V64Ulb6+2%A^L(3EU@`{DBs;Wgh-MTx*M&2ggdQYM& zNaWj>La6zHehIH^+RLDj30!)Hj#(EY6snLIo{nmJa{d&IJwDcM~szh8!Hb2}@XziThoe8JtwAHUE{7=s~w0~RlilT+w9wg4 zrAm3TIPuETVQ;F^x*lO-)jE;M%mSNiv0Up;m!_ztRk6QtIGU+>M!byy4mMh(5N??h znBTpqza?A$6`wNv!?O?Pmo=`q=f3^I z0?@(Gdfi$mh0%_th17lzkVDhcxyejs-5GOsUh{|8KzwKOOLYFB1PuT%{mix?qQZj? z)8L@DM&kH=0T*88l%L?eeKL+Ns2fRPLuL384g=99wSD+`3T%~MlL=X)R3R-+^-V5{ z?EJ;1QEi=3+}r--ftEs(dK);ygNkib$?`L`JI{*|`F_hpIbLPPY`!2)m05pZPKSfL zZdJD!K8l53qW=#CH~`JxctS0R6}}BbPWxmpG#Xr$RFW&w0NBHasn!o~E8gL>K+%5Z zX`zJ$32=5E4$?~S9fB0Z$obY`Y^CjO<_yL~{)9SZx(OTLce73*x8w|Sqy34>{(!aV zB})#s8wB&Kh-w!wI1j=%zr^?-N7Rhe-NVsVLU3Q3+I7K1*js6?;LKCWs@a+C5t8bh^u&JL5{6$@Z z$^lj8kuHP^@rV@Q`fwD$E?GIXG*K%kwCg-FvuhV22b{A>;P`<;_iN3ST2t)6orT7BS<=V)U z?z;5SGD9Q$jQfz%q`TYLnIVsG63+awq&#BV`g{=-XCI5yu;&u(KF{*PFO>ez2jl@89*p?Vk>!a{S3T zrQGV?L3_t7^PpEMymZ1FMvy5LsZASUR6g;yx4O>Co7HcgpNqvP{&&L;3 z#`BVUIiycfA^Ani1WDp`j^~OONbcOSoa3Hxl}xa-52=m>sYqLhj8|u%4c=ayit&=Z zC2#8cc3u`3I)EpS=F8y6c$>+~W;Anv;476c6^C{np8~lQ7>J-ijgVNaJJw%=ZRvbT zBHfZ8!5Y^1j8(=5@FR*Z+`lC3Ka`JYng8~X@yiHDw1e~l zThDp{9g~==Ok*SX_$Q5QT)SHx|B}}b_!43kXR_y26PayV|chI+pB)#m!A{BWM8)DPDGal#DDk#<>{NEOeiZ+ zoU3`s$2KTDg|y!xm`a>i+-!Av%|m3JmOuEk?5u2w(;WJmNU4e5Ce{j!+75dzJfLPK zR#GE^$LcI33Tbf(_)SR=JiBlCJ+%&XG3v;CfzS`q`w=)Jj@nm{K0+dPhqhq$$~XxF zrK4EWW3oyQD6fl(r{x~4@4-*Ez0`k6>whR0G6Mc~hL)EXE~8-lU3te6=X+Msw$gF- zPz@g@cjOF3#+CaqO=$Rqr;uj2z)NW)zZQ-28VJAEX2}{iKE9lVidUxywe^DB!ma7I z?_F?sM3nUIv|noCQ}EnX9KrC-U%j%WactE(AzfI4(R{5YDot!O2gx}F?@HIoL5dI7 z$HzH2LlbxBz6g#kp~K5#1EL=BwChia@e7Ix?}brFX%7P(?b?U zvM=4RWgEF~P)E{Ra!P0s$8*5+04_L$vvMtDGGX(=2V{e>FAeumn2wMd%{9LG$;NTD z&!W{U2z6nru53-WW2AZ*ECl*DkVd{=^$Xu3;;%39&uY#MIf&(;G~>LZ8apht&{G6*_WT_kN>uD6n}G4YUMkPwjTFGKqMa=8Add6a=|P?mufCE zY~DoA>vHt&7u772SAhIje~uA{4q$C|y)HPPBRy|(V@&HAbXCIpkv^tKoNKydytxe3 z=#b2eT!KOl1E&U-`{_2-IeAC@J}7bVj2xTw)Oy)|Yf+Kv0QNb56UvKsM2O|d3cW9AP!%oK@&^0KC7wj2vb=m!%X@S@Qngo%FI+RY|& zJo?c2>N{4O>^5IJ7)IYV9cV?+%_+0>!$ahj!*}Zrw}*$>2|+)>LwY-#tlcSf9N_}u zre|ISo|{H&k}e2Et)Xz6!9ff4$|I~%cs3>}F*3T7`0BGmuc}G$K+GovRMXVL#w3;A zw6TG4BAl4T+LTh@E{JSBLP=p^+C&-G?-e*JrC(H}kwEwI>#9Dimb0(|E>FvQ%!vk zOH^9g+)B)Fe(Y{TPQKT2IzEVH%6j80<<^2u`{;{it8BdS{;9-z>YKLrXk&+N(;WN^ zoM0ASkWw+r6_e?anGxJ^I#r^rCDVjc95;05HF1cMrJXLdBj=I@)cwMxK{WPEU!{TF zkHmTaCsUdo#S2p9Q1Ii`N}&0{mmqV~yE?&xDAlW}^qc%^6}U13R$qE?#;cmRD&DzW zB<@$9I_Y^Iza2igzM(U!g`t6Rj1ihDhDvHU9jlMvz-csi6tTOPxwq09Qg57zy#_^>5r%Y01f?fzkh@j{N?}t6F>bm zh<~xifqHz#T3pk{$`BMnKm~H3r)OdU9XDy8B~BV#%74vyjwvv-vbNzh(6o9EKM>RW zBTY-s{Ci)&2O}^rfxPNLr)6e(X3%Mv83+J1{BHsPem2}OJR=PXGLuc z0Ko8k{`>bYfRXvn%wHn;TnGUEKTgJ*6z(1G$lQiJ}wS#|hlmD&`9qli$r(^s@ z=FdIQ3H)CwJXZ!iet##_&prHaq(Q2-zi!Cze;dOy2B0Ptt!5qWjJ70<;h5gPv;;^t|{yL!bu@1U)aD zzd?-8(DNes8zk@yJ?osFA<%OJf_@9d13@6B20_mo%5xcrt3l9j4lN)E#J(Wtc};sR z1Mw*c`V$oplK^Rd(;h#Ufw%$${fP^R4M5PJxPayv1pSE%Xp%wDpSXZ#5d{5-3y5?e z=uccgbOS+u;v(>TchH^=!i59$c@~k-xQ+mP1Ah<8PNI z4M-P#CrZyRP6rW81P~ApC7OI6{57uqe9>7_4B&5I0=RUdZrW6TY|`q8xw<*^XJxhC zOe!ze*Oy2X4rmMaVw4>b5--UjMn#qA2h)9XtbCQi4!)Fs*TefBl6Bb1H#1XE1aVXWepj=_DS&uKtg|r>kiHx0Lv>+O`(f8`7A-5++*l%}(i7Q(VW_FD= z3kE8>6EUg9ie~JWERAJzBb9>Uw*#}Yd0{zS+EURP6Q1vfqt$wgw9#2E^Y&X?Sq}qt zcho79tDa`E-6lBM%k~-k9IkUx8LqdPbYrj!n1-L;<+Dg(h~av6Ep4p~s@MdvI}x## zz$eNn2yJ(lxuB&%)OKW))L8{um!fWlkP{)VmD1DO@ECURsbFekq_6S13M~7y+8`eQ zk$KRa-~ql^f%Q)P10fv;wiM01BbFp8#8DY%BZ6=k;fzMpewGBBkx_8w+WfHK z_=~-H=oXoq3S?3%yJCTmVfHSyWbAtWq0@D3LP7%)gz~sX?Vd7ML zfpEdsKCr|AgM7m&D>fffws{&>EFh0rsg~r|NC<)rC?}5X_DIo4s`&o&0#1CBfhOSiwCxKhzoue%GxJU8Z zqn$ad!w|?2i>~vaZZHV&Nd%^d8HRFKz2g2;PXyf^y~>`t#rR#!ZOoO1 z9_FQ+Fze>C;m^7ymKKdIig1SvOxoR5Y1+OL?^$%W`_syOIRG}23^NyH82Y|?U3yDN zt{RtnGv<0ngNBh~oY^0%)el7-;Z74avNpsA?p)&LN+8=#zoHMEj!c?Y9GbzgRTmp&KpNR}dhJ3p=3h2B+-mCE*5^qNs}+Sax@pHcig z9+}m!E7N<5PlIj+^agdHTB6N?>lBC6LQ78|Q8U|3au1H=qv7c!>A`noNmG`KW4J`~ zY1@pQ&a%Xcxd`*V=ECJm46~>GOSp~D7-|X)nMao!(T(DmX8EQ@mn9ohfj)Foeb_k5 zz93e;f)r)?vy}Lw{(HO4E4rznd4OoLZqkHB%u>M*Wi@@>#fwEXoW+ZiM%lv!yQ3oJ za`K5TV)TwV*L$SH^c4MNtAf?V}ch^`URF&PX()eO~qBfsW^6AkgQU0h% zrQT>UuQuOIL%!s+H2N~SQGuvnzv?tEdNTTuJf>KwPHQB9nOv_Rt`y&xe=-1!d{psV zbwrcj7iFdIirU@frgbBfDz*N;X`?)bH71+lsFBUmF?J)oZ$cL;#PPdrS*=lB? z&rBV)>AWS2Hx^!f*4A)4qD_>6a;5|n#Um@KM-g9fz1!gvXpP2-nuuDhetwmnikd~a zTc6XFKFvSLe}KkMWmKPYfuG7hi@)KoCfV<*b@|RPl=I9X)<^jb9a@#zv|Y;}L^H*; zW6Lc>C`Gs0vQpUPbV`@H3&llvGy zzC&|B^Qi{XGng&g_$f`Z^CaJ`dG~$u$D~?oy&=;0j78_W{eg1##D~p&$MSN$!o*6K z$eb9$OJx;m}?194m&EqB^8WzE(cI%5=8V5F@)Vk->g;Vysh)PBPy;@B(#@63fiL z$*@QKjd`7+(P9+mhpU{#L*~i}@kRCq*cASO&Pty3y5?DL<*sQu7V7P5 zh~>AtMA#y!5Mot`q=z;mOp^H*bkM8HsbaeXSjgXOJ0#T18b`OM=(~MQ*1Pk2H^%lj zyF-6xJ5FY3k9uR^{9RMBtoW(+P?gt(GNhSBLJ7yBtRlZP)fBrz#LGy@eKIxcs|&<9 z^3+TbCmM0!p4>^Q>GiBd!hJ)QiYr}`!R%@59YfB~vTVez0 zn5nwjF2>196`R!!qID(^8P1VUDmc0d6b>-#itezNnkSo^-xa$Or$9;CxpHbcPpR|@ z9?7a97_&@G@zfEEm*+iN;f>ZK=k01t#PH@*Rx=Avf7rv&KgGJ2-D1U2A#}^0Nl|@c zct3UVC}NXm9nEB~LfA-Ui{0LlCjZvTb8Uz%)b&6gsjAaj<$}Q)ZjL&UrCdRHOElS+ zJXk?Ee>O-kzul_!)_oQQoH?ywTw%8Iz-4c4^)yRpWIwb30! z@^RB#ZM!uJB=Y=XV$)l(2bl7m`775lZ$ z9<#7Ahx~NpzH0shHu0TWatjlmuTdW`Bs!_ceOG3DZ}7WWvHV*H_!B5g&pj?+bnTlR zmpSmQ@~4|1?T0xv_^!>DK`03lWrs<-DqC@n=&7MYc!%Wa>Q=dP7Q}8)v2&LBnkE-s z*yXd>oQ+`{pOPA72gFCnPS^*U1|-WHC-3O_E5^z zY+$B;4+Y4oywnoCF1AIjeyD>T!Ib=leMrEMJXt|_JZrG6M=0@Td~mDD5xKANe)lL0@E7uQI1I$mgAM}9&j#{aS z3Xb+=67pyD;*2GV?L(KP#HA$Nd>IK#(CtGHdOpCHWjoZ|xykgcqdI|K$_N6xT z|HIyWw!;~HjRKEO^xn%bS_q?$UPkXE(d&?i7A<;bFnUcQdW#aB1c}ZVgdhl$7(IIL zjCMT#^E}u20_VItZ}tbc_ugym`*&SyEp)}=9qi(s_RcNb!Aa~ra8-XrmxaAQqJYst74Sm?M3EY{U?GeUo0i z9~}S0d1CrsG3h^n>HjbPH$TMlUr(HaZzT3n-TxE!VpI>tt!$oS11NXaUMYOBS9)j5Y>cO?^yDxQ};zYGA=s)HqSRrcc9Brbr)zX>0W&QZKVxo!Gfy>DKi!p<97ZkCW%_R;K!c3jIP4$-Q2v$Jae?@P`?{Ksoae`exhea)qT4`Tf6dC09r3`EDDi7i>*#n|Z67Z8t?N z=0ejZO+x~ue_sTDmt0{?N}o0}kTvB!y|VIiH>=IK^g(UZ{QYQ}k+VH_AF@96``72M z*9MaMsFcjC{_WZ0&yB|?RRVbi_wz?rPP}^8-h1^O&&OWs_s3)>dMXGFo*21*W7$dj z@L9+!qbsYqAl%s9X4`z6T8_SAOKdB!?L!A zLwNm=QU4abm^^xjkyZ=;@^}$d)^!f-qFrGwUqeHLltMmy3AfF&abMsv&lNfkwW`R` z@#3!f+0tMV-`TQ4bw8_kt9-BXd3)tPYy9LYv~W*)2e^uN@8k1!{H@i6F-z{Yv(4vg z|N9TqGq;%)@NSbGnupZl^BJ@urtj0@Qz$fxdG7vg+I`^ut7LH!vu&Wz48vmgPpxfd z`WvuK4FA$QE?0$GfQJ6+Olb@=x$X*)R>xv#RcmH~?Z^B-^wxMRy?QzwOu^jVB z@jh#leQtSI|Ba0Pd;Nx0zE;;*c^B`A+!%Um{oKa+gkKmbx4SwnUDGIcSAV8s%`a4O z*PIBxXn)9N|M*)p*uwF>&US|WD17+$cHB?q$h@c`=^o+W({xj~C;u>3+y+C3_z1om z-DLY+pvUc#7SpEt`*8PTL{6QCQ!s0X6-#|#fp^y$(fIf8mE%mcKd*_#PuS)!sTX*s zwafJj_Zfdfgx}8XApCv|xV6512Q;y~GaYTcX|4KsZhW>8HmmZ`7WhdWpXv4qmLpmD z|Bv1OFR~W=i3PXvpe+vVTUIrr5MvG6)ZLGka!vlWK0#r>DmyazmS60g+`OB+eJA^) z)8bN~^~v22_w9W~Ec6um#f4q=hx5)4VY|tuI}c8Uv-F#)-sDb$9>eawUO#>|s{q1{ zD4DLt%x=;epG~$$D&ju>w9v5aZe4Fjk}%om-<@dCopGxpY} zn=&Rdn!HN26MTr3)y$8(VzC9U8n&rhk4=Acs#pdX-oFmKI-(bD^%jm+RCr;&KhZG2 zeo{5t7afF5X0w#92$leQ=8tEPOMK@1)%!@@6UV<2hi!?-W{K3dm~A=^e}aN3l3YBN zXM!dtQutEY=W^W01?wpw?ejr3?Uz_P!bro{IPS%)FlBId4+$j&(H`KjAO$IF5!c%& zh6WWUc#IGQfvK`7JnoHMH0~yuJO^cvitr|>)&v1YMf4O$woK_snR2)$0fA%Bqaj#i z8eVh{QM5fFNsQZ2q}5QgJ&5Jl9ybYw&45?hix*>vJ79?Y355T{PB1C@2!vG^8xJC? zi*#LT8yt$=V0ZW7Uy_E!DcW&8@8dy{g!j>*9?#jy?nZRm@!pWO z+ez(4b~cco_hW$xzrsip15NV^I4@XLOyv2Sz<(o2mqxOw-%`Z#V@P|=( z>8R2->X$q}1hd)=_tn1(FZ5BZoVO8!#e$1NXuksSP(;zvJUYLQ&RF~bk+ ztQfx3Qn|<`!j~dHsIorsjTpW!m5Xn}UgOVt$5(Awpl+Vrgulj^^*GDPXr@Fi?pW>z zG2f1%jcOp#+RH3cLmRa~(ly^KDZ>TTK;kv`EPulVwLtQ<&@6I81=TCUHHRz%Lj|=f zk~NeC`po=U)`j&s`E!Hk4^_(3-z(1ycSgFKSV8k7t52!Tvt}D&YchA#~w$VV-WO+%xPq>^IV@d^JrttvP*OX;eu!{d$_L zlGRAI7+GXtBwLCs@l#HQbUywn;3DTD^__&##s*;bksoK~*XpYE-M7{-;nDqSyHFIg`pgRrLLq{?9X z0$s4S`KEtW3Qem_b5292siuvmMJiubIv5QWr)cCy1W9bGPHR=p7TF{Qv2LGLW*Su# z>8o{OovBaf8hWUA;`uUd*H*R`FQfz!xJYlmoo1}`FBwzKj|rmRp0B(p8dLA2_a)m7 zt@JV4C?3=3WIw~2CNN@G31v8=oYpX6hge5^r#SPP<~5`*7E-s4`cC7^xa~d7Yh+ra z5c8eNmv(!qvf602NFmxH5+k^6F}-0}s1b_g%etLdDO}u@gn7JOU0Gk;m4d>-+Zss~-Nj;Lx7jP1jRcIOir=W;Qu`8bn@qb`&Kda^-Nk&TKJ%Eiu535D zDB4$>kNeJk_Gnvq8d4c&lv>25hNGwa?3cJW>(7W+sy+}Ojq2$2$o2U3nDt~6`dT)N z&@cF}Nq;dFUlmEHyGG5>)H3D>=dfG&h=+f9^o8#A(_h%Xq9!bgzp4|f6Dt#|xkk^> z)v{VJSb%egekRdH(#6lPJ$?K$iY|EutCq`x_X~r#fQ97WxYz8(p-JaNe=A-W7Kf(n zr-ac4nVtrmzS)#K#Xa5Ml%Jsf6K!&l=9K=Itx7oKE$yl4FIz}B>n-W2)UQRAaOPXqQ~zI!kZ|@}oKx~& ziYoUEx74QwzZ4<&EVsm`!oRvz?wM|xPd$EhL+;sb2~OF6&6eK7?!+*{o82WIO82C< z{-=r)QYEG(9x97Tcf1(7)7s6siPq8srF-H~Ud-ZV`-Fe#f%0Nv7kQ{62J19>Gj4*s zlwDcT;>E2LAH#DJCVbXttZ2$;W_*7VUr>PEAz~?}mlZ-N#g7yE|6je!dEc5ng*!Wmn@ z5M;lZ3?PEAlZ1)@9X8{7Qvi67C$Zurw<2W@o_0e$phpm%*hq#Z5J}$>0>scyK>`tR zbQtPQO9YTV)KT<{{BvN4v-i>cpTpc!`G;772?va!p#ayP;e4 zXXqZh#6hx))D2!zBMU|DqK-_Hm_c{3NB&9Sc4&Ab)hbU?uE<@y7csJyq17Ip;zfY$ z2JIs*rI6MP{toD9FJWXT!-a!f#1RJ)!a(jI7j^Xd#mJ;yuik)Ozuw@_h+Il3DKy%v zIy#r&O+j1W@_MqRHF|s5guNBN?JMFbMJor|VtIzC6^K?}@gslJ>@^p0{i4l(K%VX5 zP1~HOK~JabzPzUaqLX*O)AJxXm})=N^B^%;bpO_~b+sVsTE1-@d2562?zz=LclX`8 zqPu%y5>fR32Kxq!cix;@RZ1@ecwh-Th`&cog0ji&+n{U;`J9{ndG za`a1ATm?HvH$>xwM>lxm4`tU88y*2?h#mTlumM*bo9^W^S)1^suax!L9g@pm8S52~ z*i!rz7Pt=C;{CA}N)OqRTZs=;IuZ|sknOk!#vOx8*0C2h9T&@;><2gj?1*cMg}5Vy zsEc2pTf(ekzCZDm*xsI&Fr3x2mfHUQtd-1HzVe#J*VI@zHppb#x7FPU2TF44^1-}sEL#+W`(!$3f1p`h`6~>oOzJ+9R(5>wjKq>A!EdaO1wmpbzWO(XBy^wDb}*g`BJLIpx5UNEg2>k zze?xXaXzNj3oCb))~lF$i?4T3wxydhR1japDqlft;`9=AfS{uj#a#B`;eLQWT3EA(qQ?OpA6Q zkVDdeR?;r_BlkEDhOXtyoI{CK=131<*WOWb-)xkJco*y89^8XB#NqJk${gdOSxEa5 zbKHSsNb71l&SLlBeEh-U<$j;PR9EofeByyZ$i-^#qs8b;w!RBcm&T#I#qW#NilvH` zisgz`r=D?mA#>RN8jVy-?WMVRfo4&JEMbETJO%4b$o@Zg=^mME^Lw zqT)@?>PD*Vqp+ukuJN`UVak_Z`wqNr3VJ*!!xE1yqZW;C-Y>VZbn_m`DxJvXke6PW zTMdc%e9t`8Se@3C&kSHcPJ`!Csh?_a;rFpW@&(2h`#(2t0G#D(<+w~g8` z?h!e*9MK_XPj19_+-a^N1uRm+*P2RP*dc_kb(N^G%PBzbBA5x=(j#&S+df8E5@xIS z)Z(Jmdwg)+iq%{#aHlw7bnFu=5Q`Ai#8l@aqNfUj}L>6ijQ@FJ}uSu21DV{4&G~?EC zZ%RiM@NVKo%}}0lDhvO5^4`SyHLXT<_3Ja1+JcJT#9u5lc0|4im7bYdq?VoqSQr$Y z{r*y*>4_7?OofKqu}3jeqhU+sxKdoG4|a-CxzxJ`o{xH;628&$%njfu0GK2Eqd!EZa>wb&3kaufN=%!F?E)Ny0oR0o42G~&$f&&G zY5g!3z`xfoHeOb$Y;vgN!^n8v5*9;#XPx5*QWM7Pls$uJYD@9`5qVRu@abSkY>-;*cyVEY`W!Yck$7^&iR!g;+-HkAvi z@2L~FFgA`;j^a2%dEHG)l~j|nvKFJ)rIYHV$@!CrUQ#;uUJ*Pb7t)R~2EmqwFXb}0-b+$s! zDWE(R6q>X}ty>7ikW6i4clDfdm)CQ*!v+S_GQ?YVe&~1V< zPWd9}Hf4)kms#Wm^e@a=tXxsVz4r_4l%(#Q$X?GWeR+QN9r6qD)EnJk(B8lo@{_lt zVxYzNK%RB;?1R1#sr6vcI5I?dT{`=qUylAnZuCTCG4%>-lpGpHc+#KE-h0EhJ_r)- z>7Y1S%`WWeAUuJN>VSj?I!I2uM-8Ahkyreq0wVQ&H{$ERvuEwX@O|*sokZ#fZdleg zM7kpaS=Z@Bx?xu@N9*mvXir?TZ3l1g*QG?dW3Jps5A4F|PlB@-2XC;}$wk6pR}Q0v zc6T%xClsQCFs;%%J<&EC11O zy9M|+suP~kT#@_uK;re<>{k1Qlt6;@ZqNbZMrz$U+uva!I#75$H2cCqA>xW-9gWw<$K=no$q0adv9;J$S#d!yW5~nY#=D@|N8I>J@>3i`>oRcb!;_0mLT}?+` zP6zlGsy`oxLRI&9j~}HI#LKDvv*%2u2>jwQQQoN%{O+9VwPMCO-WPVY>tA2|e|4o* zQk1B~yFi{>mi(opReuhC01HWqGiIZ1>N5f(=J?M*7iy#2cuZ#HQ&o3v7iOcm_`k~2 zwyJx;ZI2Q^%CEVV@~V5>F6>6v@iI!&$|Yo!zS)&rs;sq4vQ2zu&jp$2SQD{yq~C9u zy|Vj8J)$ev+<=Z*dn0&Z_c3|RM$o4L9rse`eW2O8!#DO395Xh=F~$41M!BdpBf(UA z^N5##_k)dckuNFV5175TGf#NQ_hZ{|sxTmk|JMlIM*lQZwVngRUt&ttnXp+AZ=-k0R8k1| z9<}KdZ=-YSqpD~S7b25Xp*t#o=+GW@MRe$oG9x;)MlH?idxM_N>@?V<`ijo*n^izNv38Qp zJob-ZXDS-&kl*ol#LNU56cT-(&TKR&q@Ll`>@;-2&$w%Z9YXPTs?BWsF)}k!4PEhP zPis6JLJ4--%@+GH3Nz#lVem7q8g_?U+?@(D#eR(RjBrC({Fy+Ft-~$;PODjWKSq9r zz2Oe-D?d}%aF=vOU(*epk2sU6>2|oq*-@`~XC`GopLAwWW7+U#;5+G#UybZ0I(|&# zZOi00v3!Rubj(=&uPa}fZsiTBtsA=h#qtx`w_zW~4t`yQ%7iQJdO}a)S(SG+p~P@j zwcXcHYXlvYrK+1qBRAqsYnKk%O4Xi>+C%JfoC`z!sjj6O+u`$iyKK-4s`gZ&XPct$ zgrp|c)K@s;T@9>gyy#X+;&+s+G*)CN=^=UV+QtwARI@Q{;FUVgIsvaEgfG{ax)rw9 zeEg2G6{nYc{EnKH$4Ul#2V!Nrk`ce7k(b{_vtk^t!&Rr~wS|y|k8tdhuSimv4!@vo z+jjXbS>y`&ey23czV*G}(rl%jf?eb01;U?Oq2TfjVh(P=(ItB%4>tgI@g8-;5A;H) zjzZxFIw7J*xA0c#d!nO4s(Z%y$<3L|DMoUFEKR14qapNcZoz$nSxj2^iEm$bgMpDH472?4>4vY-=7FbM8Bmy+k+SFAMB(m0ob1gri`kp~ypdv-( z1_Y)}JAZm<{lh2M`Za0G@IKKElF)C@oC@;2lhy3X_?p9~BKFp~6o~)9O>A zYSLs-jmm`e0!aY&d_;eM|I!*VU@zVts9rF9x7=FzxZn8pK;@!(OCfzfb2E%|zW&p- z@7wMIw#ZY$5)FZ%FXe+LrvZ^{JDW$G@-`)dBc}l|Z1t0?53K}cj2nkv+7$?|#7$+v)DKp{9)A{Pxj!@9NUVZSUM6S)nWIJr((Q9no+;KYd zhO(88V`Bu%##c`RqZAT1o3j;kHk-2)MmC%C6bvSv@Iqy$q~3SUZM8>th5z#B4ZSZv z5W?)2AFyHeKOHDw_A3ssFl=Q901R9C0VRg5Hb*+6Caor;CcP%pjpNEc#$vd z26jXk;kEs)Mgx0o&g;yQw33XH^pZ>{$AD%6Gyi_sG+-e5VcR-1k9a-_@tB(&ngQs*15p1!T`!fGt9 zc?SHQ_}s&IC&MCj8dE08@fA>&ta%3bDpIAV>8|Y}W*n+@#`RUY>aGkw?Qhid`!f6t zCRG;!W6MlGc4r^0T#dgWll#1TSd(nPJ-{Rz&mQF@8~2{bBwbod+LuAC;HWQZWlwqB ziJWz|x?y(@OVZuQ);(}*Rg>KSgF9Kz6Uw=jso5QS>Z;Y9a=N2csEeVQtjGw%*^BfJ!0uaKBkSC+-4 zOS(aSaM$1wP71qM&EOGrN}<va?FK%7zwZdpd9 zI1r?Cd+s8Rq*AQGeygZx2VusGG?Cn-;NfftGSqRD+kuVoWVo#`iC`!oEh%m&AUjE8 zC?G3oaL7yvsUph8yGkTVm)@A2#O)}^?ZC)5G8~YRMC&N0hSU}{Nk09{{M`efewAKYh4>(WWh#mlZBtKqcNXJFaiXO_~+l==NljNzG z2%1|DB|LO&Z~C4=YhWVP-^;~9@Ye2s$R8Mna4nlQ&d!`c9W zcQxYp6847A@Fg75grjd5rt_5VNFLi6661e$G~|emVwg@)u4SYdEuz4W5v?SR{wrF^ z8l3{#eEoY`vLfo)K-KcJ7n3KG*Z1YOgXRPk1o{SfHsDULnE`Whr_el7Pf5fd!V2;+ zBsh1;EuooF-!?A{oV$8D$QaR#H})QkdKr zywsPH5P#U5X!ME4UgxoT`XT-hIg#iKjE#XEy!?6@<4&IBS$iQ@cVnkw#ju?G^W;5w zR(9i?>BknpnV#ppf9Rb=$HKsS;AfuYE4uxE*qvnb3C2kBa6DhFu)xKLH#qY2^P;`T zdZlTcB*$3tzLA(P)QFlnG>qBdL?@H@Il#v#a3Dz}UJh_s$TkQO4JaU~9hnFssU4rd zCvhK|P$xOFf9=pjkiG{D2K|8yv1$8B{*iXv$jH|?2Q|fI<{O+7Hfdy7E1mN-X=Ltk zwx{iKHYE-_L-Z}Z|E4#?^9KG20-X4zM~2Mx$1?xbaBT2y0sa7XT`v z@|=dvb;f-D$r+3h|EuBJQ1iCo+<5721K4=sZNs(U>%G9Sq36B8x#8};0NAkhUf|jY z^}bGb<&}y-Klh#*+B0|~^Nq|~Y=~9q4bL~6;h&uTIN!R{uVuf5r?sb}wY{a%+drZe zhv!xHO}tyv+w;+^|L)ZG^}X+T{OP~756?sPZM-ki+Y8Y+|JZ;R6yM^89_z;AJySBY&p`9%it&0PbRiY*q>sex4}{evU=Hu^vqut7QNv6IXzt!;bL?<-p;>-laqC&d-NPS)!uLV|eKx@{lnOJ4VTv)KukV=(x(RE7%v(dHG9*99OLOE zPTPbVJ{SFTMKvs%uSJ#IYLPT}M$-u;GcLx6iV3;Tb`8894Ls$0qvgdh zpiI+R(k3y`OA}|vqV2_;FlUTTSpg;V^Gh1Jm4l;JG!y2Yv8Xl1th`Q;HAJVc=+g`u zx_xRB8)&5QF9xTqRP*g?d&v#V^R*b|DS7!P1RLgQdKn}H8=-SofC<-z=npH7+Id+d z<&K2h5dPtEU|fck_Awu$`mm?=F+Zd7u%`B7K1Q|S*V3jx zk;bAa8An;VMgLs1d5lHlGhF$;z0cU;`&N)KoTXd*MflTj)_Li)zVqWxRaxame+wty zYO`j&GL(s!)YT?1&QaUq(9X{yD}PJ)3Bv!gTs&^lO8bP5Rej4-`-GoWc}r89m|-eS zB$;8gKO32Jl_6p)vhIou>Cg6HJYjX{avCL1x=I(>VLYLB2zxauoE2!au4hj9av(_t(p3mz3yU2CCw9=?DRDpM$LgX8Qg$JoKN(nuN5A&|`i6}rH!})>b@N5S}i1O$M z1PiYpU1M{6K4jMlx(0o+6NxuAGtus9Ho$JS|+0V@Ab|vyq+3m3v0rjjC}N@i+b! zj!KQ6SKsx6K7;FVOD3ZX;Jy^O`nzOMMQ%Udhd;;LB-A|O6-Dmwdj+?xk@sP4TjTGs z+!%-6E4wj{z6ZEn#XnVSUZY>Bqw-H~+d<58?DKfF!rS%GtSkFe{;6%(2zicufLAI! zSQkybQb2Vf?==n&)<=^gZZ**ch+AE>FydAl?SZ(}N3$btwa~VRTRpTQ;`VxxYVj1i z{N6r@a!M!L26_6p+*G79cFR}S!!C$=$})Qa`JCw4OWhZs7X!~ppZV$@*nN(y;wiVt zUKluKE58s4ji{0=m&x9SevYeBD96ucg1W$}M9O)xbD%DB|P#4ENOcj1U`%^Mv=x9*JqqFejM716DK!;I+Gy0Jub>xFQy2vFO`Tz*EFa&^fZ z9Z=XtU*;fYIq$4jJgCAGFXs@8fIFe13wXD|4bBQX)jj-j5TOXT<3C!YzE8T`K-??c zq$2KBZ^jY#DmV3rd-av-`W)X1@x#_Svxw{wrea9Y|zcShVoV`}T0 z&Lmp8#%82Y7#_<-=+2y5En?<}TW#OWXSZ79%yzbI&yC`!Ff@$lWF*_R_vXp^ET}u> zigeTi8b*9Fmn~plm-OxN`seIw`?{1X)=>%2EW(QTq&<7F|3+b*95joxBJi;uJp;`S zq96G{Mw3BONHng`v(cX*sX;WhkIrZ8eEougP#uY?&g7C%;b0dpbzO}U_48EHseOxM>=cmU`~J;YLR zhshB7Qf>pLHC{(dP!v}mU4U=oC`lrw-D4OBz}r9E}uD;NXJ4EB`Ji;xEv0IMZ@g^LBi>WxZ+ z9|EFidt=jJX-Re(mxRj>Fn7W^N@EIR%1H_ZWlxSWu3e=|8hhS8A=o&DAD1JCBc~$( zOld_JOwmN?O@SuljDj`L_eM96+bi~A!J-KZxmZ+&)WAtgYT&4}xU^JHn%+3W2t&9b z%#&o97$!`a!j-24j`w`LEC8#g)aS}mKIEd|3W=srBIL|d<5LF5d9oGLEMxbn!9-!+ zFdaf#!bMIPg%DRr9ECbO&GS8sifSy~vjApHC6wlw4ilyNq1C3Uf=9HNLBY8!O0<|x z!2?iH$-@1J8-x1}HyJk{HyS1YwBlZ7BAV4|Q|{BFdXw&%3zG$+xtH09F0=xa`XGX? z4K)KzWFtX>%nfdcCZds7f+A+nMz>z7xB(b9+lYzaD?#k{xPo+o@n#AL=m4}o1IEpm z$U357rhsfB9q|+7H#2T5v%kVk#Li0f;g6b4>9v@WI?VBc;o7@y$=!8XuNEovExS=t3m~+ zEHhEDh!$WASEGD9tLB3Z@>0oWqGJ9lLvS_9#>;E&YC(mmf-_NZh%Vp{;1l2jlLNPb zOh6mJ(UbUD%?|w)QYw#(fJDR`Z~<^66n~-FVX%Tj#SYzzeV9qcW)=+Hi}@-wqhNLo z-HZFGID=(I0A+>wf@T0_aZuJ+U+@g2nFf?K##eks#B31C8s{rFLuAGa&4>Lr^XA9; z%FHmDIYIMd9u!yFYy+Af=c_P-XGRaThWU!jaGQOATF3fI&(NBgLak$bC1xbdW}((` z4~j}^CIy{``HIaj)HIs4+9mh9^f9IS3YdtQV7X$O5YMRAutUE>zuN2d?3m`C8%BLOn6P`XXMSA8`tf89hg(x zaa+<+>h{dZ?j-+5nFYzn1*QYz%Q}I9 zntwGW!!pRy-lmm}Yssh@3u(n^9cR3SmC0osYsqM5q?Tc4Jl1-`xy7Jmn|8{rHK-+{ zJgJqTpMFZKWt;gnr%ViZrS*hoi#Y=uh^Hl^V@#yAp($fv%&$eS`CaokB!fP!Bki9W zP?#r>Xjn(fM*Y}3!!)fU*}r=TkcwuBA{osA$wURJb>c>^gAw6H3^w8{SD0EPbwn5@-ldl!x7lo*y*C zHEJ|yG>)KXcc1u?wx`VZgyCJk*qv>#9Sp;{*4u4uSVV>qTwCv6G%OC@J-UYMrZy-d z?{Kf5Df}HCYz*m$ao73NlH@+}Fxb#t;7?0}d-b1|Sa;VyEh+9he_A5lng6uJyXXGd zhhDR_I5o@1?Y(J9bo+qn`tWd$4jit-TG%;W((+epnL~b97{5vL&djnbL-VYW@%w9i z)A$i;%$9bXmZec9$FoMnZ=iKmkmXb+$Gb*g90pwDH4fuhqc;xYUXwBo<6R>+z5}ia z8{hG)u^Zpr*5m7kMo!qjX(=nn|^=X(VRrTo@nJSMo3{RCuI!3bUoo21B3$1Z= zhDGx9c3Bt1h1A$J!y<9oUn?|q`a0>_@- z)th{i?w9*TwrrkzkInf)D_H3- zWRflYJo^i8nLPJi@MJ;yd7eQ@2%-r61e@PFWi2PfuOtBV$j&W{CkOc(U~W2hUgry|4$hSSmdKqi7XgdA-Yn zMoFv8ELbecEKXioOW?RwxfEj-dQU5aQEVy8AU6vwxNCs2&x`Sa+xozq;1aMS%VRRy z|4`miTh!{46jyNFYFp$gPl_e@&1zfps!&QWcz-n@Vil000cKkbh+5@OIq;I}KVlgq zFALWRf}f6*g=++5pAv2vO}?C@oqRDVG3h%=I$56<_U_cR%$D~Se@jZMTMgqrd5{+N z;WT)+tuLi|w+)%Hv)k62lDpeBkTSR1)}PY8+cubTy&KSz61N+GNEzG>=u4^Cy)0lI zN11=je}OW8m;W1Oo}Yiv(2OtZ+SE+fp3_(@-EPrP&E0O%SS`{1w_%6C?{=uJ5OpTj z9%esVzl%w>?rz>8_q!dg>qebPwcpv#cHb}7v_kz|{aWq)E&W;@{Db}c?ff(l^IZ zE(Zlh;vq9lB&R4{W+N==lcOM)gEXVSkeL?piKt0tV{Fn_#~LmNc}C_TlqQl#R5Fti zqAtj2IRxkGS5=o|v>XOy0@BizVq=n2MHPVk+Of%_PaToz&YWTeqqUAX!!$#>98)T< zI6tyyICD>_zoPm$?D%*120ofPj8?P=hR3#e&w!aHQyWFRx;6O zl1cylu|~+zm%EzTe13Ra*~FkJDE)Wtf84Q}-TZc#Nohu@2|ryTy9VG$%I(Tv-apKw zJfqp9o-UD7BjT9M?aE@lI-H|4quRuiF7dI3-%*d-mC1Z+I4821b?h80yR-{$rhY)c z_NCo~X6CVdaPZQ9tKap~Zelb0*d3T)i3RRMG1d!?TVhG@VHjHmYb>$E`_PR20uL^+ zB>J$79f5h5^58yHW5eKzrMv_mrm-!s(^6i%58c=w@WxVJq7U2H6_|d>3hqNWHUR#x zWR>8_$L@I zj|lt}Ozjm0pGtTjN+Kswec7>8&#)vP=CS`#$t$7lv2d!#idTR_y=A?1Vq2 zn`aKr2V1utd$A6z^}mRyrZA0JK}X>Z8vQRUZK$f z5d!cX!3T!g@XQ~4k+6eZm)Q2>L6yG4s?wRxxCz45qlIG#`?5dOxj9dTzCm zSebfS5BQSK`dUeO&Lez@XWgy*J?95}$!9~Y$UWsBrX|ffSQ&WA51h%@Ikgq6Vz6dY z+rs+J#OiE4ZxeQ;th!e*IJ1RqchGUo^Cal_>+>W)JNci`;e8Fi@Fs#Z`LtbSM{=HE z!atB)DE&$M?5H?|HTk&SUv&pz}Tbk@I-|rs#Q3|G{}2e*<)<=LK?}z~2^q>v=IK z|L8&q9qmbul*hd=ME84=56WX-XrfC!Q<3uc7iQ>H&(uMAtP53irl$c?9`E8gddkya zP#)((7v1bRj+7_3utJ}Bj%(DUq8>E@pj-$fT#q7`Qxf8qg2Ha(h6*5N;O-Q2oGlQy zR1{Vt7nBz<2DheY=k$Z@rl4>dd7;9H1$ZdMHRt(5eg!}B;#lE8^ui$&ahzljmJ~3y z7jT6S@eA%iG02$$VMzsJd2y})5yS9j6cwEMki3)!f9F{dMErTUD;u0+ki68kM_zyx zPQ(CQhvEaL5X35_4cm)*gj9q`gz;C(CFRN>e2$`(tDK{pvm6i>wW*}5fsVZ7U(rWc!wUiX z>Z3}ds-r4zIlog}aJ=GL=lD*krb^@`TteW*z7mGOffGnkUFX z`B(4|iSU>3HTVY#0g7%l5`c~R4Vg$1gK`q*5BTGfgi63R9DjutQ4OD^sOMTx>WB{@ zK9XEvMYO{&C=R$3ltSQ_ghwJP)QAfBB9{UrB;^ukB^Ca_7fF}IEA{Yhz+K8E!Ac=K z9B`L>Nxss3|3`9?So0ndM7hOX_95LyIf!;kqHH#OK`DrO>uFhQ`V+tl_0LhyX{(rw zearmQTsVHKevUa6nhe%F;0ld+&Rj)iY+V+ld6v$^A))F5n`WpYGJaO}O7myB1;NnY1tdi`Sc);Gu7>wY33?&W81PY&D(T*4pLPn zm^gzo;iO@iy=H&9I!Cf9Q;ay1Gs&b`nV05jIuD1QY7R`C(fRS@^D<}6sq|MIKUH&L z#F?GRCauZ>HBZv%IG(Cnz`igz6HOYIz0@2@H{qyNwTSt`rAnys3^k_8@;#-#*&n znB35eOY=@A;|feq;aCH#aj~i$186yDIcWi`5DfN~PT8s^Z<;=5z6$2?mTTFRrc>ID z=78oR2VPo~rc=6h+87{T?v_ z1~OwesO8AywgUW?u4u;f<=PKJVx6Q4NaQ{SG#!GE+75SnGn07P*Rzp%_yndP#=`khtLz0RADGFsx>V%5!IRnDLoE%8$H|li#o#=X1|{Q6NrR$s z#H2l=aCoIX6QUu~;H2n&X>e3Dm-MAH0l63GLv)<<=Gqb^*}4~~Fj_-;bJY%ufLPiL z(d)o+6E!Y%boELhb=i=f%y-RDifnH!Ee>)G{!$1b7~0c*Bjw$mITwvC_;=3PD)lXN zXiw*jqW5*CYy>*;9~q}V=o@5+ReK-g9hWH^g--vM!s##m&0&aDXCLf6m?;~Hj{m36 z=`Z^2*-*arzPNWqrff9&kb1dW6NVTq%5etu<_R zO|Kr5nDXaW&#<%=sY218uj{OW9ub&``%}YXlC*N`+Ek|C`s_1ghxKMmAJHe(apnEB zsSH8>Y&^2Va`R;0l6R`@O3SsWEWw@G4P=MyW=h|ZPbzk0`$D62yDML6MkAAmZjaz+ zi`4s}f_l{{TfR6ylRwBcV#O;?B_`kHn|^Ge)XRt4xBKu7c_}nA@{&dS67TA=JI{Uj zPrg#Jp|e7H{!nMUp?0HzKn zPt7D{FWI;2@OCIm`pMXtZON&6ernf-V>_0&LtQdUPMg`5p6U>OiIp@9;9+IMsy^z< zhTZ$9EE{(BqqS^U^+yHS$*PYgvXl2Jppw5C)VR4GmHj<1;C5y_y2jPjSN3cm&s1_L zkmoF^6A*AK(?MzEZiTkwnn9F{D^6BDaJV#6PpREELRZ%4aPU?3?@B?;28XLl0l``9 zn@Xb$-bvXhCND)6ThU;1^%A<)Ct|}(|)MuYiPU-UWe2us;phsQG6*Oi_! z8mzCzpwIb4IOaAV8p&gPS6Zv6(RXh{FZc%PDO5zk-Luf@2RY!}>_b*` z#qng`u$SR+3)NY+l7_wiN=uMp+^Vi(ILFnMQBf`h+oo~-r+Bsi? zDcEreVR?3(QkbtDrx^Cij#CCRvE%#-tFzGX|vumnKa2=;&Kizyho_Di`fP4qEpp6GQ(fgPrqH(;Mafb$Q7#Ze&rKCc2I?T zci;1uK6cQA+Pm9)osVf0A!N6gU;Z&ISC}Li;$eG*61zIfLbC9TpyQ)ZSxDrk^$MkT zvCG1%LZU$UQMiE>d&HN_6?!hylsfRsFO@pnmLDi}cr1Ta>Tq4YrPSfR{9fr8qsijM zQS?LaSnJ#ehXsl+tkDk-#G2$z-R1AkovP+b`vHH*%z{ZUu#6XA9m)fbdH#gWkN_w` z`DL95@#g?V7!PXa1}|`N&R_zP0kS|PC>lwkcd7u|_mRpvWyJMm%8)$ejCz?eJyLdh zxr^w4Fc1I)$du^@xP8>j_yO>iIRPgXxu|8tiI)J6fce*5D4nOpryxKW1x$e!%Af&9 z#MQ-ar@MZX&3FKK2oe40NM+mtoQE{|epJk80epuv`F|A4$N^|W5)OWp$*2aj>+|TH z7sRn(eo?1CAXSeimk}-_@c0-no(AS$>kJ3%>hVAsX+jhx%M2{gVX4Tp<9Vku>%qyt zeT)W#>+_{pwleMRyqL`2fI)h}SARO1`34xI&sSur1EQg|?!1$kOOWL9kJ5l>SS_x> zlywF06?V?00m1SBXu!_7H5jmd2Hb+3b8XON1pz`~=Wq=stjmD+utk>!6w43b2wQY( zFk+ntw7?c!8}wOWfF#%=u0aIX0NXH4mwy&Vq+yzFBs41mkOR|nCGBGc0z6@wIFd0d z7SIbTb0HyF2LSr8GB=VT>lZ*Ztjv|9$2tx;11rOkOj(J5&#)6NBm~PHpaMJLMlxWX z29&@~xRP{PM*+uRCvYSa)+NAO*n|rS#qtH%!srN9ACer)E>kaa8So5h1xt3}Ay}RO z9au8^-K(-Zl1=~d8;@nr934DcOs_hnq{}o=!~GfT-4keW=U18HgH@-Xy4MVDxczy= z`(B{M?O)Z32dYl()qQMm1NY|%@3}yW@?Ry3jjK*UbZG|1-Tpk}eLe7xvR{>pYpYHv z>pn0zj{7sjdo=KmJHILvpQ}0r)4gRtt=xD0SCg^_ub#s{55_$tU-)bnf9Jy8vX;*0 zv@&7gkD$T#=-b|3th}oaJ7m4SQ9Q`FXmj@h`nJy(C-2XPo6}!kEjDFbG{5VEKI#3% z!n@>fbLQ*ciXSpATHlREpY-|S;QjV+bB3JSiN0C4y((oVNU;$hl|P;rc1hZ*;7z?w zjJ=cusjSCFU{w@J({L5%&uoOL-)FA8>EJBa*mQ7?t7$s;iR)xK_?atiYC6kBnwrjW zp{AyHYxkelLVxu-uHWx%(BksWT{O=(s$PViRxVEQIZpZGWpRq<@lsI$Ah7>bzf%8^ zeyjeA{qp?}11|seM|APY>P4y3wgyDE#KZl!0w>E>_7*>@YE}MJXF$XyhW6_O>=v$g z7Gv)TWIp*D2=A<%DaKX{r2EsV1p57H_XH~aX?F#-{b|(#P`|KBVAe0ZC(!8^?tt#M zDfQ~YO1RG(f6LvdNhr?+)ztX9YZ)#a3M|OoI$~A9Kq%+cL>+X88Qwg^q36yWX{=!A zD%aIS`MPTujvwOW=dK^QSiwLk-{wC>OxbYX_mH>13qGQy@?EkNSlufMT*)G5gVnvG zR4b>+9$@tYQA(8@at~PDCrYz&nXCuC=@kX7{F8hSeA7Ehz48nBXYkDfQF|-jk>|iS zeWJ80H_3a!Azo3C$`|D8;1KU9waQQAAaKZmDCNpGlPn1^W8rcRs?iB^Ad_|4~ zzJQLqq4Nu=0Zx^54v@}S#savAvqc^%xZSB&fP_1d=&GXCj|``G1I_lbi|DYw_x2`$f%44xgOl^%~zlPN+yEa5AgR+zb7w&MXw?4>20zOIMs^} zneHW*gHyfvN$epYR$m}7ts^7E^Utt5z`MWkh~zYVf%G(1M(EBbvW4K?4Xn5Qig=L_ zl33K|gAdbNku5q#6}=HJA&KC`Yki^kNxef}GWS1(NA_x2e^uA}6bCDEY9r_Et%DhMqe-rwPN0oiiUVI4j7xyabA{+cT^cT;n z{Y8p+2j~}km1U7Bz8U((qsp;J8-E4*#l6b5$Qi!{{o+}LEfT{^LDlf5FhvM_HdM{y zlwA=7?*UbF7j4U!<9ncLo~N9OWbk^>8~9TeMF#kL&>J479E#NNB68_|%BIL3KL@?x zdCIv+62BLE9DmBZNEd${dfelbeUUOg2zuQ8ly#9ceiVA#^VI$#1-uP3g*yKdACA~E ziT4h|m<;{Cm6+r0!s&Ea!Lp14y0UsushVGP*B>Hs6AuLTx#7K$KCvkesNK zj5W%r{&;#6j*&;P(Hkd69cH|u*yxXEM)@%6C{Ojqv!g;8-zZP@$1|cR^QRe85CvEs zI1l<8)ewJ_p&od<#&uPe^8jBDY4cl^;@rX$A#J{^ikud_=u(pZsu(8+uLDUrxGKY` z#&_s%(dREPu;87dd4GJG-j*CEoVx3=8qY`r?_8S?#|!ngK%6uouH}^d3|FH2>QNmT0=<>cJ|gOv+e7*Z$>)Y~*0T$JOYpZY52+{QHc!rO6i#{W?s;w# zr#0K$w^sNSW$SXDG68&U9tWGf*Y~RM7V4SHdFq7hbL%*b*{6Nq3g4sRUA|K$WS(2b zsmwm?`%u_|+Hmchd-nUb@jRLu7Q=EW_m=*ABWnWie4ywRKo9ZN+Xtkm` z`>1cGuova;a);t1lW4J`G<(1Aufl57kjovalU$&lQ7`0V4(RxLF_DSE@!nY`*%Os^$CeboZKF)Y$@2uS^Se(;J&?(D5(#z7% zx%%OE!S8a<;r!hEJf5P`$O7{fo7r!D27UMYe(5WRI~M*`6c10!ZG|POteoj6f z>SBsFb#u-ZNUoIh^%nWV%kj=v1KnE;M+yCq7GL@xOCAFvIJg^b1pcMn=H18 zj8luVU(ubFoh26G`bvsAaEd6;LS~=EADOkt=st%(GLj`X4OgsZzxLS{5|LAG?Rm-4 zo2D!KXSe%6g*r&ATPj@u*fdz#=o>05M+wsfs1^S{EJ~OuFj^t@b)bY90{xZnzBH6D zOR$s{*|s9yFZ`c7GT!Ll0)MYK;(kB-kk%)yVs*52;MvMn+KP7nHd?1*#N&R}A(gw@ z-YLaWXoW!aN-K|FGG8m*Rr9`3yccZ}7*g5j@k`e0y?3>|lZq8Z=Sv+bFM52*e64&} z!#loM8@)g9O697@m#o(+cXhneip9_pfl`(KiuC*w=lMI$^LLm>Ez4r>Y0dtGVi`0n zP_Oc!$Bj%2<^-g3f2CLftr2KbdCr6CN_Bsi3C)Rgqk6u}jr4$snnK2CDq4pT9C!|W zKok?YTwD;~?C~!94=r6uU1eQ`PcS8EZ-;)xV*kL)j77Ii`O~)EQr>#rdvjqguKpqY zcUR~|9+KgOP6~8FZwIV1HC^l}EB5_};uFPP=&)iGIuX5z_6$r$OQNr$-O;@P?Jk?p zPj>w>#n;f)0qt&^>YuFo)s(Q_=KZ#4v0`}t@nUH41@z}Y??BUv6Lg}IqN`S}gZw4C1>i_g4Ku)# zneVDab5OkGv;Y{P)?5qFXZpF`&UH|@us6?=#uk-_{h~7T7U}E z)b(U;v-~Cd1=*3`Y90g}V?J~}Noy8m6c(gL@@j4c*fM)6dKl+LK_TnP9_D#>Yo=_C zj3_yT9{~l{)!2;e8##5valx}jhj||NA^&FP&D@*WTQZ`Wkk%z>QANiwFupQ1yII3p z!Ww2R_lCOQ_95$L-p#B959L7Jk+vG`k(8S4Kv0D?en)c+eAaX!;)vM-WW;GCd4yTx zJR<&2Wr$D{UXe<@qPYfGI52YfpCHc_^)>n5b)KlMX^iYS3tlrmE3;rf@}uT%jY@zS z<9g+FW|&)@%g$bF@)fl;#}Uj~fOW1R)3CNUp#>KS3Uw)`s+YkCVNBkybC z1C|(*xVD0=J!^;s)JSiQe?U1yRQr)%vtIz!U>UpQEz1S7nhwUlYd>j>-K$%+3)mXr z?#59@TlzY-QH2xcmZbJgx$zh$440(!O`*}2GwGJ3Q3nk<-Dntfl=FM#QO_jlI;jxf z#*nBbMqAFh^SE@>6V5`#8}|n}K{|C}A-G15s65Wi3TyZ1>`~1+$q=8$pr|^|c*PU< z=$ujQI*Aa^M!%@roaTy4?q9P_gmRES}{`N2OEz^J?6|+ymG&l zW1|xzHtyEw9!29^uP|{B&3>vGBRTHfcr@w(XSAZuJv8U3c8tWhN271lEl%WcB#&zoTt8@4ZmET-ndc1VKz@$b&$HS~ZviP@s;|7iO!|fi9d6%VL6$H`O6+-ry zP%iJS1ANmQPi#EYC>N!|=^yUrm{uOGNTKa@YoV`;YDp%Ud)=>bl&q9}aer~-8;zol zaUNEl^lZtv4EwfsJf_hxDxUMb@`Gnm`a1X@AGelA22(z!X(=Cu9*Da#L)QsrQxrPx48O($vtg|E2!0;dEen%3|kyA ze^R_n_lnW#=zPrZd&V;yv0zfH4Ru9-b#VUVa0??Ix0F9A(WZaJY;|%zWq6yhfmyAF_kHXw)3oav)lul_1)9VLnyUBT^o<3 zg=MBH?l@gB*pghO&7YqCG+#1oG~D41storKD(sCuNk*OzZY?^w=}~X zM%dePj&84d!F(=apf@=E5m+RgM$&aveax>%821KeJc1IGd(P6WRin*EBWioc(jP$x zu%4gks`OyGiE6B>9zB6xr~0$J7)q=wvxu^c$X4#kE+QAvBYOG383H{<^}YEa%pvpF z7-tsgrz*l?Ctr!6-(yN2!dxbt`bl(8CBn}9glZDz5A!(8geo$d{79usBy16|J!14M z)pCL+yYGb^efou6W>HR2L99|&PGEWfUUJKy+T~+yo4&Do@_h+j73LOqCDBb_7YOv73XF>D+k1Er`W-rm7;LECqh0Wdz z>i54^oiA)Yu(0?3`>I1#fI~rKcr_sEB5V2eEN08YqLuH5aK@N z$U#HIZypPZ_gkvI7d87Yh~3Yr(k{Aka6#sNb=94sD}DW(Vr&3I0Ix9fb5v@5q=l`ZQPfL)4fOQaOd{h<>;ucCS5IN4tnLGoxB(fr~ z9B~mpPaamQlyf^qJ`el=xdLCs&tDzZs06V;1H<8~?xGf&&a{u{KVJ$ik5?sQR3m`w z0CEJd3*rH%<5jQntl73A&6n<>nuXaLp~+788vy*HKTk`Obs%~O0U4tS- zWwH=_8NP@gyV{@;0b+-dQ-IqLMYty3j!aUW2C@Um1Yj@34_=11yGl}@mS-O)UjTlF zn8Huso5&=!X<7DBay0NQM3i*FH(e!ZAg;pU6d*K{UIDKGs%Pf^1TO{d&CL4CnAOQ3G2de|8(7 zmr9x&McQ;PQtZJOkaKPWd8N|kW|7X_0*WM94!PIOm>vvxgy#BCUVv$+c6zY*qkWME z-LEO9!7q{5amEF~VvmqqBT7B8J)7^q)u0fOL2kA5V97^@k=ES{6l?I5TP-zM?vYKT zR(CUnh-%LY20e0)ln|Xq(m>j{C4-hz{+qJFm8R5zLs6-eF{x!#_fv`v>M2eDSU%jn zPSFBmaf_5OnMan9D%}q$AHXfBb(ck|$jG#f)af3Abhs?i#z2p-+!9JSLeWK&Vh4=H zaKYV`lrC@%D&IwuYA3rK-Axqf3z~U$QnAKdyY6Mm6e9IsS_g=NMf$l3WMVD2L;tJa z5e`ms7bq;pcVodSs9kCkAl86u(fx^H1U`m*=q8X`CjN)Bo}MT)$VSiY=bvY+AdC%1mH4;3+ZN3dcg&#J1$Pt1leUPu3GnF z%4hHpD$J#ok|48e@&B0?k+OjRsw=@L=(Lp$SBxmxKmesfyx>bZj_IEFOeJQelpT_r-i`5L|4h2=6 z^Lkel2mgfczgnze06G*_mF%@yBnwx@8-DDSEWGXN5!n5`hhnN6 zye<_@dR&pduYD+`O3G^q`M0sLs{MM~E3fD#+}izY_K4pu!Nu6OS$MeTCPa zUNJ?^9%pk_WnNeR<8Y*8k3jCj4xOno^*UM9jJV{vkTC+guX2c3_V_jL}X zRhbpFyQ!yJfqwzN{;3M#g)7QND0r%8SV4bLdi_=;H>A-1!|G_qZE61^{u*DUQle?<%ddVvd zZsM^8`)|U>s>xe3pmuFEvLd(-3<0ABn((7NUEJZfP-!6v8#DIK(zCK-L zyQGbH+v3m%XoJs+4|B--kTlW$|lf74jD^hhH;JA&-06{F*h3O!RU-l&*wy z_cA|}S)6@Q`itr7{Z-puph9irezz<1Rlpa6*OpbEz07v8fAxPU{0nu)Wsp)PV{aL^ zceb|gUEyQYXO}^0nVh|Coc3&M-)7+tl!}Wf&;*@89?|W1D0QJ@-RqnZ7oXPBX z-=)H@$c{XLV%+}Otv-dqDfhpL+vfh+jUo+{t?T*R3Hj&tadNZQ`*h&X+|K6-5F+$e zQ1~91MxRjJgw6UF{mtNZ<)5SC^k)bAP8PNx<8j~fCnTQh$C=Ge_N5eJJ$J>Qo5f*g zcl*MTX;+>0B*ItVv#dT`VGa_6)6RDiPu#bHo~;+bsolN*LFLkN1p8M2v(!E;TqweG zoBFeVim;Nu>z!ODg+zxH`PmzNj|)~cAee+Ap8Q7Cl(7r7HrySl#jh0jpJoK}fM{T0*M4}D36 z8^|TxWI^(tP5268wyV#xumGupbIwl|-`uxiF#A{EnZhCD-z@EKk|v^PFZ+%a)+57l z?fJ$LXNgl~ta9rvD1jg?ay6Y>Yl0_($a_ z&p$JMh3TqzpD%VoCkC!m&UzZ89|GS6dq)%_(e8m^ZU)(hG)1{)C|WnryRz8BAnVZH zyPDpK#j(?OPmzej-Y3kGLml zh(O#G(V;{2idNcd@LfoM5_*aG-^iP@%P&`7tAD~3+n{wS8{Icm?`rkyqsv8Y?Jwyo zYTlm3e(2kQ%@r5jzhuAGx-0GNUmS*R3*4$m&R>!A4lhm><+IyGmFUxZ`dx}$(OH4n z74q(C*%q3o0sUUZf#`5%a@LATe^jwKnh@AiN%#DxBmFm>OLf_VoQC%Mqpt;~{;!x$ zkhx;iPegYx1sQ*+e)2EYMf(I^uQc{Np7DohF4i9|>P-I!xJwJLsSwcqfSiW)|6FW> z4h?)-dCqeabXvOKulOXoC2+lB(fwV{A3C4*^t%@0&^dwm6`Jn$*>Rem0R0Dw52LFC z2P?|l?Q`O^KZ*Cd7yF<~0{=f?b_gw=OF>rlp=EP(8I|*Bsa$Gg+Dy z&oE8|tmH=8Yjy&*nW@w*<^PGwb$IMZt%Zt;*@S>zMm|ofU`uOZqXrhB&)7}hLM`kY zDHn0NUAlwhCBp@)kuNot0cRM4ZnyIsq%WB+IE`%9$OWh{Ox<=Q*N%-$1*CcINQi#? z%4>WAN*JcNlljf!mvk2lM>+z89w+mfr7oE)IE<{-2rJIJ?5JEqE$EHBstFBv#`qh~ zZRsp1j@+(k35aKYcl|(X23^7~h>c{4p6wu}w(I`fEAnf03o;|uYN`YLnRi_G)2=A4 zIW0(z&}vEo%$Q-WZMjzz)*KcTMsC$S3m`J@1xOx&9CiCGQ2B`RQQVtAg(I*xZchTW zj;OrBtp!SqfUVu~0%0RoBaSukflHN>o+;^D;5EnsVMM>iKd`*g*)t_WD#W32HA-#R zf^pjICH=aji6~IrxEN(W9LM9fw24`WbE6}Es{0@R_$eWG3r=Q7*q zLE?4$LJS&TN1Yz-XZ(gUDhLv*Lyj9o)ic_%*B!<+qKJ&6ZV%`|l68h5){P5M*29x- z52!(Mbv7Ydjm=R+W?NPesLnY=LKKZtXIQ%>fxe|Q_C)y(-(*vTncu5LJl znL-(r5`nCzQ98^gB7`M^SL;z)B6#(cGAdJN8KTnoFzUl_Gjq-5D|J+^&Nf7+afs9I z@|89Us>6<#M1@x>xM)yBOP!c;aARdu*Kjs7&qaf3Bl|77kvQD$u90UW6=OVZ*SH)t zRhd#?BNl@k2Ss5SzHZwxF&5)PQHO``F??~i@@*ty^u~=F-$h**o@2bi-70vxCk8Q& zYz!Yxb>CL_7T<^+-pkyfJ_W=Wj9WB*iZU7wV$`{9%Y7p@zKMz+9%aGTz;BpwNFy_T6!`?QAr#y-DNkE&y70cDR zd6VH#Mq2u$Y@78~jtIhG-H5bZ^DB<4{=-=JziHf#obLPXUP;pQ7QfJJo*{NkXw14vvi8-mecCyyxgz~!^}-6 zxpQoFYBgtQcOhQ^R;TD^l z-u@rsD!fsC*LlmZNYH_QCBLN9&@>2iyinVimmKt$+htwOVzYkLN5^PI;!K?}B$A zTZC2pd4EoMCDt=7L(Id0zN)H*v4}jy?xPn;qKrIj=!>fMn7GJUc3)nRG|J4wnJ!S3 z#K=Y}vC;HE02AHgqxu4qOK7DBiZl0l7|>s;%wE3cW|w z7jrYxsw*m=BhJ+Akyfq4gba%{P}I==B)W->F`} z%ta1#l@>hOLqPN(>EW2v7kq`8csdrdmmr`%0uT&(Ea;z9jW9uxwQRoJ43YjuH5xM- zS=$v{ung*vqNkbLM4n@h(H}_?jCyS7-&BPWi=AWCM{)$)9&Ng42@$yNzDgEhQ*TI4tVwR|%^#%q?k7FK3{@gW?e?!7j|7X*IiPA*OkI1>Mfr8_E z9>ae|46sYxF|^2b@^Sgcc5^RFbum7X*V)E-$E6+{|7<_7QmTwGifqr^G@OerttYf+ zZ0h~2JJ4Tx6!Rc5sH-;rxWo^Wft#gIFwuljRxNGQX3nv64fB;?(>q<-lC22_`f$HT|9JW9zw`(ijYueU7$i{-r!IVUrcAdz7E`C9G z&TyauBkVbm_gw0N$(+N$TB-1-^PK{f3#d80fmfxWm}imayC(8Cb>`AV|6w;LGjOf68sks6!*Ze}D*kYqlN_LxmSD^XVXW5N zM1>y?a|#2uN}pkfgnJmtgOJ1QVsqt#%7?o~%oPs8{$e+pYaLYit83L27pV<9*zeyXJ1v%FWf+ZVdBbC{P^rL_W=uw~G7Y(_DHu_QV2m68yYF`JRZs?Ev zt;?|BsMrJKs8MizWLx%{!>C3uG4d$;cluGu2Zlk`wF|-44U_EOsYm4=*aT_SHU|?4 zZCOV_51fM}YU3ZNM_RM5fWD^G_5}Mj+>EsDI-CDS{DJPMbZ}im2qA^?M(Qi7_Gz#V z;YrsP;OpVq^TgM_?LsHB2o&h#Y9Jv zLBZHaU-p(vw8iL9@ZpAgk-l9w^Q|SK^+t_r-vwW2n2UVXb+h2fo@m4%s!3Mp6vjY`#~iCAC^dz}76 zGTLa=ruJK~FydS1IQ5BKwC$*NZCmhm!#Y8$(}8jc_!Tn>sbvQDHslj-cREln$$qsO zRjYj*{JCL}aI&+Ra!KZ^#i(-agW$If4+$SSo2i%NzS;!I`gB4c?K4*MVI6v8WvunG z)8dh_vBpbQ+#@Gr9ivX!N61=LBbIkpbJiu5uiB$2wbCLYsU5Mu=St?9(pR<73$-d^ zKUH`672FncL|xWf92h&^@Hp~J*I@o_2}k|Qri&9}i48v@KX(lloZQm_zl>O9kGVI{ zB0I<@)V z-Wh9aNFr>ob~U%<7Td>m8ny{()E(vZJ&PG*Sq;(z5KB9EzkHJ2I&iUQjM>o9vn#b7 zy2u$LH1tLmbZHmtXsvII!5Z`5TR z0YuPYIp?OxZ`-ZQEM6O{Zty3Rvz%!uirY@>k|GRT(qKjiXSL_1C~P~dD=gj`d)7cC zR5wVTgM_lLKTF(*{Yoy$%1=|{U`mJq`r}#P1&NIJt>Ym%lbUfZ1}^>d563JMxoR6ft+Hl2;!JDSVNkWRpF~-FtUA|< zoe27zQr2VVOS;Lm>iQ-BFY#*KL20`>Qpij)I1)_E!au8&P@xa^(X1=1XMpzB7#<2`2(gUGUQQtFFMh0pP2Skm4Z0rfH9jKQEq*(W%XwatYo1JiavGX1EvD_Kk zLG7|OyKU0?jAo}jMKnXf3_{A7cDIK=)R)cC~kL^B_24_xmKBrue`D`($ zT=u~3E$QLRMCWtr1-Z{QezKmOkl1~iYM!jXSSwAf-cIvaV@-`-R&1=3rjCB6Of0fY zRiAaB>v`4%mCxFPDP_`jpjho`r=G;jA4;Fq1}~JUG=03+ z=dM@zw1220xFOU^lswXxw&ksQfd#?=PElNj}``Y?HiD zsb|LL?I%{6lu1V1_RMX=@6k>5Gwm7MdgpZ~`kRiD9&m%Y>heP+HcTdNHa#Il&y2F_ zXxld59h=rjUuSGOQ&gTI&Z8zaNK?Hr^!I>g2Inm&=9)}Mq1@E;_p;Bdzvnc?kg)6+ z+P3+5#|eKD_C-v=d$A46iTtM9B*&S{tZ%vR6`nbs2Tj~*Y9l4hth07BH{>STn|4Us zGpW>Vc)RbwiJ~SZsiS8{Y9n-l(?lTka`U^i3bwVrZ#2P3 z`rO_0ZPfRD6XhiRnO(Z0WW3>btBEg7mZUS>LH6xDN9lOe?@kk&O>!g^t|@y*a^u*< z6e+EDM*7iW^SfB`0W2B_y+%FjiY`lEQ|=cZG>tP0vWgnR_J36Od!<-(rUeiL{wnm~*QjL6RrSRc0H}j{)k@ zlRgPAc)2re^kd@n`@#%bUniXA^>csgGAcMGR*#%CN~q_yWp6l4Y9tW3N7)bP$0X|w z!>n5u60CWX><83ia`iT0TCL3q#F@6NW1xEHFp1XqWp%DKI|;Ou(%O^Y%e%?7?uyQT zD_*ZVDVu)wLVSInR(K+4Olwdx}KoLbME>|c`H+I8K%(Fw0=U3WWP(60CBq4lSp;Lom3nXGD!L5}EUA*j>yiN_Ot?W{CE0Nd! zLL<*sifBA(*SefAHJwsmD@H_4f)cP?U-q^P(PDBa;V|zW*SG6dzO4jNZ_>E+UBU(4 z9QRe%t%7HJh=@sKYdA0U#kRsyd@Gi>cV>tB3_vuPv}pa5V8jdJ*0HzcmWZuy5~6vd z+`6vNf(_85RBM`O4LOGWp8iadXf$cl`Yk~?{jKvo^_d*ec2c{wEn%CtKBLv?NQnn7 zVJ0E1%!FQE{><%8M{2z6lGUVI>*Ivayuq21oh_7jnI(%!<<oY z!esqBVaxlR)cje8m#v(%hB_^mjh!@xSQnO^oOH}O<(84Hs%9*ou9mELl_l-Tlve2k z(6aXQ{+^`F4W%Wu$qTJ2{EyXL{srY?SX8Q>V1R#|_n3R8Ybd{50;`{DDwyCW@_ukX zcMXY7+;qTG5dt>fok!z#ki+FW>~>%Bb$LGA61G`hxKxL6s=Z)^ugo*zc4P_-ccc0B zGaVU1y;NO6KmRE20ryx}eSWxv&_r;P|AZGk^OjXl6WZ)L^4EA@XKXvuR5}o;D8UAA zs+UNg0(2OpS_m=CZ%kfmWW^AFP@R(qVC)y*ENHgCp=lk$VxMp49`5oeEy1Ryg4xX?l zJg-A4&1Ba>u*MgDBz6i_(onm4f>-=d-ZL(-OLXf;XID{ho8Q8VpIKr}(K2>}?(E?9;MtOSny_~oVPsou17 zAy~91M-b@q{g=z9vAt=odt4ndR{?533+O3i-@(GGa3fcn%te4bFb+D4?DH+mft$HH zX9@t4Kv}2~5`8d$T!Ci!0A2udVXX%PGAs7E8f3l(oCb<+Xrj>m0T~rYmJy&H+Umh` zU}*q|&?Cs2g8^473|*}=7Xa44No37|09u8Ot5#++fCy{F1r$^`yGmrn%cw)GkO>7J zQ!;x1zQCJMD^!%hseWKy)cxYFf4FpC7=tK4Wq+V z4`6aXMrRU%?YbhYlKqphXz6MhFa=5W$7KA3WPt!!=s_f(`jZ7~2yhs94|)()>W9ht zNsncm`3`UaI0qd-mHIcN|Ab&6GsA(Yy8OJ4@tIiQUYOuO1NkQdmPO_#fDteVT8re< zJ`ywE0HT4T&{|ZmKM%x`%1o27fu2K-9c;MzlM%}%^BX`2S%i-rXrTRM%hJwl18f7= zVVZC|FB0V=h6TxF0(yb@urj#a0aETqE0$X3W58$NAnXLZ$%{n&Xu(p>d;oY0d zHyt3+KH9kEy1>CQ`^0a!AOd8p#BX=PF*3&Dw>l9d87J{_I2;dv|;A5zWHTa2efPRE2dxD$@ z`~jUq4fu=Ne((qcn@x5H(xC15V0wey^vl0Pf6(hlW8dKH2IB~O_R8OG3$)#hZ#W%I zu7`;>j`bpR+5P0Bzz5JERIOid7SDuzll%l24HMM>efT!hj^s7qSC|bvxugLRfnsj} zr}WPq93wXvL|C%tM1{amXsXLtZiDr7jwl6)MV|BFn@2dZ{ef8BbN*u)JWF;y`8LoI zCi;o;9?NTR6j?HN$ZfzR*g8T`#*<^WlXrmIu+#&5<>@`_3{enJ8m5TQ^tPju>_q-d z5t#|>&=V;-p={3IDh)IrrRmStn%*G8fcnr~7d~owAG;i=58FLxca>x~ZN>gV7QJYp zqSvRds0?U2?ZnyeOr{;!Ya*@ZJX}yhLQU(jUy(zB&!D2mmLFedT9JL5+yab;eMe0AG!>Ar(_-u_ zk%0q(X(ODx6X-m+6wA@ODMT=Py>_QBZE(2p*u^q{xuM%WZKiP#} z$b(E1*!pCDnR1A;ezGed(1EdvSEE=!Pb2#eimvGz1==tc@%EHB=qIE|hR;Ep1v)bX zcu9&ZR2gY_@CdmE&GEs%pya~Z4j##@*%xTQc#S_z>4*M?GW0)^QG?_d;p?Go9;*%< z4LlKg6#4tXBUft-1Fabgcx%ce^7jKrXf-y0T8w5q5!Qw~Qc&X@D8Y!Qsza@jR|@7+ z7(IAj%1x+f1n4)CS);Obshlqd`b%&5e7QL zG2R3U$-JF+B>wK{CQAsk)+Lr11!KqEQIfMdbm-gq?&pdtIc?TX2*a5Abg(4`CnR%?B>h z=4}FVz2H#lKI9EA#38B`@^&BGf@+Ms)rW|qIw8x^a9JvnQHn-*qndFSOXjsXDGX^m zh^h_QuXn|5wRm2QbAh4K4X#FsO7j_ZC{e#=p!+!GG4u>-P!w~w(~mXfPIMYk8v^M$w0gBD$#MecW=2K1_Jf>1u+Z$iDj0ZAm!; z9YWsmb;?OFU3TJbcFR#zpk~P3tNdf!DT?SgU{-?pa(TB8r37k*3iE5tOwe66v3Oohfn`F6`P+-st4jz6p%;p~%~&v#mu1tYIhl_P%(MvYPxBCm}hpHj6VOU6*^R0(dO9WtK^<63bYyW^=#kSYCC z7eOH(vP|IWcl%SzAz1xXSMdW5zpn066WKzikbfTh_3A#O12(@d?z8_t%)R+P)cxb{ zf3>1SV;^IgVKA~?rtBdM2BEP=AsI`AD6*?DQ?{6`q{LuKBh}SJ+2X1u%^Et%JEBY4s zkop-nE{?9j5rIEM`%}`;+$%hF@-w(9rB+>l=XsJ>;L2z#^(izrhknpWp8N>@72QZ# zhE6$g^XMi{s^s@hEzl_!ZXw;8Qv?qpi9>;}F&q0QXFs_d{u+ISk`DztA#-_A#W**jrqe6ZGUq`P{l%T-RA)EIn2Sl!f zzeN{NN}y&=@wvQ195DGQd;;A?ISFk*$LH{n99i-M_$Txu$`@#ZQ+yuJ*eMqU1v$Zi zRVWPObV%wB3u@@3D|MR%i*q_GRR)KOIjNCv!eLJ84R-NGJQYqlSp+WWq(VBZnQXgA z<$*cp$?|j?e{(LEa^rGsK0Q=T@8B6fbceIQF_%fXkyTqlA6L^eIg^a;aPha|E>e6h z)#B)~Y7hSey4AY%e;s%Z-RNYzkGYFFMx@42eViLXQx0O=cHR9j|IbH3YUBHWjjJyP zjZz2u-q$Cbn;GqW{jhN07bfgVy~v31tLXgHKj&ffuIFx#s^kucKR1in`{hRc!*eIb zRIUu{ey#^38Y}h6=PX7OU(MwY?0T*fWAbIb-tt`Ps7gWV&KQF)gZ1g>)<;)f&lOty z@f$TJGAi*(Ip1REMZ|n}{p)jA#|r*d&av2Y@zA`&mnZdO=iZLF{SCa>h+Ra^8`gWC zD|~Y&*J9sA^Lgr&xh6*jRjs#)tL9L_Z{v_Iy8e7>{lZwrrFGc6W4-EF25wz@KD@qcEaURJ z#=LKR&{#&+y59W7`k}GknU8zD^_UR1t}`E7-#R9|yskALRG&E}%vv{?&#d2ioe*bv zQq|<|eR1kv6ii;a#vS~k^!#tVIGw}a@!`Y8NphvvCWd>yC%zg0$I3Sc@DpDTD91`R zTk=<44M1X5o74F#uLo2Y{%AH&O5jhA^t_F_bP*b8*PQiTam1+2LSbQlvu2VjU*b*F zl}}2KcLlmM`y@T&OT3QC`Xu*QIWVM{R z)3%bou`CTt9zt7%`^O%znee{n$5TQF)y2B7mNXJ)BN8}(hK^{P5k+nP4fTAV*=Xye3h4} zG7E;yZ~3Kvr%EkoH&^jXU#7|}m^DxE1OHA1Eod|s@dIC`$}Si+f8r1RohrSc*ZiD6 z_%c;~!Ls=$-|Fvmfc^%IRjgjF%PbuH9Tu%iE$B2q=C{0Dms_xCUf^f^y$)K?YA)kv zyj+)EFlip*3;$l1UNC5GR4ce(PT0qt&L7g@RTQVd-k>$ilT&Nny+C`p80I<{uf#8;$>j z9oG8+2!D|B`WJ9uoe!F|w-u-Ep+=mFhL?-I=;V(+&RbXv6(g zS$?LtP-Y{9Up4Cfx~#x@N2aDwccX9h{P&5`_pi$eTmJxHcxoGC-wWRc<+tw4)D|K) zq`w!9J^ni=CsR%6wEEz??-=lqJwnBey49KQpT=VU9?EVN%RDHQ+jzJ-@csE%S#GAH zaB4MtxGX1APT03PF{etiB(%&f8KFF0C32w`Oli0ZG;WH6aKroLCJS{v8>8S{)kB%=;Y( zSr2bzZ%GT^uL8iJ+%1T3VKsAjD`!hyI0S?_TX{fsv-Le7O>*e1=x*dR)o#J$TV4-DBNpN zpwXof;rOpo+725>oZHSjVvYMRXiPf%>kduC#vS)stN;r1l5W!^ZGvzaJ2%C4?^kjH zX!b{NHaoM#uIv}rFuiq3;pI6TXs5cE0|*##+5LIrl+w#2oY+ojF-_1>P17r<_Pl(u z(^Kpo=&06Bn?EV1RQ`G?d%Zq*@qAKvD?BQUXqo|5TQvPrpPD`{D zo|HR$1{W?`s*zMMoQ#tf4TLA<42R-;MFTaGt_>&POhgCaNqNK3xQn8L8o$FQNl`2K zYW8pl&Rx_>V>N&HJkCJ01-|+pInipta4Jq!Gy}exGaUY3LmwghcgB+`D%1deS2K6& zUv?ap-nkQIgW4|*->GfmK$Mo*sbOO;S}yt@|7^cf9C5>2NYC5W>x{(Uo22J$fOqjg ze5y3?7HTk(fnS$aIdc5!U;4q8uh#JU0EWp~bkcqx2Wi8LNUPZX%0WiT@$W=$OFx4G zQpjI9NboNug48qhU-8FZ>VOKN3m+ibBn4dax&b$_S|cNP$Nej6v#!7mrvV^A5aM_I z=AfK|jzC|%#M_Bpl~Qs2FY$+?bOB7s#kAnu;gOxMa_|%&>`<{YC44{rih=(iS|!~D zEpal%&eu*XMuV`Dz@mBkC(vicXRO!j2xi zmUOA@zrzlQsEJgJ+LxpCgmXH;@oNrWB~|K>WIh7Mhf9^(CmD~J;U}a@9h0m^cH!lv z0#QkZz?Q5?D$pUx?AL5eD$qX3Xv7HrNh;7W$@15JOllC7bZ|ru|6FR&A<1Gy8Glh~ z&_2mz#1j8gYS1ys8kmPkN?D;+{~S@r7fM+{kzs9K^quvT|HKJOaoc zfEa5P`AhsD)#9*fJ_5nVO10Sk&ZHKkS{zrceyzQvGEl3ABU<<}sSJlzvk`fGkW_~K zs?mrEen=|Aan*7}5^pUfM6DhiF~GM<2_1kp5LJApl+b?FWW*W|ykt49TK`Xp3-wR+ zPO-hO$bYHf(5T%cCoHHBC4spXp;d7wClS_vJ;J2oYt9O^pAunE@giph2J}9yD>ic^ zpw)I>MfX)O=@q+CB2q?h^X&T|Oh`pmjsz^y_9J!jSVb7>U5@|$I(Vf0$6J$sRv4qA zbNWGbTGK~>RlhVQyh0xpkkbfC(3-aSNSQoWp`M)r0%q%WAB*m*VlpeXp&X@@?GF(n z_IIDEfT8Si3N#fR4wXdg>_%5$P?b4t`>$yzIvy&G*xrq*a6(aX3ShTvFX(oARh&V6 z$O+s34t~r2(Cr9`?voYCsHGga{d#bJ)CHw(J}NKg#(q5we}@a(yW=ZlQ93zpaPyo9 z+3v^+N{$;07^~liQ0`8t*oOkDtRSG6YFm3f0@9sW;hE#6ZhmJ{yy9R^mzw$QNu`SO zIbG`JWs}=0_U7oTHQt<*s&L8CS8ptt+*6^G^GL1n)}&%ZRL&#y#?r~%6_A`5wZ`H} zxr!4xG3t$XCM7B?a^}?+O0`QMQl!s`daCvNQG)nhT2;3ql~pPFyU4O@*bdwsY-I;fdr^+7_IwT+<}@4Xg=JnS0tcK7l0<3Obr5#=pxd0tLCH z?c!f&`GSI6)AsS}Sf4;a?rA&t*H|W?p`&Sg`43soK|^k7BK$kRyb$18O7dT@eu9SF zH~!#fu_Qs(M>jC!eJj#33>9^DY*SFy@KnQj}q_(iNBP^Rm~KK^so5GWH6 zGw};q)}XDUzy$Cys};26wjl!KLYbf~*9}R2D{Bk1RrpzBB|Clek}13(J7g4Zs?n8w zeiT;^e}smDa%@hMkHd{~>^#)_ahNDLreH-U8e4mqq+8Gr0Chrv44t*Pz0fq!*MAuhwsN_e8=K==!%H9!V3<;X3={=p%^9ZBMFFba7S zE6O=Wu5`LW64wIT0I`q^CxUDU4{>TEE3MY-c3%=J$j-=!mf0%QctO0j%xLKp zEjbUZui1d-d5}BM`dSS*o-_FY`jKYC6`ntN2K`8@;WE#Gd>aiI90@!h@&GzUt09Z$ zMs7mSYc^cv1(Mg%^IFN5csAs#Xcf(5JP$*Di&oJ}#_^oURp?U9i=@XQ|BPlQdq$W=Zv`x{T3Z)lO0&P+>ro8FClt8-_Jz%8zi86R3MSaSZ zZbBKfP0^W(raz|)+N5Yr1<)^22JKP|rqby@DON|;pi_2qNs5*28e%GhUP!UBS%Xh` z(%mUmc5Av*=jrb$El1YW0D`swrNwsb06@=vOlh%M)0{d%kEH;kQvIn^`T`~6$Qlgb zxv5ezY}d4>!s%s{44XBLDPMXJCBtq_Z|Wj_h$1|)rat9Px26bf*L0?0>8%u@&6?I! z5IvJ3v|BTn%A{|pCpcMplpTWZb5iHtJOp!fI>;@lh3Yx!AlaxeVlh^(*!3H+hn=W4 zP<&RN8Nf+YAGmW?l4;3VQ5(2@R+X8~Sy3M-oBe}nj!oc9lX|qGjwC|;?3h_>MUs)G z#m(9MOiipSM?xdYp|_-Fm!AvM2m6pCp&n(|d!t6#FO?~QRpywJ5;SLQd#~3({4O$8 zu$CMNEel+Yyk9KS3Y*SZBmK~V97%-tVSqpD-K2e*5L;vFYy>kH`W6*G`9^%Faof?j?CiEaTc$ns zElJt^+0Cx9iS@+^u;Vf&CCYFZS}$}o+vQJh}VL#=@$&q!yb`@)!d z*b|&*q-ZUR>$8WLA2?l53(Bl6^C_nbW>GYIn7PE!hyG)l)rU1vXOYYf&Le0OdG-MF z0p}5{>Bg)%bA}TGZ6eKTGH-KYU`^L&jhO?Sd1w=5R-f6#nTItM%~~j5)yxgr<^aHJC-5Kv?SaStI5r&LA|EGONdY z&KZQI7R_2Re{!s#>%>`gW+BH4woaWr$b8Rffv%Hhb(oJiEwJ?)vlh$+P6mKao7G~L zaWY`**Jn+bLmVM=oib~{Y~=`H>qWEH%q>y_R;Acojz|DlZAWhq?_$AzZa&28SXnck znhD!AKJSa>MRpX=g0yh7Wv}27uZgta)*>P(<)xAqTw5dsExdKof_ugv$;yk3ydUft ziV4)3*bEcc@UF2T6xE{{qRG;W_jp&yChDoq5w_qwc&*tYS#q(Ica@@QGnm(GlB~Me!rNr8QzW6* z_;YcDr_OdH1KUs*43Od??Ptz747p2)nl*iB@rwlcL6Yl}rmjXOwk3ey;4q(WA zqQpXn&@DM>2L*DA4}p2?b4r7CUMJ2C@&b|Z4tLzgsOrqc0hdL7cEJ)-D37(O?S5E zV*X(*1GdXz?)E(x1sP3(eXysgj8X0#MB=^AgwwvcUlEB_pR-Q8=e|Gy7Wk{DgK{?! zD^;eKDkSU!a#Lh}Xe%C5LU$8Kp}7t+*R&<>nc^$N>^*bsv~OV!RYllzlPhHHqjFy( z`j6G#jd1KPt=M7jnCm8UN4xRZg}aju-FGTP?A-w)ZUJr5zWa8Cq#2PYbF}KFjUnZ<+?%txW-{lszhOG7jvskKJPmpiC-c@*_ug^aC)Cs6H)1j!+CIl> z=%ysVrRy#8K-=w}DdF_KH~zT^GBeu7$Ij9}qn;F>-uuQUH(F*u+wHFDwb2W?2N7L# z)4b8Mx#tmGcTEdN({lGB^y&54qo;FS5c+rP^GD-zbr6r}^|_;wxlxEmck2sAQ*t4Q z78l3BhP`R6wKN^>- zg(#&b<&K`o4M&vTO)3~o&Xq?5(vxyVLvwu*fp?RxjV9!pAO`74d85&}7ZHPZlL|-E zb0ra0^wsRqkX(0!)!o(n(et?mh!*;4?r2mlz?i?gS}>ZLtBS~=ujY(~=LR7%?yg=N zy_jo_5YkukMq_g`5yHExg`=4=`UJ-j&z&+bdlbkME~9PlK=PE4(Xh7{yNlT8OyO44 zYAd%Zj=NDUJm+m2bjD+-O`h{M4O-)Y)Kt%Ty9R^t4C=b4$`QY-O#M*H_BDV+C=4vrc`vOr!B&YBXZN<5}fd_rA+a^-!($u3uwk zkHpGZx4tZ<*7yk3@z_emtShj5HVCzD7gBd13h9S)0gMH-{pGJ2w1mZ&2~Pk# zh;GPUG;JT#miN>zKk3|%zqqq~oT`KH^(aLrON}3B@1bgWmf8Z~LA`PF_8(LT!o(w{ z;>*znLcGqnar+##%A?dF*?b&K4fiOuPc|MmqfU5~Iwo6<@1n|k1fr4+$2F)$9)S+Y zX5+F{UynfhWTRh8c#lBGWXth=R1=RuRPw=bJ?e9hL5E}uVEum4W6(a?WZaVa(__#v z*?N2jRno%>CHQk(om%K&jUS}G_povl93J0GHSho??Z|N*>SK=< z2Z8xGgc|G7VlOZrx1cU~v^WZ^#zm;A9vLWs;kXvH%p=1=U^XsK4f4pa7Z{D3P=`D+ z90iu+l2mICAxdy?+<@BZA#@N}jH^;JJ%siGlW}Y6mWR+$VC`JQtz6dL(N08Gd*Y4|1p_o1|3GZu>TGe+LiRJy*BTcHmGFE8)lt_c>7mSti{-Q|h z>P?0Ot=i7Js9ME4y?VEoh=&o~Ji8j?9a5dekSLF|?V(N|s}A#e$M8Q^M~}4cxi$S~ zwXs(;qaRaOHGQOqR4wftUajvHz-YuIR88CTP^QmStKUz-{J1x5*Hcuj>YZ7=&CAh4 z+1`j4xxeRBHO$M7QE*Su!Kfs1XAim><5kIMJ9h1^qN7o19sQQQ(d|fyo|DzdUP}zQV|sLdRDx0u-z$%C1BVT_5s*Kb>QJrdHBSnbJht2DneEna<)(N$r7 zds?abJfo}9yli@V^s2D$QZ0lDVyF= zEy=K|Si3nbUG2`Ws$46X-dkbw){3X)tAiLBm1}pV zC9AC&!iu%q)2h{(3}NM(>UEcKjKFJ~H(D0+#!JlG`8sCYYnQi^w-_D|I~pu@!n8s& zQOY7Ofc5CK$&;qfcC*?mQmJ|Atd`T(Pg+fnd;}%fTVjF^?H9?tG79ZRACeQvvqMRD zdnp~bmGiBF5TWg#(>wZSw?nP$94ZySQbum*=*}l6Yxe8B$r*(|ajucm%JXC? zKJlrMo_VwT3FfTS?Kg5yyn$898^-9NxJFaE674Rj@VxV^hS9@uE%irEBJ`!?^ITYW zN0D(2^|mLqA4&P`>&2MG3J9-6q ziO_+J4-)6ztM*@xU3IZ2NZRTy@O-pYtNyQrNXMEFp9;>o-&YQ5ev+uL$w>Tc*^rnm z^ziC8+$4*0sJfgRN({|8_?+&X+T4LT%{l!!*qrv9#+=@q`kc<3)|`Pdw1+h9{DZ#c zv1958qx=H#BRW!7Syx%jh;+;Os`ESgH;=uHyC0n+^^`U1Nd3-p^c4>gM&(DRY25@; zqw`n#yoV&C>O%bm{708*y&t4C=S{kh`^OY|3UP*Z2(75Qk95V^(d9LLge!W6e#lu- z?;5Gid5q5I?mSa*$my1@vbrm&;QBr15A-Rn_?df$TyE*TBYksTq6@g&&y?4q&E3oc z{dM(7H=H}@()4leo-=nZR9qm}I{WM0(Y>SgkksouL;u0ueWtS3sb4pm^vrpHKF4Kn z&v2)>U~VzjkK4yJ<2G=UxdQGkE`e*$eZ$q@-UY;t+U}>Tw@(qq%cjW$qnr0QW1`lKX<2&fVnh;AU~{xUaeD+)8c;cZ@5|rEopDAGim( zPr2v0OWeKOJgy73gR8@Rz>VV0a3S2=+!NdZt_8P=o6241ig2%T9l3A0THGpbICp|8 z&n@EmazAlRxX-y4xj(s*+(NE9_dVBu`uAQOw8T+O!(oz)15 z1+TL|`?h5uSBl~;<(ng?+wW^tw&d?dN>ICxwb>vQIT5;Jr@&X)5o(o;e7n#?l|DUpI7XO9D${ zk5Ubt+OXia?3-$1$H9PHo?;l#CJsIr+DSG%(WV4GAKFPV3~JjB-W#e*jw{I@3)Q{x z1l8sN?!cBnLmKjBkv{FFm^LS*59hev7#3W`KCT|}Fdr}=cYKD1ROY)PjXOT8g*?cQ zMn3B>^=>9@ZE;1Afm=@@YGdEG^>W^5sLD;bWoT$Lu8U zwkTv^5&ufQNocdiSTuNno#fk=iX1HBU(S~dO@ohxfXmpcUTxt>t0F!j-yk$iV=M|h z#9sAjyNGNl;%DWnhHk*e!ojWVRqwV~WJVGHYQA;ohQ?Sdc#FO2+m?wGYQ4Tb!ucM$ z6KM-38)utQ~#&fx1u6Ay3PgMFZ$;naqjBcqTP$qi3C1F-W4&YKiBb$qe= zR*L*dZg}3Aj-A&zZ(Y3Jarj7>a&bavFU2n?Y)7$3`&q;iwD=m<_(t+yopt~gzt8Ji zIr28=to~C%=MCfu&RM;sKZ~QW&#w2mg{2lNV-u-;PGRB20ocUreXd~_i!HG$)a3e3 zb?gec??jktaeC+qr7!5)AH|OChn>G2DbB)5+yGGf$BG?0lr+!RcY=_P?MfQwYdZ~* zZ`+l$&Np|8A+_2|;OCj0Ay_w3a!n@#S;Z;QKYyjO7#Yqf(K}zz*?^qjlo*`9+(|&n za}K+G<0IuePO6<}bcQ0`i47;e?J3p?Ek!KBiyvSg-AHD3dSV}u8hpN)7te&o5F0Sx zG>dPC#*iAkzZn+~gq9vyI#gWMaoFx#G4ee*`B~?AY^l!D;o^yo<|E$-NCR^6lTH_G z;DIG%aZyLJ?YHa5$K>R?&M0i4&XRfYr;cWuZ`Y8q)GJS-|Y{#kL$+GAe%Dk!JVpHgbq8c-DCl+oH2%S-jA(apc=oq%~Raq|+UnabW3S zaaqTP?YAOiD_Kz28H>%(S+Xb|>e#UPR*1|b3!ZicVTA{lOp04OHtfEYA-Bka=bf2Y zq0W+Z@fKyOeHpuk+)-TKi4M~}NGfjc#C}8WExz07EN9_W7|KS5`Z3S?71Z3Sxr3e4 zjgt3kYVUXLooB8P>#AyAVCVFrRQ=Z5``vqmObMd5qfda}4{T3S&yn8COvQF{w2!*q zwNPclzW5AN3ZF#S8skNQCTqC@K_J%K(Ve#)T<S8q4-3P({t z3SUEFI&c*AqVj8=Fxxna22r@09Hu7cmhOy#pC?vXC#t&U4D(*cEm+jO8b4-O$1U}! zM>WaJZyo;7sPYJ`=5_BsO|7IUZG1AY%e@956R_(fqK zUaxcOP4R3FQx85Jj7-B+Y&28*g-5EK*=k1NI zy>rZYVnS6-6ZWg#jEdjS_D1*KO{NO*2d(BR)>3x{dk=t z-nXZ?^)4|3i9af8im)$qXJq{zx2L%F&M*gwKkn5$$G*^;QTAJCPjT;EXIc?|l-Cqu z({*R0{mR&-y?hT7NMdVexAh(9W8%CMWdGxC0|?Q5>R3rr#L zM^#NLc2jRg)o-hP&AoRE+rT{R*HUxD2cbij?Qq84Wg`6=YHWS9ACTWkaAF}$*S;HP zPdrm^(oEIrv*;MKUwOp5NO{pTYl&UZPBrLD?HF`iX<`1Pyl9=>f&D}Z@J+Pr`w?nF zOsCCWVM>y}q7y^Sj zu#(r)YiEO*S37`Ql0J)JI(De2r`F8IG2eCo0cFLk6H}|h%3(#O?`?bOfz(^GQ_OI7 zsWuQ;_Aw{er8=plvjV0(I}iaRmt$B}gVZO#0?hV6&Gnsq9ifkjFFaOqnC|2k&MT39 zz=P~p6#Jq=A5&fguI%oEgvOFz_^rtGod}Jkya-rfFx@HXjk5=_W!meyec>Hejw=n! z_muRO*}d2x#JXCad`Amv{lK#V=3uPvliGP?REXWiybYFD=(M}l=RkF5v(<09o8q=k%3yNWU5j&>u0sF*4pdZ zeeN9@4l7TYWt7e4S$S+LVqK%ppd-V64xq5aBZW+r8` zY1SIMrM+&@m)Rk7Txn%)Q8umn9-Vc6W?(^7ZZE*TWlHxkW{)Q7HxUEcAMySQ8A=d0 zyQkz*p!b&KNqI^sxidbi7Vc}-#OVv@Qi)%oJ}oMFF+Qsv9%Q!8=?m)G7C+5q=v0-K zti>y`&5pU*nTc@Dz^k5=WQ{ASRppf2ip9y@uS3pm@c>(Wn4);Jhvod{OI+A zu3Z<*4)Qvw2VJ_(nw{r$UO(vGm1ee=r%MGc^y1G_r zP-a>jKaKFZ63TdqTKKh+y7*p>pFwz5$+dW6PM>agUdhAwXPiF$2`{rMj#)q#IKGQ| z{zl2u@e=iklV%efv!JeB@%q&Bq>{YxlWG$lW<{KalU=g$kErLbmpm9hsXpOv_KDLF z*tIV{hI*b-a(n!X+JukUb527*mva0(^?XrD)A$$li9oZToQ9yT9q}sEC1T0d@xy8p z7_&l7^2sjg_)_W;wWMnNu=<3b*?UfMVAtOGKRYNnw4<`C%fe1Tc}IdOCFD>sZX3R8{!B8yCmZ? zs7sWRvhfYI3172Tjv$~*HC{+vDk^Cm-%y_jGTY(^%9MNywB8m;v&F_y@u$slO1#`O zwTe91+T&i;PhQV5z}3aoe${=|X4O4j15R~!ya(*-0=x%Y>%Mvq*wtBj54hC5@E&li zOZOgduiNytI8tX`-Q)eRH1dac6s`YqwUO5xv`3NAd%P~o+X7XmS#9J!cdX|YqxWQ; zTy>q-!|Ra`y)BN`8CTbNKfDt;=RHI7ckD4|^!nB5S0{KsydC+~d#2pqy+^`#PP8Y5 z(R-rKs``ib!?MUtZwRfQRIPls|47enhVk(_SoJ>dxrm-C4C9k^pz3R0(bULFZ%AeT z@t!t@abTTTwX0V&Ig;XS;ZUbtt^Av=_!BHuC+n=$BrCR z#5nI1r~XHWeLkkJHEyAkZcdy=S4%Ux=#9i_XCQ}}r>797oq!-^kiJHob^($QA$>Pd z5goao@sfUpsOTK2z!;%B5EY#wWfDf_W1vjX+DTz6TZv68W3#&*yBm^K#%OOXfkLK)?7$bE&s#T25&2>3Qf!Y z4zdjfP~*AKGyr#AuJEb~z@1y!AufM6dnGTb0dj^>9S~W^y3{T?E$set*Vsowspn(i&{fJI^56tt_}t$xUU zb=Qb5K1}o-$RApZiXeQ4*hb-pK>bj_s&VzZ2rx~|gl$~=m&&io8OR*^zvZ6W2H`VA zH$nd!-1(o1!Q!uu;{nbVNE3P#brXP_2k&|1g+C+u0Tc%9MBOC(2?>^Xb@JB~6eI`L zMIFcgr4TIk$^#!N+5z%`)}W3P{!$Fy_sSm+Aa_8<(6cC@xCjp3`^x86R}u98l3)%j zBm?lNqCY_@(8H)C{C5Rl5b22z7kv*3gtjbibsF5WNdxm`S+&_y`#rO_S7ak#|LGR5 z$ccdUXG>J%O~Tf)x1G*bfVE|dolf~x2eM03=I>*PXM;fpVPOuPxSO(ukkg4QrED|M z5UP`~DmOZi-2fW0Nt5SWvJPh_gO*?|g*R27{BhcbWt*)E&B$H_oel|x|dhY07JS4$OU%8K{xBT+!LkWZ1Ee8HJ4V6MoqG1K{_xWhZ@|f-f3@E zWOfgz)ow%O$?nsxEdOk4Xs<&})~Y(NT1x=Uz_Fnqksm{0Q8yt*{lB+p?_B4s{-XA3uq#07XKOiWbbKTR!sI+P%3l< zHB0ymc_Mi_h?SAO2@-)ypp@{Y3UQ*N$5_GHuR)H`0+bTLR54C`^f)Undkmxnbwicl zO~G+{M!i^PvOj>rpdi257l-*c5s9m-pqeks zaR<;1B%tIWKV?Zjj7}yk!d?_oRT+PH*wAg!s?hZ8WspZOy^xd(O~-l3FcbjX_#2Xy z-GR%?W?Xr+2FV$4G91YAl4B@wi_k%^>yFizmW{Y3Xj#&KSJW@-{R2D)dLJr`-5#!V zf3!8U$DulFS)J<+kk6-KJ&uu=KJI6LJVNN2Xlr#N`?Xy_3*n_->^okIcLA;=j?Zs4!F5J>{6i~<@$3R9w73_S$> zmIPFSQ09aSia-m>Fh_~U{vQ?p(*&CqvU|u0951NTPDbt{^SjB!r zvbNK|ykWK|&(Y<%O}|kxoFL zqhbgfkoYJ7Cq4juZXa`XLu9dxoeA5z_C-aY%F85KKrf=^@n66Vd*gk1G3>9TROnCC zJmCwZK{7swm%-j7i9jV$D)_?+$)bzLc){$~Bu8i=N`-J(F<*GI^f4-s(5#re zZ_%HZz@8zQKx0vZ_-1hO-bEi?G<$$_5xRgHBs4>S4oDy`oxM(ygsP&f@M#JH(M1d| zp>lCUlCeSWf8Mtf}M}RTNa;yUfN0!xqI44q-5N4P`6o;@V*FJz~zzo_X z%L5m${~d7NTu4^E`-ig))fSKere!aJ0MdCOCYP3m^N_i#&|ZajgR!#Hz6>bv=8UuqcQ9mbzli#kJCgg8f0hcNxLTKh9s7e(635Sis0 z*SIRb?r1UQvT2Jsb>LR&^n5x9`MlK&vjchkgCU_4R*0Eir;1|wc$ z9BBC{FafC;D&Bsa8iyFeXwr_Nit$Kr=$>{j>KVibOc<>bRZKuaLM7TyQj-x&7&)3Q z$`8*}2o-DhpoStkFg~;zlpleq7`m_BpPGP}!5GudqJW!zaOmE4pI?{zm_*tvs*k{g zgi5vtQqvLZ7zvsZ$_yW`0NmMQs3C~A7&lr8%8U@NI4%w-0e=Yrfm?Z013n%+zNg)r z8in|TiJ^T#0T=F&af$W-YAWI5%VelljMyruA# zYTX}^HXm*8tI{&E*FcfM9}6*gv<#fTOq~K?%6o&cw$r=3W;QK!#Mv;vee!CWyxeERsuxcg%mEt(tZ4&EG`uxHxqE2zN-$K9Ih^c>hL~Os6ty#{A*mEoQUinnS?prxw<$VznxAMM~3nI4pXUmnp zi4gNo`A_?wcm%i`Ssv=pfx98A2k}p=Rf;g{9z=BzR^<8zA{x2}ZBpguENc%(BzG^C zzbL$+`tT2bn_AllRa$!X3dlbg(B|dR(s4dA4;A{WBHnac+38$fG3%F)(CBt9zwV%u zby5oaOD@Oe$z%=7Pxwpdu+=`yRcWq=uPj`#my2?MoL2Fu%!-K39^?vt= zgzo9`9>=Ilz55@6{6lIrBdjZp?ALeA`PPO-yzBO-)uEyYD-i#v+M$2UgDWEaWf7U> zo7Z|(etGS>&1ng!8GJAJ;a-2=+L(y1-6^yms2M^puv|yH57zktQalcf4nv>Vys(}=8C$FHwH)V>G!HV6Y-%tjP?$7n_vuymgqlO zn;fy!El1Nsoxnd+h!*Sjs11$i==PyKM4cc!Q;go%?_Zk`G1F~Ki$)FLpMj(I_WRUE zM+|f)(&kVDglCXw$^O9F^oaFt37Rs>0-vZbC)$sx4T*T$?MAzUvLGZX&WZQ?)t--- z=+>tNpqlWB;JH2h-nCH?pSojcUr|kjM97>(e?V<&#LsROnk6a~zoIZF*6 `U|A zkk-0v{gF{+lL_9GU9O#+`j_YA_Qq`e^8a+jHRi;W4@^ol=FOL{Pi{-eRw;iwDVCD5 z?Ask=m#MtDZ&@6maU3iUcX*F0m9>PVBrYpWnspDM-V=m!YXg%F-9t8+@|%{+hbNP} zm&#iUOI2U|kz%uKJE=+oRCAz|;N`;ZJX$6$Q09fgTGiy6ZfiS(%R)22c&E|rQeNa> zkQFHRLTRmNGN`=B@$n_0(VEGmY`0Fiuft=UP%p)MIdZb6yVY(><;Ct4*Jb}nYuYD= z$63Ib#eFiNd#3!8W9+5D{VzZ%A-@N6@+h5NEci4SPq@+==P;OMgRv<1`r!AL(Gr>s6J?-43q#{tDKo zKDOP@;;Xm0|9_=})**-9tnM1~%@0#}XXt;bmK8zZLje2WkYWF++BXqb`66v)3Yozh z*Sb}H&8-d1PhDV5;=93>dmVi9V-&s`rkq-4O%l2xm68rY`M}S@aQ7*3mI59y4~n)O z%MVs~ZRl_+pQS)BR16VsJDwk>FlMNE>L}|b-VhwJr_C$>jKT-Quv49^n*>8hh(z1T z{A7hCL%CDBtmF763L#=`9{HgP9fm%qYFNh!PZUG;wfW~KD9jidpE}F>jDG?S+1uvx z+ccPXYL@kx@B|Vf*%p|euCQ(>aY~70iU&TQXd5O!MB%NW+o=+kDIrdAOuWr6|GdJ4 zq5i3pta^MLcx+FbcYc(@C&QRiUs&~oILMepTR?uQ!cRk$Q-@hec)r4zSes{lxWaqG zz*E4vqbv5_%QWzkY-jDwsXsk$ZoikU9o&9%&%Inm@bt~y_j1kz_urJbmp2u>c5_=; zHaNKLrdU`?r>|kq>on!1eVyVr!G;He!`eD=#j*z>VTqkeH_Z%(Se*oc+_!<74TeK6 z)8v;dI}hJXHe3pBDJ)if`bU^er|nJEQyJL;P*`whp<&*s44j|LQ-yC;H{Tdqzt+7h zF#9HdQ^U|D_(q#{HrEf(ygMx3ot+^yH`ep*;DmuYFZ8bQ7UYK`hHhKme~z3C(N5TGV~ja1O2|pc={8bCXQJ3B zM5!fbv5grv5tE`)a?+8GlvXMot(-I`bw~%5RKjpXC1;5_iO*x|<^8Jn$>)9fUcNtk z{)40AI4(UOdp@qu+db0s6Sb}3K*DS2Em%-slU|-(;M%%{j(AYsQ&V5c9pQoGDQr+! zQkOn_TIaRme*^lPjMIKv#rq)3h%cy z?azB|8cb;x<|kWYBb49oZi>zOVv3@e2zRsZsex~(y_)vr{bjn7a$UGP`5q=h>Ag== zWZoxJOG>z~gMAMjq4<7B)4{yArqPrkVMp>kY{c^Seogee8PnwyoNzrG{J#bPfH*L( z!PJ9tLAX9S7V~A<`&~^DdHtrVD1Jf#I~M&#;r;feu)J5MhbWywL2@kii}L$DO>udX zrka!u!g%(S+86ovTbqLOo|*bn9*kH06>zEM82XcHS%vq98(!YOo#yCLAA2jDPP;_? z;4OQayN~+XTlw_yf2dR5Qad=R)H-kZ9mmRc^8Fqi)A*!Rw#*yNUqjtj|Aci)bp>`u zRGGTBHNR8%B>5|{?XCAcerL@w)F<1r_1>}kG3tZNQ<_(o>~JV^^wy-%IbUHrsAZY_ zGzy&s#Isu4W$!xvhDSz;U#;6v-n#sa)Km3FN!yWE)fW=uryBl9_-fH+>8;8)qHeGM zgZ0&T$M&*N@0a|CkEU@~Wp`{Y^YON$ysZBt>8nnghj%3ZBlTrNXu?bARoITeGCgm* zK#RI*nNK^*g1n#deJHnup~+vdJHpDk_-`n;>q1k%%C!}EGpXM)UgAD!f`GUUB~tj2 z{StjuamUWGaPN2gW0bGLkI65wSC{YbFJpLr-~j~q!%#M`8GCe zd7EDu-Ft?wOwkb9u)*ImkT%b+nk=RelZF|b%yeIiMimmV%`>Wa~`L?ZP!QRjKew3>5s>XenYZ&Mm z)xnDP4>z{9|8|FCO#Q1};ZE8$>Zf+uJKTfRx9!Szj(?`kv`a;CG^h>j@=?bIck=xo zF*IhB2A6?%iDuN``exR7)pgjYs6q91YkrroIr$rM;%)mqepd|xHDf!tzCD)zg<6$) zUi1EvD2GAEc1;Qsyljl34rcO?Q<$thD)-eUF1Oe5?H-vVezTrHwd?ZTsJZnfNqdm@ z)hBY>{i(SP*Au>3Ojx$7@>fuI)?a6RGmhFm7~1}lU-f7XcV9MY^Po?=9pzR1^(4?1 z_h^sgf12u}d(j@a zs>MMjwhU6+AMweQOd&4W78AE@!h4X`-pkjgcnB}BZP9TG6Wa#&w?F3xQ=SPgB->)+ zlqYr%#LoyvRvutA5 zU_^UAe-*`F_>fIU&nQf69}H`M#Xm&p5c0vaGo7#;0#MZ&! z_Gf(mZozm}-9SlAEV^GczryOnVK1xSPH=QYjaCXL(uzd`R!hka);%g;-O8HQDSVv#1=;-8>K?7L zCKlCio4?*FmNq65WS-Q#yu{rh-_c65J0847cBkfN($YXVVynt!wdTuKb+iqS3=_Xt zH>0d{X&Xg3^@d4Xk(bpMD&si~R}#KhG+SD!(u_pg>aVcA7`t!J54Czpd-!MycUjhb zbH0z2UH6OnD@k8Kjm|2P_EGerVSmDN=w+CDV7{J}U9WlFluZB5{2;5RG@tGY;r`?= zSog5}F4~*!in{%&U*wt#teB$NjOVz1P0$dx={_p_ziJYQgf&Uitg1{-W*ZE)(ubzJ&=^ zYWB&GwE9F_+kHUzntcl$tk}FG|De@dT2%L-@OAPnZ1D1CzkIsY3{AOPU1-e)=L<-) zXMUhn1I@iVUuc~if$3k?yemJ#s-I@ky<2#X9f9swXx^S5X7!2|-rXU*mmGoZS8m>u zA7?d5!*#D0#Gv8sdQ!EcqVmJxt(CuB=d2JtsZ_Y0 zc2)GTQuaDGO!THw`TFrsqUlPha1K^fUnw7ctYat5{}EkdQmJDZc>ixE3aWp~I;U!h z4Ug(jue7Fh37;mT@vol;aI8J%>Wk!;na>y z+HueW@m0C2HgvhNj%N4BIB~{$2vw;|a}%AeH%{_J-c=vUt@Ib2Zn%~(V=-h|sY+WR z+EIUvHDesUy(6^pC9UewH{4y>@XZ}Qm3G~2_1BU>UfiQHlJ-f|)^IT4E%YudJg`F# zw5QhAE!4z=DxcDPyYC1OCeL8Q!#cWXZ@cf*9Za2(19@?#XfER|Zc?*@Nn6()CH%~O zi@vKEzOy5|@*OR%dqVg*`7QSD@^JqSM&&n}T(`1NgS}2I8Zxw{gIf8BM(#c#)JR^3 ziC#A3-9fADrRjIO3(vFHp`#Uswsq{Ud`=7QZWf+TUWbiV9@^azTls~C>NXMXVc%Da zmLKx!*jM=%ZD;p&;hyCCm}sRTpN`1NPc+N!aN#@leRQXUHR1ICKi9-*o z3MyhgjCjTTc7dZWdK{y0A?>p0LyYVNZm{TejPix!{i3NDDL)QMR2L)fcTBKz)bCN8 z#;}rL8MxV5BidL07b{nF71l3GpblaHox;D8Cy||RWA6Q{47ENcc63biATw99e2Jff zz%fR%n+~pi{J_tc(X?(lYo|)NTIc1My3q}fRwPbZccMT~aii!|{feZW$a3|C(DXQ9rfwHEeuPZ#QKGS{?wc9+jU{7lX9H}F-+07j90i}O#yS% zraMyjiTw&)uIRT@5FYbx^jP;-;iu$R*z)Cm{sKnKw^7+{B_Wn=sdfm`xkd0l7QzlG zbZ!&uk9j^C)csU=F4+=$NV#*jAU5X9D6-pF=*wOVgZ(wSqx+iBH~B8+kW#0QATs9D z=-Tds!nf?Z=tGK~I|K(~-i}6fe-^$?zKcDyywguWkC_=&?$!{3Fs#}zq|;Ln7}GH7 z-hE!UE;$-AysUGVAR?xJ)TDcl@IE^lJ*?2VT@V)YYBaq2o$!8gGecWxB~$2=SL>#iDS3Tix(=GV-v5bqy-F8W{At;faXJyj{7ij5VcN6dPH zYoDbT$k?r5teqVcTaQHaRB;OwL6ZFLXhd&S(!9xB+>hQlQ`63lAvMbqCy&@wgDkcV z2%l^AqH5-)s|*;XvmT?zdzmTzzs*O?g2L0k7tmLYR@JV`^p~0sn>_?l=sRo6)BR;Y zU;Gd8%aNXLc=FD4^GiH;*vu52ej3&XtRw zj-2bgTYZSzr7&*^qF`0M-=kpj%V+II=WFM&Rkm|>;`yHF>S0coe3cmkHG5tBZsdON zWc4ujmpYgx#}2|=JqMjF6h9hC?ai##RDy>iun1+ z<=$u21zbBt=Gr;+*?ZzIBmKRrs{J`t5KuRV&t4M$^`iw=rNFfK?-O9d)m_{wMW*E( zZuWtAW@NHgv)Ycsgv_s=gUuF;8%8pF3##q7Ooe&#IrQu;asSA(UjOPU4pScdcUGOf zDty4AyVbGV%(rc>5824Ou!_euJKYF?7QHEJ}anebWSh^0duOOl)#u>YHP5#bQbGLhaR|0nFI{(!^ZCoiHL z4zV^!gLhZ3aeX!W)map14TXi5c9KtlEz?(XSe;E#sR?13N`vk& z+$hF~KCur$fo5^ZTdU7jN#3HB{BwL-OAf=nHvqu%`uY)1FPdv6iY)t0~XaE_3tF zys?40v^IsE0l^~H;%Co*^p_+lwN~eVdpqlfE_Fq17sMAa=iZ)j!x$vc?I81n+2bRJ zY9~NVe9rB^jDb;C)poM!kQw-d&Y*`?!oM}Zly%hItyqT%B7=V`pIap!)&{}z$Ly_; z%W!v{e0Qs)!+N5XwXfM=5eMF^lkZWPa2PMruC4nuZ~l@U26+X)uCv>tGVzzHd1caJ zeUVA+JBiwX59xGx#3YPpiSV_L*knj19H+D1J%%+x5E<4!moOgq1)cRCF^MDEBHh}* z*gGNRa6cV^drZ=Zp2)cNEgKAMz&mvW9^!-%yhx|Ef$ae)fN#)=cNen;F3q3Y?ujYN z<@(__y5*cOAQGTlXE<+D3G|9HhUdN)dd3;a+uR4e=Zxcds6dmQVV;|EpqKQIof@zx zdd2P30-MY{1B7Q#5x8mOf<0t?uy=fNU~|!K=R>dun{)n^dwSxOlWU;aGUGhORe-7z zjGV`%T2h@gVXAu5d8LpReP<#!4MyL%Eq}nQ2<}{fpgU~KE>-c|U$n+~ANL82?mDjO z8C#^_?2n*3ZR3@~J@*wEId{Rg>;6I7c79-8(J&W$IZF70IKI^LV37^TjDK@p%zi0x zF)$0gP{(mI&#enp@leu>{8AZDx1t@+Rj}K7)8|W-JbjCzoSD#XuHz_h5Ac~gho8^AEsjOR#oAXzeuzxV#-i=cSGnMVNY{s4aUo=B z3#kZP*KqGZ59+=lRh$ozYjH0E_a@v4=x5zG($~^ zM0U>PUVz%_9wUwC56FzV&C9**F&C~vR5|9Kw$h-bd21oLx&ddr@jJK{0q5Jb)^d#l z&b8yCxV8ZWR$9tjot``^yt~I@kUamt3Y~+#(>+d?HshR?B?yua!>h>osaC6K8+s0aNsJEPKOG+Nk&c%^mSb@y@LyWRj$#U#veD@|y&J<~!Z4i;{y zEoq>OgL{4#Rzc@CcBF&fRf;{Qh1WPto$$@G>wc8J=C$TdidTVC(_6&6)9fmm+A`_2uTYn;E{it*gS9lT>&pq%LHm=Wzu>o4^jPMpG81W2$!EJqJ%!bk5 zdXk05IVi*`yx&Ga`j5cZRnAVtf8X``|1)deg@5Q4pDErjy0j-%n90#Z*x?x)XVb;j zql($NbLFaf`xlZ-Aa-Swt-`g}&UPWJ;W`#&hk#byznWUV+IwY{KtYFGGdted zE3YpwTbodjrJ`#{8Z&gIWj}M-m=*6nCgbXw?M1lc`Xnny*N{A>`*{UGjD zA`i0Tn_U_BsZ;+J_nIZOo&}ZhwSV{~w@L4e=QVID_jV+od1nME^{M^`9IRuA$gJM$k*T9-eV?2IGB z99{ONrtAtzDr&kJ?MWi--J3HwxCQ+>F8+K* zOtUK#Z%wl+7DuF2T@<^q&F3%MBulJvtIl5gMoyMI-pmonE`z*=-qh){Z{%hv;w>F< zYyo5nI;NvyZ@}3CDO~LcV;4c{plLb~h&GF@rDFgwVx?TvQG@8Qk|{b?5EE8vw~jOf z@5qMg5FmzZ_)q-UF_x_W`IkE0qFRV?jAUaV7O+sf1RHNb72+J}Y*~mB41+f(g|Pls zDMUL)u#pgBm=C^!6q58evQWb@j;##QfZ5;$tiREPinUiE<@lq-fs_#&$7nVVVhiiE zA4vWiTe!UT9E1*=#*dR@6sb!9p1 zg3J-A+Ehp&tRA0E&P!Mgqrz*+5KWy;q&(JYRVt?TC>sqa(27qRLD%*}%wR$I_{0(2 z+5>EBV5;LYR->r6+IY#a42HzVOV(rpBpWoa)A*HS@5CE$aL@{6gVPlZ%*&9$aV`!- zRk1LJy%JcR?9s zD;7Z3o@}rT19R8PcLp0U7?Fo$0S4BL&nJV!5KIKG^@rrbu50Zkim?j}`#OF%861KT zB0Dx1c7Y9Pbr3644{L%Y7bnSy2X;YgJuxO_L>&ybxCzbYqeJT?R{6P3kbM&;Pu|ol z04XfvfNL+E_x4TPJVjH>0Gv?30qe6mNc)u>ZwP;N08CiKse>NZQQ&A7u?=*LI7US& zr8*dnUQu$0jt$48D0M(bmV*yqtLf-*42AHY_;En2P+?IWg9{f-K%@{1yu!d3E5OFy zC_XNLE|ldc!LazXqywyW6+Sv3LWtxT!+h~~NC%SIk$jDSIH58}1GWzTkR=htJy$v9 z_$cCFir6L~T8QJ=!n*9g)8d|U96D?UKS7RHq%8r2dMQi}|1jwnV;qm7sq};hO*zBB zREwp0QaORJ2K)(feu5Q@2JazrGxQEEvy76zldJ z5L$Em@r(>B6b;uCFO=aZ!ccgIWHKZ`GBg6q#hZ|KCsx8~sy(4X3r-je1Tx7W$`~hk zXu_EGvoIQ>CrC0H0%JOYl>iO!M05vvMlcRSnw43U$xPz zA<7<-nGYCvM0I{(;%%#5O; zr5CP5;4+mprlV?a#MuV9vf2w)Qsh#Xm8K)_qMgkq=oq>fWv7(rpk4H`llSUayO?CB z_UXug-50isj;@Pg3H&F1>=j$0u&9o=sb0Z&MV4S(EO?=K2{zt_x`Okfm&m#(@i2G` zQYh<%$`!O%LQau6Bz{a8xABTD z!MWJ-I_*CuzrbEu-g?f3&YQ-6B_C7VzXTBKr94^ugCujc{gBozB~+J3Jd#$1^D)$Z zmDZ3FQh{TQ(Xdi_4o|(*#vXget0X{MN?-p=`71!bw8%{XbIY-K#QI>j&ALD zG2;c{>51dItp`f1fvKivn4|XNTH{M(ToidoJUwaLxHX_e*Ts!@8gESYNvweHS8WX~ zv2Y3Fwc)RkrkKqW)h8p|jTHQ+ucv1Mzq-mK&nam*C zBpii;zv!tYU0Dn=SX`6)l_-0Zn7IV=K&FuVXTnh!C=>d-ftACJbb?Y;qM?LvRVwIok1lu=r z^5w0~jv)KW8eeDK(&@Kv=H@F}TOPsn2^y!ezUZLrO*p$D_f{W)^%XVNWgXX1Y}CHV zUa7O9(dcGMnGUv5?`HA=opp^SH&X|711%*0vUu>*b9z*I9c)}vx^WAS}5jfy-Jo|!ajJQe`n5xMbl@vF#wi2``6 z>R4!>MPnH66~3H2r#uzcr__k$G41DIAXpdFXWZz^V>))G2sA*U&b_aI2l{lRIhjS7 z%p`6|h=+oQJXKOrBX3{?K_UJQf4CXz<7myz&#KWfGWB!e~JW!Y;g20-DVVC3m z$qy6b5mR=3zKwTz!&+U$hpF+JQ&MA2edNYWUV)Y!k&!a1J|#2emSaBOKXpoCm0OGV z+CS!G%j=qLMCOzkyxwxNxX=DEH(OEHaw9HBU@*01tXRd~kmCipw0a{fr^ujgOIk6+ zKs$}CU2I@rl$KIdtY)B>mK;!QWnhw)+EXkIcA?ntVuFET4*Vy6yfHRMVNo4>sb0ct zjLg9pSa^mOO0cmP>Jn}vJxA6+$rDp(PTJ3ERk?)T7?FcCF!uB*tRU@AYDHes*cg|i zY@p$3Qz&3bMDdfW2IYlEi62tNY&J&c;0$a%JMF*I;wR?}=$_Msyj!S*4Z1mzeT_xH|?_Y#jFKrYMI;I8M;#SY@V)FYbzNP+hiWP?o43m4ZDV^hY| z|B-p(_QHI=%5cFdKQ9ilf66&4Z($aSd{I{Vddsci_x4Y@XB90hLvb$zrBhqJ6eI18 zIX;lvt3zQgic0IY94}TV)&7HRRBTjg^he4c#h6mPKaxX>ZAwl4Nc~tWTZ#{5V~X`k z4PU^2;>V$}FBBHlv5)F)Olaf_OsR!uSfK3iJUMQDpc&;ma$dZWSk5@~}3!{jiQ>JY~qhH`kZ9Ti}ztiH6 z=Su0GGldgmx?Pm->1#9p9z=sSzpn(fvh%XLR8Z>6^@=OlA^o6OKW@LO)VpbZudhZCLk->?e|yS&hk{2=id;;Y>Y-_pCD!xuY=4^oe5 zew70CcXDZ_XTik{M0(1!`d68cZWZS9nY$_^R=Kr!pZ#B))AGh9dS{b^ zimgLT&ZfREmI=Z8u#v^OA%+$3pZKv)Y=y$2I^Lmr4dWA8feEo_2`!Xh;~l7LI3Ie2 zY=}||rqF^E#%fc!hW3f5K!zB%_!QnIg(bBiuW9(iRVasOwAd6rU`a&ro2wz^g^|Qh zDHAq6(G|E5+m=rI@3i>Mxe$8Gbm3QWoZ`VHfKV@Oku7|X^ouc$LmgCk6H;LsG7L=h zgw&hVkieGu!VL1c1dynQzafWc7H=kL=aU4Jvk>sSC;|3Z{KD$GKHTbc{clkX=)!9K&^_=n`ST)()7ID=ha*w+j9knbl( zAwJtx_=enV8M^q6ct15t^Rv_&rwVdNX3K?(w#2xU3H8r1Z`{Vs=l!`0R{42xu>CX6 z1$kSuW61Hcf!BZED(<&`#=W3uYk3SeE*O~l`%5v(eig?L@?iBb*m%)E-QUNH6$iBc zWSbPP7%=)X<$5u8K=04w@Zxm?CV!?570V6akFjyZ`U8gJ@SphcvDk5iMRn|_`T%n* zavU>Y(GpfD!Nz{52e@POaoGW-7Hpv<=@6?^)8qloVh>UQYlA8sGktU%Jy39w znKp->?jJB~2`*$N&go7c7`FzdnwhZyMaNCYkIM`wwx9}`Npr^20pq#@ZY{ZmtH}O| z58-sx>CkbDfv}cWh2`XVWipd!m%xC2gHBV&yZ&a9?N|U=|3Z{K#?1zTTb>mbkgF0Huy62b|AE|=@{9h& zdF%qiE-&;aS0yqK-|WVH2ky2EU+f}Qr7|?XNliPAlLsYIUm)s0-9qK+jAmo88PIo?2(Y6FfZqrDl?nDhiZV!;{#sK!TcKI{YVoOo~lcSX9TJ zs>K*mWI9I8!W4WL1F*3tsu)M2r^~7-nPRBs^&zYlm0~n0A|0t_Z0bX;s1HeMK^AL} z;?kAXG)!%%0+vJ+*I!jDryi{vNEx*uMW^G`Y)w0>ztiISb82)`@Gr9=Mlo;+Ak<4u zWvPOsUyN}KDo~|9B;8bPSb`Cx>QmJMP3x)Y4S5Nsut0b{Sxqx=Q+*!GR5cJ&e>5Gf zRzQhQ8%5XmtC^VwQR5Rwb?XnLTdVm~<1q|BT%m1J-xsb zxVw6>%%V(Y)LA9apuJG=57)Jt(Ez5A<$fi~9_auwnKo1N8!8iMuwHn*zgn*8b;|BK z@xtnr>2>PvhRQ@5qSr3nSM9Fp5T&E8GL@#;D^>55PFBk_y+B!C7n3ro-YZk@)?_|E zKd@kxp9cn2H*wC$o0$b6o67QDuf7%dzPgEfM$ybN2-hUYn_B%P5LvyF1LlZV2f><( z^6FL}4^+t0{+(?YXapjODOUn9d3wJm?+>)eGxlB5@)N9K5%BlqJk3D&`h1qP zY6Rx}(I#|W0fmt^g?`_kXJ#5qWh74NzCX}p4NNs7!x|NVdmrB<16~uMsEnj3b+AFIWN<+fU==3 zK4nV%i_CksGV}RoYS$!IxixTK^%Kr1`4wh6kY#1wuW#H8{HOW}_mtua%N@8ff%nvn zu|U;oBMz9AUcCcWR^(lGBP~!K)G^t*frj2jr&BHkqP_J_C+`ci_BJ`4`cI$?xaMK2 z2I_hnmcf7G$2(%n6c*L-cGatx9g$@iZwr1XRf3JTqpsq1(92}KmG~H{MSUpirOH+G zj)*d(w=v&`db>U}=_T^2#*Vl$Wp53>4fO#_B8uCtdY4lp>prG@wb>C}hV!=NcUFI= z#ck)j>HKNx*M?(?VM_p^UdorHK1lk-7#~B0skDWZnR*WcQ~gz{E!8`aUr)_wIGX_8 z(ZSou-kO1%>(8<*RKqZBN6XOO1r&PPS9Dvyw;4Z(N>BW%+jgML+S{K>&#*v+;o9QM zWV{vmNGd()t8rUEnXb1R|1{OO!6)%HJWRDMw9LXgjNeAR)-bL7DXvV(8_Q=@Ps6}E zcTkzJw=bVj`zGbKMwncidszWLiu$>JT4qruGwN&-BB7t4;BTI;8;k}U7C_d&5M_@t zGw)!2GxdDKp9!E~0B`g6&gEaH?5Uf^E->ut)IAMJzs@WQIat>I`o^um{_1A# zdBt^>QMf@t`_zpufv9Q|4w%JS9R(XKYOlL-JWvr#*s_fSSF{`5Nx2q?ZP&Y#d@yib zyUCr@&w+B_+K;UfsNZfl2>*#6N5u{*EUM!@s`oKbk%O3a3w{_?f{pi}?&G59gR<>P zd@R+nKAiPVaRA0HI#Wm!noC{bGz6s5q60kU`V-VPLAiNlm1- z2l5-JnGF{bY+-Tm339t;phx`$maS?WX5#1|y1jtHO#6nO=x;aU2UD4e-*hJq3|a$I z&CIYx#o;F62W8q7`6wzg>6`IHz@Tos8$Xx2s=+Vu0X$B1B6QHAJ&gZ~THY|HJQFvl z)Q;sdtLI=~Ts>&exZRh}tnEyBpb;lG;XYWvkERaS&&e#xWM;l6sr}{TMOr#@b>;`??@A8K! zU3Cvr>6$ZA6HbHV_Dp^O#jcK#@=bk4X2LDseEv|(d5KkS?cH1bm~&EI-^?AEUuO0C z@Xg-7>c`xZiu#uBxO{=t)ZwvSm1;u{Fb=ETVfjT?Aoku10h7jTon8YgqZ28`y=qo^ zCz1nut*lH=r1thogKJ;GqAugy z>G`r&N;Hhfyna9Hxyog#Y7xi<{3`(P`77@rGE%;3a@iFQv(f1WCUb<5*O%N^?lQsnxJZ zkoiTbIn^qVRxe6#IFkTgmBX9KR+_z=>d&yuRD&_iNAuBE1>Ny!U(n6{R%WyyQGDVT z-R1-N)>i(a_zW{tFs?a1U&cz2h7`poeKBqh$k(-Uqn#G5Y}l0umcCV+L-Q@H!f0)x zvW6+;{B3n1%Xh_Xk%nN={YS(M*!FChX3_=&$&F70~v?z$=L0>i#8+TCz3F#^$V zm+xzJmp0VhQFkvjLbG40*(slFl}WqMy}m9s<%@d1OtV{u`Mh1}JBd|(-Wyc?lygqr z(kvX=QC9i-@U7nW)la$S6fG^oaUFunsl#7-k=5WL0CIPAIIN?nvhMKlUWH2S>+BW1 zMwLd_Q?B-6D)p`>hxOW2np{u))GJ$w4`*Y0^(qZJ;6L%>@YoK8MRn|}dKVKO*@3CF zpoNJf*w`0!7Z*+(m~+bRa8@X}+R6^#_yQBJXO1$8{)!%ZPQN zhb)OG9=cjtE{dxAoHAn*9^HYfw54@bf2YMm=PK#68PP-oT`_tIAk<4~a-xSxzZhdW zDq3YIq{Fmw7?|oAsiD-$Kw5+7M8o-nb+Bmo!WOT4{dv|p)o9Gn(GGNFK{q3920heY zX+{ecEsXOX=&%N+nvt;%6^$E;?~tifq@hF$YrO#-x|MFUT#-q`p2Yj`Xw{+64vWe# z+AGoZhHuJ~aUDvPSQ@kX8!Q?z6x3l{=}TkQzDv2U5iK|5-cdk{77f*ZlUbC>%sShI zIOrsFh}zM0nAu><0?7IoqU_OORvAotCc4n@AR!J0V3B`iF0H)VukIUmfnk@6{2Cr4 zf;D%$4&TbVwBhc~x(BIonv+sPP95aROj<$rhB|u6jQXU^kek4KetG)?iB)dx-BJ=Q|l2-e{1Vu4*BWbHiNX7^QN6k`h64Cc{Mav6ps=WpcdC|S{2~Py zFmo0vl3?SVsB)YiT_78yG%8sk4r9GiDM$N72#{a}-bZx1{+IFL2P}yw?z|dPE{d%C zlrm}aV}-c0`a3P|JojUTI8O1<5)NxqGwp5 z4&gfE1u`*;qeu}wY0|heK%g7rHhNn0eW3V|YG>%;F7b@=aGXFX20JR5@Le1zX4Jk- zxvOzVuG3vmFd8NLTt6eTD3cj=>k^`&!_ZEuplgKDu#N?g^)E!(LtqvYJlZTe-*7)6 z8V1Oie@yP^_3k}&GuQ=&eOV8*uKQ&r&SgO-WK#s{Az0hr2 z7nd@rJ}lGeHft{KzFg;#T7a`#${@{d5}z5p)g4^-ETurhPLAO|yIXv3^hp6wlQww{<1Ta$xFmt8ZbK-eXS8Y`WQx0%)+u0fM z@)6A*yIN*C__G<#na%c#SB?0?OYjL=#tz`BPZ|wb1K+FNxG5`HYlXvF)}XXCByPM28<3Vwbfv)BrIi!i zx?y5zDF+uQOeihykakhp!IkADeM$Za6x=wFCG6ON$l54Q{Q*&IMvp6=~sjEg@eU`GUCQf=7vEZn^Sv2Whc|GVR zLZ0&otfoQwr2OyDO}crc)#oX)HTnQn$CE~^Yc{cV0azXHy80YNxn`%dKLY%AC9f`^ zNYyy9hyYf{yWPm6$k%wW_Wjr)_9osqyEs4mP)B@$vb2V@u++P_LtFs)mq-TFy?dnZ z%QNupPB(HXnl%g{t(Bqb1S{vmdEJ(*F8LGCS%kJ{;OX0Q0~97py#zy;=#+-Y@?g_Pc(QeI9Q$ zf*Mr2lD$hFe9x@k8g*(OlrGoo75ew0`kAdSm5d;iDCFc!X6`@klU=rg36 z)xMXQ82BCS1Dk=0k+|XswgzM!JW4x0`Gy%4Rl8H(UuSS*d&Wp)?GW1*5(j_i(0=@e zB~`Q5QvSOu79&MVYVXR+!Iib+QxC5Oc&3p32$G68p{4FBHu(XJyL93UMwZqtmv4Zd z&{6mJA&oO3c6#}n0IM+)nb&>*u*MEQn=@htNHsXEYR|Gp+!pL{mGxlGfpGqhWSm~|IIJ^!N1kbbW5JTD>o5hMETFWC5F>30z-Gud|` z;7NuTxW#0SY!EH2O=V|7G!Yx{@f*eIBi16t+Fa-T9IXYUZ0jjolQL^JeZ@n1w#53}u5$yRcuTgj-fDP~rz0$1$Eei^84D5kEGCm42Aw z2d+Ohh3|4?p$|4MYznXY6&FWyNw5q(jMF#{U}{Y$-NpQLhhr-TY(-vIXVr4}Yq6)@fX|<&|>;_dV>XzK?xHRtT)c z5@2d$Js-!4oDlSnx#1nKYkEHaS{WYZJk)<W3^niLxY>}cfifaPBCj7Ga$&!OHKS#G~g1lw0-`#W_!MaZp>rG3W8T0r{4#MZwO`xPH(F1b3%p zG#?H5dG5A~X~8&si;}`2pxO#Z`o&2q3wbR|%nc0_;@B zl?mX1_h4MrfK%Q&ZCs^*li1%h5$0kZTE@F z^)#8DG~p@E3dBzQcWMlRjc0|oIbn!@+Y(L@W^k|w$%OE~!D3&;U3|D(#|iLji#9dHs&iqRi^CcMvyM$9_`w6$t{hVhAf31fu@mwIU{}S%xl*4}v z`o7|nBf7L6y3T5j8uz>vMstSYT{;gvW)sBtQJtO!p$De`Zl?o|nk=!dD+cb;nq8vf z>XDrYjICaF6JeLj&FsB8kKMDA0CqLW?jXdvjAi%fJofNPDA97oXV(&lE@|0d&dyys zi$j2OHx*@-5-?o%fUGT1eoil?5q+1k8=oyM6a_Y%UpM5A6f9m z+Xz>jz0Q;rhOZei7%vwp<*=hOy1Pg}R)x0{uDbqf zOt^1d_OR>PtOJCF-Q9n!3QuttDKbOvHSy-TK2)|XARa;IA=`dMfW zI^PF*tVtldp5UqLTRR-d?o)ZZKikf=IV)e+ntbF!-*1nJ*=_{pzi{%QY%s&9dyjPF ze4p&&&0x$ooY$du&*?~RAMPVE4j&g;%+2&CBNhd@5yGPec3l%UYDqQnHXl~co=D^W~aH-mB76Wy>wkp5w@po z+wZl{<&^IB6We0FR9&_cwsW`b^V;sRU3YuNwn#4vmzRX?$G08yigbCYyFGIo-Al>E zg7A{FEzoPTi-qpX^lcGd#xA$}n9?jOCiNckfRrnxcQwq2jlk52lbdvoY;#Eyi0pSaIWJyrjR5O4f{Ec%+3+cR) z?XAX#1bBj-_2YOX8B~#x0j@$X&L!AiTBnICQ@wHg-vWrvQl8E^(0yR?p7;V9>AbYX zxdM97S+0dR4y6m1m^!CJ1BKG2#4@%wny>I9mmH?`Fhi^yuvxO#?i8=dM+O`e+WhBS z@@CjM{95vX#CAAe6;zVfat^}Y;_r|L6WU>XL_n|*+!ny@t?$&G|6NgA)e6$04sz zjDe4;^z8p(kryCz^kO$zY}>P(W2fy$60pRGo@bn$FbPUtXh~x^;9U>ClLQ`hs8L)G zeSta0Cy1e=%fUksJlm4RmOX*s$p$_kIxg1i0rlK0`(sGMrL7Sz&vf=VKVj#fKgg7z zcsI2kuoolAt91TxJ|+VuvccjdZ%peS;xQ#KlO69e#Z%CFkhl$c1q#~8+Ac)UQZ`E2 zrhY}b)%U+L$O(nZr zZt>o0Jtdw^HP_rP)#_M6bUDsDtz}H~NvTlZFVniQWV_2%UYpi6qE9Ly&&NuZ^ENoX zNvQY_h0lWh{lOpamWbzG_Su1nW{h~!DomHx&#Dyb)XfQ)oL+PAUs6z{6mPU7{H-5U2~0V*EWdgZ*(WuE;1hM1#CL#z(f zd)Oa#ISxNb8cOOw-P1h6?2}p`%gaeP)_Rp#wXwr}utpso8J|hQC9Oxss*lC=$u}Z+ z`uLxKvcx4nBV9=Pi6gHf`LP5lvFNcQeX5NscsudsB)=p95^QM8fh@9}^Bg30=@_YR zbK^PQU9CgJ&VMQ7J&pHylUl>X&QyWs)RM7=1^)a)A%jh5^4xDzZjvcz(gs$%%9Pp| zO)`hg^S~F7zydaMN*y$&yR@09@wlnq#)y4xja@qP39~w5`}$Ti+TrKZ<5j`jb);k- zn)p!Sl96Kv`_?r^^M>(V5BqpM5M$SMiCP!7k66g?q`56UWwUbkEtj#gF(nIUB3He4}5^ zt1W)y$ElJ$@)N9qjHg1O3ds;uk^kA869B5n8!rlyz2KKrHtx?^W3bQj$wCa-3r4hu zc@k96L|N?kJT z>-o@e3iIFPlDjU(A0N|r5}TuFfbujcjL#ff`XqA!CC{?Q%zgxv84gpb|HwYs{4+`h zv%d=^<*B9rcmSO&sYx#+mF*1Xi)K^DRKB9OZ7Co=O_)~y_@(rF8<{TkmH1+1>8ipY z;?tC~8WwUN{{oR@e+Rm%1u8Urp^Yr5DO+fUGG6>vdgvn3*_iF4b{i7v`NGokcp;Ju zlE}zV*B4%;mpuQvc$#RO>Vv!eTPP9i#5$kavJVWz5?^kK+_vREe%(TU zvBbhTV@u!*X$#^twh#KY!jD#R*u{q#)5@Tg9PQcVMA!U3%-!c#(^=c_eSuIyOG4;1 zkU&I~B2tu+N{LESDHgf~3ne0gbV7iHUQ|#~>Wnz*0E&W25eT3oBjBJSA|*JAh(H7( zK!9hH;d0KI^O}3jy4UmK=09NZg8ke3dwh<2@+Sg&cl@`N?BH^x#MCY@pm|FX-iGua z{NI9P$ToxnF|S87mK&p98A8i8YtYqv&J>xX3wkQ+cpPNK<^w`1M9ISzKy^C zXN7#fB+%|{!hK|*LVr+=RX|kFT*((Zi}*RCer!Nd>AH_>T+`Llh+mTVqE}PdlUb~0 zW08DT^$Vn*QnNSUde8IXt2P!Xb5i}a0YiW0$nycX;$;S(PIdx@w5QFZk8m6q!Kg17|mlNj<`r`tedWs05%lm^KM@|ANvVu(< zvOzJD3Touwl6fSrMbL>LT&0=?(%49FK1`$vcPZhr=^HJvc|GR=Y+;)mKDA%B} z9xg|f%-c>S4k|QgM8?eu@Ox#Ltp?3nHb!wVWEL@o?y)P$veihmmXA?gjF^RvA$zbT zf2ot#qU0{yqQt+n$Og9Fv_{z&rNz^;a$|Zu?j@DB-ieL!F=~sVz(mH8SH)t47Hwx8 z#;)|#76;pWPmn#w9`(!@PuUEmG-@nwSnS}p&+7?tS2xaXRd9LNY-M+oEsho|yR5iK zokfmedz?y&Y;lRP^2@3Km>w#PONmuq7F@KM-8D8;wi*vS=_9jxW4Myl^jNuN<;AdB z@9sDoev~Y~7&vP&7Tz;eGGwAMv#8F@X9K%gbscPZ{Sy5oDe<4FQ%tF2?YyP;RxlcXFKG|bj3 z{k5T2$CH#b8@XLYQP@b_SGIj4AdyEM()|F5ywj&X$wj72*7kTh7(X%sBRoJtc0rIH z!;LVKN~C6IqivFEt&a_jHcP6sHisBlN@}1Viy3L9E25k2*RAC5)pD?ZeWD9;)H8kF zaIm8y$wj41+SW52p!7z{KHFFU^d7}BsO{eWAd-8O%cN`%rURJ#{}B*b!v}=O@KH2B zL^kz3)!s*|mh)F>Kbx+mXuvfRUpGW^6h)7Z~^+ZR$=_z}=$1wapsFbZ#(a zr5pNpLX6vP(f2Fe6<>#vPx>@wEJy<=IoxQdHCp4Y{L#S99sdm_I~ZN@HSIW+@J8mY z9Pp7%3j&Sa`rhxDh<}5)i#&R)Q@_B|=#lT)j){af$h!(hgFCI)lV#QT?eI|e2cJ&O z0+LaRuXKlM!giVUQu!}|^5IV1g1tu9eH}Xr6SgBm<@q^ssL@B?=N*UQAHYKq|6C!* z#y?P>A$4XM{u>rKHhlpKSZPrsn6G*}PjV)-)4;Ha#S@=7*@-T&Gs^N+@32fbCo?1a z;rM!m%uk@hzl+HWRv%ymI6trUdfEc=Lsx;j(OQnoSEN-6%#4D42ixlt&ne8Pe~94+ z&e8E;%pTT>Gt%%~Nm?-b;NOWYSoK*+ThRCb+}x_ik@9*%uR=Y#{Ex7HpFy-JWQ$w+ah6~V*rp1dD^_xO&cDEcou2w(vSqqn6s@)WIbGqf_(NMkU^Q~<><)sGb zmGQR-9*Nb-K2mMU$tJ2NA+PLjxpvWzD4oKtNzi)q3v?AiP}k# zSG#ZR_qbdA!RObu%PA%rCk0*+Z`pXHRbTYk(sm&Ep6W^AS37UHdfcpj<#W63KnjSR zBX7Z~ty}uz@BNt|-}epd=ufzZJgM+1=$4g7RP~(imyR9r-;7>iJ&OF+ab)9LUDb_` z7iB){-Kwn4^igZuksPM_8S;v9Yp=)k>gPUJ+jgXUlX_L_G4yAPJP$yX~RO3gXh@NRfkm^I7^yp309T&+eZ%-S>O7o{u|AzRKnl^kBPNmFp>~ zgB_+-4yPpEwx6x?JOz8(Azek95VL4^tlA5n>@QT`^l@+dIoVU~kqF3%r+i+s_#*TC z|6RTu-abitC-+EYy;_d)oo}B^e5de8<80i706$iSwX4&tWTO=4LM9M>=xRIPtakN8 zEBPqZxrhlUxK_pb{v}ObE0Vj~uO9lb0VUJ$EaI}EmLMJ0c5e;{1Vmc@i_!m;`uJ~{nR@nhdZ7o%xraZ zEOZa?YI~ZLr-Fq!dKJD7@#=V*k_TYq=PKsHRPhnnc3t2he{?AH10M3u;rgV#GS_7t zj~8w=KSKRwWQ{@Ii?Dl)pkh>&?3!Ju+f>y$9ve|NtEzM~Q>m7!8ra8Bs#c*QwwbaH zC4WzrgGcKV_aZ-f7S4wZcHBtXt8!i1(X%kp{2NtycpK|D{WrzyP{+Oh;UoX1d|k@% zVBuNwFaM8d$Qr|-LWX}t^DAW2kyGt&Xm{m~sXRYhsAg`#kB{FZ-c>lJ@jSLr2t?4) zv>Dy!ghG;e3V@{-R6j}-8c-Ws7L@-9N*)@HPMcACey&i$T!E@T5}h?8^gN57BlGAp z#_M!)Z1aNLN0H|af6bB2fFrFwY{^;>`sf6@KATTS&~n1~XPhi2ne@tnD`api-^)x{`cyxG`f%8Ys!()S=cGjavDj zz=0kAtt2~8uZ);>1SY(dsg(mbvT0o)_3g<0jxX_V5w*ymV*~nip43MpXFI+myhYY3 z1O*RRulLGo@fPrKI2an!tRqoVMx;B`5-eoaGv&Y3$%hAY>-JKwk2rQ*O|U?Q%TKPg z$f4AaBhNcL;~&Ap5tILzAjif(QlBRcWQF`26FD}02?|VUQ7UXiy?t47K6Jn!q=~gG zK7VomU1vwl8d2}CN{Et~mz_Mmo*?u4=kV`b@{-jgtPaQaYHy$|At$@)+^K6VGM|uE zsWYPnj|{dqBt|LBt53%8>*kpFCHOpS07umrSxH(loAe*R)~yb&q%CPo0yKB}ag@A) z&|qjp*XR+}GkU(#lyJQQ=gx2gJ^z1fWP{P)Sy94MuJwn2jr?`^_qHghsj&L!hy{-L za6^JSyb|u^Tdx&i0|;fkWOvm{$l$^MEk%Y{BAi& zIj@Fqw;fCYrE_FGjAPyMHoo@H{`me#V8`2pT4b=oU{JkPL=wQ?M?Nimknli>!BIpMYj>L7%iGDlz_~f>-d36Ht=1&6@|HU_{F)V~uxiDd z=bRjQ-CmjKt?45X%2u{fa>Tb={=3a55BxNRu8Ni9xv#gXU9 zeZ-j`o@yIPY0_BTu+qUT8jeeig9DD$mtQ}x3a;+rRZcgx<7jcRtBNaB9+HdYIE@sw z;}YZKS5;TcxI^r?lsNTO!4(_cE)YAf#;>ARj_~xjxRKTLIJs5jl`x+7bX;3gLL72c zekG7+!42n3jSO|HO09f=@9Dq_W(8#jt;kE5-^R+>P$jMI)t-atDB-3qs~ zo3usEKi)9JNXH zHfv5Y!IKsV`36;nZ^HzTy94o9@fSQiOxFvyd;)9q==lF>?2% zVhMsfEeP@s8VR4pjM;QwDTb{F%OY?|j3U{vz(=gvndS>=h1$Z?G3%Z3f9A=Cmwd#V z_tB0+euEx`cVY@`_%ZS!+BwJ!R35$=<3axC23Z4s3(L(OM$@DqDo|6zDV;uI)de4w z=Cd?4hy@f(9_oBgkA)x_$Y|oUZZm;Kf}}vL(cHpe37P@4QHy(dSghHF<`3zBI>HMv z<~AXh*Bj)u0D4-j`5a9Gq5#!LL_19j0Z2L@`ZJtIo;GfF<;Tden%oP+BFzr8gOFP2 zBpgiP*o74F^JaCpC5D?g>_oGJ#36VN(*?uOW*lTyhG#c@ep-nrR;1mD2W80&T?q=5 zJsqIz*?>OT0C7~i)3)HMp(tRMw?hHBcj0@e?2V4TYN+8G+ad@kWqAzP171)i=Ia7N z;I(3TGl47bO94y4e}F!NU(^O1-?b`1UmIeAGv>V55n__FcCT0%F|iv{BNj+Z>DHbV zi)o2B#H5S)x6lo>!4C0DRpP#`K<|4AJqd3F6tk~GOE`3`8?KV~4Q$y#4}*S2yuzNs z_hnZheEnN==nl{;2vh7SLSHUOX->A7(gUGy5%;kZ_`aMfr0=m7eYz*~5#lU%g3y-- z+M3`NYkCY69MG|4Uro;(PBbB z2?enYzU~?yjW&Y^VFt)`mqH{)+*$(ZZ=vA0g8?Ssl@Qp7S4#|i2?~S9?&d;AuG2-K zFoe1eFMT?+#elC!PoHc-)9s*H2z9I_AtHBLcI0@AG5r{{3lU4=ZW#%ue}o#qy)gA; zuGI*Pj+61ysV8!gBVBZNC|FQ{i`zU&IPi*KnGppXYKn{4+LRzP|VlC_yT z5f^kek@j7zP<2@okmZ;VtsJ1#F=e$b*rQ)CCAIRNXx(9|YUMvce`N}mW&?$aDN}lW z-AMkQXnEGO$AWCa9Mq1?8jC4CK)%NuhriVR$!=d!g@6mG)RvsVybL$d{tp`YHWTbG z)jna@d+q-X2pNdck)<%EwbojP9DwXOS_&3aGQmp=wx3Xw$Ip+!rby--;tO^M9%Rs1 za*>Q0W(WC90WhVzn2o5#+%dh<%6~GFXQg^-$wP>%*oXKtIb$+C^JE-+*`6OHJCSk7 zbv0R`)SDRue~0-?kQ|F%ygIhVC*v3^Yi05pA-(1(FOy~sdg91V%p%QX?tZo;s|$g1 zD$D_)(^0VA-W&6r$dmcrC^zjc%;U}Bs{U0~jXyKDb!d+2JN2P(Ub^6NCHaclvW5EGX|^0oj|nO) z9dKg47@@`yWqoGiFe?l&r)SG{U|nI>!h^Lzlyx;il;g+-OE;MF@G0#=rC0GhH0KCg44^wMOiQ= z-;YLcyjgKboK7r}2jeucRuMSubIFk0W0bAgmUdq)*F9t})VUmt#M51v{ggX7hp|ry zU$+7n+1=ht8|1E6_#X0WdoS!$yWFDk4Np}t!W8iwSsh*Cp7ZY=a{VxEl%3i2HhXf* zWhuvVw_=V^e#tqHy@B78Lq;Je7@13CO&7{GnX4?65oNQ?6_zHIVkuLEK|v{6xdj+a z3T0EyKAjuHbst$76vg$VJ$WD?p0^*w{$CZ$FD{i!P~3Ba*2CpbHZQJ}!zkXlv6y9w zNcLKA$qd zcM1+epYF*$f_X-9%f5x#Z*%AJVX3DFa>Fnh*|)F@+3(T+N<-Gj79SE6u4qpr2L!aU> ztGPV8ujgl#_ShF`|B7E!{WJsUX~1*p0G`w4#pZH@oTJ*m+Fri8P4v^V^6eC0bzT5g zXV44F@^ch#bj(!{$;G}9EDz3>$7~@VD5w!T?()Knl9nTn-9lKDKTdhEr~C)Xv+Rr7 z!126RBY50qPr^RT1^Xj=lJ;r8v=7^p*o(PmAGjx_SNofN%!~MKm<)UW7xZn~x5)=C z)rcQ=1?=Zb%E|0Thehe*4llwfL+F^I8u{aaFLsoNQ9kFq!Up2|vq604|3atSfpR6s z6dOqB&#jR=e)5HBc_8I&&VB3`e18t8@s7RFFZZN8$~lYuLg>${Q8*s_!n!<$vXnE2 zRm1Pd20Wq&T+dq(cli5Dj2Cn>KvI6{a3 z-b7%7b9aiMmi7;{_;|+o(mgMQA6WTXi%iZ!0kWOs5 z5mx>xuOEK`eZ!&LG_Rj{LhnXk`Te|p!U^mR&+@Z*{iG8HH)6`?@^;|IQ8!5C(s?_G z;~Q`ImuKefAdF*f>@9c9+d&%Nd?U2{dEP_(xYmtb<@$LKiQ}7YoGkx2?;&Aa=f=VE zpuC5qas3-n<&$}l_;Jk}cIE1Mk;HM`8^_A852F+yS_kRA>{jebvvP|!3WTGM&Jr2d259*Lp1 zh-si?30!!|Mxqg&Ev60MsTED1HX`cMo#56sT*;DcL?!wiG2k?!qcfcaO0Lo%%JG!ITRm4No85?kbJVy71#{#3fTdhQt=tKwX8e$Q}OYT-E(ICdr1^6_# zq^%-t+M-26EKW<(Mlsn?)fWN)Yc#@Ela~PwgiT^)h;|e&#ZcZ?wIzZM6+>mw07W{)NQ#eB|7f#2r9hn%#*zd%`cZNx9lY;K__=``{jTOwyUv6H zq>%#qAR`#vm{_1<1YRqT44d_Y-9v_hW@RCE zX~xpHy6j{B(XxXk`yYty*aQ!iYH2@lFs6slCM&rR_90BjYCZUEh%IE59>N)f6$kTGdebdE5)t_V^XnMeH*GZ{m`s-h6DVHmMQ5}W}jfSwx1sB z6$6J_Vf2YqZ}GEW%`w#A7FuVC6X|`z)p}s-1P%?(1$usFtVxCyJW6YhIFZpO3XTGe zjAi%|S{kp)Fc+g5vf->D1UL>LsT8WuM`%(LwkDMje!D3{GOV8DQledJ;dttdpRcfrD2A1Kf+E)$x{$2r)1g zhG3O3I^bF8Yj{g$gg9p#I9ATRaA(K_^nfY2rhCKy zCndBs9*k#+ftf5M>pG(gUW9JMM>A)|W$ce_K9r$|tq*0sC{=gEqgUorme-UPRdoXNzme5hFEj7`_m- zx5>69Z%W-KdBc1Uv^>{dLo+6QpZF(axl@icX;a2NksF)$Y%l+6UxaqW|HRk_y|HzV zT=`G-FSCC_zr_E<+$Zr#qP*WeEPIc=U@ilr`P5!KH?>^zlf6hT^RVU{d+FS?_nHg# z0(%&;nr-&b7x{p+{v%}nbQ1h$Y_#En)&D4SFA99JD>tXEz?-i@1T@bF5t7 z-ZLkbxTwVMyB}(X*^MXkB5x?{2`;y`Z_@m)#(g;xkk&=^q?}|;DLdr^5PYx2?r~^- z@V!QKuWJ7PRlV1!9~XLITkc?gCFedW(5C-?)NN1uM>%t-FE;%tH5#8bydad5>{I?J zZ9k*_N$`bD`L1FdcS$8&zuylxk(wq59}$`hp=W6fi> z&uN8n3l8h~`bYBfB%VA!Bwx$ddHScl-bX)K$QdH(#~*?}fPY;A6%h`vPvdExc6smj zq%CI`Dj)RP3;yr-tYg%tkH6pgxJW`^6{TXg*~f4$^Hid=O(m?19l~07GVW;Zu3|3_narlY^;_O z@mjj2@VQN2x4r-L#5ntyRu}PFhNb8^{jZkq7oJFDD`*)Iz0&I;=XAeregFFty=-@_ zN}^Xry~w#OUw6F!_CzJyOe>f;m|ib@PVcMf`!7!{vct8eh=UpRqUQ|0TEAa@BAN}; z(jZ!=M?)4iel>bO`UIQpq*X+;&WILS*!*?-`A+QuZ1mFuQ| z6#(cq%q6u{mZY1xNAL#>U!^`zT!8$(_k5T0&a(3a-LyT@KUe~lTF!Y>=|19(^gY5q zY}#pZete^e^NG@4;)380raRTn%cjO_mD+FIno27z4cNFNHNmgcW20$mBD*wVqxH^s znNspbqn$KhTDxxya~Ut`wF70h%K2cIM$&@%4+1+$=WRD;xLhvYW^+9Gh3XH&U_9Mz z<83}+{l91JMb5E+u>Rfse9*>sE|JBv1w^IC8_!0OoKIb(zHkI)bzG8oI zKJUA+)y1}$m$X#|z}!O{SBrURTa}MU{t~zGFEIDv^ST@Ny8KwO+wM{Vn2eX_Gu)vr zA4)py_Q&6WA3^+|^zAqCcm71T@0Xmidy{Ync|_rtpz~H6qg>`nChWdj+vtsUE}12& zcH0w9%lt0;%kjSx+egmpZFG0}E^EvG5_sNXW4Oy?$$;ItcyQ~5_{IM`cB7NawGvCa za|vH%zRB%#{;jw%by4}mf!;F}pIp4{K*KHqZlZQqTynWveAFfeX`*uCY_BRv*F#Gh zlNL?KEh-+k%oI1KT~^?y>+{YM{B(WM8t|ns=d|Kj#sS%TiYKUiP8&yDR=g)Wj;$yv zjZHqFd{6Sk{@&9Szq{b<$Rq<2$=tIN$2H@n*j2axyV#}z8>xqL4E(OGyO z!j*WzMQ)#*E9s?+)IQ`(;yo9&eF`s0-&}-x;U>fk7i6!2OB3;S+5y-->+#nWL&dRa zi)!QZ6;jSBrKZHd^nS=a-4n*WA1byuA1u9349r**8qcZ-bbecUpA?wYFK`ci0^9q% z!qfRt=?Z<(c-)|(sq`%AOJ={&J?sgC-oc6(=Qz@rw0_t<-1vsx1h9%mv`m_?tj6!W zQ%a>tYMDC(zZvxARFpZd+AfQJ^X~1b@ONG%sip0Z4znDG^fD{*oUvt&gsZ7Lq{4QL zOZHx>xa)kZ>^b3T+74Kl^|)YfQbn4xLYY3nGxecl*!FSp-U}5so!!fRCU~Yjln%2R z7wOHYxZ-S97DRZL`cNv&Vq6;RLVM&KUN%X1m-Y}Ah8q{?O{_?9hLx!ktWqN-znPCi zd-E!;J3EzKBUq(HN`JE)7w%1~$agj<^CC2)MoN9#F)r16rJ~k3xNMNnkQNF1W<4&{ zn^KYGtWjo7h)G?P{I-2uqBlRFvN++Q2nf<&cfTn8fwU_Nu+$q3C@otbWq;+%q0$vZ?7WQ`p z{LpPpSd#r>T=OE}NcS(L7f5hQ2vEPAC10ErfH;tTu{ee~CwIWJCNkh# zPowRU$d`jPQ{9brC*#3tH^c$|8l3=#p35aBb|({F$=sGZaI!|DJC^)6mpjb%Gwqe! z7c4NWV+l)gw^i0%?#PmFwx1K{R1SF8#0D()h!jhaRp@+rYHQiBMH zE6E_MB+Z%i;{sMoGi+57=QR2~YN!FDJvzl;s~p`_DNwwBU(NA=-+GP~|4P1+WU3M< z-G8X&T)<3^d@;CVrQcT!g!b>LITG-!$F2A_`C!t0`>D%cn# zd#N@+A}O<3-8fr=q!sAm^|7Lod|QJ=FZl*lz-o8#L-tC#mr{dxr0eX7v6nq3L7iTi zv?3fCIJ;v^_l$riIlueJ8DUSG*WF=fgx-;By93XNzO$L{j+xzHMb7H>pM~&)?$4#K zNtIbEChPt7idCf0Z1Pw}w@R5AAvkqVvSE9q#O%ef+uaBGL3gCe?ESGX-EYgn@l%XJ zXoGR2!tBrd!h1zxv2yHP_oK3T{1kIgqQNXu1K8C|rSqhzEb9$1s72Il^B4(W)~iCx zPO~Lrt=%bQS@>0n7|i0v*`}UV!m2{dwnfF+)$WecERsf+wLpy4B4+mK*xv5zrB0-x zOlzSSoyEdr4UAbDpt3dU$JZkl~LcC!0*X(h=! zt5F~Zy{I$$>)65W+R|XsP-df040cg}_T5-i_k8ITX(%gp!!io&!D=0|>&`0GAmK7& z1(z|4y0gEH9qaBYEh6EvVg;797PV)ejk$MMmU@$#GGm37br!eGz8wqio+=$80Z4qq zvgRUswqwkxyQmaLipyLPT-I*aQ}iisj*uHQS$DPTGjjw+rP9+CFBxw2KivEzm7`;8 znm(bp-SD*E`<4ia(ZKX@!_)rnnnqDgBP(?}oqlM`yYSlxf*&r~jhpYWS1izSfFN7ojp8 z+b!t^h9~@co9%u771!nsYGtCfPU&8X4MvMTyyPB*G7a0fbOFA`E!nO}<5;w7 zD8~6owkakXsro~JS&cTbUF*GJ?M;ehM(sYl6eD?m)%J*Vs3Oux$M-K9_Zq_8*g{2|DzntWNqRC1Z)BZlFWI>wC1LGvN}_SmDFL zf?)r~#7ip1un&(4&Kb@4e&~pX-Q94M&`B(q@|SPtZMZ82JZhWuc74Ch47xMRXqRs+ zZ9(_LvHytJL5%$ms&;I`ewDk@N5%I(mNnAet+cm!pOMLKwcj3ZGupCS<+tWDMpnBu zj2}xHp*t0gn|U%bdYumoz8QY@kIh(+`cPXi@$H#???anj|UhJprOVe|2O_CdX~pdgj zZ{qSE$E&XzF zV;kS7{zr^^QQ))PEmM!c>VDsQ9pmvY5jT-;$8PC+cmlAhCD$NBS1?=_Ws)%X9e-2I;VNg=Ru&%xtL z^?jefw*LQtwmm%_RnPf+Y3on9r}25iE5a?3N6J4n?P2Pl1z*{K<p@AZyYH4C9Rl|H3vW8Y)#&uLfXmK@f*^^dIQNz3y5f_$x8 zU)DeCH4)vnP(9SDAMXi&1fN^#ORB~_)~79No^_e<>uamt<&zIW?Ir(-J?sAT+2a#i z`;JsU^Ud#AQGFx`Rt5ewPe1E0aiGuJXARZ9+VZag_a@eg_#^$ZRuhYT-u`^OIvh0H zW{-my@5CM%okdRk*!OGI7601DLCkmJk4)xZeK^0`=Ag89(vPgpicVzqU9Gb44{x4K zT}IAz^)>mdroNMUWN{WYajmbRD$0Mpc}41x!CBnIN}o`bs2{9FJ>3cdGH+bfDoZ`p zN;1lPPHdv7%FZvVWgV-w^UrEtfkkbeGoRq}A*--{PA%8ct%RdC&25|b)Ms3E%&)8E zT85Qql>VIM#6q7$m4cr^i&uIBBuaN~>%{MUdR6Xzl`UQw4I)un=5|bc>r<&R^9ybn zOm7g5(wj4#_|j)l74A3HGMLdI8f7qNJ+a&;S_SjdXt7R@fh=vDGnyFf!&W)@6}4Dr z#E2|yp4&b#)2C2n;OE`am>wg%v}w*{;&Y!_Rj}VsOJhci=#u`N)x=UCtV+WV*Akn) z3|Z2hGoJX^XHezMuBQn(Di^v_y;>=0dD2*`=bz1$LI(d+)edGKZhe}WCxpd1>KE3A z47Q&W<@4I%)UWLKtxvON)Exy1X#n;c?9ff05dgL#jGD@pZPm@(D|j8lhp5lDEI>Z) zE$j-}IeNZXH*K%{I=&5aysfU$Nr52KEc^mc%xTct3V+St0F zeqF$k1fCQ!sF#PgwH;6XP4&94;2#i~De) zuK8Z-k0ZM~E+rTvkID1p?NI86kZ70Hwkx<#}u9i z6a`Kej&lh!GV^kWLVg==OkGkAIxuji?i1C!1H|hhLAC?C>n>66 z4j*lcL7J%qogGjG&3foaW73l8q($8W>dbIs+7$(Uvpydp!Ee@=tikyP7Lqm`%Qz@o zs~AM(3);ArWyMz_z=Rq$;)g*t8|J$@w~|5EZs*OJMq2NUd&=@xX_=Eg=Wl_gexpmV_p=>HYCVRTfbz!6{^Js84L{8#e~GQeo1=^tHn)j z7)SumQ=+5N&C6>1z&nL4-Kv&pAvkX^kW*I{vf92ZI`2KuQ|BMD+NzdjAsucx2?5U^ zc_G+Q$L6c47E<9mCM5?h)!hv_Hu}8zYMKQs+FNsVYte={0>^K<@UX>7D{`EQ$4xGy)CLJdeUdvRClt0c~A40_a4BStwo!=MGCn<)j05ALf!9`PIJ z=d!^YaO8)#uny8|6@#IJd+LuwJma_x-)0?5s#Ok_8az-R7V(*5 zIvmJ)ORrT5mKb!a4~%%rIXnD?^){(i<-4veJ-lAGi~SwdmK@w)9~$wIqdyE1BsxD~ zcdb7e@%q2Zb@gGZwP0Ow3OWcz7$UkjUc(KnIAIMyX;-qFl8fYVYO#?ZLpL67N+|jx zT;I&y&lzI<2dW)B(v-0(9UH{6XmFwK1k^FXpL~r>f)!1{qE`GsYN%vN25|4G|o#4LYoCH~VWzwo}Y#?t3 zS2tR~o0UI(BwEs zB$~`(HF!hQOYHg9sVv-vIMfP?FL1|otO~6<@k+R@(riHsP#ktepZD&& zt{t}lgkPGxR<7OOQSD>XUF@P(TvnXGs@94&?-|#9x{~eP+LRe5w5qeRh4+>lK0U=A zYHi9|-LR^;g64H_ou-S}xYoE#5Xoyd>p|eO>Hy&krj#htd=v2B1Nw8%mAbq*o$-)ZT4Za1BV*k|01o zis>X5Tr!mKbprwVpQ!f8L3%K1u zNG?ZMi}JP3$`IIjWFio)%&Xx|;{|8L^K@ebgcQ zI!1^Q*mVB`{h3%k@@Lc`N?mG*2?%lS(Lam5Mh2kpfxtIG6Uah&D2`C!g$%_#<5( zJ6RgcXw+WJ9E&OyAxklp5hgk(h`r~5eid2@EGs5>-qTr37_<8u#qDyeRG;k0jMZAa zG`3cBKSYFK#|hxcO2H+#)SBFc_@+H>*IN{@p$A_|;0xT#jpL{9mqnElMPF~J_2(p}_y=Fjl;bX}y!q4XfRmN^N3r~T0G zOcB3Wx8sNER@#xavxVR#WEb0=q3KBCZ2~anaprG`>)6<<=0Y45mJ$;zL(+LpEW7|D z>OWC!o;*JtUklcG`s=#(&|1TkT?gkZfnXhn(kJpX*O~2I@O)5cbN$(S`296ciF%y9 zm34&q43UprDXbHu+Wf6cr#i3?u)N`GIeMYizbf0CFe|Bb`cy0SBFh^YN8)Yago9Wc z5TW)Unlhpy**~(tCL?4m3XJ-u)|spkoicx;xWS;T=HyNu60p@x@YS8*!{85!yMX~V z<7lpA)EQ85>=l*}LsSN)wI*?au^4eWbkI)5q z*6%E^H%F#Y%gdoY8LY9{!T!bq+^9^j78uw}iqHeS))$rqBV1-mYtW(oe{^k8224gn z%X)V-{costbTW4{XFGd_rNA(d@z!eG9i7D8#4%xiW|=X9WrnmG9imgX`W!3v5(~!A zkilui?&i_Cx*TKnN0tG@JGY)FNKwvpr+A?$yK*xzRzRXwvL8e}wa;Z@j4ATDw}3?b zAEjRe*xXg;D-sw)fD=F;DF<8hPin z7U=Ky=62cd%sa2CyK7Hox#iQ37&-e*x%;$k?B0`9zKLRzJB~52Katz3wLmL3rKsh~ zGVxlu_L!|qVrgywW(Sktm+OHsWs=yr5g2O=*f zG@=)-l?zZvxwe=L%H`~B+Q)5Q6qXBv-_8wln-Ys!$SIei9Lzn7`9c95GUgL`J!CJk zkJVX7djI#L{b?{JhO(G5i&esJ%{~n03*1e4Ji=G(_q3g7vo-gy?9(C4YBp~dzj2Sl z_*2?*(y^EDTXPP}JUyJNi`h&0F=sdS5@BoJVfm-0a<^kbDIan=vHS6NvJWGk`sHe4 zc2O?oY{u><0K{DG>4{tu%t^|toLks8crY%2e0nr@3+5o@e$FZE8^WEu!wOG>zU$iC z@u#!j!=L)*qW_L+8)J@9p63)|AK*{tyq9@;Bv%jPPWd_K5cUD#bl!XUr-8W^m~hHu z&H(lt{%iJo#8dxVEXIj)Eyogju6cFhQTRT&H}}oP_f`B9bT=^UwW$wE&+qwmpXUsQ zhi@W-5uchWMoT@HRv>_Y=M+N7cvd08=FaV+Uj8)h3LisQUudTNq#Pr(mVq8Sf9bwZswO9~YPp(4Rn3A02+X|_BZjUNzao5E`o>x5WWQImpHGe!=|HbGH} ztq%9c4@mfJW>8V>iFGg*1U{cwAjTGe=izsY7zwlX!GFW=7Bv!L?S|jQcZwK^vJz1r zXa%Bv){GSV<_#P}MiNRs!9$XbfbYUviu>s@I`Ed#Y$)7`79r014RuX`vzhS`ZwX@y z!wqN=P}WwsL86B=TMn*=uNP;Vz$+6YgjiQlgMu7WMmV0Q#Cn7p6yjJjVEAY;HX5#x z$c3=3qpXEE+ZhJ5aUamn{gkl6RYW7?3C!l-uvJWI47TKec-B0V4E}uhPN<1u( zt8MRw+Mjq>D0hp!8h%_XSIzz^{*LGkV|!2hxcDBk?1zcHLgm*`-vn=%*~j3=CHCO5 z7ZbN_C{I912_84JC*hUFUl?X5CvFqOh-TZ;wuzVbpfUuGZ?+%BE5lwuvUOCKKspFgE=YMG<%4txqymr*gH#Ao5lF=#9RaBXq@y5}f^-a| z;~<>?=_E*}KspW58IaC`bPlBRAYB0IB1o4&Dg)^mtd0_ihIUqJdDBm_wX$p}(4NCc7wQVmFdfbwpX( z*9EyA$R;40g3N%-g3N*Z9mwBQ>Sp-=ESq51FSr4)s$nGG|2H6ATIUsw2JQrjykmrHy4f1@DeL(gF*$?CeATI=Y z5y<`^F9vxD$V)*E0C^e6fgmpjISAxnkXL{l0&*zGD?wfb@@kO7Kwbm#T9DU)ydLBY zAa4YD6UYXTH-j7w@)nRIK;8=SHjuZ2yaVK&AnyWsH^`A7M}Zs-@*a?5K;8>-EXZ*n z$Ai2N z`7p?ZAQypL4Du0>OF%vfaw*8iKt2xg36M{MdVaYciYX`zC@d%(DBpqdJt*}-X#h$?P#S^K z7?dWUGzFy@C_jMG926duA3^yE6af?+C@nx~2}&zaT7zN+N*hqxg3=C@_Mn)9VgZUJ zC|00YgJJ`UEhrs8=?ID)D4jsD2cOMuIX5l+mD!0c9*G<3Je?$^=j*f-(t|$)HRD zWhy9+piBeB36$xeID;|+6cL0A({M;h<~*B?6SKplkzWJ19Fq*$K)n zPBD8-;00i^_#qo9<6atxH?pqv2ZBq*mq zIStAgP|kvK4wUntTma=FD3?Gf1LZO(<)B;vr2>?zpj-pxIw&_lxe3ZGP;P^A2b7;d zxeLlYQ0{~B0F;NIJObr0C{I9n3d%E3o`doNl$W5q0;Lj^UqJa4l-HoV0p&MP-h%QD zl=q-~0Hq3)kDz=4K=~aM1VshK2ud|51d0Yq4Jdzr@)yw80X=}eF6irl-URff zpl3kOf}R8YccA|s^z}jC0Q3z(-w5=LLEi-QO+nub^gn>UIp}%N{|Ne@Kret^2l^JE zZwdNVpl=O&GtjpIeOu7C1ATkYn}gm0^p>Ev0=+fpZ9s1e`VOG)2zoovcLKdV=sSbH z3+TIoz8mPfgT4podxE|f=zD{{59s@Xz8~oOgMI+$2ZDYO=m&#-2{rFG!r>aAG=9$(KYGth8d(OtG+7Ozm4S6~n-BnL=S3PTA>N*>z|I7XV zk5%yhhgBVHEH_s0u46q%EgU|-cW@6wXG7OL-P3y~IpmBg8N~O@%7;WYJ znX2a)0}Wl-eu-y**ZAe;h5*ByEzVn0?Su{4SsOE3VpGGzgxrGMqIm3Wz-&${VWLrI zsy=_O-DM)NfyE9}8lXMlt=04Iwe#%1m7eOT#_=`G7bDY--Hs=C8?vBw^gWI5ddW_} zJ`b@Ka=&B87t{t@5r<1E zW!h&om=Fh39hSniO*{r-I0aHTi^d-@5VueuZDIdL3eGg<^8==ybS!kv6m<_zdl$*a zr<~Q{A6g&2_wgT=Kl*3Dmfxh2Bb=O+2wf1**TR+R-9O1Yv#Y$M8 zQ@HVX%L+ruq2&8X_oHyK0grH6MWb%q**asM6YC z2wr|im(c}lsx%We7$z9TjUGj<9!(LdPUakoYZ-0WyE0+%=}8ZLuC?aWx@UMxNO~t2U6`#?c!)g-s4! z6zab$WRYR2Vd`eb@KkHzAGF}EhVa@fcFD?>OUDY6e9oHe6_V_}VAb5q3nP`|9J|iN*O28h>o!o;r+TaV7|D^F4j905_!r8ym_Sm?a zx51q?O)1~9x>*$!7@OkmcQrRzq?*ONu_>C=G$j)jYt%iwCv{PXpK1BhOE`(lVHC2k zgZ%+Pqt$$u`Nyb10X4~@A9b$|c%r$2Ke%GuuOTMKc$U}tv5VI)-r&EU!{?Uto^@E8 zXpOxS(Cz@XPu0C+#Z}TOF^of7Z1I*_U{_04eKnLHGiT`h{);&5Z=u<<12f#q%&;GG z$dI-pJ|;eP&xxHcI%EhNrmpo`6}oy=$l4$SM+_4fwkM?xHetV{{gVCQ(4@ygjf)n` zTNyiksOiX39dhI?t4*u^FlGOPjo>7ec=9*0=wHLK>V9g;YXgs{17|VhhQHOCbM*44 zz{q7f`ipIKowr(RCNw$ZKu7|odDd9*ozy{dSg+tfA2T0=K74vaioJkl%=MguH`-iL zTmGsE?3aRHbMI$yH*4h1YB)8RtIC4@j5S(y#uwhBPNSLNXtykO3voA z{a=hD*{rhU@`P))#e&i5kAeKnN7m)NZjHLHdxpAm*dqfca=&QlR%h6~H24g4c|&c7 zckMQm>P)%bL-=^^`K?Qad*?0nAQE z?^7j=)Q_C&;L91UsZLE3*5JKz;nKit8{yB8bD|@EFF*HA8{=wvY=r?eby)AvAb&Hv zEh)C9&l!4J-GT4#QZO~sInh=3@QnZAd8P6h9WC6+yHJXvy*c; zHM5Y{&V5kNS+TTb15eiMM(X264f+keH&S^0@+g{z<8%(KtypY^pLqvrZ$lh4?|!zM zfZV;;XmT4Z%87qZb+Bdkb1ww4d1H;?`(1X7ldUmIeoq)H1U}x#42?*$5ql zP`V|iQz|X9RL@n>a!kd{D$2wS?5oHJd#@!rKNmDgd-9*0P=W$=IJgSe90?|C(Kq;7Xl_kj|P+Gc1IRtn{qZYz{kP zU)~z0vP)>i5E@3!h`T#Vz_utnM3+R|!)0pz%(%397tOFalN!E%*WS43*xhBju#SDY zu%XYoS!-8@ty;4-%)kw0R;<|`-9}Y#=6m{?jo!Q`rUg#0q6uv9rr_WfG=otG;sSp3 zxN_Iy;z7Oc`gNsn`r+{fy1!A}QSHvxT29xmJSE<;DHgu5ZS{@q^z_t>lq?RNv4FS6 zzHFFZm~WUbM-yz&o>@HFf9%2uoZ6Fd7oDXs^0cHW`zIw#>nmV$5u1&}M*Ysd6y_v) zB)IRpfARdqyo=mRtu-5&7L^&5&8c?pwEE1B2ic)Mx!d zR`{FEG&paW7O~$_z=5@?>t-9H)zuF*b=hcI$ZM^!Qf*C@EUu>GJhetWwkAD8RqDOk zbTxu>9siVYMsj9SCa1-HG!9~O%2Tf;-0D;){7uj6)TexE&G;|qkEtIh6l<)U)90*+UU#M;HKfUfX<*dyViM?9PA}!xaG|$>OV~=a4r!~xQlZ~E$z0Z z$WB0$J&!X^l~y_8_w%sD>I3fuYOt+svi*^S;^>Pz?s6D{XDILn#=WDsSM9sdCPrPV zHRI_g{2qUz?-^S8BQ?VBu@QaGXpR?oE$Xwe2b*^-{YK&)n_}Uw;$pI>o{*B3ly=}x zs;h(XiZPP6xy&x7UNZeKyweFwVP8^wYFtL<;!M9RZ@K5>QA1sicM@6pU3 zq~YxLoNc)gc^nRYN6(mNT30?gGctR3E?32@8W%D-&}n|syhN{koH|Hz<*#OERkSgl zG_OfzmxPA;o6R@O+u{|GXf0q}re?Yt%4-`w8GEu>*OG4})XLbM>?e_~-#6vPABaB? zo5ZQd@j0*6yjE-M{^3Nm#(3jf<ul>c~`0<>@}Vp?k=PC64|xL}iTEiQdB1?9$To%NbW=E4LuW;r+fWouXB|7WKwB zl1(W~yb^n@>tVrz?5B`!z_%)9e_BFXd^%^Gu0`-=nORrb7*AT)q_X}iLjwL(MncD0 zWsrsODzDKCmAd`A)AV1ZZl>DvTGU5lKQ^Z#^?JhXuj$x+6t(C|Os&e2(hj60W^mXa zOL$wO^;=3{SLFof2OPFuAnfsp_KEW5D4%&r9eH~-@E0wRrFJHr)WBc0Kvs<)TV6}n zOsY!pzRL&IgwckOACHajJ~g8Ie^py+;0HzmxFG{s$=)S!G^#{eE3i@S89uddl7z@n;GPN|VlVFX#ZfD}G1(j(wIDMg3N(tnP7$-SccEH>!K zqX`q_ymZzAy?;T_k+9<&UB^fsoBm2oJF%2U{dsN6C*u@0>B7ECd&_N$g}G$!L@kE? z>C?&a$+0Q_J(#Q(q%fB8c3KlFwMjqPPvzK>T{ULu%=zAK`jK-x_>}h$uwKEvl9H1- zg^8CVpL5uXWM)v#>|18om&w_jx+7svY;^Ro-A`>Yg!PVL^H+w2u35Q$rGX=07KQFk zXoC~550+EH1GUKqt;y?lEGB6yd2Kv?r;exZn13W?f_jG^LtCjeIgvZHD(foXEc_95 zIKBc`ZCNe+PW$jD8iSoXUw$M|hd0y+``BUd806qNTu{8IWbyG| z1nPZ@EIv?EY|ag3XenLdtID3=xOwkRzh}eWP2jWy=BoprF`ne7(uD40OZCa*(QpA- ztoI9czlO6rL3@@=T&=-^mO z0llKpDGrAuMfpU{kMe$7D9pe{6OncJom;ME^Icue(2V!g9nGn+?)Eckg^V3qJK<>E zHxa%!e#cwmAev1JEvs8p(L$V!gWuC&bZk$Kv<02plQRusF@-MhI2*UnY}&&55X1NH zV?B)OPq<|#V1sK_4<1$yxF+C@jr@>d*r?a91ImZ#9z7axyTct~?tDcA?iBx}_b2fGEInR@GN_GEDn?F2{e>m*U!xN8FpX*YdM}Nk~EpRaw*R){=70rHWcAv>J zr0$4~j@`36Wo!Pn{4Ey@4?Cs`2I4l1Sr@c%?fSLr)`hKKyM1<8o~i z-D3^ZEYxoC*agE}9Y&7g{&7bfF^)I3n)5}yMQ(Uin?_g3O}q8wAY*J*#n-gLm*|ES zxRNT+jb7FskE%Nx_ww{fchG&7~|F3jibSAw*mH}J51x$ zW;Qh)jh?Kw-`I#B?0R}ykxQ1SyL-~RKrESjN~aFr#(PeZon7Qx&ccZ!#i#Sj`W*UO z{fTdlMZDW!WxV9Iew&~_+i&mLb5iG59seVcCL#!Wz_Vp zt`$9ms&a|o*C2h6yZ6$W24{m~_~h^u3jwDw$F>~YyFV>4 zBj(hu`@8OM`xJpca@uDr9L->!x|HuS;{tWVI@BEPZFJWkkB|kSzzX7ki%z1B-#jQ!BDz!8c&ICYj1CSY^c<= zV+^(t-M06q#><2~)>uDw$An#uQ8RVBW=DEPdQEV0PzKDuXeV4tyPS8fBx+&w;+UmJ z#+A$~F{B!j_U$i-&5k)7bFBMWA*gGx7`$P@W}nn~XV&gs8@V?6+MV;2M-jRl5j+Rz zN4iW}ofek0CTC67+T8VrFypYW{Jkkz;e5WAK1a@UNq5pcFPeA4tHiVLpFQmV4$|en z^5a&FTQMe-Lo@9Ap89@hZ$)FQaSU}~hprsFdQjK_YXL_lVE+{ClEHmqwQa_+ye(R= z&K7Rt{T8oUAF@7h<9>Sqt@dE6SZtaQ?H}bI>HqA!Ft^O*&X{NYX9)4WalWyB!$XI! z9v+ram~$!r0f*slwQ$C`^$(W6mi<+v?P?NO|Im=dW{N=yca7L@C7>-sPR24`!w)K2 z{Y%kR9c=7iyvi@t`@8#ja5S6=IJE3wKnB$f6!!VW&5xPK(RRz~)>X8LiBF14iA}T0 z5h&)5Zv5rULl4@h2ehARtg6rh$2+p~R|W-`4Ub5%G`-8vBrN71REFwon06jvczn*!983bkzgZWONM5v&v|WNl{(P!-9&tv1mzoa1-gJvA&Fzd)~C7B0} z4jMOa-VB3>VRpDaJjF`D_RNWh+=RqKiG{Iuc43`e2;0y+0!MOM6DB-qbIRrv4&hsC ztU9>5lW{Ol?`xvoUqH)=RmLcW3>xz4PPEi^k|nG88bf({NP9O>=XKH={o*AahD8S7aIc6YJ7IlJ^2V5!&kdyqcir4|cPr`* z_=F=@bTntaZU4x)g||@~ywe)6b0~qg#3rmlz2;gk^jN=P&4yJQ5^V)+kbtHspL2FB z+Yzv1$i3%;$C>!)~P54b*w96ejyG(Hj;Te8T63Cw37w zEFw*&L zWWuuXD-M*UzRAQNIb2+&IsHS|rn;M&!`D>Oj8AWkKXv$o&P>f`bmnc*Z^)P17+Cu; z|1Hgb(5@c^-f!2R{8)TPPx)!=#)YO7*BQf^Q2nww{_|v~9wPlX=Tr{?f6RS-{9Hv| zNy_<{YaDK3HkgNv5Ak2&KR3i_liy~~aD8}^y|DgJ_QsT!cMK=u)AQ2vVz7QV&a8zK z!jnu-{W~+O4#q5F1@B2#BdM{u_4O`7S^0_E1&=v(8MBe*ZlKm1C#@f_(q(x-V1VCB zPs2>Z%+0QbGz%g8RPpBAmKBC0dy-NQr0hAd?f$ll+t7JC-s7}lCOR+j(5}PQk%HP( zJH%5f2kJAKrnwf{2sq^gcDsN-R4n{epc^=!pE&H3@?=(pi|*3x;iWx_tqW?)3!_fm z&ue{{{pksr2|1h^%4{T;4aBbXTJOCg$lnlP@DKOfa=>2Lke0A9vgIv9LB_6&yDo0S zJ_d~Av^*vR;~#S2@BZBX)_t06;TJ;pgn%U2P}P|5FXp&W@<~D|KZI1(0GF% zN1bh`CF#Dw{e=e$a`W;yE&G$vhCO++@aN12w#9lU7 zJsY<(_T;rucz&qX)>dsx!$0A0we4H2?JYd7j-rulQqF-x2}M>p!eYk-&huS3n$Da{ z^C|K^ql-ZUV6ZPy?XGU z@cO@8)xoFL6uuLNvSYQ*gMh>`r>{9wlDouUh%l! zQ2`^V3*VR8(NrrsKH+>{0WV%g5!p)Y)1^Ql;RbI_^{M?(n&5MGfPfAe*x?~I#uoif z3V(IrVfnC~y~OCL4P;t|Im>S5Z^P5__`vN?XrUgHHpop(nQ8 z9Je{n5YOGg)$AhT7I$AVkwYKGxBHBN!@d^0)xr2g?a!xE-AmTLcI`XW+Lh|NpXnwb zUx;w}dHI8hAEsdgm$SbJR5#!5$iU+-pI-Qwf%Umc?IpHhF=!il?8k|@GhYbg>P`Vm zX~%kwPP1!C(o?sA#M~YrRHASkN9@7{Tp5FVDU9!TZQ6am7aZPWyt_H|AMEf~FwVG7 zHS!K)?l_&DacGwA<_*`Qla4x+=qLhxc`^;$y>!>&U5j*DGi!{a9iMOq{`Bon?0c;# z6PB?$H7tpvOSFi0b)BR*c$W1R?i5@qIeuzTxzLj$`ObIQV`DB&z2joxM&J385O~x^ zz%EJHx&Z5+LBRGbbt|JxAwE zJv{5^-zU7#UG?X+c4}X>oz|Dd8+3{%A9O<>a$_jg*n)Sb7K3XcvCda|2sbaDzkcK{ zr*3C9kk>|Py>a6DZeflgi-Q+03H39$8)k2I4^Oie3d0X>PTzdaa404rBOyKN+}7t? zFKol<+wcLWU0|X!c4zI%Y9A&1gToxF#g>gdY8cipB-r1~#V|eGDI(FT7F)iSlY6U; zu`M?F@Q037_tv7zUA6h|?_;^zilK5k#-kqRk)G!LYs#q(R^7gx%muQfdNjP-X-nZ` z+Odq1OwK_~zRDKQE1iGB@5~2*`rIcAtVd0;EjO5<@pOTIQg-Y5rMs60+#2z4Jf}@! z)T89e*Vt%%J{(h}86VU>jCPv#^EgD6Xox2LLz5iOtMhq{Q*|n*=~z5O$vjO$2b@F> z3=K7M{7Tm#ajC>nT21w1CGZsuwlUyjYxOOy{j@8zo(6qQlwl0`|LzX3r6jec2w( zy5soaXP*ls-6iwNKA*VW|Bc{STdmagP3&s!eRz!e;Z?>f44tpB;MLQp*G`k3)sCu8 zd)vBv5wXI#D@SkU-{&;ld$l{8=8@x4FyX>0Vd{Cula5EY9PIHM^+29I z9(g?GSnSNFLg%^E)StS9WZ4UaTZ*<8Zs({T_4!Y6(f?Baa;{sY4Y*E+*K4 z80vrwLvu~kfp2LTGT7oZwWz`tZ>R;<#V&8DJrh#8{N&PeRtto9d9N5Fa%9QG7VjyE zI%*v+_|T6tsi6baBb+H4h z4b{5yJ=E}LTKIn_XZ_Df1Aj86^Av~oF|HPHTtTCGYEy}AIx{#LN7sHcgB`sjGHCbm z+VKbvW>@UaxE*meyMrQE2Go*O&3?oNXh#jm?tg`(A5#l?t-flj z*4J!VJWq#snu8+FA(6og>Q=tyN=@a545Nwn2V*5u<5lC$8yg!*fy-tf?s+!~!RG`Zh?ow`z;!q+_cqj6QH zvH85J>c&jX@|x|uv6r!VO|P2f|1=hZYCYZ(y(xquYDXLC0ES>-6$Rpub~J>%SsHH5 zYu|rVSFp#+i>~M1;nd_RZ5gvCKRQ3Mfa*jEE5smanaoj+C9Ysb)AwE5k%|449zyDY zlmp30e@|Q0{f$5IGfuVSRWYO;8ZO9wYi_?DA`tWmu<_3AL;PB8dRra{Wg0@&# zex%#1$I98OXNM)X6~3gsJNQc>_vs%}gfSRT^PR_1T}S#sJZvLi)6!3;AD1n7BhWaU z&W{;;#r3$Dqu1TMDHk{$9(P#hicfi8GIONw`gXk5MJPF4P?mL#!$M{w9oj$x*14{A zUAoBAAR3&)Cu~Ww5!T;0zA>%k6GO?NT@QCY+KRpg{GFrEOmtyX@vf5gQG(`8F}&qF zy2;K7^H}4tHiha5Xp;CP?QJ%PbyXpAqE>(R%%NbbnMK(qlPxvkik#qczXQ~ zU)!)+ly;u)h?RY`Hg?tDzt(9cQI=W4%`eEi>~l zxNT7)_S*{B;(s>$)lTtV; z2n&knz^W0rn>P>K;~ni4HAhEH=@0c1{y`0y=&Zb3`b=n1NPcJz zhXtAiPhHRnyO7h@esBkL!VcubjK%)^*rhS<(QdmH-Q~R@B`XfEIH^YQ z*iBU`yo-Q?3oY_^Z(OM!&NDr#al- z{@V!SA!BD=RbOaj%#PUYaogf8;)J6F;yK-C!XggG;b~s$ zSE}}NVYGhOj6bUOo2m8t6W}t|F<#*R=<-F~$(G9Jr(7F$`K{3BM&HZ*&v01Mj@9aG zt@vsEN*0&+lz8YyT6XG9-;ci0O~Bn~k5;%W3r}&sP$;`QXV<}1@;6KRC^1v}yM{#RK)7jYQL z%oy$9+d7~*K}=AG|-&@1aJq0iMZJe|h%YCW349>`57h%4l97_*VC zZlLk&oY&3>TQDK2DKqaq0IKA?J3*RETe=a z)L3smq4(Lr!e7&1SMuUV;H2v`iBb2U7eBp|-Dqm9osX`7LGfSN2x{7X# zQWhpHNE$v(IItvXQL@hzFNXzv1CH7Yxb8MuVUwdcjC(+qY*cJy{O)}{4hmh=pZIx$ z$BpeY{rn)IH1%-i!5j|TGX8pR5081laRKoQ6GplSaVz#MOI$e9ck1G?fu{xvC|<;- zpG(k&dq@M>$oO6HJNMZnemiHMQLpfpSi?F|AT_5xB-vi+F5s-s*aG`hp#L3mLml&k9&Tt9uSGp9BFFGj_$v+mdVRpVBU z51q&nV^zuc+b-frO}KIT+~txx1)c}J(!H-g6uh$JgVPI6 zAe)9Qw_z9V4E14mo!WhFcbVlb;ez&rUlg|>&Nn{s^8Wh?Z@5QH7}fK)p52{8CmhUM zq8IICy;d(@ZZ^{(ZFb+BY$IR?=4@Kt-8Ptyj#cD%mpyy#_@&}(ky3J znWMVo_5V^?|6h>QIkh8isdl1$tba)8BD2W`r_C;3f$xz_c~;hyHh5AssnSfYv2V(s zT)%ybdt1}VR^87IpD=X#V40&vS||3eKXupW&s(AoJAs<_B!*0EFZUJ_6ZR+UPvo>_ zA5{Z;@Ops;MVyy$Gnu~P1hwzMODW?emIdO7=YgDB%aR&vz?jT}#7 zn9Rc&Co(QloqWO9!E22B1dci}j|zOwd7tz?s)_CJchx{uL|*G!qv+|caMbYcUA=!Ma~ zk@GpNIeC1>I>z=?=QDaRG=%o?WICPNN;JTe!^Q2iHEgdu<(`@PBXiP_zdI>DB|fe^ z66;xK2qn|h5W-oE3N-omMq#pSv84mloIF8Wq_pxrW@XW*VO`#w%z zH)Df~L1(+U&(=}9I2?fo-_k*Bi|gKMzp%#H=*(-tgd7aXT9Nj3UTIOZU$hUWeMhUR zu$}QoYE^~7e|9m{t*>}&?u<=GW8*$&UkSuqr)C$a^~s$v0)BZ*WlZeZ-Q^KCIc#D@ zP1yCrR*dnV!f7LH)rQRa^&8f$UpH(n>M^IBbIRmQ5cmC0=bh22YbE#9@T zmR`>)WQ{)(TZNwg)f%ljSoJeD<*hJH3uV2QE%&JHzin~-I(BHwJTAz;-$spo|G^q3 zwx@}d#?r6D_z|Nk245IpMfqHr(c?SkyE=-BfkHXi-Sr=FPQFPY--w3x_@?eW_)winxE3hQRCU%YjYlDo`<+bH2iH-!YF5=iP0iZvFYgAe?4N(`XNib!aNzb9Uj# zya74gbWaMsp1A)kU;8#;-vmGKR;nravi`v#er6s9_bvK}{ni5Nm|F+4ueQMrSoZ_f zePP~BGiAwK_2sqoY=4K5)2DbATM4CECyUOUTc~=EYM!^gI!A|=S@$YrF(eB zx4^B``K<1u>cC?l<133EB#RxMX_Z#2|+i$L$5&cLuw?FGUOP z1!b_?qqoOwkD)s8f@klMqs(2d^c5~=ojg=n!f77Gd>7B$aoIyMdg&^2eeTY^<#z3x z*42sj{FB2)&)XQc6Vxna-2(z?hp%bPhWf z;f(f&1hpoK?>MP~2A!nN`P4@Dy4(YQbiz&}arnQVE2$1vo2r)lw0>{qRJyzzr#t<$ z_Zj=6mifAVw1%JB8|_52o`B~4b!T5ui)&V)>h)B@i>z37jP z{ICm${}*%b9hFso?mxQPtSbc`rW_ox(n8O&OUMP z{XEZBfT8hS_?k(;E#VKSf2{6aXzm8H<01_uwly{#I~clT(rpC#R$xJ9_MBF2{$A z2*%72iJz6r!IM{bfjNBq@bTn44&J>+VWnS(X>6%PIPo%D|(KaZ6V1^5MD3o{h?8Tj%8yyWFa1$lT4 z#Ad;^TLX@UaPxNDxt;vHoeD& z$vm4<`x2`n3lZ*C1nY%Nf@7RZtSg71ir~&fdqw#~`g-UY8*A8Hm`h)@T^?w9l-H7T zI-`dJF+TeM&%kdK{lE?kM{x&J+EUzEcowA_sn4c82JS{2CNLMuy?VUPc(#iMg-DWI zn^*zZ1!L-i^DJ?~Pb+C3h$=xZ3A{Pj zIp#TvV{B++NNsTCe+0z%?y)OGE-+(%MnIasNMP_f6OTK*QQZPRyR(j7h8Z=mJ{k6M z;5WAW6@FmD%OZ-y3ppixNeqpCa6jwW<|)F#c~FD98J|BPU6QPl^Hn4#?G*_M2BN@- z^{{bsc6GmPNIN=PFE!of?%`23Bjdo414j;|hz46OcJ*H1hJ_XlUW2uFv-Pm@b}rai zU{mmCYNA&SQ5ds(hbHVfkUIq$^{{?+8MQ}iOI)=LWjSF!1Jik1ve2^;*-HGf7{3<1 zDRzh7?}90gA4FhsohK(@q$IeyuDv%Ez(jy+5~ zn){%tB~JWg!WosYK1pH$dx;4@vY|C0l_7tHW&IceN1>Q3y23VEcG&hfF7cS>H!HMN zox*qdz*WC(dtn2N8&Ln&=X6$<>Itp#!RDUMjvnro@G}egiwG1l4sO;S7T%V{_7yHQ z9C|}50eMvCSAjYxze44UiUzp1U%?RNACB3L;EzmXX+%+EzJ#=q5tzO|Er1ig#M?|f zZugRm-K0C~=%8fm^pe4wJHUQteNG29voYGi z8+?qs8-3dM_AK5_E41o1G@0(Qvv;xZJhOoIRChF;Je?O*5K%}6}JA~77wQ79Q_a5^tXn9=lAsMD}JvfJLIoCFL>OOZLn^;~N_YuL6j~YQs zum!Cbs0AC@p^W~V?i1U8q;@zB7x<%rOr`oY@#W-;DI&p930^7xnUVH>EQ2V54!W^1 z2?t|lpsyl$Fi{)Ai~}vb^vsNxTc2M2Dtr2ytRK!o+$ACY${I9l0UJq5BJ_d_DxK$xaDR!%u{Qp zvx7p+LuGu#yU#g*l>1wMm>L0!95lbfubCezz1qE6JR3!t4yCRoJBw^ZIGc&Y()!)i{L#+1SL(*NG^F@PX4-!s=H$12BCq!qj@ zO!ELtfN$P|+B;aUTur?!ym$E6nM7}k*%sT{-SwzXLQTkchu%zZdr(tg9Zm?Md2YvC za-28}Qvfq&1Im~#vv)uE8!k$n-c7lAo(+n*AbTR! z_lQrb_p=%rc*XnXt_SKq^r-()zoUNcu^tEAV>$Q$aX^m0930>zI$VaeP$ZaP5om8j zN0wiX)&xHTDfmo66LX)A(jW!WD8&eyU@w7nFoY-P!8V+RD;Reik_IP97dAw@N4t9k z?+|;5y%N0>i&SZRX-RyE%=474ij1DLfA4|=a|~uk^Zy3l5lnjvX-fb2H2fIC{{(gf zO)+Qg*k`XX6->eOjS#I2R_s%#ArH+4EIM}FxIwqIZ|GRj*?6k*bm3XoeCvd zQBYo3TF41g-|@k0bxT=me*2;(`d96OCD1^G???HAY;{v~4b3_y~9=M6mq#c$8pU2ej>AunoQ; z?a*e0Z7j-SCRxa{roy}h{5+In1HvODfME{_@kNEgL}swM>W7)I9A-Sj8E4_Mr^0;} zzQ%a6#;nu4(W=Z&bf?>^X=jI7x9C6FbnGi#(j>0P%qz|>$$pdyvz4o8EKZEs9Jwzl zAS^Oa%;9QgcW_qeOukND=wnwj?z}Gxdl?~ye?$UMbr;Urf!{ydMmylUdRR~bn-ovb zG3_FvwEG-R>q4bATq%0hVh?JTFlQUci0}i{6HT)RN(1vdmx+Gtv$?hL>Ed_4`AKue z`ibuPhZ}z|Y}+QfcFm%1^M%#@B52!9HerMcnjk?1j-Mqj9Axz^*4b(A>eHa-iqBSb z)n>cY>_02!z>#Se*JKtJ6&4?RkOs1n&d41w2n~qX9~9{)=5PVyBMwcEI{~X<0T2lI z3A*MrQK1cw5r6#N6{lI?lxHTi3nn+htWsF2m`BG}h7jf5XHmKnr?;Y_=ta{`m|+Fq zn!p!-4-Ee?g!dWKAe#+ZJZtupc!{uaA-|F_-a6L_W%f5LpkUDsQ?GTs;2vN&d+wZj zrDKIng~%V~5`}pRU`emYDQDrnvC}&bYbgIk%7jtv}8p zr^Gd>h1rEU$2!v<&a0rY=8^895fPC=2Yo+{n|D}N@k~&b!&R(Kz4I+u@MZ)P7$v^y zJ2kd0dul>^9=5)%08TNF^2CRzdK5VnSml|CUNr}_`L*~oiD2((vcmF;%2|!Zm7+V^7%o(VXRo;MQ~%Hc+KQ;pk@ zEF59*3m7J=ty(Q>ZHgU5ce;J*T$*h+OGy_wl!; z2V{?}A}1`Q(P!bu2~RPQDejVn1yAr56O|vG7nO_Bf%Hh&kqXE9SI3tz{8fx5f=3JQVaEs_ zFqt&-9`=FeTpS=mjgL&{Y&ZfDHi z$f)S3@Yo=+1ViZ=l36(OS2_Ha)oXOUCkt^5SV1aTYJPh2N#k;J(T^AQv^$(LyYych z>SG9R$v-2j!0|RZvT-Tpy_bg^ss{wneLLuEZ;V6|(g zcKku7D4EbhA-Tb|35m46x9VE?qqPk*$Rc2epIvNTY(Z>cOk-?gd?N>|pSmznZTiHn;msa+nw&d-f+3qe7BxO^g-p#mcet`p2vK0{Z1LTdA5i< z#C6w-VYYe)RSJ*T9w8Gd_RsffiO7jK5m|U);LM$trwiMur=jb%o!euxVzXj%BAO1I ziMhl<%UkSXVus@$CcNV08S(tYB`K175PZ(GW;AD>%yu22IKd95?m^j*d}Z2oq$9OG zjZ;SpC9uFX?3S?2;Ts~eVcVH$M$5O z%{i0HePAJhHzs-;Z(8=)oU{|&xMA61)S~w%lF6quR}T>u;dH_M?I6UnXV=`UxO(dH zMNx)NmS1*2vvHGWqqtLCH&_JUFFi#Ug@o9K%7lye=le8AWknr}KHfWY_TlM~<=u3b zuH$CAt+B@r9*@n7Y>GY;^8;j`q9HHwi0#4QxJL=EL`sZUDQQ897S8ac*{U$DAZ1h9 zwhT*Anq!)4y4$vG1~z)G9RDS%!U8aOg$A%hf%P1BA+QS!aTgl0{QEIeqGQv#z1F69 zr|8xhpE{Qo>wm~d`xpW{)yY7WB*vPB16@#fg9@-l0oUMc zWtfeQtZ9fzm`P;u9C|9_RMx314((Z=h_HRKlDq7l8 zLCZeHw_%+;uETE?;ajw3twMH$TSgWu(Z=+X8I2hdL;FXDf1-0Ix_)97F$@@uAyEKr z)(cIwQ5C;Nsm^({zPh@$qJhJwqbK3O&Qbm(-egO!<=x4A#KGBj!Zn6pKORi*0QA8D z?E5c6Y#&4T0{#PmDTOet4!&>SdY{gAz=>|i_;N5=5er$}D%Z=h(EKM2rB5g9Bgt*c zEXF-D@<3$RLCFab%>+bdivSe`bdH)J$qa%ju?N*1-3*dx(hvZ#M$#`f|)MDQ1ae`$hZ zhxdFiBYcG)$YUth#9|iKOFe|*rC9tYgaxctl}xk2nUK$xXI5mDXK}x>o*|y09$_44 zUVXC;*3ZH9$SDJdR;+D^O}KSri9D^#sLQC!BnxBx0iV8`(Rs`!lcy}tLdZ=dE)TCQKFTfBU@ zj_R`T3T_Y|T@OPSGY(Fxj90PR70&&#Hzk;~qsMcPAJ6PdeWzYdyYa4Az* zThLV4&JE)Z_UQ4{ywp6!OzNhwd5!88u5AHm&qi&Wpa>JtfprM654Vpjk)zcaRi751 zwM1{gU)E3To9H94%wy*ACo>na6sU2l`H+KvSLRU22#c_gz($zJ#&3u*inQPs zFkmu0wexUa;t&TMZp7~x8z>}bz%*6Y)mJofFq`pp@N@Qe|93eIEmg^e_o-dQnI)N} zS=>9;C)7L4D~tn;N25zXPXYCQ>!da75c;W;b7*yXRYrA&WcKZqYowY}VTNHVZQPgL` z>%yu+%Q^TrOeZjfiILl<=CaIl(C22r!<66BS%-vg$<}4dH!4{6&ZDoo?+oTlS_SZvo+4yFzeECnp2QdlwF*! zTfC`!3-=!*HKxknARx;e#L52h&I?^{dp`AhcR1^CR!TOPFQ^fVm3sObR^1x(Vds^L z=Y~61^%`Eb?){PKwHWnV-nj^D4a__OOSrZ-c$i5$ncAG%IwzOXQ0xjL$mX; z^0M-a=T|PP)8SCdm`LQfJfn)9=8xvWXKKYX5M}*w^4@t``xghQ2bHN&SWp47)$nC4 z_mUN)Ad4*8Q@x}_BY(c=alY?6pJ$$TMDTqxS>##1vT)gPP0@q=fLH#H_TCU7c}_M% z+Y8KRJ1?BPP~G2R*R%eb`o)J-=SRKk`hDCQ#t@}e&Q?|JSw@RXi%JSh|I!kR_?ra2 zVq#G`NYPVc_YLnK{of>KC1oaOaRq`Jv0uH_P*-A!!H%B3Q$we8&KmXG^gN=QTDM)a zx_btgGWdN8XmV#qF^M_Ska99bf+5|H1}>;%ijyQmP?}SbT~(-6s#Cd%6Fk9~!~{kM zMh9>>bI}_n&}E;KuVYJ4b5LWDxv$|q-Qf1c^iA>os)45Ny=}hre&_B}mptcOr(-QG zRYp5^N<+$0UYbm|f z)zw=)$l=0Q@7dD*H9k$dyYEx867xcf6I>#!euk@I(>&aSTmBwj`{LL!GTzNEeu=lo zb}nFHGG-BV_?C6sVrja;@}wedYj5bPJjbE`D+pop-HRN`Ezdomw(WM!b`4xMO!*n7 zK+invK@kfT5Km$^L>L8{-SVY*=QA&*3@=Ng=yZTA^U5{JG0xl~x^p~qDD*-|w}@Yk z_sFPF^p-Dr{ubMq1W+42^8CcZYLVsR#ZI&Q@tcDpVHO*QdY&k2qVkhH?R!@Ns!3qW zUHC2OadvDCQG_Bk!6V)=-twT@{w2HDxUJFClGC`ULw~w<g zaZ6)7!cF$>af){l+a{VPRjAUqmiqWAncIn{8wzgcbf>{gNorGAz$9Nt>`1KV`0PxHT-y0#2tQMzh;eJY>euVwJ?6-uw=hn?9lk(!{DOrm zQeXvNpcQ_>@(TkA_@X@ef;wl2TJ;&;{sL(N=7Lfq@YGAe&2PXHm5c13

    FC3x-vKW$_jnK4}5dOJg%N zU`859r9DX(t$6!_%}qX*l#|5WVT0p?;sWD1Xyy&?|M5!}HVAV_KdiK7En`d$8pd+) zz0_G)X^JaZAW~;wr8%x-_4yEj{bTc>e|#Rx_eq4loKEph){Ni;pOaSJ$yRV;;jCax zj%}_o>M(QiwDvLeKeK{fC_YosQrqm-<fjZR#qMaPjZp`=u2uEWyu- zTa9l+NHYhrOsIpu(;nB~(B7Z%MueZRLYQ!u;V0l~vPzh6o1ehqN~z_ne|Utith)rv zl~klgL5jJYSY6gLgKrSFv&YJE%5us%K6g~`VbaUfD$*)vWzq=Ouw5a$IBZdb7-kbP zixg0L(cmK5*Kzht$2m?2838AL!e8WB2gY28`aM)-#hxJndm;)~QJ@9D7QZSF{D~R` z=mo6^mOva+e#QlCOkGTMOu2j@J+k+R*AY(+wHdx2e@{Tq7B?`5G7e>C%t&QH?1_qNln}UZ}mctda7E;1L0JoP+8xhXM7MMDil}!2HShm&blj z6rr2dMNO1K5vtF=ph96eOoPd=>>Ai`2xy@Q7HIwf%)xFH?Eu&T)B^?=!&01m^(nk=u1B51QuqcY!{X~;&IxyZ zUq57K@_c_7xS3ZJ0v8&L&)bhe}YTG3_&$v2} z8bv8En2iSbdlp*8HOXV`Q^S?FkKGmJ-aYyXq-Q`a$d7BXo9f+e$+j{z;^HGYnK?OW z#mV)_^+`SAoAb)4ST24`Y-oIRd`xU?Y-~(?l$i5mqT>!9ojE4P_rlk#7^S0^gl!An zv`633=r;!XAY37e{4~^O{ldfjWp{~PlAJ%GQ-3GH%nZ&17k=`nF!`R`a$y=fri@>Z zbsK+LJ-DuYljz>PtpmE3ms}PJE{BPc&f3iyrh|*=)BYRRF5F*xiGtMFXC&73;I63M z9HuIQ7jqymGAKOQ)_9HWZ1Zboft zZffh%>xvar>>B5G&?7eVKvbxh+rk7MIGQ^X+%T6-DNC+Ms*+FtBsY4F|C$u;E_JB1 z?0ZJ7x~)2`TDX%iWfZ6UW>*D8kYn9Y%2Y{b@hSY0whuSnuYAf0PQUW|SUwt>NdV4p z#4n9;f-y|o1yjO-a^TP42Em$aUbJkL(x$;B^u>j{HwK^duDGuKqu$krbpD|BEyKsR zVfq=EUkdBFH-e*L9h-y8+fnr%%Kqm#+{Y0363!B3cz~-|uh3ARzY?UpE;&_UI}E?U z;hS>W_<)6lIFlG}S!=FgdwCK4>CBD(3q!gWDSr*)$<13Dx3zl>>P4IM?-^Y)_+hh1 zi2XQ+=*(WSV(zxf%V}eAeR*AV&F)5z7O&Y3_{ARlKCn%Vf<`gSY=X%>z?y-q6D;;? ze@*fG9GqODSawHX|oJHzQZEfF8h=pCk$|F*c6dUAMY#sW7j#Yy2BM zYvDPP=TYEXY@X0?@-#L(S{st8mhfj_K*`S z-t(R;Y=UcKIUA3yCg_HfP;_q{ee}zDm|Y46B|5bmS`E$3H`}gu?op+8>xSBUdfP3| zTVHax{FH8P*w(V6{o=DGkU9Y(t_MG7bNX_Ia_(}Mg&?I-7E*-}vg+M-nCuHO;@m^W z#K*XMpu_qhw{KyfAqU?xfy>?3+HU$JgqJdQf$T#WM`VoE2Q_G8Z`DA_FbCyKJa)#S zPRx$z9eelMiFb>g5^a+T)oEN;ZG67WGx6!BjQeR14}+H&cn(LHw1(8iBTaKM>ALZq z6)_E8Hk^Q-B4G`EuX z4mrM9viIbZ6CQ;wC3by3QM)cXiAh`Gvr+sE4CbH#ivHcC8#P*gGwIFp`rirOum852~JXg8O?uj4gJpw65FQ|D2kiw>WLl#+`(( zB}#yw{`v2Q)&HA!Fn*lxCipoTs(>L*!DwZO#=u`85Mth73`_xo5j23$VfP45VGA4c zTk|@VYiNLxpNWqdhw@B!iFc>hDX(UcrbCHKu|uJa2)|PS4+fv35jpOazq`=!>_h6< z>DcOck~<{{`@Hsi<<@(bE-hYGxIC}2 zsJx=Qj)Nulg=I`ec1BKCj#?T0fPTb0!y;{aYFc_mMn)zFZp>a^Pk+|{j{gd-5FBSB zN+XIR3UERo%?!*4$k-=2B-KX-$D}rlfI2h&K*%Hup^Y`Lm~D-7?9a`ou(%)C>w^zD z4E_Lt>Mcey$9k$FZKXtdwcsRLccF5iWQY@tf8n>Y@EClF8m?s>F;^OP zGFw+_Y{Jhi&Ml-*x~^V0ca=lWcW@nKS+P~TORP`q-iRJekhK zs=Vy_tokEQ#W0J*(4W8tit#(9w6Uo5M5jU-^)vJ~^|a=YWBN)0+I*Y58bxXz#jZs= z^Q}e5E&yu=H%l$TiEPeK(mylro{$&tnHqlfue%KVAK)hf9OJLyzRE$*|MZ^oyDqM` zqnUd%_h#(%4Dbx}4CY`fEaAm?STJHe+dP{+PIA`=UTuQ4YPfdpyw`E8FEWlwrW(yS zk(TuqUCbZkgmo`?dp64}dv~r=%K*hFRvdC5A~33O5q(s5z2QP*YT%LmM*@Qa_U{h} zyt#p1AL@D1^al=Cv)e0tevr*$8j_0A(vPJdPdP1qpjS%8jtTDZehL0j;i2(d7!#Ek zd-%u<$lJjl&O3bKa6SiLzMRdZ4ILgnbeC(s^Bf1~!(4kdVP(vkNIlMqN$ERsCFS;t zqcmn=)a-EloI@j6N`~Vc-B=iz58oNT?uGA+M|xq-bDVQc zMHj!jHdhzFW1(SuF6mzVqdrWwxcZPPRIhF^>*B!s1r{^O$C7fBayhVpVIdla!H$Uy zj14>(#9_J`xG?c?aj~%n9jw+ntNPSxQsAoZx3%?VD+oFsW}1v`s(oP9tY z&O3BDp5nS*yi|itD!55r_5A^MkDQIF;Zn)IS9`I1u=qMBtRLY$S-#kTV1Enr+cDS= zUy^3%x5xhfV$ysJ;Scb)2;64^bbSrH%zoKJs~?m+IPs9XA}nH$Hm0^5X`6kF`l0T2 z{C=g%k6UPacf)YS3+|=~iN|k(XM3*LsiwISzuRzegN_s=`_ZM&j#NAyrwM=bF>Bb>GY zzkY2;e}J#f!*^XUYktk2OFNjsQqrz4u;_u#&;yE64_AVeHOx%uOTH|=#!2WB-$W<` ztngcEwN}@VyNLtO+3t<)oz1;<1ELC(60<_{tJkQ<4{n#72P$q9JvjbcHJe75gqj6y z_iXb#<=&>Zkv1DP7}XlN={gu#nsIz2Tzw^IjMwoq*o)dD!xx{G!2}V?jLjl}xOgW{ zHC*)2h}O4P3=}@#z<~+b5NNc|;_V(BBoJaY$OU<9qRc;DkZF2owez*5Men33vd!K z)H~;R*5-_vXyEGhPLsAR&7ahJkBvG^5-a)op&PTQcedi~|)w5GDE zuJUC3#@O{SdK@lM0aYe)O@wx+HpgFQ5)u;PXG8}^gonn2#RkU(itWW#iROtFs7HADKd$*i7knzIr!ZOe!(08Kk4zwOy=>-ysSJ9 zmI_}J+s$W!&-kD55@8;5q%ox>7KNk|-VFF~!kNdM?@5p`oLo4V07fR!Q zYsGvD8}Q$u4vQR$P$Y+QSDaU+K<)zb`VFugdjFOibrkPRvin5en<>cvUzrK_*}EtY zQur0jR=ob0&c3whhR&nwofmu046GWYHu@&pHg9)t+tcpb$#wDUD5|p^9nOu`jb@Fa z4f<`a4ZF(SM7S1oo4`t==>|cl@VmHPa;X(h)&qZT8sq|u}ajsVA~*jS8G#?J9@OIz43HGSN@swUhyRk zHsfk$RfFSQS(y4pm2nS|RE&xfrm>GeO$)UHX8VV&Zx!8Wv0agMk;R;S zvx8=bH}!YC?1pKaL}jrE=0n0LCV;XWBdm@gYjm%gowcmD77gF9?J(=m?-cFDFruS- z$+UBOjg9EWutTS1r*Ws~Db^BuoV*=5W0ZPtL%U#7J4|kduT>jcQjp4YGAQP19n&X`1D8hY;{5nP(Kc77hsdijaTvA+OWNJim zxY$B$VPt_{-P5B_s|#DRWm3gyG3jAB{wD&9L(2EJMD)a!C)6f1i8;_`^53nBT^qk% zEZVv2kf+Qp@$O8|LQsDWU&7QML7jV!9&BiPXiI1VCx~Ii|5i``m!FRz{H?KGg1P88 zKJz^|!@y>CPe_QDtYT7$qBKlohU**e%;ZbZ8FJ-V1)-Y2fEEtiXJFt7!GQ-bu#6GD z;kAk8&IZd`)2c0^`zPJ{+|Idnig?56K3jJg+Zo+;pshW1y`}w28tM2~LIknFDP}m? z5V=?OvDlcKHlpES+fLKY z&HsHF^p7EY=GYA4rekKj*7oLRdbPc0sO70f4TasQWVO}c+U`vaMxuv3PTeLK*Ip9| z&tMVJ+j!5kU$UsK3~lc;JiWG4z*(a=@fcGHec9ik^#LL6}N4rI3?^V48g(kh`Nt zufwc*Fi3_V4wAs0J?Izh7v;;L3O=TUxg3eohe-c+ewrYU;T;C0*my364I7EJno{(KDK^~TN;til3(GqxVy z;Lr&F)obCaM{`)XB9steAE@#BP>m5D;n!r>s-2sxOdcE1_WqN@wT~ps6!C7N5|Fzk zM=xWA=zUS}aL{1D484J#x72F`;TkU_T;vtmSl^q_O9;1;c*dh5%DJ$(B`D3 z=N;gq86_z~Q7>(EXF=! zW3k%iAiv1X`M`|N z!U&@D61`ccNXMw1(Zx#i*P@Z~=e67@>k;M=?jFIx*4J<6f;~)pgSVAo659WLUBdtV z@Io-Zoq#vaL2sDD9K>h>{#f$?YTy9QWSoNoJZ0U)u8EGxr3w^S=1yb7t(jx7<2gbU z8;{dHXBjWOt4lB3ulqFL`|p9m zlq5D?2FqFft!h^Ijq|w$^l{B_V}EPBQN)h@&fXT=>=wI9eD(?LgMFpf3eRU;5#Qt1 zFx92ylH!Fhhsk#@^Q`vd%mnftMwlLlYc7v>w?3!%b-n6o{fiu|;g^l?VE7OCfS|)| za9G7iQpGm6!DbbMHn5BggN+W_uyAgefP)S?4F4ULE$F~cU;G9fZ@27bY07iO1a zmvgXcI(+^UCNkMgTF2ehU3DESMLp|N(~qX7W{5Tb$NFpS&|RZ{-GH8HZ|bh-t@ms2 zY;f(oNgZo!%XbuIG*g)MBTi$|4yC2dIL$&4{7ejuukF0x)b1+6R826%KQO+9{*?iZ zN4k?Q92(>nOIYH&ak~D-n?|&t^)Y4Yp$=woUG$D`m z+_T5W%ikx*D|=54C#dfxuZ}$`xKZx@kZ$x? zeyHkjZdz`7c3s*J3oB@h-2vaw*znkpxIi(tmhlWt&6(Nw|4zK=V+gM~rbJLxBC~or zy<0wuMr{i-4K(NGjqiDT2b3+}j%{V|kkCb7D=6buRA!+@3Uomkby1n+*Orqd=KU)= z*Vb(kJ?z=lzvHU@JrO*HSc2!7?DovlY29-&sW1NC4!KQg7njkx_R8*(J`N5t@mL#& zS}|5JPWu8}Kjl8`l8RJmY*%f3p3Gx$drjI<+Wo`eA%LMY1f_3`RPk~ev&9$tOxZ{IHP>RSZ$e>glJLq^9A5>2?vhC4`O=2F@(bMG@q2__Y~TZL9f*q=kv!7H=MF$)UU|e8(Ix^~KLD zR9CGM4Xhl#a^^whh^W%7VaF*$N#ds4qQjykx!`b7axn+fUgBgXxijg^q4V76D|BIw z)*P)*ZB#9$`)9eU+pQShKu=U2ugh)W#`XwugrA6SK!*SJtq?dq%E!MIX2W85!{Qq# zARxxID2BCvs~4Zx<7)^e;8aL}sVu&g67)xT{oiti33o??0F|4VprZJijl$L2ajN=? zJ9_lPt6oq}18WYxW`qaug7_k_LQZe?*@ZMKFZ)DRJ}0oRuEJ{G7xmbJ{@hEMLmbR~ zi@eewm@eTyfsSG9(D}c$awXM0=ab>O+M$`e8vo@lbDW^9@N63$e%k|IHiGP&0?PMg5;gaJg&v&Tg)>Aio2}rht-x&jgGk`{ z^+aK8)w}Uk|FaH!47oQpi!>f?I9#8?;Y9pi5vH?lDrOowt0Wnk&cTy6s_t=u>IlD* z&37%fEjR7`iQ1g8X}4|S>S5w2PK0S}{n6UAnlzUYy1;$TK4cu_Gydxhi zIIV~VH>eCAk&%A8`Zb1u$vcqJV`M|6*a~m{7KlMA` zHGR1bCP;#B-Ml1QK81Ckw?lKIb{l?9+XfqkB{&MzH@p^G;8E;UZr%HYTA#9MwyozH z-oKHDX>40+Yg%)L%Ltw8iIeu@?;=mA(E8;1K6<~`j;J6|;bQwnsR#C1p`>K=`Xwa8T?6}@V9hc8?} z%I<>*tH6dpDig6i%r?Yn)RX28WDTSZaF=nI&8U~8gXc&z9lx@ht-tirGTPWtCD~jh z194+al{83T9EUlajB<)VSoe9BOEzdrU?Zmn8m?B{<^;uel7a9lajCF7R!lD}dR2V4 z_EL)o7BQX{wl+qNJ|*5oo&{?y=#btzcTFF~0MS`xI6Vv-;H!REBl;1wKPiEx9aB9? z4K+|&AD1}RoS`<&HVrm4T*GfT2^qF2wK1(e-DQNTdCuC8UrG!&_IsE~<`n2J(b>Gz zMs#(_xysIlmR1q0X51|u>@8fv3ilWLmaH|WIU&dW@;ohkw)pD>o>@&H><3Wz!+B8U z9-}RrmXnr~mizxj4cr`)C$-7dhpUr0oFK_(|Bm&XXS2jWyA2uIc(LY6=`bh!ew1Ir z=D8O*m00&Yp?2*KEe;J_!yiUx!8dHf(YmzSH0Re;!&7NLN*y?%Ovn0#%>@34)7Zj_ z!rH=<+zs5trsf3m5RrZbk%Mb=nX+ZQ|KxruIc1y*|3?P?PJwZ-^f_>aV5udUBuqh%_wePI0#11kp2Acnyf&gT zyzE~q`S=%Rx8^;_M(k%TF-;ndGDa3k);P<)N0ov`AFx-i-sdpz9i%`SE8ZRF6B`&4 z7<|B6EU92-l~}Ay6B?Tmnq>MD8;<2xAFDokM+{Rr{I_Aa3rELeRpAbUno>F#&gKqF zs)4?HK`w*$M)YR!SI8lqOo4lzd+zQRH8eagG%qNhgXzyOmXS!Nr(`SU)4dxV42+DQ zZKK7d1?49yIbQoPIm;Bf=er%>^}L3Lp9skhEZ{)>8CEifGY)4aXDa7Y|BWsN=0;Dq z(Zcc*m3h^FU4w54UqKc^!v;ZaAWCL<9uH0GP9mIUu4kqw`hs zm2=;1oO8~c`_7%4&b{}o_4?Oq^{Ul>^xj{nU15KL;Z)*CEmdG6w#u=1Ucm+)_AT%# zVnF>dW>W_;4rCn2RLNz1wH-H_ZhpLz%__(&&N%YNHkW2xaeaiJ3Ev25QCM_X^nL~d zW`PkE9VOkladY17zSg^CK6_i-ex#x{Ju6L|lFvvx(EJ25!QmM?oB*1ei3L- z5p$Nxa+RiWJSb&D4~1j|XD~4731(0S(hj5@IHW9Qy*Aix+O_rCZkAV|z>A+rAY?c0 zqY`2g6BLSQ_;8!>uC<)21;x9gk2>*aDd0)mYwfhMU z^93h3PjH}kPhOo|;FfOSrClyZG;!Y=^54=DIY=Y?msD8R{>-q91}8SBD7z%HlsQi2 zI%e(7aClL{hGa?IkO9r-SVT#a4GyGF6SH3H>^B&1&Ix2^`zQG)`6c-X_&=e+0LV$E zq1*r%P#<&bf4?71toc9 zxt0I56ZhXZsja6)29H^5+>H_5STnX{ z)&tSq*xRuJeLYiaTVIb5_b}JU+?nj713w?4b3vM~I>yM*2Z z25o82kYMle_9DAD+o9r|6b1g!LDp)&Uwm&x`#Qn(>)Kc5Us1U#;MMjMot29=sBQ0> z%f9XW@k-CVmH+w{^PoSxgVAJ`-DDU1!t0O{`%6w=;iIwuuK;g;jzijKnUJ!m=`r!bFbZqzlhs&^L*cY#r{wXw%U^-MKr(H=O`dzP=RGyvRtzWs7z z9fr@4P{d}ksroLhK<|J+zp%sVY*WI?#D;`DYpe_%g@J*7AwK&HHQ4@xKZ#*@8PiMa zdT;XI9Mpd4@-GiSX=VlMW$k6_<6s+Z7hxCCbnWEJMi`-7`*)Qw=+8|8noP4nMu@CO znza6D9(-2PU&Zv(Xe2Qv_7g2t_RI?O2?+Gte^{Lb#cb1MHamolg1{iZ5TDRO4fb{F zPlsVx74wqb=%MSoDX{fw4}5kT)TURmK2|=qes*d>?1}3QeGM>Dxt5iz#1#Ys?d4&& zBHGia=#{PpBrDb?)+XLgfJ>ayRbX*JoL9Wp0WZNpqeFYL%-0w!wwx_IJCD7Sf1~Ph zQ~dsf{RyGRH#hEWj_wd0yHEn(X?C!)0(|y(jP($?7c)&8EEUF^9N&upA|2}#A8kUj8hR63*nip6L?zg*?TG#A8 zF8IBgzJM=?x*dKd#L-^qIGlyg#UF}aRxlrE+$=F9_KKEjCUb(k{R92N3e?%g#N&ze z2^LH3cev~g4D#DIq^NtTkMdqrGB0Uk@7;dJLCrTVz{s00XJ#4eW#VJzV>LU7ZMfdh zTMv{&$t}yXUfp^YZe=hl?DJIF>oC+&0flLwITi`=PS;)ZOl@JMI}jwQTKW z7nZK5URU4RaiXW@Ci4KrbaH-DK~mwQG!_V6A{M1K<#v_vNe7Y+Br#w}IqtDHv$FhM zy+Qyhg6q&ziEAG~Z&(K#-tqQRL5F?{N677+=L{Nl-MYo@II;f3^2XYR(o=cTl2&@k zaFt$zBk=1vxO!uc7W=;TNz>&H2Cv}&QQd{|mPniqO=aP$5|BIE*TlT0ah+rhv72P6 zV*FQEY)WiQY)CL!YQ4kB@h{HUcj#T=FSSfBz1e+>x1N97m5VU^E~u(ivffrcw!Zcb z;r0=B5slYR47ua~wI?{}&y9wuWQGaK+2A+MX_HxCihino-oU(}QCqT@*iEufHJ%;d zh%^q9)ny+-hu-l+K zy^{5|_ObPIa13{haExrcexkPl808ukEO`?GN(Vt99lpsrT$1~wLNcmef`5l zhHUHd6+z2GmhBf5RhKqbUSy#C4LW`*nO!1%sqT{MbkLEJhJ&h5d*)j26naEN?T_3S zDW1VzaUl^nEO3d(Zg(R~vu!p#^Vo|Gji-yx7o16dnE>B0N)$)&%SdB<=|O2SVp4~w zPqUO28An-1IY+tf3-FC%c2dD{;mPR=aBUj)((9}2Z;b!HD!UHCXrg7OgZLb`@5mux1ElkL zZBSIJWDS(Hf{tCSdszn~1k-BeAxw{GfZir_QRCLr0Y-kN-d1m&Sn>Jn^M}qeUFdQa zOnT9zO=%nI(L4E6q6T4fsCS4@kgtu=YKzGZ9Wz*vE5F^?cIWm@EdiO~q|=v~QGelrMww)X@v3RYpg49u^p_uJ<@5tg{gy zO96pYV!ZCSN4;acrJ(VedHJ5AUHSj%?V~~e!Bvv|1cRxN;^2ai{GpJQxhd zh5dKAF?z3I3dLvgn+ZRumpegc*Jd0|JEm2~I-uMx4V}g16WJVbc3xIK19PB~%!F@f zzcuoTeCEqzFwOJ@mx<%3jLY)y^>chiz2X}Q$ip<0m%c1D9Pu8eDdIF5FW}c?md#`# ze&H!S4Mya>EqPMOyroe`VkBKL^FY-Egk zA^l#kASh}9rez%;1q}xWjlfX3%N^^wu+S&E=N=*b&pr zk@F4?zgCiz-G`3$i6Uz-`xjr@OzOZ+j(KJSn-FF(%ILm1R*Qz2bfAjKZEM^TZSxrp z0_A4|%^2i+?+-6%j7qUUS^z8_B6BM^q!k5o&ks<@p+qTpzu{*VD1h>TtpfUZMYYTh zwY$j2BiBq3$##!~A_=ABnB?@BI9Jj=e^X-A8scRwpPR3^xSL;?K!gL#6m`~hrccfd zQ4g^vyQM1dXj--H$lIwriM)h=T-ck1g5#J zBzU#qey?&#Wp?JVyyC*pQxfYx(RQITJGHSpc?#xZJnEK+5kv1AQ1v4O;~e88{UWtL zohE&bfy^jZy)v;)k=7nn%3#4~#HrXUQ+6R4BWua`ISP7#P_Yf7IG{&h)fK8=JBp2Xd};aE1k*S zLPT+M85ciTq>j-=S}4TnYbqIiZTlqWu?hhYq{UxG^)6GJkwb_tW}GgR%ycFGjLve>=YV@aq--( zMrxQVhDmC1$YGFkC&4m@1I4DW<;nX!dC3#yGKqKLyVEd7rU1kiFkyx?p)cMpV2r~P z_s!K4LZP6bs-~?r1MbT?g|O>n5@x4PPYuXKE#k0dD_8CfBi zvEWckT8N*fD~^R!BQycv05=a?M<|2WLy1Oy_gw`@!@X9G`8NmHpu-emRAQcFgn?#d zWAPF7x1S+j^Q%8u!x0p~mPPO{1G?|Wn-Fxa) zPhIiW<>_Vyi;Nf7#)oJ~7t!YQ&Rp>3c}U&Drv^N-ceQn@c!iqx1@`yH%+epI)j%b{ z&1Sa*2=Vr_gq!Qo>_b&nOHT{t)NF5x1{tbg7p{xFK)Rae9{;+D=S_v5Dh_D0abRXa zZBwMw8+g1@2YNrgv<9VyVQ7o3z7(fO@1PKV_*O{8{Q3kB{MgWz0HpOnd=5a(12Ke( z`I$b!E>M5$ac@Z*Bbjk0?v)Gcr2PK<=dkxa=b05tB`*$RTDw7As6#mp;`aU}0}Z3t zCzHqjxAAb{%e?(S{2Ya~vw@0&J7WLmHF8T%wGFiurTJ3nr#CqDc@R=x4BpPrth1`~ zkTchMP94y_+Aw7!eV@%wA$QXyK%n4~-UPDbqY0@sCb&ZeGknMPz4w}G{z83FnG1rIZGmDdX zwn8m;gEX_f!iID`dE2YCE=-|B* z{3X|3etdZCoJLTnkGLnvxrI|AVX$(i8L&HoWcXXaJ?yQ1tt8wAMNL<>Cl5~btM1e9 zU50hc?rVPMZY(&o^GJb$_LiHjP0z?DQk@v}B+3WHsQmU*qT%`sjN0RU1jVGI0}hrE zp%`H4>AN$^V6d0AOk;x+BWq!iaiM9k36ovyZM{P+8zLj-hCx6qY2yYcOGa07|rh(R{0R9Y8YB5N__+K*`-1~Us=gOne4LVI3S*3 zhP5K84Q2M>DPpX-?t&XupQW=k)@1NB};{=`}(m z;tfN$N5u^wRGF+97bn`i5qI@4Op>Y6Ks0D)czc-pTc?#X>qC1W^t!f!l9C&B#hbi} zBrceqyn;tu^RB;v|HtcQ!KP7`q0Rnn)5=JFe(76XRDS(^W`5>g;xGe!@NSb?PYOym zqPv5v!V?c_^tuGX+NNz$J?jX538y4Li_DIXYE}axO{|_Wm1-`83Uh9G|I~2F>-I93 ztC`itv@S4Olp|-g*^1UypQ?SpRmmd_Jrh--gz=UMFc+E1J2pK!Jvg0ZakPzu;fp6W zqf1E0yDuaxQ0HGa;eJhky`7_0sJ|W-^?sy6u6#;H+5Ya!_F^@I@3Sj8V$430;*X;S zslaE1f+NJi9Rg*c4Tm~MZ}L9hQ62@MR&!yoVehan0V3POnGefHF!OWTo0s>a3G4h} zNUBOFYpT2U(enwArHu)sy)5wc#3td8$+!3XngK9GcOh>N;S-)Xmc&6#?)N4nU+HI3 zC&4gUH(J$t%31!qPk{};;Te~FG9WADN1PqcW%e-xQ~2KUz}u|xUyHb5UfUeMwUfEg zMki;0uK{jhg1r&@gIvPb_=)o<$L-DcbP9WKF!lZ@$XPBF0kW~#w?DOfSUW^Cw_8U? z$mB_n14YTzOoA96DTs|9+0O1%i1A6)m=;$a}ssjg$HP zd@sHgf*H}((l1azki7TOPw!jVC+1I3fCijwbE zj`q*=n6kRIoXV4x<%HRRPRP^0h?UVEWL9fGK)4Y1Gl>a`jz+Y2V-^GAes-~G}70Wz54*IgK$^S;6A<8Q&%t5Og z9+Oi>jLGWvXot4cHRMbXfD7gogY;*dTxIq!681~R05aqs$ZUlvypzx8u{HoM`ZyB;q93ybX=)E#I z=C!XbYEb&#udas9rpD%aVu;eu?`Ppb9s7CO|7j{^Kir_!!T8W67+Ax=ii2 z+q`dg7At-p!u#GeKOqQ_Q2TO@I!a4NFCAr;HZ><*xGDXo4Gp;aSM6@`OJ*MZf71%Z zR7cytoSr+LTAB;|o#Z-}e2JFqGR}n9?C^$EKpJtgWg%xG{kDSO2hgVxf}4&;`$@iW8S_ z{zPNq5NC{scuM~n6Ktbp1DK7sb8gGowBTNWv+cB~p^y&S{-l-BfvD2MJ-w zWq)ubNg?o)B9<3>sYwxo@%n_1-_4Xkhby}smZPIJv;`GxRD1c&jb6

    *#Yt9QH9 zzP+>PAuxQWQBsoCv%3h&vLX>svR<=h(7I_?jmp@^%7Qke{K%5U=XEW1|gtYyi% zN*^GA=platYu?Epr6zgGu9tp(1IGY9NNT~r`oO>?PzQlZF{=8VP*Pde0B8XuafEm{ z&U-ZFz{0GwJDgI9bakpUeqnjv0I%KiJwD>L*x-WfF221R6yYG5%$uV|EL(z^R9eSs>Jz`9H-44YelJl`tdJ z@6LI|6wt)Aw?$6^r_5!}N*TFL*NnQad&^GP6BjVG8BZ(Q@r9 zr6^%-;Hc6nk30U#(%awF*998LQ@~@GWpuF*Fs+Rf1LQjlvxZ4F)KfK3D)G}oHe&h& zVtEO{nZU8eTh7MKhYA4g!8&M(7g(LFb4T>fwU+H#>TAAs%G>d6ZVNc9h1~g8VS4y4V;({xcmU_&NqCuca8WXIcT217#b|)jXUEDoD zkLFD2QeRbHmOr`oae6>^WxZp#J!JCIQ@OjJ78~!Q+$m$9T@(+6ELFj*{+&xtAKMQX zsPxfjlR8+55hLM)wa|u7G4BzzF6J539ppWLk`-s+6)LwEK_EsO+0Yp@Z82>ua!$rp zS;xIQb^>?y4g0~cBX06uiJpfV{!831L-=`-uOidGs79~+cW8~LJSgwDvoou9m5+Ky zdvED#lNFuU0hCoiM*e!ibflz@AyIQxlqS8ZSRuMuYEKWKmBWwCfZDi^&l^Y1QH&w- z8e1Qv1qA&Kp(_^u9tyuYbLWZbBy(QlsGgQ-=Pz1R=~ryK(?YBwC)NeyZi`Y5CaJd2 zTg}6!*?xLkNSKBj7)z<^p&wZ@LXy^Iiei%M0+0{e{zN+IPQ-1*X(uJPLQh{oN*HbN z9xQvGlq|yG&WXI}`4S=qf}`0*ZU0_0oulSf@Dt%RGtTtC&&cf~s0-N9USRAUv24lx zK|VuFVGE5yIugUjTSwE=MsrN|Ct4Y5nahyE33Z|Q!h!@QMg)`MW@4TUwH{H75RRai z(3h7G&d5}fL@9mCEpQ;u%xAXLOfKJwV-h$-yVKN3=G|%v=E_2hW7$B&z*wOr90Rsx z=QQ)eue36UxLeKBx?UYVwS?f&XVfMh<8fY{GSanpO{H`tjExs8oa4TMzJYw=;vARN ztIll;J|?>wSHkbg7RS^-MQ3ItQ#g~j)Y>zDPfu}j9SyhfF^!iFmNy*A=xkOGCZi{! zCneF_mB!~{tLW&csHx}y6-{)lMt7ECw8X_m;~bIMrKAt0c?02|Sie|nFYkWU{@vl& zvH}cYxc2WBQ$o0TQSGi4OF}qP`iSd(pksgX%r%Q1|5`*L!gh0m8_$}JUhb9rjp-5l z4fW$JzT0LlAGx^Z=&7^XgRE^01Ik8cTZj7@#f2%z@@s{kAC2>KmsO&3qCz6Unz?J^ z%}Q|oB149elTlQ{6P|;VvI`$w**WaIKG4^hr1;5{S+qOCPOWRoThtp8<^wX$M*=E2{G0NOI}u1AFna zij&ml^)CgY&(GjjcCh-HTBAYxEC-(6K={|CO>|a0)Hg5)j3^MvT))sy>K@9+1ALgC zhWMOtK z+H7aV;8qA>(l9V++rLb+q^z66!>W>qm42vYt@f4jR~dZ{$A$2(*L~WtDq{b*lplF7 zp$8MCvykR>b3}#L0?z3YDA3 z%E|R&d=)=L`d*+uUiyG^7LO{kvFhF_qe-p`sN0p?)pjx0470vmnc3x-|BmU5Cc1E+ z-SKd}H^kH~lX10e){?2^3tVg)I%AQG@G-pn-ET*Et*kGke<6(j7%P)5Qce;0fwI<{ z^U)ijL83Bo!zVxS8P9VaMI2q~qb?R{oqtY*gMm{4%6w3_;gRus@#W>bX=_rs!%`!I?0~7R9YlS0!6(P2_s5Mo_}z8U~!RZVgA#TmsN32KzWx* zv(=;~uS+DG69zs#wE)1;x`RvYm%5B`hce+YYpq|76kQk*jn0aiY1%riw~tJDV&@pG5EoQpD1K$c^!aoi+#_oo#Y5@aK{V77F_JQ35N(4m~=iX;{ z*SGn?1@214gQatp^?_x`XIwu2)tyw~VZ&t!_w^cx)naWmYY~?o@#DJS)+1OUc{XG= zz#QzPGC6E%@OaQVoJGP#(pAcF+MW);JK|9AQN4cji-%kij^~fsp8PIhmWq^{+I{fx z)bae!kP?!hQlUyt;2={bS7vWj4Z#QMP(S+pSH@fiIuxu;GdKlAwf5YXmH3kuk>!0l z5&#NA@}ZNvO28sLR=GX%Lx#Oo+Qi4j2Vz0;5J-yxP z;Leef*RzVo#3T3J*neF&0`S~1^*!7S(V zs`(Pz#7D*-AP42G{(nnH)80CCJj2Cb6WZf_l+=2=%V@vu{0Ks#=Ad^Go$iJu@Dmcr z*K*yAdnD(Ja{Id_LaT?jo8xF9+IzMF^jWlQQpgUp&9^^-zVw{Y@z#VD_6Rmnaku)S zHuGAwR`Dih)Xgm?LuvCV7|a)ePU_;3)JHK{ z4?@Qhc#A-A+F^Nr1p4OJOU_9lBv~EQ`FM8Ha9?1sj2)#8D=eQvOj$S6TiF)F1sbvR z2KTKJE#>;jc2FbeDSFF|pr+Phk2%aZYZUBP0oY$a;X`h~gRt41le$%MAfQ_)eJ#6&!`~H@cVM$Y4VBv_{rm zwA^pfX5I3>2w=YHp;@9*?suaIf$~QD_QW~Zy-mWvUmw-uN~vB*8|N83`(E3C;M!Mf z!ETL~l$t><`=jEhURUZ|?OgZC4k|+>)0wy+Q6sbtT+Z>)F1@9M12Fmhu$O+M-{6yR zf{C>)^6};hmdC^1sc5UqimWpteQJY2p6>XMx%n9rf%$o4Z~N+y4sLUTD-4veMT? z+P>Dd)HHQ*A5*zjc7krkW0FJI zpq)U=6sSGoy{FC<=(!@m9h_@l0i<_2J&~+Nt(EOr^w_k1-;M07?VJ%lOPcg9Z%*aSo#Ph3ZQhWT3DRGR5_0 zpv-1Al)0sp_1P@nVKwz#>qg=yjnakw_S|~OX{a_ z+MlN*$su3j-DUT9+Wu-}K)6!AX?A6B%YARHiH_CYEVrrZfZbsAtiH2KpXB|aN5!q> zvzE7h(!4%ea(-z2j2tu*Y|HD1{}o1tD(>x(_SsnIt=YOU%IWXH#&H82wfe<8dVSN*<-3n#)8~bow4jIb z4mbqUuNF2~{-z)}4pN(VxzkTv9k#=Dyb@J|)>EPL#y;7rAomhZwma$V-7=((}oJp0U9j4OTrVswsjch9hAY@_t5L{=$Y-NW)G9-BV%=gt$0PiF)&qTrV@3+ zMcxevo8BC70uPY!Cz;eQk11x(v?0|mjxn7STAUMzQ~H?-kDKf!g$+!*iI9Rs1>Py0 z?&u95qu<~<4O7}M*UZm% zj3I(MaGfHYvZTwLB1u$9n^PCbRu zB95<50zvslL+D}?I$nOuoAT*pc(<{tCg%M)e2&ju$a{kVnhbxRSA36jb|(Z7q_#g~ zZ~4ZKWqAYJ`=AeUHXG3Ai6gfl9SW&_XW=)+;|omVIYxlnu;_zwDAy*ak?iL<$$8!B;~z-~jr+GVn`0SI?GOX5wn)0i;P@GJiZ^f_e^!<9$0j9cZ9$Wv zG&`^c@iFyeDdf*GMC=%I0**5F&^5=es!g_exgZjZ49LI|l8$qBd1gfhIm8Rz&Y2ok zTwU>d%r@zZkcT^a46dUN(@LnL&(xq^F0OG4L~qij{w&u(5u03-Tr{u9&O2!?zttc7 zw29LbzW%74q5l+r$_sBDRw1ufGfbb0fN^k8q7;rYK*zlV`e@8+eKa0}IO5yB1LeXU z17ijtFqv?En~e2eoTvFiK9{4AmLJt`96K>O+D;Zqz7@j`!|38{!uZzv(@pF!fk55~ zIw)vj#A`wN+rChZ{g|NgKHZ`~;TYtQd_Cw=Abta+lKZq9&M>o0fUFz;AZhSb6)(d|2nC0 zZXgL-9%hJc76T%h zpib)>uoWv!eSpXcJsYcd9l@{6R-WK}Ewv!)xOkQ~QH>hU6+7b@5}d_yB)uM3xqrML6@W6Zk@Zr7#tv z;hMHSC!5~gnqbl~&We6HvP#mrc<#N?HrTB6O^$a6Nh{9gm(4GkjV<9Llx5~=*lrw1 z+L@?~ddB+th5=BoJCwuzAf3jik66E(t)DgO)2(l-*6539TFNW=JvO3doE&^Fc8VZi zTV3XYxFcM#Id*QASlGKLgs|w0rMV#e6k;s%A|7XHYOQudCg+70oivkC&ePPUwybK( zX1`?6aABq3Mx1G{Y2hegssUVBI>hf`7%Rf4_qJi0=v|V;>R@u;rB@=5*Ca|W28|_U0NR`&fhPkyeIE>z>(|GH26MgtA z3OT2DQ$R_!er>cMAe{%#mbF7Du|m|j`AwsR;cR8bl_%3ZNXJRuU0*_fRv4dk^F7uo z9VQUF6vaM*okET!g(WAyqD}v0bzXCC3nlCcM zKunTic!G#-c(;5X0{W4J;38;bss`)fEt{M2cf;5;D+q-5el4)n0fIR1Xwom!R=a=S zV|Zb9LLfdl(tiif%7-~x{Q4%i6zGhuIlqx&v=k_UuKD&@xe1CtVtwhj=AFVFadU|M zJs|G*7E+rZPiHFt=9j4Z7!mP`)!W}^FPWEdWjXiNVCbDOU!kL{#3SaMH_mj<@soJ> z>wy6L;Jy}m#IX<{SRO3dZwNxZafNM!Ie-M zw2d!;O2Dtdx5Uf@G_%QU$kk^WQF0-0q{<9P=i?Uxc}FBTex&;7ofPCGM|2t>iW819C~pOLIXj_lP{5)umS{s?r!N3|i1&l($)8`9O^*k>wf#D;rEJr0fB^JCv0uK9m=b~Pn%EFM`YYX|(dqMN< z5y^hD_DQJ2Ca~^qoY13_J@p%>J|LN81w+gKLdMeT9dPVw=V59hdz_fj73;@=yB$9a z&qA5l5kvHjwMy1KP#Hc4Z$nFbRco<^d?(St5xXW&Qje9l%MIH_`Rn_x7)+!bM882Y z5!@@xd(AWKkm2^ogHBG`fjh#y=h_5H{B;jlb6We$ug~=8 zKQY5(p3ZP&1(zM*%WAVP&nrDpgNV}8d(P!-ubNB#{@F=ugKCIqjpkqsfLVxZIgq1F z%dzO-U+1sj51Du4^HWRo$sDMmm7zDX$#m|lYH1LDrr=leM1s5z8*PP%vJHkc0BeHK5 z?iDKF3_LE0Y21~YAIUl6rnEYzQ_k+H4WZDCyr5DHc z$-co39yJFw1vjO?r(V~G2m;rON~6GWYv<3UgHmsk)!{H)%-JH0{5KWwq+{_czbxQk zwQ2{BYFp#9sV!>LqB65uqseyc5}}&n>jfw--30`c)UkNp0u6@p&iiX?xc;b|*Z9l6 zAY~rGZ}Q(^{s-@GtbjGX^7zFy^ybVBT_8cLeShU@u11ZBAN4(=wul(@{W2mJJC<#W z=FSXng14f}hw#N}I`AgJ4P&aO+=BT7&>bJnE0G<32@M3zUT=`L=7M9RRx#T5TyW)C{a9^ddLa;aY(>YQ=up07=wI!%;ePnr zg{cD_W#lVrKebt_%CwO$uR}@ML%r<0uaNt0_Z3hZ1YN|1-v&x&PySNgSP<8ynp0^>sWHz%s^299e-NK|OnY4G z&Aehgy}l}waZgSHo>Om11AkXuNTT}7I~OoOKZC2c_bOi$b^82!J9`6tTs za@<^w#XA<&PkzIWE$g5@I14|RI)Bzks0gM1_1`3q3w4tWGU`XaM80%%fu=`=2;11R zMnIX=FSs30*sDVq8E$Z-a->4&L-_gKpjm;eHSP9U9qf%9Vawm#llo>BR$R&8szh)4 zWXw$W9+a1we~N0BbpCjWx#z$e8nVSe1Cx0iixN5MUHVj<UFTImy67D?G}--Dq4r6t&WMeay#Pw9Z<#?j8f)zMUK z8VQe%5;=aW?U2=wMW?N=BNZg}m>eNz+EkQnMq5yX_ACFZ-<}R{Jt1mrG<*zeouqtxtZbr8GH#7Db@lHk>jhI!;_WVOc=fAg zPB4gt<$2V7b|zD3+RIBF;(DUc!0OIpNN5Ih@b@a7>SGV{UxBjROJ2U*eZsH!Qd>dPCfoaCED$1ub73IH(kcLvsQGgSm%39~f%nV%ADHQpGF3_tGc zD~6|=nOzwX+*CM8cu0sy5_b1I+y%IByd%V>d-ip`ygZSb5|5yn6-ik`;MX&o(J_KSh`t={1pwMeC+@ z)Z}UT#V|Ein#gk)bw1Gp=r3&>?TcSQ6&q`2wXQHz$||g?O@FkbeFrwO?ms6xm@pZQ zM`8(uLSX-YR`~Uqf_Z(uc{tsa<%=HYL1# z4~AIDR*sk0&b?vMIS>*Lb;14tL>u{f84ueM@E0IwC zEsHum*LSUX0~42Qoob!t_kxChra{G^b!wRR9C9839D~`{@VnuLX7e5%$U4@t=`%;I z66HahKUjPYVAJnNh^03jv#QdX(yAXayEgAuTAbBn@vJINyOo&U90)WX_?iQr3ohA;6Id3pbfLQMaiLjSAPztsAt z=|7q)0_X${98LcD!~YNcl$;Hn{=+^(62ku+{*SS~ME$BM+lomD%NW=Z&`B77>1yHR z{vVr_+#SF4l>nOB5`5WK(ZtN+%l7UBfc$?q``W1FY-eX} zV)Kv5=)bh06ILT&pr`+*_^&I*{4WK+%;03=@Flsmfs=`_iIJ_b34l)81Zd`DPQbv% z!obT*@ShjlEz=}*T-KQFN66DVO4kIn=(8rR)b~-fa1mNS8kGJHf2?3&dNzbD{>x_u zrcC{}6RUM+*HvEhi*`NyY}waHzGymEwsnioYo}H|pe@~YwCnoE+2ga*ibhMfZ#!2O z^ygK!t)A=G@!OrHDK+aQn}b)wuNTiwZX2Js zMVnr0IvZY|-tT6fTks`at2#OtS1qBNBCijR4=w9QHopEQIW<=;{U;~)A1_iJFAV!N zPs=t}J;_TOT^qKxH7%~|H;>n?7qn3fhnBt^N119J7j~aH_ExaV-rlXRuaB)A%mPG* z87@uap0PB!yw#5>KrFEI2TNbfko^^$!r$ariX(**7)j28FT0L~yuyN^zc%*?L&Gc}Hq7`CJnX@q1P_`NH3O;tOhR zv@%H6X_6Ok%@fiTQH)Zcgi8kSFj$Fjq(fmEs3k8 zk`pDuatj@c4Vuh{SAwzv(!-)T;Jsnfp zq){QvHk=x3DiZfX*&0X*E{fpqc-CJpF;P(v%R3ed?oG@{)G~>vA9lp=1e(#1?5^-@ zD+&?^>`o{PpxsEX@xyCKpe93z{7Fg{fubn4;uAKAZtR&t4G=-KkCPDW8u-KB(EBu? zZY7q8WF<&OEmhfoLtl)k$oM`^8Vg#MK)}S5&4H#!$TCMPV?3__XcwIbS2W$nC`1AC zW}$?xtL|fnJXRGchVc-nY>TCYRz=s;F(VaGBr?!p`qFpd$8@tDu8Xhr?}Qysm@s_> z;j%j2F~5l^Ts4|K##XL!8e;R(DgHnN;!12ziE9JnXm?{rlxicmXo};BBlx$^Xl=05 z{S9X-Z=S1(F<2RxjEbHP$BhaC_<5pql{`;Mn$gTO@AdT!mlF%)pq6#(aMSq%qi;+T@1uEMgBMEjx>c7bU1W zf-qp44r&g-&V94LiutBx42hJVn0n%0O+1?G07a=AUsWiakFwB8yeu9#z~DqJQ5g_N zF7l%&@0#!=jeQ7!DXFDSSU^a1Dse5BXrI<<5QcV~ftPF|@`sFu3LeW;P-X!Ei+Ch+ zL2WRB6B;q|I9%~8O}>gqNzdP;DXv`T57AF{C@EyY3&ZiS$cotm%#<;WI((}+WTk;L4w948JK@?x<_DQb?QCDgS*$_ zrO8(QIJ4g?42m}K4$u8cDdBELa7e~Wq7<#A7CdKGiHznffr?}oI8*{_$9e*WO$9eA z0bnv*w8YK1i{>%08g{sI)n68^t=!4KFcsBE0?{fa5LnbdoS0GT0%^_?V2J0|(>A*+RHI%3y*Q6;Ju7`t8eTau+mn|T8Gr3G63oK>^Fig8%%vX#fl0m~ z4!#}kVnedx2ib+@qFkQVMME?=CtxEOhzkJQ{~TlGvi5D06~ z9QnXui=Kz6puD%6H_PCB^JlL=ahPR19v>qe76UFUXZOQK@p6PZeZTYrMI$eaLiAsH z5|oi*@_!^BvF-%PrL9-DvkcyXmNnEJ)^1xnQ#*G`SYtoe!5Nd+6S}l)G;TtmgnWLd zENIRCI71$Mx&pXvM-N}v^|``&NvZ20X2Y*P$>G+})mSb5eMM(}?}Yk4DGdYtzu@s- zgytV){ZIV>HinpX~h3GtuZzLI{iZh90|0(=)^y~L-C8ADBG$4 zE&f5`e>lcJSpDzxgymo2{a?|WiRHh7x6E`M92mp*;N2~yT0as3{S5E?0hmsVBm~G{48d$Hg5V7PwnPcew~xk$Sz$$QFPuE|Gd=WK6vZUd9R(lh zSm#bXgiQJpdfZNVB%8R2b_#xLzuoEU{*b+kS2M>iKPo&kEN@>Cbx{7y)Fk3#{wu}t9v!g>FhS%Qn);P(4-i4er(saOd`yi6H1 zj(|Y9=VxUQ08I2*Bt{by_00$NegFMz<`?hJpWp-dr;FdHLPYQbulD;ITJ+;KuP#|? z^}{DE48ETuk7NFp3-fY_ub$w*huv+N`$-zMFr{(rjbz`SkZA#y)Bv+W6JIvG;Dk15A6L*F0jgKp3BX&7d%(PHq5K<9Rlxg}gJ zCc;;kE;e}~0d)%*hG=BfVsF?&4YWgLwLywP8gth?l9qi%kcN$1oA_nYuAK+0!q&SG z<)@^kBP4|yzRK zr-ki?hZUe$s7U+dIJBv4KQXLkd+(D%UWE*u_yV@&`2y@u9m+k7ovrpk46{lcTr4~w zGGOWv4$KGso(q<@cxfqERyK|y8qoU`x1wvW{ugf^uU#~ACd|OXg)R+bd`4?8q#BYh z2JOKH*iHVM)&901Y-Bx#2t=%}9^+KGB*#Q^hIH#{h%w&E(B`k0%TIUQD(RAr>;$)S zU+WZ`gcWdqhM+f)Du|NOcD3zZl&8!D`mdZLgbM$r|*7 zs?GG^E<;WsWPd(Z?wp}T$K0kIfU+$g^?xHbYZZ3 z7ZF_oi93QhMd)Hh+1Cr_7=l|XU_Xs=QdysM0_k0;Kw1vLsCu+x9$+Wkj!uw^G&M3v zLFx`(N#m{Dk-qvYv8!9RkoST|2VlDIB=cAB!A%+P-key6RulH~0uwW`@cbIxhYzJk zKGL>87K#Zb8bdI|pqb`*A?L_p9G%q$7sWGXvIV6s2Z}&V+oF;sbkpwrm#Jd+s<9P$ z)RwlSguDLMe*8v>EiD;w@H`X4j__(^7`*0>?$pY0V8rd~=r`8ONbI;9?aX6q4w4WF zeecqWsd8~jE!67F)PIDR?#nG&cMAdN0RQsm>#7;0nEp6XMHKt?v?MdcZgpV3e66ol zy#v@b?RiS|N$C|^SnHfAqo@xm5WI#BuR;wivrT`TW7%sJg;i=W8-+~`*+OYKvAo9B zTxe-~$bTLi7)2oZdBq(Kjsrb!C{V(ACp{m4cH_fV9H)(F)z8<6JX&FH!a4ttJz(@{ zRAH?ZRZ4@_F^$oMoq?jWu>_}U%=~$jU-a$Hci~$oZIgb&kUQ3Yx}Mk2^tEYBD)PrK zC(RhEZAvyz8ykS?#8db4)iY-IupaU%V()+JlI;I8mt!skq9|3rLIAt&2+;HU z^_hBCIDfMD@Ub2ZM|>jdM^n47Ts?I)3bklun9 zqwl@;+?}c>*J0dR_$Fxz&;q+BN%}`$$+69e|ryL@5f95oYz*aQsA__p_=j}FjjEhe&-`aD& zygiXcm4PNH1$4kIL5S_N*j{K|lW*N(3BgM|udau`l<7O3&6`y>H3hTK#@ZIolnL8@DfGF@%#KYEMi3{ z@IF5Yb?6||f1Y9N0QuhSU5%Iy&j$wWDS_qX0)kcj`aUkk_pb+9>d-51-azy?wNGiD zU~mud!SD`lP|$KrL=Flfgy8Bd=vQ#;SW|KO;N~1?X@k(|k@Ib9xPrBOEX^iIN2gS2 zhkW6m(vl&rLFCem+Bku|LUcMvU}9T4xTI})q&4j0amh^_rRu}hQll%2u2bC2a|5dv z4CdLBo+{IePE2@UvY})*hRP_04e4QVfufNPc!&g}Ndl*(& zfLWh%>yYB#)($f1u~(<6PPQaoWqCqzeGeblYDABe%r;(y8N%c~VuLWJ)JBZzxB+Y* zHsNQypxy4=l~;~;1Tsjk7+U9@+YIGXxc(oekb?4yg1_caRA2@T%9!63Lz~m8kv{9z zH0CTfD&-Ic#mLl~^#wm#R6K9-g;(qA%=PZT=G z456BeM+Lc6RAiaBB_csev-!};)LpVAt|a#KRiznN_-41vanuX&5Rtuj86?lE&G5j^jIGvNt|IS{d@EsS*V`_dwI z0qd$u_tMFF<;1+yW!@txHg?~?Tap?|Gx>HG6Ytbd$-AG6yjdXWPcem0YNS7cWosv@0-5@FOE!f+A^jyyQIQKjE zyZ0Y^{e)E`u$T=&tM~hwGkLY}e4o^s>1B;&YfZTP6Q9r}i zqt#54j7%{H^b!gFeI7ZCLoHUX9es^RY1}7Ui`E4oNFsseB7$^Co1;>sfUC@CMaXak zdHsU^6U8SUP1r=OPhAz<2#M!3I`YDtPto5v2zzy95vqI25>jzirW?-t?mqm;6M?A9 zm#x6GS@MnaD1tHZk^tDMZ(9?vIz{cr?bImMqxYuyt$`IsP=Sa~Dl133a@1u->Podsm$RQ3t&L?$uE*IHD{npVlm^v zo8&OC+HtS&cTB=6Nvu<*G<7gw^f?TodoAC;2V#wllUTCgTa4j~zLaam@K5Y6#bB)g zX9<0k_};nZg@aN;kh(h2u4oIbLTLk>wRQ}_botU|K;ZhbCl9q|()TOW8m9FGC{Bsi zA&1%KTx8py<;fk8F|Ri9-K0WW89a-FtU%-42aUw!awo8O|9sb zcYYod07*Hhq8qd48gz2Xc@=U!APsTHT$>rl_DlHSpSl^#-*sSO;0_GFVH4Ap7t>7F zNrscaX6@{H6oN*n+A@fuisE4;ISD$4=ls{0*?ScYj6Z>81NgA@k z9#1d7U>vWUWA?5@&auJAiceH)QT!T!90WU@&n>?k#tnJ~1R05bvqYdmI9>;K9wAES zY>Rb{s31fGC;7Z&8$gJXSlbhjz8j2R^Dmi@o-~M@p7YWK!h}i>71g^33<|X9AKP>y zM-R<2bEQjDZ}o4QzaUb0YwSN>O4lCiKmx0NUK8wvDFmaX2madSt5=_!O})gq56n0y zvc!W-y^3h8%@>e;u_ZtC;Tg5W*sU!vCUiSjkFB(18Mm%vXBI2KuI`AK2Id;iC*_+e zeXv)71+ndRVmw(!er}^+Tr0SP#U$MY`f3S7r<0J6O#9kroG}!I{!k80WwQhk^xCv% z5m(I705NWr7d0fx$0g475*=_kPtj6%0ZL;Djvt>uN0=qo)W(BrfHU|3$1JYp+kU-R z`Qww}6Z}l^Xc9&@q4#(thGHxd#sNu*8bDF!D$2!SrT3JiDteV~jgcE<*n{SpmQyw1Tjec#)hHgL2gadgpyHRxtuF2bViln zYyZMT8erl;_IsQ!-}+O%?PRVCADEC8_O=dR0&oH=qLtOe2Lh}WGN8{zLojxp?K8Xk zEB%XWW}4p<8;Bowja3}7nK0MY43w^GhlvqSpm<9qI93I zmk!;(Ii$K}RopP67r(EUgxmr~{$s7>0!0%hBMc9=bU8=qw4GXU6kbBfF7LJkN-o?F zji96F{p?8nPTG#mqKSk6QrlTXa?NlE+UsU^+M0l(M-q>0t;*bN<`e^HYJfmj2GEwe zYMdxz%Y;-73{ONQ;_O*+FuF1>pxHmC6`U)Afju@41;a_R^qpuf=z8kSB$6}En z#aRh3BOWzJP?nuD;(I+?L@P>)h(jRHuDxfL+Z(pT7zim^=ER81q^^mj-K!j&$Nu`1 z3dE({1k?88)mvDT@}~42!;f1z&eH82qd@H%2Qv>2Hfsfd)icUS($YYLmQ}=juj2Oe zM^RLj<$Q{w7zMS0YJ02Ap)8mzfu-3z41y4!l;|fl8tmU8Fujutg*Pt|g#E6(aZwwy zV1QjN^(LaKhW`dZSh?%2CZV$%arz3?*7s@R;Dwlj` z0HBd=oJA`U<8HG`k>Ufom8)R2oywk+T3rP0l|=Vdhc6gAm66_KBSFU#O+J%E>7O3eB>*$kG5P|PG_$cIp(rJ&9ScUf)L#@7=@XKc~q1FWSdW$ zh_6<6UmX896@Ju15)(cZZ|dk?*p)vp<-Q>mQcdNi!D-a`{p~{W4((ty6zAy1P;hT` z@UzLn@%lUv(tGfyMjL$d)tqyRgm+H9qe;%o@!#p*_k>!3EWZz%qok~1Na1}?(z2dq zz>s;YCMwbdFI`PN4m;HPkc3v5=`}Bg2+5gU9_1s3jYB*=@dW<4RGimdW77-;k?jI0 zSqu92%(W7Z-d+q0ML52YLi#8|I?jQ39Ot%dEuu9s|H5^OqsJV^BL}hrl%?ye8hvUO zw$j`d{8&J z%IHzG@k^1o?`iAyxXh;VbyCvBPaU6XY)1m$wN9gIN*!LOc7vMK`wXd6`7qy4*N%r2 ze^r|hnVxzx-K_+h{;|!FS@v+Ehn~yD@ZG{W;gz-2Mxk5PONA4Qmv>t8oKbCb;L^X=*q#7TIRLma^a=K9>hoM5{r z{0IX4?p|^d7N1Fwr@>gygSJz+lvO1q?Cr~H%n7Hi;23?g*4~LKi;?^fvVQv{xcorg zmrtYhZO>`7nZAanLpzw;1W@3K2AQ*vYfXk|2{oha?6egG31WSEx2?U0Aa$&!ra08` z_8Vk1npxU|(jJJAa4H$^GyH?Gjx7;lZl&)DGgc9YL&svsPq@FSrV5sbYh_3)6liSn+avtl2*L9pie*c<- zxZ)e4PTO2#({AA8x~r*~GA=0xaO~sdlQ_FkBIJ$5r{V=`EowX4trthqt9ADRz za6U04e&XL*>Uu!jH%lX1Yk$E6c~+6UZ%ny2vjX>-J5*vd>FaPG_jv9q_oWNSMdsTw zvHQamk2~#uPpl09{H^Pk3gJTqcl}ViPJYileW9Sw(+f68FRo36MoOG@eYvUFGqo{V z2BDb|7P>xdE#a*oy>YW}z&h@_sy#f(n*-$KuVTtY7@%#<=R_pm#S1baGmeMV1Z?Mu{X4sE}s>cdyb*=18fqLf7F!W;q=t?el z*(<`6BCxo~qf14KV!l@k?pbz~TLu9*g5in2bCervjf$2sa@BtNLecM;y7$gv^=&g!3<^R(*004BO z(w~3+d$a>r;ol4d05IM3Xn()`cFx}pf=O$C2!HMT?b!YISeb4-5NrkDKd31Hkns;M z`)BuLX1q)ByRKmV`ja$&y4>6|NnIx z0Gaszv>cF0@c)B01hVnn@zg*z;X6w2@-HAe`+d*k1O0L)kdNgT>8?BfSCjz-e$zqV zU(o?52>3T>3={(X8}9O}ZGggeJq1vhU-O2MdehCxT3hPb+^|}~Ed-bXa?@mi`yrzn z*Z-3d@`osRBi;;?Z$+?UfW?~@_zzL|M*OpLGrFmEFr0YPirpRs*DYAQW%u6P8C|YSo}*Xuz|qhO`CapE%@oc;$K<`-{{PCs}&FU zznekYAIxa>8(r>!pacFN!qj2^W%TnWMflgKA~WE|1^_UjnjXN+$VviYVkH5P=mQV| zw?t`kM9^)2X?FYf<`fnZv)g08?lXeRULhJH-Zj)^zb{nG`1^cGQ37KI9K~9FtU+QK z@yWG6S~@rQ_-YE3rQcLVjuBq1-M@o`3TF-02wjplgSbY!@?aGMpnKl&_4(nDIWiGqox2bOhUbr29N=`>k@H3H__WROlE6pi-KUQw4RuCwv|s9SyEY{n>Q)Ek5r~G6 zW#b8xs$xRQJQha;wkjW_NaMWLPNZ>f+ft%PBAp`V)eCSPz-cZ|CW>!9Mhov{rK1g> zQeJV0`BGk;X7Q~@CuZ{j`&zAh+59eTfP1uI>yn({>ZJdsNfkG8hblx(~vZqP3tmEf#WL$r!Dq#+YilvfCBq7)bv zYBymaB1r#|Du{O`%&I zeG1Ac5L|}Hax^3n4<%cWNghLZqv7e}qr1bFL$o-&A7&%6efzmrvUx#5r)~or!_w}U zgr{KhiB=Ds+5CWF*rq^_#rO!NUzR_i%h6o%@Qb7l;{kTceCIRUa-dB2JM@WN_-_*P zArY@?EBm`Y$65}@<&0L89y~;B(s|KN+`&Tf7ByBqj{i;7nwgQ{5pJfEDO!`cNe-%^ z{W>y=3-EiGh4VL*7y5?C3#uIPnUinQ5dFa}_GD$e7=t9x z&@Bk5R_y4ct-PmMhIzb5?vrg!iHXHeSAlD;)Te@L3-K*8aqvf&FA>0NsX9_C98Gwi z+EO2pLOYP#)}zZNsj&NQp=;`6Zq*62}sO1XpZFN%ea-sDP7G+{{65H$jJsDH@>i zsWDzX;!~ULv(y+~N8Tq!HTW)0Olv;6%3UBxqM@ck(RZ{><&ThA*RsO<=r)}ZSN16? z_PZL_s(u)AGUK?UM7NT*g$^%ZZAkQ-nd*kt4$#pv%-6*{a47GBd9r9D^-NFN!{uCL z0Wca$q_lHfpeYz0%)E3IZ$K#ci7U|8Qa+gocc&_Ln+Q9R*jg8#y7JgoH3%i=^Td|X zRN49SZDO>>F`ql@_@=+RM|Z^n{4LPM!Z~C;RG4zr4!|axR}F-4khkFiri>d_MKb`OFA3rc znB3GeY{2JN$L5>`M&aJ3*r!3g`VtIqAB@HRy-!wA4l9kV1E3jsT<9Zc|)H zVL@$WS{+3=R~;l;(es0uPlLhVrNWeV%gEi6+;(H#EFYlDcE>3=>?ySyiBwukd6g&A zkeXUPb*-yPoyuV!mpduydV*f;I9iRV;$|B1gvUc+-R7mpRq1iTZusTc*jFCZgOnXA zLq8jPqYpUB*12J+yZJ0HM4x<>-9%#Dym-HsYW{@>xp)Ko1597?ZL%_X_U-NaEv|!g z-q~(UsO9uWexDMkIH>;t)mr>|^-j0FC#=i_V*3?V)>PoLh9-q?xIpBYdmKpe(MUd@ z!2a4p3ZhQW+EfI;4&NV-lms0$kAlMs9v80#8&e1(X^#P_<6VI}r;emwcf2Qx@8mW{ zP0tqL#?gCUQS8r);!#|3BwMx!BV!0V{I6_rL1=l?=bwA08|{21@jDX7)Fx6QYsee0 zlp`;9@>t$l<`-sDUPmzF(;IeIX+9-*2yD@8p_=csMwWq%wL;yq!k7_?z}^`V5W8+& z4vTlCVI7stGTQX73JT|v=Okc4N?LmvfBfu?BsH*qPYWSjBV1hM{3{)tZ6~|GBh880 zvzMlDsJrg#nS;KSf(~cYxVT6S!KXz8#{iXUasI(tK1#hBBz0%SywC=fZUsmSttM-v zcc72u51AD5G^_g9R*oq`mJ#x{qg}q(O)_w{;TEPwej;s)Xtx#E#BuiC2aBlruYZy8Mj&iQ2XnSC4*uTG-!kcLisFp&Dbuh=zs#HJr;x0zNfLgu1OU?7~pz>y9IGwu3D_T})fcn8+TkeK z44nZNr~sZ9ou@c4C*83&)H;z*LQ}(y6A^OO^t?H$;PAwo zaJ-G%2HshcB5hNt7k-ZS&29$wSwl?C8I*xCwym7?F?ofn{7mN_`*^|iBekK_;D)3+; z0u{;!o1ULrOo*T{{wON0r^CJP9arQ2>ppJx_T7Cnv$i9JJN@QnvT~2!j_G&qH`s4( z=uOi%^d>)7zr&F>!Dn^5O{ouxHdyN)V@CHr79+r#n`C_L2gQJ(8n+|l*_@1SOi+NYd!<Cdk@m6J*$^q#{g zI|^8bzu$NG0maF?%66x_+&9d^#QtkDBL$v4v@;_6?524mu|?2<)2O;X=B~JSiNtOn zslWq($d@I8hQ!YX88nM{?$5Wg@Sd8J!L|%I+n2Mg`7nUWeS2$a&}aI>))wWDNLpto zwhEozdvqG~u& z3y1cjp?1V+$DW%wiqDtHoj0Gl@jH*~EfY=&UvXw;Niy1YcU%Y{=;X=oCi-PYK4EO- zq5k5Y9rSpkU6R91-?g(*9c0voDDG9St%~_ETv@y3v3q!uPR$sNnrvF`sg;o^wZBL% zX1Ic@qf}r!O2~ST06HLKZiP3&(lIY(i=S}Ep4a{vKGuA-&IjHJivuQargU7|;!UY! zr3mLK`ZoeWA9P2umM-!d&EqFYg?qHJ0g~3>1xgD2bUkw`yYdH;^L<)!0Re4*FiFnL z`2#$2BAg*mug1Y1iieEdvh8y|A@}f-j<4;#Ujx)K-(Y$ae|Syu)|p)D zo1){FK4}muHe_z{J4@l_x2WellTm7_;?IVdY-}E@B7dnEgA34*Ha=JpZ#FAD%Tn+) zk;#6uD^S&-7XRRdYn~Z8HDLwmqCL@zxk;p8y7EMu%?0 zOm7!o|3g(*1FJdCON-CTGb~Vb7DnImRVn>nm`-T!&KKf%pK3;x$cM?cM@$n6Ynb@6 zy_bI@+JRncUP3vJ_)T_?b8vN?X#vq{55q&XiQA@0jMS1mriarYztwnj$+!MlaC;n* zp}tZ*|{pnNW!K>tmRW&weL>tXHqV}D>QnsT);OAzsYmHl8T`xjX3pEAgRzl}gNBRMUg0LX$aX}S!h-ly^X<-!rVHrFf}74}=U z;o0*l#{Q`3Y^rV~bbx(rYa8Sr5dlm}O6{Jj4eaxvIW}t57lLiRWJ_ls-v-+H!k|*? zLAZ1XWfH z%!R7BA)1T<3FDU?`$5qo=H?Y8W#zs)CLYgg+`qrIJkNT`9I4H5r={)*;Qd{!S}97x z0{RAmNy%c+UV6U5MJS{uxziMyksM^G0G+qFR_`ixu?1FG%Y~(vY#>J#f-Sc zl<1DVNKZpHoPYme8nSTzD7zR%NgQC7+*(My;SwvbNL`~(!gAd?LM)3#hN8$;CRHWx zjFbvx$_sTEIx+2so2{nl8*)O`T^6inX*zE5=NE6d#5p8 zId1I_z;^oy$JS%ddahXDzH39_WyS6>+_|i$#+~NAC*s8h`nAgv>a9odWJHG^`cW_e zOE)ulQg*=?*nE^u#ye-`olBZ8E0`r~<7tA@CR`@^R2solRxK`A@zm)B{q*`|}V3#UlXWgmVJ@F)P$niJb!pczE7?Gh|q&~qQ2Uh7*UqJIAUSDmu zB5c`;tnt1{BYZ>jbcBs}6=LCSh3r%J1w&cnAf^~If71NA2ou--qOE6ahtxf|NoUv- zc-==-AS|P!ZRpys{PDULNQI;3N0#eu4xRMzKOknxpQhfa_&q@q0ON17O`$$MMDWWF z)m;BF6AgN4B52_{=8M4jwdvPpdrKcW{ag%Rg1&t3Xo!v;sYh+&bp&lyLw<21pF@%h z>`J7MeQ?8Ataa66``22kK3|=5@+WghJY=m;t4gz8;l-Cz;TQ-AZ`_8HKq2e9Q|Wt7 zk%3IVb-mn?d={S>Z#b@>HReS8KWX(pz{hw?gKx5&hPShcz+8)HC}fltX!Bd`-R2h*aF`eYx)+jY|bYsQovU%n`P0 zI{{JkR4c*!^Wrs&7GL_}W`e%4Xlj*YrsoSKo{EZRwgnHLT)(kb>{kQi> zsgD!2nGqgpFje6cGSZ5aVmh~gaXV3s6A~ujdG6wJ+Q_1bqDXfjM)ZzKMu*l`oP0A|KN<4R`lJ}g?{2iH0bEq%O zhXnn>+yxg*$MK+N)u;u(=!>GDfXl8rw+FP@5+AboocFd_J=dvRB3wy893VwyA%hC? zqt-C<&@kJ{r@@D(rSwsp$CJEK81K}pcUmS<`=G(+H1?tfblZ|!NyA^ZX$|x<=-VhS z5?1qmE9Nhhl3`(0v-BDZH$MLa5lW8iO9JKr9aJXHCP5&e=+uj6zMiD7PcFK)aHW3~ z#k3WD%DSCrm6n8MuICKhpFq+;2XjLNqI5#8b=Y>$^D37_?^mUQ*?Swv0KIpF?uOZX zB4)du3LBqz0&srjNi6e;{qUpUlUaaK8seN9?)GlF>d_~4VPcrQLzDDtjHcMtS=0XL z6XtWF2l1O{?2qe}mwS%0osP@hRD;|7&ishZcZ_`o9?C2(W&b!t`jiuM2bm03T^8HJ}w46Uq{*yYxdK)SJ-(3%2yp3J{^V3+FZhEu3wtxDdcU|xw%fPIg zUkd@uw{hrSi@-)=yiF4U-U0WQcPesoKKMpV|1SOxi1Am}!mqLaf5$!ua2EsQ=bb^o z{|xH^1QY_Z96-QdStKCPznl5+Q^)_zUl23%FFXtom}&M0cL>D%&#dvU{1S*o;Fn+c zSFZf^ToCKO%1Q!(8HoQn59-(7{6F0X@%UEe96=(n{d==&e@2ac4k`_r%-4eamkXgorB_gt6{1hMXU^`xj{{{Cn*MW=K07kXZ0(aF%FZEo;!BaPo~i2bE6hq zElUkDBpTY5I-agqBfoU}vDZ^lBYACggwqU?>wWlfRQ5(k z_|R4I6+~T%IQ?BCxnJ`S{gsLDZx6|QOMv>>0f6Z>ci!Wkm;|`z_}iTwQ-nh6!AXLU z1#ae7(1AviPqrUHQ@dVNd!=f~??e13Ga#AUuo8z<&PPigUEr+7WL5#n(W*^4`M{$&jH z&u|oGmfvP6nm37n0Ps^M)HR;<=-P~{>)_Qk@lZ?0)Oz)+l!cK~bCGRuE8>!+(kNJZ zWR%-SP}ptJFLDNVk;V+>-(znU7a(#N)n5c(%&a?+UrtH=h-aQY7SGM`Dcq{tABUM!%+5bhMkPA?Sarz+sU8`t^`6nFEb-cNQLV1Qk60pf zhryaYC)>jmpeg7_*2EklANXuf!vghyWVa1B|!px0kGTyLTi>L|08^QyzHn5031}O!7)X4_ZP*|#VC&Oasn>K`d z_0qn%E)nava}(wUmzvahl@PC8qHDt4+>SGg4SPN8=h%nS2WBpmsv6Tn&o!D#(#K!U zJVKhe)BWy=mH-%kgYl&L`4HO};b8_Fb5F71PeTFD;9NgsHrLw`ad9QC#BI+)VT2@^ z>NsBw^SVA&3TkKk(FSB-ST}eDz>vs$7@q$oZrUE7wS$VjR;8$eRx&Nr?OV#?Yl_Db zG(VC~9!a2{brVZglHL`<0s-y`qWm8D6zT&Y3V@-A!I|7a7|1wtN*-Bi!h_wWxR_%H z7YxYAp7{hMA0-%n#5Nx+aW;k?h7jBq7Uw-n1ikOC%RCg}eTKNA*)9oV(!<-TH0rqV z!!8@Ajz56kYYq+q^*asw3uN+>Hu#GPnQzDCEUaMGAQN~X&CCKGsot;#fy_7UfjJ^G zcy@Dh2n1#Zg1}7CpZhE~otN34r~O0HAP8_z?1S~UMuj`L3=D!HLtmsXUJ<+?tg!F$qhr{?!W8Q6b|f(iBCK#IuFgR=_Lkddxe6#B%zPqnYH zA_E5-qqn0Ib7V*STLK>pW41|`xx!ToqCEy;##7iO;)Owgl0`SO+rP~XUGXwM-aND@ zOb3~7JN7Ksg|?ivQ05XGJn+&dKE6}cdyXK0Y`^I$CC>>4y^yEez;q`6r)o`y4Owdu zvmW$YY<#)06#|ix8C*eKJ{&74(D@{T*h&88((Bbu7{jA&`p-xCX0&Z9Bd~LpWRJ|^|l8VL>}C!8{GQ@}>&p}~`Gv5yilY)IWZo^~d^ zF+M!k-HnqnpszgEN~yFv?JBfkKC}x*Wj}PQsqLmjh_Hhe-$Uut%k?wQ`4yFw>|_>& zfgum`N-8gUl_uAKWEq%9Y0NXWAY(-r7c{z=3a*!LU9g144&fYeU`}Dva|~D;t_)sE zxmG_<_jfbC%hJG`!N@&A>0mbYukNfF*<;emh%R(;h*>U)#b>Scjs!YL!w1_OzVh>X|{y6>Q$%tT<{^VejE0&LjGBr|ekuz&UgG=gCnReV>a~fHBGzd$*O=_RY zmnPSDSv==BgS-#v<4I0=_CH3D*gMRMpr8WFrcM!g#~!r|;1Kzy0?V)mJyr;qoY7XD>8_cwUy zZ)>^!z;J|h%#F>!`JovUgh`|oz`3Ar7JMmy({Zy8+yo{+nTxyI_rfr401%dI0cBlK);n z>F=MK<==(T{d!~8`#@8_UhqG4pZ{M$Z2A8lq!jp{`dI&!dI<~O4Ho`^jNQU=U?lAp zE4mTD6DM$F58TGx9=Vl%0(9Va1$^u$J_mMGu=Eq21A7=)`iahgs|hUq1n0o@0G56t zhTuv7OFsca;TuHowmXsk9k&DC6U6y{A#Mj=oqw-kFbm^v6AmRs5saUi%oLXP((Gzo zRj;o%_;t(%40y?y=sg1o(UEm9lp#sU8C%fsXkeqE=T9OAMFa&;yh?dyi6!M-K;ggjW zPe^hq#XB}fa21YeW#jfRCeh4~T!z;_!Cy{1HY=h|puwE|kZvdKgjkD@cZ-1cJVg z8CzfJP`!2KokdXH+LAD`$Qn~APrH3^`4@;lyPLXfPUi zODaZ?Wu92zIsA~P_0VmL2i{G+(8sJv)GM)4kE+LRP1k;G1lB&TU5?xtx@rwMe`W!s zHLEZ_?bi;>eka;US|_z!B`@BBTma*#Q^(;N5ZP)wPt|| z)i>A}1Gs#yw~om9k!lTmR;{|Z&^9=}dp_^AVOg&<bD>;q!^E^<_)}Rh;S;!=vFh@Azd@u-bu1%DrQ% z%5HeT09~g>{;x`m zoO8@#HlNo&Qga<3^;By z#1pEsy&%t6CP#>-M`oW!!s2`%fI9G%G#Mqlc#wQ#_xt7n1Kn72de52CB3ti#3F<{Qh=co`3;!hgYAy<#k%U zPui0g1aS6!*=4yCEUiX6D2?!`=M~mz7h7kcy;%-QZYS@TZN$$wV)}V#F(phk;>HxD znOGI|o5c7-j+}t(-=nwO1jgV!x_a%J_;HkeG+aS89q-V(>dI+BH z>{N1Ze2H5X5v1THJC}q$`7Bi0tq;f8)1hrJp^fmgg76{giIADw-X6*m3e}Z!9Gb5g zEJB2V8v>yUs$0im59LUb2^9Csgt51Sg?`NSdBv`xq0$mSKN?$#iu0Id!Fh5!r z=gTS#NkyW?(W5WDBuAP7PNwd&nHT3Sm$g?={IV-|V#L6EqO{C_-?A7q#-X zvaXMOl@G`FBl(l)7%`Xrkc#wg!l1+ScMFq;8*RIpz$2v4q2V`8mQg?Ky6i7)ePX2* znnYRRVsYx-#aa-ZjNZ)zoF`y4*t|KsgvhXzLp1VHOjjA`EjNs6c(;AbDOW@CbtN~d zF+Vb3bwP{S&4m#In#YAeb86ejud;dd85!#C-Vw!R;}w)Q?Sbl@o!dRZb(X)+5+D|~ z#Cz*XB=lfcA__g1y}aHG)X+%ch#?V!hbNPIj0*1y?Nf>YFW~j?YLIe`Q3J#Mna;;X z55|TKtcRrNp~+)937u;c}EwJ~eb59M(3VNDzlK(B@2D+q)$zrhX|h}UmDomZ=F zeq;FJ(^F=vPy;R%+g5Y`^N(EO&}6mAPq(O|tOY_PeH5Rg8-FPOf+8H%O9fn>6YA{m z!@wb}vB}+}c5_S0wDd(wsh?p%L-wD-E1Q`qFzr3%Olw*+8q&QyW0pD-^Zx`o7A6E*x za*b!&>@kh2?Znq=wq&M&me9!A0*~fb%4J5Ia$#CAj6zj)O~j(iSP-(^K3}`##tyZx zxasBCFnC3Nv3V#DV)}qpj=Aen!0!0k5`BG*hkJ6o_#_TVXQ2cSn2pH@$oZ}jS79#T zqU4pV2cfC9_)&i@Q7Jp-e#ZoIF`6GZXTNnaoppIl{ctSQZW%)G~qzSd;+hOFjp)7v!%+$M=D` znG98OqVi?NdRPt)St4%rUrS2H)f8y$UvGR(EzwWOg(4!JDGAKM-o`KtUuCzUJsZJ{ zEI#Uro1iqMcjina|1MzOfMKBiWd%z3;Psx(Hz{Yqi_~>zZ&S`Xl_v_vWq83- zyiV|Z#E^pP$%G3Hb2W#KfUbXvi-&af7Qc_qOK-Nf7c%WoSzFOj*m3$(FFb{l`Xz}P z9%aVEx3Et?fg-4sB+*WhQ;Ob4c3Jru@tt57Sg@)f+L`$Z&bpRJ)?)G>SjZGPJUkeb z%4?V^o_m#A;L|m|hHLVnjAFNqA;l|{&^OC0bq|?kGGCJoz(Siw8`T`kz`G$tF*JwE zRBnu?kqNP;`i;vv*Ne=}bD5~@CEkES6}46V9wgc4YEpa)GSThGETCW|%lQ^=!lijC zMn`--ghBIiYRtJ5x%@ecK;gF$K-G* zs=ExeH2S!OhE;A0R=22^@YTY{AdCR~9A3<-$%#3T6*nVXh0{)%9Tyb|mxVG{sC&ao zk%ct76bmfYq+lSygi&<@h8M^l(QH*HbPIRE=m$QH+BVWDuI?4$CrJGRxu-dF7R})A z`2~fw42QQkePqg#Jb`JWl@*8`X73)a?kgw8QI9pOa#bMuCT(rs`({^*e)%buO2!eC z+MDo?WGqwgaH*G6MsXUI1JMte4#&?QC}?H0Z8SBtZIzAokya2);k_%eEbH-%;F`A{ z%N_(uiEE;a8gojU5S?Q&8kNV-Dh~u^0NGz-(|qg+1E+O09sGbj$@$_fD#NZjc~r4v zkCu0(cDl}aiRck`p?0*&x0gaOTvy;vqR&5leU}5@X0f}+P#H|%`ZZd{EiX|*0j9Zt zv)FiI_+C4m8#4u`U0909cBy|x?+`|9`0CaCI3g4>A;@b!ARZU}hq^jE{6`7z2QwdZ zESl#oYwEF|Zi7Jsh*l>OA4DiBYS*|ID8mp6mplaw(Wo;q4}y_-dgLKY$4Tqf=C#*h z-$U`xPHQD3dr-Rwa8%kVd^qUT-tb?54k>DN@0kI8j9{prNO#3-JZ{a+4~K9*8j{(8 zsnc|pi;o)jI)_k^!3VO(t)xhuPabmcx~o3h>B`50#9I3($Ksonm$cMv4g(awunFOzHb>Jkf=d56U9uZHQBp)a}c zFEu^J)4vmsY(?Bj{s8?FVEbp>BOv2%m7*jkhS5d>-*AY?gDznfcbXHCBb6U~Qf>~;5CzV5j$DLPB)tG9s8!Du%FqK?_svrE<9u()LD?9>1*lda zS~6`i4gpvTD;HcjjE97iw*5%6Xk9ElNx$}a%hwCIt$Q|%hBa`qFLo?9%-4SYY^`ZF zcA#OWJZixV<4{h92E8O+wWrEP$DhBvGY z;H^c?!0e4b(m~zidisOC@kidL+tdCrYXfvoERC7@7nK}SeoHKlw?FJe1#af8ug%3p z4{QuU^uETgAOauj%D;mp65CsYKKGLdO}Nq`la%~cSg&x{i_mJB{@i4!W5#7SgQp=v zK3Gv6U_#BGE>TQ;VoTLmW5aG3Hq}XCke7$OLCoWP={*541?zIx+MY=P*l}4MSI9+;d1MY6R-F|TA37m~Q|TQrc&ocV zLbLfjDDzGG244ZMyWUU>Zp;eM^_S%EXWBg+y4~60W@VR&KV=SuU&|A4oYJ3hJnLh1 z7YtaTVVx}ypgkq$WU4GVS9f@|K+nar@HBk3BWgMWsb+b^{joheGmMYn+9MA`o#Cih zKJM;SZ@A}9b#Wr1D4%rR+gQJxmDk&wR^!2g%oX3|H%~B!y>f~MNQbU0>cj2`nSDn@ zF+n}d;g;)we(fa0HbgS>C>4koo*84vTv=sjBybv{(ip zs{6)49#48>UM`gCinfg%Z8`mq#`d*=giW>Q*^ddz+q@{d0m046d}jCi z>bct`l&%3r!JYnoPf!f}#fo3s|doQ7aJq;1AY14#C+SLWD8d!&K7g8_YL7 zixNWA6iwlC@aI&KRL<>A^4w}gE6DLIE}I-?n{Fg)kTar-p&b$S(|D);Jrs(nP=Pzt z>%6-P$||grCm*D@_lSq^yHz$!sl)p&{Hgh2r72gsUUo8!m<5Ha+g&6p^}kmiB{ zFmXn(9`Hp3bz_J7YlO8-eMfQVyN>aiPoGO1-60s!{K@~LiGQW5{a*?DGyf5*=l|n7 z;Q!gMKR9N28&$b~*#EyShJ3#}gBO9^z$yQo8+f(NPp$!&#CFpq{Jw!TyrU3s`z_Gl z&%D3%OK#j72;lb(T>E$11+@%wc?PlH6T}OT`yIC3Xzd!5OEB;;kK>lB!;(xLC7C?11%i3^o z4IT*Y?yzxp3+@^uK(HXe-Ccr1umpDv?oM!*-~@N~gnz^P=A7ibIp^ox?|irFyLF2y zYRzWYtJln|neL~%pJw_c&*q=qgGuNg$Ks#$y#Jg@=pO?L{#Eb)#NU`ie$E#9PkiIU zbNthgfCs1hz2pD>HDO_Xa6~^efolfX{Ne1sUogPt4{!hd$^bThxcl#y0I>PP-+wMW5A1m;n@;@|z&kt<=2tZ(Zh!%KI=@ovB7I-)r z9$^dr4~!OIex%0(ILJS%o5~6jZ=Mjs*PjHtdddS~YDHz9Pj}5K{6_f;$w;%U{7Nv; z`3x}BUJMY>ysvXX+J;_F?!&|VS|!7?YalE{%I1i@a&74d8_ zC^kyGKW9ZvdZonx_jF&cbw0Usg2dPqAce`j;_2dRPcKiujcg>o))&`_r6KABP{f2q zHhNV#MCoMVN??>^xYmBM5;t_5wfk}E3){|_-3i{12HI!)9{2>A%5#?4ytrgr7#_X4 z$u8^kSW;R3=S`Jsm$TceOo&kyGSh5u350dzHjR-cnhv-&*_cMKO~$DaFSE_7nEFxP z*p*+0ll{;o_l;?xN8d;K$>_U#l2gmC(H4JIPk{^ek)8tp>n}#9h$2_{ z5(D(keZ)8>!`;a%W8)-;JNxdA&jmyVgbYLtj$U$ppOs*YbkuzLxcecZJCB$F+g`n{ zL4g!x^*a0e>qzANmFW9~F}Qa9&+KZbArxN>N#iS{Uc7$2?WU-9W>^m`49!eYRqWwM zj4A1#7)36d!pIDB!GO@OftaLM%OHhepZ0VgS(3a2OoGd2Dk#gsL~$-doFQZP^#p9c zE>8z9r)8&qRTK7i*jy|o6h%R+h;daQ_j1%FQ-78XreGtYaQrf!j$1c+e5>C=129Qv zfam+uh>3LwcYi}X^L`9I9)`8C2>vtVtkfp(mrhDSi-W#NinEA0{z|jd`EKI0R^|po zvJjJgTWj-d75inI@4Nx+e4##-=}t4w|?TgI3&e(T-&l^ktjq;E&4pm?6k=7EfQHw1@-d9%(E;W zJOp>=oO5fs#%x>2mN+-KN(Iu(u1>Ee zBQtunGeQ^VPcP@;qSz!4bhzoO78?V_IFM8p5%!#-NWqY3{ zh&q^iyy8p7W-i_AjpsJ8`I25$V6fe5hw7%*dHGl$NVFSfs6cbchSuBwl^+ppk2k{e zxmAaw9Y7%MYH=8p4q%;BSzBH&o+f+3 zJyholq2>2ka*!Y)aA>h1BqwjGm-t5qAms?9=8xbG9TF-d^74q}3Zu-ENC#72k_Jczia0>*r>E zr1yde@JpNoum+Y5Fv+a`1lA3>#po{aY}q=C-+AmI8P^xl$35|i%m9bie%=-r^ACxbfFhnoP*(QJ#tBE(320|eA{lD8j>=mczb@Ae4Q0onLnWp@ zAaZD@FuBrighCUgG@zYX%6ukE9whSuw% z3|=iCnlD01Nab*_kOCi!-k&rQ-{%5m+ozI;)4Nofe_o8vBF9VS0&zs5PR;RyCq|n- zyd(YvcO#7?*7GHW3lt9N+2o~ZSCbdC>(`CsOm0voh`A9tzdDY{8kHvudVmDdJz1-p4x(VP1ZXdDkh zlv%gdDj)~yx+u+RQ7H&%WH}j0E8}11ph&5;+C>Fo6_)nR@Typjw!CWc*v+pVMIsT6 z3B_}uY?O+R{qW*KZIwJyW8)<$yW#7}r>glma$mibMRj>9o-TBMX0^qZkksr&H5pJ?02nQ?r5NekKwC9UcA80wb&-Vt2jN6A@LqcnZ z=Ireo#^mjCLY#VH8oeBjHTk(r`)8AE_?x>APVPfJx9 zb%ApEV}(yS+LQ>P~vb^JD&u7j8<#OF<1_He=N9E zo!3Q5ln%Xl>T^MfgrKCx)DkfuM~rX`fV zu0RFcIAPmRSpqRpbsQo^37@b#hYF&Avr4WwYLw4`GGX6GHn>m_!}8EHf9KWWOA5*y zA!Bhyx0vdF{+wxT=ngW@vDB~MOsRt)QX(o6GTu5S$^_EdV%l)SXupol5zI~xnY+ow z9^0F+MZQMqtaq|^(G|hM<9L&e7%rbQ#Ijim71GuI(L{#0 z4)D8+Hxuq(9B#l`aHB1MI~_kcG5(cbhnejcEn8Z#&w7mkzP*W~N>0 zZVH}s=JV&_00QV%eyXRSp`8BYAiW(vO~X$*zdXHuv*mu6<41BvnL)s1XI(2SOx8I} zEet;H=hP~(?@VcTUK6vwu1KGtu3(%9hjn#mjG7oC-2<--oo36{E)|BUs>~7nB@=;h zR1bU3BA5NVdYOXr@pvEe>v^TGmao+klPZRq(afc7OYE;lpCC0DW zEA7TpDc)McN+_1|IwVm-*sgFxmRfR{jCVYPUkIb-Y?AfqUwxYXQZkO(r;E$`Hk)>P zTsap^6CSE|%2_3W+ooOiElYks`N{S7D?Z*mkDDp?C+0FAt$sUok8}aC|CCD%WH1PA zy-zg-yGv|?Bj|)N8FNEgkw3pnM;Cs{J2M%nM3LYhrh(lfjs)emRUtLEq9`-wO9wX93%<(nU$!CzlEVs|M2}wWC?6 zbIJy%hb-P$!f^?yM&@lXB1s6f>-qawko82$!M>z1_Z~geWG|FdIMCE}4moE&5yJcQ)e_BW-~iTT%&F_w z)VEhlus*W6AFI9fEDIT}JG6&C;ISF-yUCAXsNF&N0Ce!<>j0Bp3v}2ejV|wTm@6sJZ<-c5+^l?4+wQl*Mr6a@uvkS9>pm5_7XI{Uk-^`O{S2fe^T|O8hiC9P( zSLSP?B^BxNT^)fKfSYFX4x?0v8PA>qK2EN1&tP7pJz4ddH~2$NjoqB@wE;ez1LcrsPEh^*fE&o*3E-=!jucJY=Smac&qvnXaE& z4coJ}rcEL(UEiNWeEJH^<{b))T}$uOWMd^5p;WnY(Pv21^@&RJ@0?9WVrrSrDf7AV zW2+h>O_e|LNnf2cR~x9zah}aPBe_z`TQxO{BQ^ADNgyR@uYg6k_G^hF&CYpDizC$& zov-HhheJunXo0*EX9J02Jy^VYr5_SYYvBjEl__)q-+9Ub>u z!Tk^018>h?zZggu@vrXq-^m{KkHY;YO8VUs13ex(W@h;B24f!!zy6gBj2Vd0{TomA zUv^P21ODASKW3Ky3IWw)N8&O4nA!fT5&-F={z+!r0~&mfAKx!2ARPAtnZ92$f1+~_ zf4yh6VrKq@o-t{zz2 z!}LDZy(jC7F^$;E284HW69iUWPstr;+_P<6-n1Dy1T5bA9y(_p@_pJN?ljGdskZ%W z>9PhD|J7Z)o-XDi+ci8){gIQQRrp=I^II!ew+M4FHeRv3rm**|8qO|XN)}~k2Mh`# zKEydB!~O00ouI3J9W$?fH;*+7k98VE!n zVK(Wi7b)lQAOlA;!nlOjwr)L%z_b`>J^}+61ibp|sSRA9kHjBY0l$Q%SSX8y&+)@I z>^!^WM^x(vmT2=w+_`%hCSyRat1TRy_Z;FgLAD%LDUG*dB8ot?5V`!j%T?%;mWXEURm-nmD$PEZMpu;>X7Cd1@ zt~IF1>1$E_=E52SXsJ*Z^0YA?v8@SH$y}5lma}WvX_8XaNKa}VBb@g7>6xSURqnW7 z?q^aHz(&4ywDQ>N6Kw!g7@c-3SYj_t)%bB#{7`Csi2rnKA}|pGiOY?&FORf;EPdzH znSVSYr2wA<45hwPQl~y%q0ZB9wH5H8;fPe^NWzp~FQzNNna?R*Tb<*sTgc8eWQ^=i zV60P9ss#5rHi5G$f_XWgBObL?q5hM%f<}|O9Lk+13@;HouE$NEd;yQdw&(XG24`aP z*INF-E(fV(>C-}qZ&1WdHE$NDYg3MPGv3w^A(A*};$^6CowXoa;}-2?4p^6-bZsnY z9P2b8&FhPP2SrVA*I8&-VUAJ2Y5}21Dl|Cy1D{^IwnMr9Cc=7cP zpkhS-ZH&=?X?7q~xuYvbmIZOMVf^Ct=v)~gUIkAlAoD8;fji>d@LLR@4*ffXg*5#3 zsgs?nt6LDBC`PH@F6Bo8pucjG152*M-V+ENICZ*z7?xH@x)tjXy1i3I8d)&Xv(J^V z&6T~U*fJro@6GlPmm-3~VhKd~5@?voOD`1E)%IN~`gWRjMBcJ?HAd(SJ;C$n---6X zL-mL~p7~cA8)-%9L0n*9?hs|olMK%*m<^}2e7Y|;mId#G-ME-M%NU7^MSVzo)cQj^ z7@=kOjyur2M;46{oQR1`dCV?%NX|Kxw{|+}R)&a)&3M45>3Ma6ppilf57G@L%529r zkk77Uo=6mqBxp#$cf&mq1f|qJQJW~9fEVz<^SZhVNI=n)=*H?GvqlzOO97c8LnCRg zaGK)oAmvh)3b6yr)yH`H={ysw;%Z|%aZ;o6oFXM=Y)}cEB1;!4jT~taQZ@EZ5Nt8bU2AHzzB(W*OMT08m)laDssR|Qg!W(G2ES? zjeb(?MhENXK(}$2Naqn8Rd}YL#(`sdw^^Ut<09Yb0TuQO8U6-z0>uc)bH-xXw}4n~ z*0o*Xb7>r^C?{)pcQuJYJBUeXyOS37wybSf)eErv*Uf9tQ>WCf^9OTeU>AYx-sY#p zwkA~^bfjh>)n6Gnn@2XTzTG;12O%NLIr!}?J~omU@T>JG*9s&ff^XcRwlzoWl$mTp z=wd*D<*>!>y9Nm_dgb568veFtF@pW04=%}qkaGliS$-b2F>3kHrkxaw%g&3;&qMO4 z_5d{~k)W>aPZe`#xuB)_d9#L+0M_CQ0&t?6^i~;4I!8z5rVQfJh}RSvY)i{Jm14Sk zIBh;seyCo7pTwQ_)as@0 zWt{Sy961ST4N$I}q!-7uz5VOx{mhm2-(Vm9hs;A@gz>)>pvU-!?)ZHjzW zjPVb0*5CXu3)6p@-G%YrvY;6Mk1Z%h#(&2K1CGi+(bpf8;(I0g{sDkm%8$^IdkOzk zS|0uiydALlLqP|AAF%nb+5Ur){a_|PVgvpksARMJ1a|%zZ2xoJF%H&yTZj<|gwV1A zxt`d8#t$t32yomNR|d`k@R|b{bI%Us=YjVR zXvQPv07#zov$n7O=k|H?uzkK6>|($HhPsdT0O&;s{Y92q( z+qev7HC^~sW;*Ku1icnYq@#1)Z@ACcN^f7h(+EH(`#}F5rh9`4sE&!eJtH*RZ>YgE$teSz|f^ zs%A8;alTls_3o{|!4O6U#4r|3Ct^{~Cqa!|Vdz$$tk)`|Do!zn}ci z9s%HP^S`mmj|cu91DE}8pZ^`t|7mLgAo|aM+y_POUiAZZx!3g`@YP=e#;ArrJke&x=C*7o56kGEndAvs>8o>^TRX*@y4`eA|*ftWAtNV z5d>%SvLueSJ3fE4o)VaKd&SAaFxNVy(~xO%aFFm_UzhfkFv5 zbE|R4?8sis((ou*ppEBV(|8W^Td96hQ~p)>!#^_fM*S%K1%Y9;s>i^(A)#zHvf!ba z$bQwVZOD(n4LLlL2}73I)(<|8WPinvIqyftXBh7Ojzs0T0nYwDAwMiW;cJ<^%w&kt z#FBvVZ??Jotp+;k3<}$5uOl*~lnaN{TP6`}N=&gLnb5~#dRww<^x=m1;`}k!xLoew zoRcD0-#;1m)o9>FePx&=NqU<88tel43lF8%@c02T8rAaKj|Qw9QXed)>olahjEX+= z+AwvhyKYv|qb?l!vSwi)1hdjgO-~FsVxBFj^_{aZclR7(1{F_rP{utqmT;P7zS~;c zh@&s4JiCy7-EF3hJ?3MxP?dJZ%6o% z(Cn{CgVLdW_w(MlpSnVebXYOpF_RO6Gy1J0%gg-@3iOEL$J`(wA9f0)evT3;TF$4* zj|qb0s;kw*yRlzTJ6-j@_*AWxTv}P=z;mpEc6`S8EhW=K0@h>RuwUuufF$Fv9sJPX z2TkdG3?ITpzYUeIzWa7(mq?P3T!$rTlBdK_&d||MppNPt@oo+Lt5{MAckU>oun}$X z>$p5SSbaO8xYUDns@8L~=$7Fc+jFDAjr4>ho-Y?gc44kFVN)wU_Sd8McA%8M4Uhz~ zzdy>`@DKX}PsHaiZ~T_S`a3z$B{3%ODDQKrh(<*3OVl0lyBYptKSX57w;zg9Pk_N^=lacZD2)1V3|m; zmYXIbdlTE;C`UF{*C#{#CE@H0RQk82JSx$H6UvD*I*DvmR}01 z{re`}-)Odb)az{v2JOu+wJS}G&c z&sD>KWZ3^gVn!f(^>=%Lk@?@{Rt92X{{*spP&@B6)B7R&Q)~O9d7lf%@;3w%C@iq~ zBgEidT43{U2qsWG7UqYO>fwKZ@&TJaLJaN!Ibic4#Nbz*_kp1NF(>l>BRcOx3il(P z2f*}8jV^7)Kav@MqLGGDOqm$ajKP$Zje2J9?ib7khG@ zLX6ee<=!3`)!c>14g(_HiH&UUO&y_`mOI>H?eu!79Qc+bp9z*)0avRVds?9gWlUDS&tnlPn=T!>GM;6To5g6`uFVm? zu-*n2jpN?M)bv_0f*@_V9v))*N@VBS2%ts8<`H400bQGj#kxEzt~|D^!)Q2k@ik*E zojX91iL3ff^s&WM=OP)j=(FPWYvaK5Q=~APq{}BWqTSg}zEF{FnM?H%HQ-^W^o?8~ zvSP4fxOlRo4%c8BeCxmUuRS2qkC^md6<+0jMp#dNc;OM=oCG+US92t0`^5TX3(c{C zuqt=Y+B2!qc7sKkg))7nDP(+BVtTe4G^4{QW$yZA08CvwI3j(|!upu2({}dXY15VG zVrq zJ^3)bmKD<2B3wggLKD|>tB(g+c(UvuSi@{+YHXK^PqhK?0*ln0mdeV*RtUW;CXT%+ z+M0^5JCcEXF&ZHzBsWhTUV@`HhKbhUfFH)>(@?n4m1Zzc%?=5pG5R-y)gx_wkA6+P z1Fj-H$&R#~3I{4=PibZ&g6bu6DlNJ5sS2_7O$LCL&rmApQ@e?-MhaBbq5z$H`j8=~ zEVo6$?p!&K+^BGdO$Jqos6|>tfPlWHN0C@;8dY$_<+{)GrgFRUu%4!@c&rHC*(9$C zvT&dNnMSEvcjGR)Jdb6=X+p+(KejXE<*>9Wk<98T>p+>?KopNnSlR|; zs6YvQ5J(A!R35D@1S4<(z*>>xClFD~#N&SjYknAj#|Ei#xiN!9?{HDbAWUAW8W^Z1 zh|-4QirJ6`@1p!(w>AwG!Phw-96gfF7NQMW4GsDrKs*JmnFOfr95Qxdbbsu z*N5e8Hqi>!EA_(=8OQ;uuldGpyI|Nuj^IIyk=4g7{Jxc8OW)uDm)y$`Zn705UX{c- zWVCt^Y`DTc&-@)|l)RtG_plYlka<&Cp>mdh+%CJR_`jVF#&4DiCu=ndSAh zNf(U17l~nCv8zLVx+ap&$zpQU*Oj`>P8F$OZ+$rNHWEvEPvy;5bE|fNgYH}Xuv$Z3 zB)Rljwxw@@HeyW0GcD~|6v3-XWnbj-5Zfra)noOVn0DWX?G`N2iPj`t7Y7YX@yTBy zPI4%+ciV*o9?-6w_tnjtqg!^p7u_lhsJ`YM%iW5Hs&9Y?7_eJWoA&a}mnoISmBN1%{Kckxs=HmBN-V3tXJ2Vc) z{cRh@)(w4h@s(Lhux?iQ`c&td0FOkn?H(kpoeB$B`%_2>j9nf4+V5u_n)ol44E;b4 z#QIzy_@E}G)4F5nZi^hrd#Ap!PXm`@?iz1N=g0`)z)W6cv_`|8qA?3hGsHjGAO+Cu zZ50=-h=iV$hJN|XC$G-`#$ifdX!vS;LD2lRP85Q5W{3&?%!tjAZ_=`WA)&u31!4gn z%XsJ375>>4gJYFsxlV7Vu*IFXh70WquCJ$@&KTTIi*ru=?lxU!DM`&j!RU9vVzBAM zOQ*Lc>HPHpy5}RIpNHN}Bu*2x_?L<1%OXx;SL&u6M9;uu-z{@?*37 z+;12EBLixff35VWEdRHJqbHDeM^2+#wvi6Nd?OMkw|P%=*MKsK&&pr}zcUQoICtu!HFOmb-aE!oI^2aV^r2wJs|C;N)1!1L*AU zox<%@6=6eF33Y~*Z^tmjsOK9Yw^yatH$QX0uT)IOoiN}?zqa5MiTI?q6u7J^beQi8 zUdOd(Be|#nF|QEdwJSN!{nd_M5UsLONvyRmzWe|zj+{@rN;S?ANEvO6x*SrahVRmG zHexD2O0u&{SKgV|;Bcl)zx}<`w^xT+kA;+}PpXV-CZ0!;rb>Y0MCS5SidE-`)&;e+ zhC@Mj_}BNefr&Rlwq~%g!EM#Y{Jzb6NgS*Qh4byp>|gZjj+~a6Hf~SyUfjHC*2VUU z`Q6w*m>rKe3t5$Kq0FWvmaeKN0s9Dd^O44-S&lmuTPBNK)a46j~4hqQLXRGpL~_DmN5! zRS=GQtsB@!_@(MvYXqCQ2`Xs@Tg+=YN-AH2k~5^%&PYt`Sbf|EoEH^-Vt3es(+dJhpIUD z_7(>rN?t!eCkGU=&{4;d7MF@;IgLNS?FE&lMmZ{ZM6C3*lt?)RQm zV!xf+%CHs~(T-@|8xNVy@tkkmJDZY)JVx`q=}s~gZ~2yqLJ4t@?BQXy_*vm4wo{nC z!)1XP2`!d@8S`Nrcr|DG)W!!pg{8UjA@81Tj_r0ENPKC6w%!dp5Xj}~sb0Lk-Q{@J z>D02nGj(=y4R*AAaP`}D^+?c&jrEtTHEm_7a2jBy>jq^Fe;klaJz7?_ViQ>W7QCuL zqXKSLR|rWLMTwsPp+qqqE4K!oTgYbP+cUM@?j@+?&wWc*R6!V z3;g8Z-GxD(%{3YhrC>hBrTk%hd2pA6$rgLQ6GZ-)j)hPT-H|T7z1v)Er9K8V(fUT7 zyr7Kr=HszNe!36Z{wZjlH&<3WQv4JSjDL?6&$AESTs2QQ>{`%=YoIPOjkFNfHh|l05@Z2U(@G^A#V#xj`ng23Lh7RaUUduWP>!_93szH zk)i;;>z1_PJ^KwS3k-+jsOZpHJ$EB2p_l?m!aG1Z0o|J{Q(SqJ03n%X+pG6UZ5q^* zq_XN)a&~^b3z)*IQnsKIZeuf*ZbKYIg_zFh%@`qIseY?kb+0#TgPhi>j`~Ff(^B`) z&I=cArPmiYVoNsBoR~FhY$mi9=8g(Zn)q(}GVO12%ult}zfV|#=iW@IxGfU!d=giv z_S`%}=Cv*@bnewrls-qJe%3w-ojOTAh?n!pbIO$kZt!4axX{zKbHTUZ{040vv&sl2 z<3Of)<~?AN8zpP5nD~U!`h{iVH9WURDhe*!LWPikfwNK)83&3!XLtBy^X_+-w4Jn_ zgEM?813QP`zCe$JG=DWxwEG{5ehQC#&#r+Wx(fYDazh}jcW!C&4$1a_?PYJKHE9x& zcX^Zi9E8J&BjGCm`m6bwRpQ0KX*IR4QfY&2{bvp`lP9#v>{eiN&oM54E7>DaOm>D} zUTt8?E|Aa!dj1AY>w`w8niZayJUZXSqNtqDykrSpRU#fDRxOt;KkRFYbx(Fs@nsC1 zY*3QJ3oKI@t=$Y={J}Ix@GY^A@-1$92T}f?T`fH4*K@$Ih&+b-UpzrZ#tOG>q!*r$ zZPI<+@%3we@*;dd7f&yKHEts}8QG<}8rn|%DYIYpeE0x}v|S876JRG}6haqYWeXB8 zrh^2+bz$0Gv<(+e#r@%FI)o3`Cql3}oG%Q%HyU!w8?cxK`>fnDoV#36Zx_St2Dk^@ z;-*dF(b{HFKYz%&^Llf3#?+8N0airMihM(eo(Jj2Gb3R0e%v978Grqf!q-W~XO}}N zLOyPZ0*XATicCbv)*(nAOo0Y)!x?oRkoskEdE4qB6$BUzXK9inRH(DLGxH#8qc#Md-^y(j}b zN_kkvkg(?t0`wyO?w=>|M97Kh%W|k**1t0<{_I9OU2)?*q)#~k$(K}Z)HE5LxzIcr zU%&f3P1$(E4zk1Q*>y6Ea_>$Vu0MpVbY6miHw-F$_Zet;!(v_;V1 zae+Zum2+ouer?+}Zr8fXFt6Gbuq@|lg!F0c@O_j^EW^g;$-+K|adh3YLn4A_HcD?v zR$owlEQL`%j_F;X-Gd%bC5;*t4_;S+8NpK~01enc?kQSn)l^$fzDeC!N$xd_KpAYy zN^T1*8yupBPcMQGWR&bD=RjdrvJm%IW*=&c49>pEFMh{W-0W|PfoX#3UHcWxWLcj4 z?rP!2QRHoBiPruQ<`57#&tq0YxSJ6|Io-GZGIQr<5qg4n7*e5{ocT%NMfuB_xA4ky z%$fPFh^1eg{WZU>4@V#=JZmoTurw&T`0b1K$P8UJ)?dLX;ET4)3Ja#eAClQ8q6HR1VcrD1Vu9{P7wTr@iGJt15>Z1IU>kISa?%hX(yT}-Hr98 zrXEhbr&~i1bTNRMcO0Ws9JHI)(@=`*1CkqjZq>685BMfT+{NV5KvyM5gGQ*hZID!eCqMx*L~%r4qTj93Uz z6DX4DsW}>It*2c(<$F#~!c!YBqi=G>ND<7TE8WbbS<_bUmS@-Z)JR-dO$T<79Deb3 zu2pI=gR$lia3pO`+hJBilbkQ*S=o$hdtjaoX4bzTs|~2l2LQo##cbv zF7U`3+ik=1Hn)Ge-skJG?~B0um7RRmjrgEO%H0AY&X_qjzt}rVa7_x4w$8WOH|u$k z`+0&c%!!veJ>1NDVM>G$>j;8l7Q&rOZ+GK1kcCr|VVVg(%NK`qR6$v$7Ac zH~GweM}qAtAN-r7ed;y1 z5%P2bVw`$;0l-!3OjK#d-ONRnz%R1#|x9;s^?APB(2?I=*=5=K!zh-Rw3i$1IBuM`P_{mjd2(=Ht zHiDK#!tNveRsDl$X z$X!uLaP1Ae+7`D15@#z_)P6{gtZrA#mztV5vLg(!{2YN6gFJ=3<)4lyxl5Iktqrr+U zS3a2)IzVX3{H4gN8y4g2sz?-EcCss)?>Zruy4+Ykz-#-c8cNVrMW7N>u1bOG&F*1s zM`amH701a+RAQ_z8(SWHgc48UCzXu;2+r`4g6yzQEch52yh%=439Allj#_H&}UEo`L5uB;Am;7=vn}nrvj?GBs z-LPp_2Cl^qz@NR=`0tgeM`~l`RCUS0S#}f+3NGx6m|Xkt#VA zGw}_%Y`!JTuNO6RW{-YlKGeU<`Vp&omCafqV-J&ROcLY`)O>ucMImN=@tz+Sv0-u# z%mrzetV{oF73y;DV$t}yL7zmXRL80CzG~tXwA`5WxoP|WxB<$Lk=H_RP$xcn^}q$n zUD?*TYr6PqkE?0!JbTA9x02NWXNz^=&vMG)XwSh03j57Faf^E?T@QTE^cZpvPnyfEhpR(3&~Sda;tq4vOK?;00>=M&<5gX1H#1ILSn7o`QTNBbs%n2`8fi|rj}c52wadATa@N&? zCMh^Iy9RRH9OYNUQjLatO{_iVIq>4!DyPUqMyBB2w^I!8ygOQTzADFN7?9D|1G^Q^ zeFQYQj&lg|uUTDrxiW6*Rhf{*0R~}-V`TB5L?r=-UZaWxBRIZraU>V++l`L8pFmi5 zX?wDUuV{@HiLALsX^;@!cX9F|EISA%^Oxm)O6mH{*0MWY+V(wZeu{5uamr()Qkm+v z+u$Sd?|*;*wIik8fD^(CUnHl~J!$iBO$|?{ao%qZdvReas(u9DMHe6RR^K~tL_%2r z4bGR|)C`48hnASZdcWc=*`VlY+C*9mB8hVAjQ6b`BL4nO#z=dyl`b6zEL2hA5rN)uxOmPbH|6mG3j6y3N#w%m@x89x!0?Xj=m|jy*=} z%xc#v(l8sOV7Ltr1gi6O?`9RXyg~JLu0G>%5hHO>BXo~Ut|kqI^rfE+6_xMTe*={P z@pAg@*gq0}W%-rHQ(K9x7?%-#*A7;PA8y?$^&5j0_hK_k?jd{)wj{g|0_ln%KLKJw zWv2Oy!!5|q1TaHG$Hu)SUjHeT90Q7hS=S!|sb%!m6JL1=w}zS$jb^;Q#FQKtT*bn1{%)BI>k7&C*(VPz zTM;T`nNO`c6K>w_&{VP*B&z0v;uO7x=yQrHs>BcD`nn-`#%X9qRw-KV;hA@{S>KG+ zAF-78aJ>+-WNwvaa}*oq2x%!$_7xmm0NLZ-a<4>?q==!85KBqg7T?e~j#-QCUa7}v zWe76_tE~Kv4e81nvw}KJ37;Kkw|%B#lhswJPXj5vBbQwcv4%n((V02RIWECEr3*dU z7ct$k=jos}w7pJPyisP4->p4avG!zS zpC=PHRu{<4qj)gmH-RwCaE@?_D0lIU0p*2GNrZCUw{I^``^oeak-x#3*SlEDeX*!S zfA64VOQq(eKChZ?^}W*J7O%PMWvJchZ+UPY>c&3;U1nqXMZ3{fmM&)?hn{nRrCW-* zZND#paj)H=<(@S47AwoW#uDy@fP05V77Ru39+djlul&&im0`uov5sZq&j0~`o?7aS7M9P#)8UZ2;Yf~;rX6dt}U z&G*1-yP%AoP$eRu^WU0Y=xd7SKD{n7l>KxBuP45LNK6&a;8HqZ6y+1p`U0kudkMGe z)5p4GYUATDNeNvtmGqUl61aYGt|N(P)(m!Oi=H!v*@c(T{Wjm`RxcSGDjPaQ2@JC4JR$d1 z$2GQZ;WEd~U0JLwKXItb%s5a%?bPJcDA>aU-}2>^IOIpjqsf1ozbPh5qpG1vyu;kQ z?F41mayoHr8mQ{yB0(DaG%@uhVr%1_iR#pbs>sCXQ&k85^$B9gekIOVWza9Q=HDIY zzGOf)+1MhO-l1p|9{?>(kI9;35mzTMK{Em{#QR7F+geqQuO+JT)0p~G<|$F^P~+6v zl|_KQ`@|HnTTy($6}7LH7&t#fsdD*3#{W~aNJu47TP)9@@ST>NraXOai8yaN+*E3* zc)m-Q{g}!nE;yZ*OM58E!NaKCF=K)&e$ z51u|UT+~>5M-11jFOrQ7^-YG2WW6FpeT3**M*N(8Pj|8|Y_Y+288Yr$lKC{gu)qYk zIi*ZwFj(V>(fo!@Ub_?)HEpwfJqNFks%>qe4m9f6W92x`o5FxuBENluJQgCh`^LWaPke z-lXw*4Q#zq5rxE%(?zqJ_M|A4<9_1DCf7pm`i`~TpAQk1)clfHm(Z0@6qLF!6zj&o zD6Z6I){pAE)y(zd=y!_3(@P3ho~UCOqv9O4{VwR0^W`#|stJJ?JLb;Zu{XHXn)(68 zNHA)Fn?Alf`<<|hK0enFQ1aA*;<>2pS8BfW-EM>7@j*l{v*9Qql)|CD`j?2MkXycD zD&6x_YZ0cucBaY1T&iU6!jAq-hY_F9GtkMiFl}qLfrP!NwhHexa@$9&mdzr*iPVDb-mtHuWmoqcnW~LpHuY;jz|3SX2Ww*kYuNL-#cJk&^omx=jC_IXLz!%s31LYQ z=xvp2D*bi%z9PrkFP9zXJE+1!j3o5YR#g7TGg(s3lw@m-soP%@c;UxRGW{ng=CD0% z#xmYO&WS63;1R^~(dU{6o9amxqTIbS`XY;QP=R1#<1DQ_Le*0M6|$rL`9+SQ%UL#3 z1Z(z~!WV&WwL9*xv$+6HwWC+YQ&LJvok5=y4_qf*3eOSoi*cDCOt zq%8C7W_!|v?x8wGhJLUnJY^m^CY_YSJZ=c_5z(S|HmXKJyX(s>T?UzNSf+}JVl%S7 zb!8S3n&_1eSEd?hLVxp2aSG}Nh`Ah zt6P%#k}2f2RDGo{GPJ%e$9TEK(z+F2bJL||BQ1W(a`bvk)M!ODmkLbr^cZVgo5gM# z-L?WWp*vPt2t!mlp>>@iCPQ(MEWqT$4tq%GiQkx873K@py3U5O*ugB0)Q>}MW>@_5 zAvaMgh+*w_CAy1s;A#2+4LG@Pg}c}h8W8u1^!&8gn`}Rx*cXOS9lh=zqGJs_tqHl} zzfK)m`792s)5+}7hw{}kEcV5Vk?l%>EL#eeXRp8XrqtKA2R3{b<@e43c}pn+62E+QgSVIC zR?T<9??wOH(SM}-ftleKR8(3)!Ukw6-184Vfpuzc$WhG0A-ikN_S{dLd*x#;!JshQ z$}7L+))F>M(4^J@hK1WK;wP; zw;vSj@2EI&VyR|u@B?DWaQkjxUtz9bH69fVt1PDb7)a&Vd6ilgQq=@McOWHv*K?t@ z{@H?`Om+Td5fchj6- z-G_Nzx+GuWL)i4e-eS1)F>(3#v+fzF54o5w2@9t3L^Pf!3p4Zj`ypCIWUN!~wYQL{c2YM}k2UK$(0ee*u56qw`93ascr%XnWn z%>otx%ryGr+8mYv*n#0b#Tyv<_Q%!Vd;aqjZ(tROznzOe#Q2Gf_D8Nc@HP**=1dHK zB$Yqpngg@SSs3o?yRkEJ{Ba4)HNU_7GuIr*0r2zXecyi}$WQRyZv+9x-`)pK1AjdT z0;CN1yCnBH?SBXYBo_FaB!680A4=?-v!Y=bx89dj5;$_0#73uhNTvd+jfJi5v$47$N+wQ>W|yN8Ve&WwmX4 z!*r*lbV!HPLkK9{AV{ZlcSwgcNH>avN+aFfpp<}gmw>bgC?W59P&~R1dmr|>=ic|d z-?#a>pEcH+Yp${88nZ_H2gEW~%8?~@=9}}W?qYZ)1CGQQI)V9&oJABxc=lPXI24&L zI3THXKaGJPdL||1fQ%xdmpl>rtxQd*Bd_fqKqnZCKbRy?r(MT#>&jYMi{+6sz$G$5 zA7#xAWmN7!RCn-wDG~W>4Q4Qjsk0C(;X|TBXP@k$A&E&5tnnCP8WZPC+4@R-L`l%x zm>be3`hK%-OlhCsL6nkL`f&r{H$P{Azj|LFQQNQYs~sh24a+@Vv=E_+ohZm4jfON4=a-JQyB=Qk5nL$og74qlbBPVOt}y; zK=tfm^AE7v<+_(me5IO5K7NbST2{-a`l`lZeU^x&^sDp+%qs-B%F`}|xrTM$EjH~L z_i?6a=&$#7S{69*b_nj)rPR9KZ|QaC)CzBOjW~SsEb2uf6gRmAhV#MWY44#4vqu>r z2Z*yJ&ds>Y67KU+J9K8-DRrDSx88gckiJR08ECcKRCLe4G{);nG5+W2>{oCc90U|_x0_hbeA z_C1v&c){{3;x5OEC!inpb<^{ODe@r@P@Mv?Zn@F0r&U4mSOX*X!C*kJESnCBR1+?r zpo5U1c_^lowL9}Cqt2E{+mlg|J#NFLCU;}zNhNd9TSdl^Px|OgV$Gn`S$*X(lVfMN zY#t?+Z*p$%tVmkB$7EZ3O{ik#d)D(>^u8-RSS4sMue&qFW8Zj(fpPM^^B0JU32B)t zTlkl$@vmf-o$Ht3!zD#KrZ2*m1*2=nGnC{&m$uFKDTi#aM62Gt(gJiJmg-v;#E|QmpHw#S!=R(nw`@qzeJclgG}&8y}wCn{r?; zkx&)&tmEcW%_2>XOA$|VAz<#G{X((RNy)7K*_yZ9k7ut#a7-F^WX$Zig`J=aRx#9h zyiB5rb6C?sjO1&v@<@iAU)^i8S}zxm8S3Tv9lM+?V%~Zg*(a5(G=>ilI*iom1G7$! z&_6^O%z1GoyisFd4v_HIXPbqOz=@T2!8Hu})Dq&d_$4Hk#>>?fE|r`T%{5&~rqGWW zJM<0eioa(J19cUzKBi4@1NvsUJ{x*%F*RB(M7z2!u=}p3nGMvT%|`Rge5KiYuUjW<3Owjs{sAd2$-w_EX_kvE%s;5#kG^j+z~_Ff^MAj59SXcK z_`Wy*mj)m4Z~^}S>|gM|%X8mL{G;4;YX0joKSpwJq5lO?IUr!+^gWmo1a!j7BQSb1 z=mG~0#CjQ+31S7~P=kOC-;Yv2UO_O;e(`^fA7}q@^)ksJhz%T|31YjblkE~)4#Wly zHwCf%U2N;i`u}hLfQbm0O10z{^SafGJyQa6(C{&`I9R^)_}A8|J+SYlIGD@eMP1z8mbN~lb@?d9{ zjHUjqtj~+B5Fv=3$j{0nNW08SH*kCi>+J7r6sjw$GS8|}eTHq@{Yc$C(*N?fIa>2* zUgiC>(Hdg9u?)~E9*IiIJT&O`XO=nmftjY|#p*pJMsJZ`-mLD~x5B(Vb*B)C-uFHK zc@+lY0QM5sdNJ-_^k2XVI_w{c3XxB|kD9+b#w(;l<~1eCb&eRi%)pVMH}9VMS^`^q5WmV7GNBMlLC=!l-m7c@>U`9@vd-+8BbLKgor z&k28~)RH~)R922~N49Dhtqw9ikdWufb_2`XH55Dm6zZ=6VHLpxpy{B%I5Y^67AGfY zIGlDRp&Fm3F%yjHhLzDf!TLJS2|sDgC6u6N3>890;7crO9#`eKJsl>TE#j(cm0vQ_ ztaemQDsdmR9v{w0s%WK8qi-ly{KTMfKU&d?NSccAN^XDAsQi`qvi%MiuPuLpl~TW> zy2;7|LudU|$DfQA^~*bWr+vuM@<%Wgw+z3|H{DJUM&jRO>*+@+>rwJ7Z0PB}tH^?C zw3$*B(#b+4JpN#ZZEQSJ0Vpb~=V)){LZ->g!otGA z%?$v7UF3%b^b~(Q18kYZ%6{tajs4nVPYG1~ues|8l) zU0nDxXczXsOs@0S3;CyP|v$Fsg3_J7xFrdrjO6LE@@9%If|6LsXIgrc6 z1PxvtTmZRzpVlr&FmlWH+2n!*gRyV`+F(G2ew*RJTI8So{I7<{|9vz36>7*|RMtRt zRN%z{Eg+zY1g|qW00^cFBO~htgdt#HyvQ~JDAF%XMc|bwppX1+bo_bz7gjwE7VvWF z8Z#yES$>@v9m#W7NW5Q;~1b8hY^n7 z(d~p@!ecIu0DaSuxjXtLcjxunfuRI64Rx*lk8>tBi>v4Ov<1geqJL1SK23AD) ztZ9-_M(~BWnOnblYQM;jwC2i#KtX&eS5rH46qn&o7r9rfv}B+$CTS9j*k@R&8Cn?1 zGU$9WLC)HE%j@I=U3~isDRtAs!&(pi?W){?oLguFRnaneu|WE-89`BWwNL8P8o?wz zQMf+ZU)d7V6``llmFL7Eo5fSYrvzVPy(@n+YnSmx`HrdT$>F298zYST)5UE~8NO>z z=xK$~hlKI!M=f7DIn7&Dvn>Dp9&>#EC1xAv^46hy~XRi5iW9 z;R!`|+S;R53uUMJ#l6M_-MBLzL1FDFVz`eaoNRe)tLFkfnw37OtCdfiu{gVdX^sjl zwomYT90EzNZDfUtZ6X3ir4E@psYU+cRj2$nM--H4D8BGTe|39)kk>JsQKRVG*O@ej zOAu7znx=-5ZOcy}jD^^hq^%cIKsz|!C{(RaG>)TXX%S2Cp@#}^Vv-K|=1y*?%|geF zoqJd>q7@!Wm>d^XT~olWJVzmolml|gp*g_L9ABw_#j+>S+M(M)H}3g--)G>iH?sEp zT#r1%LjPOSu#UqS`kV37U$!80p58^njEQmgQkOt%Iy+ctI5{qRJ)V>B>1fDhS&MGP z<4*wx(lt*qgbhS0{eMl%%mChLSOqDJLPr&tbnbG;Vd){t0cO#qO-m zliVVZs_jGE!~I!TqBbjpsu!Ohg$Q=lJrmvKroBB8m4+3-FYVTa7O9#<%s9Bc;UBQi zlkwi0uO%VKoK8A-bIrmA*{92nlG3Ix_N-8bu;6XVV3m65(A--NC6zm`R3eeR)!6ut zPmbZ+lAtrL5~d4qy=zSazX_AFl5`9e`S)zyfv0bn~AdZinUPB1R++s3( zpyu;}1;Y&T26FMu(-!y+AK8UDN+KiAM9@1X*@~)lHl};{-Eg&|?Muul1id$no+7oG z)wXUZ#3sWd2)k_e;uS0N_n}je9Q67mOG}A1m#4x3fLG@1kX5A+yc- z+{V}E33gziRA)sUaoe~?(l~@djyx+$xw0OTz-Nh5Kcw*uL7`kkVz~X zcu(_)BG==y!@foN2UXM0>{l#gV?(O0wPBPKz2df8dPPBrCmhOIpKnIe zj^>rDjKRc=SvM^w>~bC*N=0pHIW4x{Qr=9QIX-h^M1hO$#jY&T5kIQ^65Jq)oQL8U zhJNRLK2_+GMTvvy}l>$YmH$M#c{zUT1c(0RXzHYe9rG4q!Yl~ zc+MB{*!amaNFBmrWK>b;#kA_khR2dv#mqiU0V!5{Lsp|tVy%tsyA^6iZk*KK;MwT1 z5;`JvaxbNEB2BUnc-@G;eD7J~Qp3TnU~{D5T~l*CPlW9Q4}R~o^LRfL_A5p0nz{ov z&~GaaSp{ipSaKlecBmEvcI@rd_U`#;tPJS}y_!MJ?mt%V znugFN7As0%pVNULeUlDj-GP=)WS~4zUD%-EKV4_VX5PJ=WAG5~Q%K>5yQD>nDRWaY zY{MTX@U;8J(QnY8<|?HezXgT8f5fYrtKthkZ3l(oru;GOOzs=lFHpVRjO)rKyrz1C zi|rRzB$pJxS2~6ffY2HPAhhTK#F1gNAiSj$8)CBDRaabofyWXLe1eG}Gw^XSc`@9e z2v0>LGwb1|@15Tz*~X*x%qV_SpVm68jD)p3SCbi((`Wa- zdu)D{^}`Oi>&prkMTDN7>_8|~e;jL_K1| zHJ%N>#nxM{fD;$g5Z~`7hStD*A=m2)7cP%Xpu7 zd#z;hn~BNQ!CrR4v8<%kuuA0M_mc0wO*3(@99FY_g$Qlw2~Rv!D){6V?zpsI*=gZX zTk&86o74PO<$kb&>|Aicn50Y9*(L(p6nlmVY%d36{!L2iWZLz?9`?vhgdP|!dch_v z{qF3ecK3o+IVBCpsV#Q?vN%uXQG>(CA#Fy%S}yU_XryF_kf)DsF6%q7bw=Qo5PG9j z4|^&Hq~+UsymXh{GHM$&Yqi~x?;vJ&%Q9wl{z$gok+hn}R|or%@pe^XeQ$=qyz>^L z6lBjt2$L7d(((SYEG?v5?Dxe-)dQuwb((57UK!rjhffyM@b#RCami==8sAy?PW_iWL< z*~)?af&HU>()JZK)hm0*wN+~Dziw-+z<$f%K?X@10==>XbyYHJSkw&w+WG)8yJNH$ zCGahzDod}K==lh$9&{it7inln(TBIM^4=!dYTkm&VEHmM9W$p9_B>tMOZetYFn=QX z2eF4rrT!FRf#S%05Xn?1{w%NahDGDV^bKbpyvbeSmC`XwqBePTn;Hnn(MGQZnVfkV zU{2WM;jkr5tWOj?Wsi3toG3svFLhiso{Jhs^6qp^tJC*Niu<_XQHBV_=6=EJ)(Tx3i#Z9w2!Mz}P(4vBP*Ze%gd8!c+Imk;s50 zRhZFeO`!QBOR}WT1Va0QU(m1+yn^Ew5|XgYJde9DOuAi;2qpq{)nbeRZyE*P`sRk9 zts@)5SPPB%)({bg!tzky$|Q`mK9GM30G z=e+4*&c3ME<3h3OHDte z-aZYH4n~oq_Kx7zqwL^=TnxdfqFp(B{oA&v&fbFA(4V;#i}{ud47x3CIOFp@VUym^ z((FhQYDnw6Y?&dmIBlpH-M_U>2D!=Gt!)9diW~frx*SKsn`?H@S)HUy>hS|-{*DOs zgGbLzVzi3k>*f}wV(UA{z7X9DqzO#EQhKkc?f5n66yN~ZTZal@e8UW$=8eM@TkjYw zd0|j+AK#A_;C62@?OtcfkmwN0dmIK~C*KMkswu`rE7e_`U?Uc{Ih)9f^9)s7Qto7( zUnN@Ww2>+?e`2uU;`83fEu{fm3LPdMQ^&qKs`xX+u! zgmL>`BgJb(b@@`j5#&NIOJJZ&xj576=<{TZFV?(c{1Cw4?Xs3*jm-0cjD2wW<;kk~ zjK%Z#lRjTJ^{1*E7SkgtvzjMMw+21>^BTRaUEk8#tmx9{Udj43wH<$OqZ54~2^Q@- zAOu|i#UgPo_Qjgs@wo+g2Rna29PQ&c;a*=@b}f-7g3E|+!fz80LB46$T8g}G-nz->hXJPsfxTqtTqcMxQAozQO0ZcnpnR!Fyk}`F?dG_CEXC2nkD>bVi}75 z9_8ef%wBWL%*ONEE=N0hAheAPqjP5;n`BCO@RijhET+b=0NP1V-y!6K=Y|2{mKYXme_@I#r%VCX1Az5D3xJ;5ny{ruRP z-&O^o^(MnBh}8HHX-K{~sz!wQDMmXgpPfi#Qnlsx-rcafFQn>mnj;zam`i2q@tW_W zGsEoe^X##HqS|``!A!c7-ErDxL_{fe)+;{KAWoRz$(Y>E5!SK#c6#jvedrC zc*Co2`r}!^oeMDC{K*r(7Y5wNzc&>t8=x}(V+EHq_+|c6kpAp|LF{)wod2Yag`M@U zJe1gh?1F#)+3XkoUjIoh|C4nA*%q#NCw9yKsGx&F-O?2jcc zX|UJK-~U#ZcmF4T*#-YA9Iy*rdJ%$oVHX1Xn*Cj_*oC>T_T>6*o01n}9zLK>n~{n}FL2Ai;ypMODDd1LRMxfVT(8pIixFT)p7xciSc4q4{$f{LA(7 z|2FR=;5%IF#Xvm2Z4{N206;GZgy{_c9g{vOXrE79{I=Je_mqOXTP4>GGGjJTz<&v2 zNDs3FIs;F><+hs=@tViCoxveYS$l@Bd*sDAeQ-|}_PLijvB}j8=RXutm$o&tPmX-5 zzkC1PGZQM(Ao+=9E3y~QDOwR1%29E1w<1E1Uw_lWSy(0i{6$ks@4Z}6s@C&(ANh?q zE%k4p=ttg0)A97B+6b&R4?FA}+xE$~I6_05Q|>rmJ(~Rzm=gby)3$Zny?nqR&U=lX zwW5EXMqZ%)$dO(KW^5`_^oXdLzM*wH)J}8fS+q&iT7?&h{YORHR{BwG2mZaSZ4wj) zeobbwyGH{2dR_OV+=Cu?(|P*mSSs5LqcH?*&(ja_ay6-{9C7;hw>ric?sbIF*{o|8 z2thFrF6>upvtq1TCUemm2Fk9w!zbEBSM3JKI5w!7nR+a|3ifU`3qe1{ZiSy~9fZXZ zT15d;S$rZ2ovBTCPP9^hawc|8$m-5SCQu`BjPuKluzf_);Af=`?KK~o9U#wVfSNOg?Y zN8Le=A3d?UB^~5npXXj-{;F7uP^uSIBxvOUUhIpx)7j{hnfiEic2flM;sV77_Y&VA z=lC5c-g}0|-6t{q;AZhHvsp(iu^V5^LPmHaAr=hzdeey_;NRuS#JG1;H<`unJPfn@ z7MLwclys~3VM;fdq{MAsLry~28{hhE55Jy~d#8E>IC$rf+1fWn{(0RA;s8wF*ON^4 z-y8w~$&6VB430pq69J@>Cr8x=`e-BPO>#cB60@1%dSeV1g^V9V<{+WQ<41`=Kzr?e zdROQ(i{n+qbH=SVO2bacv6XU9sJUet=PAWB-XcD6Usy(f6FWPNfD+@gj0`<=4n^p8 zo{VTU=ROUJ+(NYQn|1yE!MEbJ0`~3r;@9$xPeQd9_P-b_Oxzmj%&3VB=kNN^&Z(@5 zr9>}-sDb+pqJ0mRKQMK7-q3O_XR=s5iPazj)T-B?OpC#q_N0GlCb7rtkv=Ys_hxif zzOjf3{?I2rPT`OCubML&c~mD{%c4cV+Qh6huWUHAS#^FnUa}L1tn(BR|LI}11r-q9F`!~O0m9O z|KZWCydWp?i7W|{y;nv#BCHK^RrtO69W@I^$Zvzkx}u@&owJeV68%Tqk0?af*T$*! zNkzjytjHZIM?c#h$+k;e9I^lCn2%L%@FCzhR*M{cQv2aZ>?uFV)k^qbp!t@cKe`mt;dkl`o+jBU# z@((&XC^Ij%9#@>a$79?b^Vd# zL243vZt@sv=e)ZwIYXi!i;@Zj_1KXoi_q9>MT5?_c2F#LKBNeRV`;zAfaa@Jz!Ep| zRj71+Swyp`)wgACsanY}YA|97^)TxJM3ACE)rf0Mot5!N!gOgJiZFhdjAWVcAg7mf zr2C$XolY{Fyth@P$@}<5oa_7f378P-@$WxKhIJ@YdB6=y7TTe_`5t?66)8^b*2vlF z+P&^qE}>4cf5kcKJ%?sc=4&p!@B|G3Z;qZ#51VEZF!! z(z3dfJU5T~HF=tI&Lk_f+F@CoZo$>uHEc%MGoKl4+J{LbJxV&WX09_seVSOEN0SCE zyND`-ltj^iq$jYzF&ozpky1Y+QRvnPsj#0$C?F9{C~OrJL%R*op_FR~n>hG|p2J_( zFz_{>%k_KZLKIl&ARq6|cIlpr(k=#P(eDw2#!4u0@hTeB*_+|dvuhbL$>odAs_811 zbeJf#SSWdM@sF)#O_fNQ?l@Rw6&d8CXuLT=G;Q5q%huSm!Y9;tJdQ4qUngW7JHBWs z_Jol$-yAetrY1$!#<%nkeRLJmJ?-AW&MIj)^(UAs2dr!ATtRHV#RF;s_SZ{nO!~c` zeeU?T`T+i|ly2V_BN~?UtU4n@T(u}S|oo96-4F(p*Qp8V+7TF z77>1~j?~UiN>u!-KT5%cyL{N$EVK%}@A#17ICSE(&kTG1*yB=tt4G1P)~nAoj}d$x zJ9H#GdQ}jM{hC;)Lc?w)?o3j*x(HrlR7FMVKpiLlTgWZxkO+UXDSc4B`we!v*ZB%4 za3NOIJIF5|BcX7lgk*Byh~!(-%m=VwFEqMXj6$)J2XkzV;(Dm>H-6LVg!Ge`%+(93 zkjs5%M`7o5J3z2gw#L;UNU%f|D?-SGC8LxorKz!LdWFyUuZEe<4QxZGa_h5; zI5LV3%9G>S_kO+og@<3|6kgYx{(U$LN8XZq$nLgFLRhzPhH}1q4~%DA!D>ne(CX?w_NyX`H&Yq-C=kdfF{x#0Ei9D>#g;;K+>j*AWc zb*%coBdZ%JNk@RkDZoXf8P|K))eYN-wdR}?s_voK+ro5IY*>zxc{YJ@gxFx>VC=`J zji%LP#f*OUC=n8a5s1ZaLA}xUi$i5c;-_?OT~^a825q01O-kTDg6l#y} z{-IJ`PuiCc*I79peycADp?#(H(ms&sHB{95^@&fx7$;HVEb3-@umafb#ziz40g`zy zO<>{!lpgYx#*dHWK7K;Fiz4m19@ngpD~n+`B)qS#|#JCIOY&5`@<%S zvME(?1i~?m6ki3Hif(VYK!-T%Th5%=+4?l zL+cZ0<~oDd9H=o*N~yz0nq`{G5my|jHMc&^%DUWGBut))=-NDVfAkb#y%WBw4}_k5 zI&XqM*!AG8^Lvrt#FyRHJcwJ&{Jf2t!ogl4gR@&!l?aBO%}3407ki>&jpYSpuG^;pDx1*Hh?{;+N)F`1G7<^Mivl+6xp#i<|M0iVGfP zGAwV??)457eZJY$RkVjk)`l#5Ql0(V^njF-SHvN80hJaw#XtT2w-;{zNGz^uuA4Quw9wCGS$p zL#0kYuI01hR?us8hWX>NtSgS|!=^aR=8^6h+}T*kwNIQ=5}`vfr}XNcJ1$GR)bjA! zmQR3dtn} z=-NLg4CWu+U(bN1^x;@iQh}2clXa#vY}M2gfa&JM1lhF9)-Q_|RMZo&t!rGs z=Q3kzj6AOL8kzB_>(c`j7v>bK0d%a5Vo14IUP`zJwKy27P+=oY>7V*~H+>8%Hq>R- zMf@`RoqV}5@2bL_r!nQVuR7eQPTG6 z0hyVO!AKGVMBHXrT2ZNSOMmVL98CP}d<=?qU%iY2<@-=~hF;mUV5E(xeq1|3F-F3# zH(S%Zp#z{5dCd44qxt2y>ZViNf2n}6_G04=4{Crq{#HC zZzBl^WMJ+ZCm~XhsnLME-SCtcYd82q{ENr%eNd?yxwy7S2)T>+3M9G+`LOh5BHfaA z@4azmgwZQc)}Zsy9el6i&3u0i7L}=rn5hG1DQCwa*FjWj1bGq)QF56!|I|R+_Hh)1 z9J76jz`N!WSrr*gwl6hNn>4-2_8al}*1HE6${KnAyOE+fPE^6!Lk;3${E?>J! z^!8U3fzdm$3=&Hun`-(<2yV#&EJe#=_u5U}@6NSnT%xmlsS$<9d6n)x+MtjBOUiUN5yB3AZe6bb$$bqwb)#fe!XRD z^m>ipySE-h2BkJ4hu~}8u`wech3C&B@6nH>vspB+s$SC}E@tg``q=oLr zRBh@ogqmpSaw@7EDUx$WV*=^$yfeF6rZLj%UURsh;gN)1bM5z#{Zcfv+Nlzcb8$L7 z7V=?xu-0>H+Ur^sR00?)#Kk(27S!*c5eb@Ua*f}9CfR{BeCMv~PV|K#zR=P!-DOwg4j1NN zKE>?#WIPvPQY=LoyyU#4BlSotam8qk*(yT7`_?oLljQQ~{5aj-alA@8e8%N5Y{k_Z z29LNtFuj{84p;U2*87*a1 zUfoj0JTrv%@s;b39YhW#U*GgivvnFgdp_Dc+dyq&`6T~Y!Dw^dU=8WVZn$0ng!k_u zVv8!=^Ld3hdpI+x31yNvxzx`ZzC0ybc(lF0EOzh|PL<(Pg%zSp0^;&mK1Av9+zb!h zcKC52|E?!_l*t4uU?^nUQ-Qd*8sZ$ChP4B`+e5x52$6_PN||=!9^!ll^PVJx_XN$| z0iA@0FY~!;#I-O+(b`BXp7dk884BQUTevJLkP0RL6fBv5^9rwv_TSAYD?2-QNBsQ{;O8nc-fv|t%Yv~q z*jfI|+;g*oe$)Y&Nm>7-IsmZauPnBgEP=SW|5J9xziVsx|5JH3j(^7*_5YO?V&lHb zHp<3*T|5sqAVlwawmde$|4v)?b-o9i@UI-O34@U^u5%x_44cTmV=ezq}RzwM_12ni@w6zCn-fP3$h>+MWWNd39v&L1iyZd0`PMQny7Z`&$~ z1E>aq7|t3i3AXi&8bJnXBlXy96;y#0yZ2~d1C7F^Z}%2w2M|%&v%Tq!BoVU_dE?f` zqL5ubR3>GAuT$RrVRK{EPU2=)N_TLN>vPzQnw^$MC z#~8l&U>88m4o8IWl%IP$`Mj#UFG@kqrXCuHiP4P%mrEa24AFwe--?XUn5GNqe-s;z zD7mU(L4~3*jEX?1hcCzJ!Y?A76&&1#ucr~(l0%U?a*)j;h{Ji0?%D1MBOOL~H91z1+IGA45m*WRgjx{_G z_86(|mZ4wpHy+ll9z@A4mYIwg!M^P{L!^+qj);P8U8aM$QJ_rMuBb#Y`T^g!DkWZ7 z*Wbv2F2M}zzUgFU2li`DDs)ekr?oHHm(2~a@cq4e=e1K&%eid?RQhhzeGYN8IHZWq zj2XA`(r6lhLtG76C)obRtHPx)w%zaAV2zDh2F8XUSi}K@Urvg>h0 zkQ||%)J8n$d9Cplj^vTPc#e-j-=k;ZcBe=>8e4XBvUrBmyY~K_%C&~iV}lzIpV%>A z)Vtw*BwiA2Un9g4e#XIs_aJRFw@A{u360U zR8k7BuMJnq7I-+i#?}wS^_#U{TS>4~3kVTwQnZC+B9LF;+h>UH7yuHt%hT+aVd1P> z6SB;=!?1vo{B)CE$vt#Q;9Y-l?|!k9va%t1GbaySE&B<;cPE?kNpTz_t>|pyt04gk8kD+F_jBug$arzEC zhKE>iy-9`fjsqoYw1ym1owM-PM-Am(1U|l-ppiA$$c`rup!Bd`N@6~vc>wuYP*25- zt$K*>a7j=$hOegYMR@v(S7MQgpf!sX$)PMqXz38bD>>Pe^#hdWRJU?+clGr3U^`=i z(;S`=MxoB!d8R@B^nKtLIztIdtJWQRNvRXGxJH|KwgD~=J{n&II6q4k5{=V zyjUPaZcJq&$js!DN(od0)vA|PwwqctjT|3Thm&TLYhz?QT?x(|g=%@;>x?x3@;IMU@-8XiZHViSBe#6~s z@4tJ(TVQ#|>WrJ%UXCe3gn9%`{)j2_?Koj68cT_CFP8pc+hcrD^$*WUbh5DTd!~13 zLgajP+lX1X!84@V>?|iw$e#UnRgu~bUSU)*#hx^2C=rB8m$4%!gSFN8+^{q!T;}bg zsc;80@xxX3o`!>{ACXpA5@Q1L>CY#QYQwfdD9 zt1PGS{1H^1S07s3tv$rbPm}F1Tu)ipeGw5p`#}~xn_HmPb_fqH6H;!#?yXT$7F5)~ z+0P>ekz~9{_3SP*l+J3(%MmTyAaivI7v#9C;Ma^yg5lDf%1*95pbC)Ouz7F{7D^3g z-`3&hZ>iPxxwA5BZe3f-{+Sf4T5a8+i*Tw}$S)q4#>UrkP- zw>ZPQuKX<5R7d~r38WqI3m}kLZLY;RS9;zi^R%`wI2y@S1_FR=7p|)r_+W%ca0S;22K}MY)hwnID zm<;nC0&V9@X)9vk942Qhr|_!7lI0KTFV<1EsmMPLtd7wIP1E!dUj_0DWKDn^l^6h*C@yZ1xKnah8Lx9lXr5OKzwM&!~*;MIZV|J zh#v3RXMxCBq;#fg=?<`vZ*SW!i9xZTwMQMF^UYJ;h7BDND{zyVTDvb;GvyK7WhWhP z@PgZNSVv4as@yfLYgN6{=K1U3a!zK2nsps)T(0uL)xGKGY-ZgWi55rN^Iv@JO3Ysn z-%5~qnN-v*hAY-al$~rS8uC);8MZ0|GllR_&azjkbiuPn0YKLqFWm`C)=+(}R+WZ} zYGAnNl3fMMUH=@nW*aV+17h%z(kDg+|4L16ofl*UV-9-W79FNW(_^a>&(2R0B9K3c za5KUBtv*{jl^Eb*}}X%)(EZqqBza*n2^VG?4@45PL4ox!*7#1FE!=&;}qRl&jdbn2WmKvOXf z_E;nD;QEPqkfMaJAA&|#8=D7`S-ljg=ctH6XKe;eeH5NOBEy&LOzx|OSK!~yhWxOk zt0cZ*oxAT&N9^{op04Q#I~$V#`)g_blSb>$tH3bq@eOM9Ig$NUo#_Iz^BT(m?q62o zKnQBsFFk(zeYxh39*>iE7>9`1w&?3e&KL({?u5Y`9=%X4gK1k%lemb}*UjNDms{@n z&T7N`xl|vk<2|CpZY<{ov!I#e+hjslviHko=f|Fa>laQqFK~!h0hGS)SojBzYyJ>KryL_~4{{k|b`W)0`Gc7L5bOE(MxRk;ca0EXWLY0>X3ks5VQI`(sdT7%Z>iyYzT5iQ z`}M~;DySX{1+s)$!RDGU{f+0`&ga8^WBo{+nM~TRDuS{kzCJyR8(_J6ejl_mEvMN0 z9PX8hiemZxUEz{vkB6|uW9^1KYv~%`TIr~<3RHd96lsq+svq!Vq{J%_&r-k5HaO2k zzNuP&gz2g|offusgagNw(AkOm=TSL0f&@#L^rp zy>Hw~w%eJNdl~s_NTcG^Vv8m=aTZsk5FNpJ9BQxEH0cHTmJ) z$Ee0)qjhCdS1l_W@0RWALU4CFvcN}HqsaQmj0LVFL#yS z2e_YG1x#hV33Y7_gScshjw|LoJHH*4&^Zr}&_I1VuW(n(i7=OsE^vDfI+oVw$=)jt z&5&3!b5hL5J#gjE1#Pur8q4{Z>=K=3OP^I>1s)Knj}pcPz9kh}G2d|3esllM8tNG_ z>s1*TIWB@jt}$$|{vo&&fDUY9L4nzE>+ot8vyfEyoOZ*__S~C^(;qOnL%-A(Bfyps ze_7|J0=p=x2Zv3%*OrlVQb`a<2j9?zS{Nu+u@aTaUn!TrkC;DQnSKDzS^%G=l#>5h zj18wR*+PGLKW;B}tX-4&D->frb;y+;;F>E>HlE)s?#eN|;MhSC_vgNN#p#&ms}p1r z3k}|c!3kV)D>sEGNV}liA7u*KW7SXBywv zf=!GO!!MYLM-%mYhzd~)S2mnsP9^9QX>Hu;h>r`M5UR$NWo}YPXzj2!L4g=jNSe6V zaO~}YySl}CxYuM1v61S}Q#${Rg~e}O5;>vd&NRbgXwat;9>e~^&j|1oGQ4#|MGT`u ztD_FKEgE;9cQGcNz84ZF#Tkcem&Lv5X}-0j+D$iVgcZL0!a#~t^#-4t5=>nTPG7!f z!N{pq+p7pa5-S5;yq)#JF?1J}J1$+jY8^L}+?h+-)INFKttva?_~MqhL%q$hRC&zr7m2TGP&RMycPTE zRKGUZj3%zqzKY7;Qa@^O*mbEcoR~I-HCS7FnnhXK=fltG0msio|jM33R5i?uih{SQ=yo+Z}3c)73 z32A(3s0O)81DQ3V74cp{-`i4GHNS)IXBpDe`%5Dc!v;opDUPJw1HB`w9=XM@AL^gi z%+pG?o{{f3*kA^)j^PM$dCqS<|1z|&e+(HJ9n*T{m$>Glnd{f=2>=EufHkqg{T*fq zjfxbpf1jG#SOIW$g(s`an`96W0^F;D_pLY(hs^|tVP>TkKcg4okWG9(U!f&WufjYe zRXHQKx^vf*D&e-&u$RWXd#TFZ;x{0==} zT7{UXdA4gJsVB5N(By^jb8`HH_SI4~9P*)V-rG!`$6U>@YoBu3HBPiniU^5q>h3b- zWrwA#v`gK7=)wa3qW@)bQ2#TiQI3GecU2{@cx&B|mWEf`bNmnkTwhkkyeKiY_$aDy zmT5Z2P~K8HfCVj2WZPoe%j?9W2vy*eKDE({fe*Wz1sTol7i9J=ifGYpHhjj+Tw%e1 zYKsKLX~E@7yXK2ykLdef9g_Ep6c6TX@Yl<+GI^;^x5!hIR@3js-6-*cFi8EVVrZ6+ z*in;d@A}zA$nD)*lu^32R6>4N^=qA`vyX<+U95o3u<3KDnvI$K%lVGbx z`#8I6bbx81{8I60u3ZSxph`;v5Ujy&f8X9|mX-9yLuI9Uo)UHIxf4alnqA7EE-?;jB3?*dY0Dm?QBIs;vYG;M3rF!Ct5Nu6 z1&D5sZy@0luF{lSZc{3a?)**9kERdbrtN;E^DaCu^e(z*iR1qM%KmiCP2L|ChT4NY zKnyZA#JjUIq{LxS)`2Wo%%NA089%fb9z*8N8v2J|THt*>X~Dn4g1i!}Q-iKi;glaw z`MItCg|IkWW@g99X))9rRPju5xnQMMt86DcMH?R#s~INeAjSNkoA{LeUW+-~{mjdm zar>yw0&}lL@;^)H6e?FiPx6O-Z9%M{#I%*Wg(i?cHd}vyb)zk2sfGEhaopI0F?Q!K8CDaoNIkjP10jBer4pD>})Wy20<`;2TxT2Enk2_k_dmm>? z+AeCtWY5alc0M-hnooh|HEe<3+45|8jH9qSc!KS**evH{`{r@H=4LW9FR8D^4%?U3 z$J+h*4r!}Y%TXuOPj^jH3p=cpzm}evrk-J=TPV~yd0C))9>sO82KQNd#64_M%!#{V zZu!-N<$uDjfP?2(zk+`gZxuj&yof=&zF)!bMvqJ5$FILYhPq$LzkkfiabfKGej_XB zA_K;+wXgzNw6Cz7v$Aphs{r0#Yx(^c9MOAemEk5Hr+;KUe*0E&u7`-||}k zX%7DN(}A(*8ilUw7I2-){u5;`a$5XZMgOs67D9jYDG<8Kz2eW<_p{2fch~JngGHJ;<(U3g6jlQWB}BquLU>*1;>Q~4tx!qQv#f} z@_P_B@L>V!($NC=ssMG#3(!0Ob;%3RHUM?Wi`c~zE_nGpy89v%)O8dZzXvrKMFP1e z$N+@~Sj}We2z}_CM;ml_K1L5oR5hKT=L{3}!bca5P@S9%3%UgAwv<1DK2(|rwOf~S zJ;~bdWUsYt*lkZwn~Mbd;75Ml2z6dhDw2)QR}Z?4dd%?q9z+V^~Im* zshJgpzwcsLKO?75AsHLSi?To-Z9*@))t}X1XTxt#vt8-C9n8Zq;P~oxK%U;>RqIyJ zFACMaQfU4mrGj#J2`V(;AmJ|C0;?aKz_@;dNJ5u#HYL!#6zzD+?pCf=+Xp>lr2cll z?T9d#y;qD*w6igTYJ=(H_X_RWtgS^#Kgw}yvTslnEwd1QNI=%CUt}&>U!Cg?^}4S9f(*R@Ta@Tpu)m z8RzsUL)x-hzF8*c*rHRt$9`zZ24BJPaoH@>?Ngb=VZxRL$D}*9YOIb`WQsQW$fOy4 z%&1@eCVv*}OwW1#j=d?!2fs8W8m^Jcz#T|0G@>&Yw|W+=z?K5mL7E!E2U$moP4FX; z!a0)MO=5L0Pg#pMS#ly85dBO95$Z5$9M#l=ls9V&rR~wn<_e!f=}0TK$nP}UXjP8f z#v%D8@2leJ(h;Zp;;sZ1>-zX_ysm&h`Ge1U8#lYLtwL}F@wg+oB-q=J_|Hx>A=syl zcygmUPDQ4RC>-<>VTbyA^2v1z;HhM){!zuJ8|m!)G36abRt+xxPIj_*KXjb9fp4@6B?D| zH1Dn0P186-aNhskUqa)*;0ETNs!0IO9gSIcUfm`2?v>IOn`PQ0pO! zhk8c5=R3VZr$DzI-)k715>uLuu%-JCTr0CHv)Z$54`?v-zZ`}?(#~%r2aca@9u1X5 z!#CMs0X*~vZ>Zxz_acS_f#K(Jkb$bykX8yJ!;i3FetImzakOB-@xC!Ma4PJ47*D52 zrubo$-Rq|-QQZYa19&F6*-b(qOwllLY&8(VZ@^O4cTerX4+7`M&|I!7WR$Opz3*Th4uW{kqRqR zgOVU#QI66AZio|m@D0nTsi$xRO@BISvk!G|ED9y_%?LAp-i$AFD@e{&%o5ole4B{9 zE}Cs;V$_(Z$uzEw5s4BSy)C|baHnbtUIVCph(fz+yooUN*QpDP(&a6IMz~46n}*UF zQM}evdZyLGP=eMs37xA3(ZXwDUf%mx-B;PJpT!d8DaGs-Hc|}EXp>B;6GBO^0hCNIbed@u4UE63i zpsOwfd(U9oe}U#QhL3*gPQ9kR;DYFZbR+U4920W+aVFrH0-n^jWB)+HQ9{>{-kmdm z1KCx4Bnwb4!En}!tRq0tmJl9I{&rZto z(p>oTgiXOn*`)W*MK~jVQEwWBA_e#(Xb=noe?B$tnu%_xfl|-MqfH>RN?7Ae!D@J) zB11KXb?b>OP4P=kk8QQFhk@jf>lTkJX4VGl6D+TzJs7+Q3+MpS2J?M~62k#SW|G>y zswGoDP05Qn3qb)m!fuQ2;my;s_ZS=9cNwY>PIoG* z+SXR2+2a{IAGPwfYN@R@$NBr@HP2J?W?2-}P?rI+u(xFuD;6boi??Kb57AFR@@*+? z6+O$8r2%$Vtzs5fyNNi;auesl4MrN8rF2@0V3a1(qw)$$=6$Hp`4w+lVmXu%#m`EM zN#58=C_7*X%rjqW&}c%C?(AZjQkhJKj?ezR}`u)+HKQZ_(}v<#aMauFaFz)LVxzRHavq&n2} z%$k+&PAW~uHP8`I>2oxk*TTo|J?7hl!W_rjW`i0n2_wv}4MEHX#iQLlkt%P#?tT>Z z$-((aaP@7(;c$cO6<^j|3888Gz?_G&Y*xLMLL5q(SY@(pB};%Gu84~L`wUYcO$#)o z&1JF`@Y+?#fav_@+p0L+pki2cN5sO!Z&FG+u9-(8YGe5JOB3cd9E*a|N5aLc&9YqY zFEq0F%-vTqz)Pv$nHFI4$<-ixcp#LcSmdLv!MYFwZCGDboYp} z-(JySGp1IP=aiZR+^|gMHWV2&HoBO@n+zw?ic)!0g$H(Pf$2ZMbU5~4%p@$s_#C;^>im^I`lzF&)QfL;#Dxa$!PI? z_!yxEab1uUAi&rD$-}TJ1-vLvYgBR!(Z#$VPi>4aiXR=rsxj^<{W}*yBx=%JZQs~L@09o|;&JbX~IgsNL{(fjMQsW_KUBkfR z&dg7hD+EQ@M4`Z1%GDV*u%F_;O0f7%0OeyjtJB7to_l=I91oFTMS5pbuUo7L*9Vvl z5D$|*#Z#Bkd<=M0*=77$+QTXq^PcwAmQqc>6rFc2S26g~tkHh%US1l}tVA2U^q#k) zq#vV6GeW>s-pfb6`F4+ad(KdN%j%mi2 z1>C? zq$YGro8lIz;f@iWA-s}E$IRL9va-9Oo2Tb25c!SAd&Bh*|0hED00B!u$R)RtcMc$eeN>C2u<>Q zQ~AaLbVy4X-kf;kN(|nPE0%wC& zV9#q|=YfxERo+>iGz=_G1Kt$#6}4@p)hd(jYn<5uY&d8c(_&s>&y zb@t}S@zMFw{Sk<&MCX^kC!`aa5qH%^~MqpJ~qB85yV`T*e$bRQXFjkxaWhKzw=@-hq^xjtr} zu%&X-HP+F_2f}df&J!{=3a$!<;X@GHRrR4}ht(ikB$xSfzT1PU;ip%Y>rDD#yX zM801pgY!fUJQNTBntOuD%r#=H+IC&tz%P;4C85kb8zNjA99`xGv2|fB*C-cOB0BwA z7c*9`T*?uk8AjZsX8_I&lnWi*5Wenzak&R;v{Wo+UX8A`x@}>7dJh#V`3&Q9RBG3v zc16XLT+(K|ydvw9C^#F%F#TQ)6S7ravH438D5BdYC$he>Y6!2P*c;`z+|2V(w zimy&U^j4^3Td=+4wYIO<GA1gY9#|B?M;x6YpK6chk}s3EB%PYmE~`c$Aef@GO20hR8?I!w}nAKJNzse&4n zwNXAgfXl_logTk^_4V#p9+>_bg6q~YDUe-1SP{bz&4zZpwyRvZzNA7Ai1LwpL5Z}i z^n=Uytu|}27Sn8;t1hbOU)~J-W`Uf6p7p1MXQ?D!wp9f7e7xa;)bmuMiWro@F zWFYpUEvBlt@A~@WT4ZmG_oN(ph!aRi5tcz7izxpmbTH!LzreFptg&k4Bamto==&^xhgt0QD zf2Cid#0q`J_?(;_y?9S#$>QSn6l{RyH#X?N)#N39n|_dffDNi`_SmA~fNT2|T`sSr z%9wAM*qJ9-QD&ivg9-lGR=zhXDSQ7FS*;0W9e*`yxm~QVR{V`WQckdo8Y|uq=dc{S zOr^E!+ta<4*Q{9Xl4>m$#}vcg9Olep^$9zBIle4grb)^x>&N2=3Kk?DW;jyDsGSN# zMR-w`X&MZNo2T{5e}1Pto1(7s%BLF>Io-Gm3uV-uaNTuOUA$_@6z3|hOo;iupVt0d zq^H%opPzCh;D)Vhua&w+$bKm4xya~2`KwrKe|N*Cz07yvYwh&1wsrvn{v^weuG>T zMgzq=YVM}>0$So(U#r}~M?;n8wMcSOM4$Om_ty~Q>{1{z`SAp_=w!!BMDxrNr(6}7 zm!+n*5?hHY)D~*(&0zdRYxeE#qEwXD(Ma5_O)cs^wUH6dDHouPo9Eko(cW|$#|&CI z#bxbgmxhlwES5%FW8Pvn56`)Ua=QLpLX5lTD>^$d zJ@H>AoZmzc{ELhZz%JGbpkm&9f#xm&kHl&ki;E~HgxMeTR)G!ATla`?+ME9E_Y6UjrhX@B6Rx1sFrr3KG$dfyYyW}QXj;?3yq^xo z-Z=Ed0o!+UwDlgL4 ztjBVD*s^e!zXLnGoGd^|=iivi{%djj{}uzDKv-y*7&%^QQ2=dn4q6TlK#_@o ziJ9TY+W_lyKnb1g$IBPzcYqK88!amZxvb3a^B0pTwybF9Bxv10p)?;{i`9u5G2zaXaZ`7reBrBMyn8lIg5^Oxsa zqW41(refl{b*Pml-<;}|_tOzEkh^m{N6~BsBwH9VNVvxM<8n?*;vo}5EQpy*k`5}M zXSlA8X;qCRTQQ05uvg(g9-|-x8V$0679|{KHO`{jZlafPVh5 z-QuqgT0omX8~u_{&H9_A55}KOY!qc1YytJcAyqKURX9)ItG*4}tS5PdukJ4Ma$oS2 z!hs;s$DrnUJG~)23uGnm{jK%uKrNi=n-F$C_ytl|K^qi~1V*yJe85aZ9e;S}l4Ais8Q_3#DuI|L z!FI1nZ8;esqH z`e0g^w0pc`*x}ibaRYGisqYO%@-fGaLo4b0dir=>IL9H66YcZj6VMJ!^e<^RfExL4 zRhSrmW;tlew3`9&^eqQe4i*UAqE47^1Z*ibE1akgAlU1oG12GQM+m&$t;fSVMUDxa zgyfSsxSP!zqoz~Lg)_pZX=ZUy_ak33y9GA#?O1wdO&l2zLN2E@I*u^ca)U-9%YGQ& z-APee!qMC{MOaV5CK)9HR67^_cH;rg@q{BPK61MzuQK0BG$(|}pw4GHcFpfx*-S3u zZMcW|OSWHihQWnzn^2Q<68V%+2AqFT;yrviN(#!tJ6tA?ylUcCRSZ+YH`m<$qCd`q zu^4bP_?e|CM=(VkwR^;YPeBY{;>sV7kJgN@aHyf|La1^@46#Ghq_XaJMN%bdu_ z_~ZIw;9y|@%oGBmf(q6mqJomTHu!X+28LD+rVg&qbPCprR;K#a28MwA_Hvp5ne$%( zfIqbGUw{q&tvT_Jd_a#6`2W9g;$i_P^8XX5#KOS#Zzi9Yg#X9%@&oh1`XdSc5&nRV zyd@O`=`6w@$u86J6#Zjet^%L_-`} zB}4&cWYs}&ks%b+(f>}&ID@p}OpU`No_hxp-1|XUn+RsxH|`_#DEOq4Y-5J8SfSD zzS|p++=A z2RI_XywQ+t5xwhe4T~T<1qpYLX;C@?!GJ%@91;0khNO7=)t2YXSrd;k>E7kQc)nkI zY$gJgH@VMRB`NC;q9fymVarJ&A?VPh6quSAJv>giJ`uOBk-vAuu$!U&>tjr3YRwNg z$5PQB=I0t4Vnp&T8Jk(7boN@VxU@tG7HGAmG{macvZdTU4mb z+j^eoz2X&R3*rvr2BMogM|a8$FifKjvNMtjZa zS<0jln2tLzy@4Wr&nS4>M$g5Xn{jS`M;6I~ViXR`np=53w2=80Zvx`9T4C0WRSHxk zqwFKd`lv=8pAz9{tqd%#;In*noN7=LEn0PA^$$3OVppSss(cq0O+59ndrbji*(EoY z7ELjqrZzkvZp>grHH^I`K;k-XAVg25|b#W?w zsin#EGLY4#X*l(4`TjYzk25vBSG%7?nCzFM?l<{73=BW@$AKUMrh@AVBTC8|+LPh#6^qLvLET}q=(Y_v ziDOmL^oMnQT`#uuv8{r~P|eCVZf=PPLX~C&p|$RL^>LlycmvG&k!16i?f%WhJ=UKU zlr0q`M>bU;7k5xkfcX-XP8$uGjT^L#isqj5fD}XDk-qXYd>XnVxT?sv z+3~;{`24)i5eJM!P!Qqx%pqMaHVjKL`@KS`%wysj-X*6-T;sw944b{(Nsp0J^hC!5 zIsf%=DE>-^cF?8CWW2m1X>L}9U?MxCp$vnbWq81OZva_Wszl%kr*Mx^g_M|rOqdjm ziP(5JoV{E_7}l6U*{F$(!#iyVf6;G5es7PO;o*pEPHOzbmu7GuR1=2nx!ij=h(>ur zHIn#z)wykAKAX`V5qc!!n^bEALB*U62g}(B>@q^w#vNP-%AD5d4(E6(lN8lh?o6N# z=sN^sDY|c+Gn?ta!iC(t4eZ*;m%ijA3_C16M@UNuxL6E1R#0o5;EVVo=+{%QF;YUj zc)$QgM#1QTmZCyQikDOvo2^{Plg14s4UEh*X-AasO)faPQp$n6c1T6a2196&-Ycso zLZoa1X4Y-f&0~X__;^>5tEr@#C_R^M@@Cn@al*3rfZVhwR<=O3r%E1_>$YxBHCv6} zeyev4$)ic024I%>Bd_(n}7wK@&ebeSUJwSzk?k{0=DFohHIE@Ba^e%cFycZtE$Mum%{y`L)P7qATx8KIp zcDF1mh@;dd*X-$S^=qg)p@m*k!s$>7QBM1JTl5JNzz@kKz<;W?`8FQ%)zkz#v!V-i zMyWA{9HO4CDehj2W@NjugbxsVsYB%^_ql=Kw&oHY%~)<2L` z7UI*W7={>i0ZYuQ9HL|lMEMQpedIl(4xAQKk$YWDnIMQ;!3k1Y`X=EhzFiLhT{6A3 zu6JvD4oqUJrVA!=>I@P&yC+6RgPq-t@>vO~RLFKpOr4(BgeV59qF{3%Aq}HOH=jgn zR!t|81l0^0B}l5P*fzBnV1o~E5Q1AwRGCn6;H%F{r*0b?UBe~kGip1%MUN)ns>)KV z@o`!bGu{vm+sqUdqIX8;+)_*O@z=B67L<{!u|KS@{NP`$GEwPP^^BboE-8T`Feh`v zbeJvq8Lk>?g4U+>YQDOAGvJ08v&}|4wzMf-U@&dLYvZY#XN3J-FXFq{Q!6*3WaW;~ z*Xov8Dme07pc3bMCj|sIXX%|Ov~DwL-MiRopKNceDj~C93;Dq;-x-g)sW{ScnY)FagRo#MY-FWE{-x6cpJ%2t?MD9aJ+uIu$H&m%0Eq z-6~pn*;fykD>t{d$dA%C>+a`6(Wwwc_6cPK9NWtF(^Px!8>{79VZ@6y1qu0HFEEqG zm{ZZorrKWk5;judCD$t?ecM%BJX>IxlElx?-galCDsyCc?d`6Fdus1;+z3qA$MBvw@yd}TqdQ>&yZRW1 zD<4L{D8RK-&N!tFgn6?Wjd`P0?gM;S5GqltN~)w#1kO`W8*8CE$?y=Y)?#I%E(OU# z+P)$OWEVJI_cmxCk4|g=W9ghk#Nn6w! zCGhBC&o?1-=C_m?KRZX=V|(Fv;Xc1&LAv;*2nztX{aX*L08sef?>`-5#H|)(V1;(n zz}WD8SH$gjXg|UOkhw4e;i>5T5}X;|aZfU*KvHI`h?zz6g+U7qBPZy1)IO@yi0*F4 z^skF5lV#q|&Q3x%8{P=egz+?=lVK7q&Fnv4eGf73B6O(SacL7pm3|W_b;YXmN-ENG zx&bQR2YEOWqS_*ULElP5&HkOaWAvJy=y+!mrF&hYt*eWCmyLr)t*?6@q6#tHasQY?4}OR9 zx&YchM%whLo<`T;XAVx8IMcG;KDC2L zX{>NYXUa<&gX21%!?{}s3<8N8%Ds8pP4Kl&-=bBOI;-D;Z3A7folbW9oAz z=IK;6U*2i3R-s6xI;kO+yB@>|MK~ghFQ>DaUaDng{lpRP=Hv>8yak~sIlZ^}74cUF zG`=e_DZ}%AHhsdG?4SX{9&E=0Q$3v0MVFYMU*EZymVQ!j1^e32(|bQ=cB) zDa;RU&R##WbXfjsZh2Wq{qy1bKLe4oGyP;-@2DtRwj~U^c#qo13zY=0If1PD-tb(P zd48$|k($c)S&>j^oO=2F`U3CQo{G64?*K@JHM+NiZ-(R0Vi}^TaGrP=fs2FhVQ8!^ zwr^9$niX0y!^UWebSU(DvAGdQbvKa>RZI(xa)Bfa$-CDpRM1kp7QIz52bpo=WwI6I zC6J^|>x zQN7rsX{gA}W^0#%twU6q_s3>s=>wh4exszCk(0!ik53YYt{Aee3cEAjm5>`(p$6UU zk7ahi`lS{vF9|(oB6|UXJK_yPVcsDG{6_Mq8H&Rf6UeOlD>IVK;X`h2$YEkkC40R+ z*v@YHU=L`-O!9oc+AR9o_9BU?=;5!vm79dyfn@?cQ(wf9l|*&6ne`7%YPtGY4fZA5 z->3DwJss7(?x3C^U(0m2Dv6kXdJdT9&GN}^XoVEX>gTyWzJD0aEbVL6yoSSq<1h_G zJKWW@1W0OsCK4zo(V-vj&C?BJD!8Dpy~!anvS&^pF-u@8dC%YQ6@SRQSvJ(xL#rWO zDSEBuP~(I@Bm+s_yJ@MZNv;>}!Ub2$hk|oM42Iaw3X*|%RP!qyI?^?|OZ&xptD(}P z*D12rik2m)G~`AKg__hp!jG zXAOfTHxSpltv3#~D8k~t(m7hi98q^4tR+np3@Zf9$O8OaGYy2kA}de5x1v|9!Exep zUx~}-rxU|4M6Ml#tpSS>6QNZm&SV_3Yla*;u%x1KR~VnK!Cra5=C0bp*=t+7Yp2TV z@ebo_0a2xh>Sxz^LanK`>fanqcsU&m5whamIIB)Yu5)@&hcQCSSI%I7U- zw&ojNhs9mBkp>z@FqJPg)#(HU&$qfyd$Vr1&)8mgZLg+D+f7#U5pk^0KA#HI+{}6-hm^7YPQ(N*%44z zu^m050K@9CVa&b~daa>v@3qxc5S5JVePz7;DQDv;**|~Rivo8KE-&5Fxmc&0l3N|H zvpNe{^n3oWh8tekjSj=2GNFG|;oo&jDB>6GK)J?mATl~n4X2l@!j;TBT=IzmElsZ0 zNtIU=UYj`oYf+c|7bRiwkpmhqG*k60(1F|9Md;4-vP;m2S9o&=AB_YBFUhcr#&E@) z%n2mxKY!*OJbHZZjY=yb6ABbL1jN&)oN73|?AE&)?MtmwQMN*yvMDcKl4qb2TZg&Nz;ZR6LQ%+Ow$l(TG($7nmcp zEda)~^{%lB(}Hur=77UImmwh>rv7{B%zGEyd$5)=83^Za|2ExnP%ebh52$)|TlP_m zrMDkCH%DN|_-*rs6mhyp8UyPPE9Dj5&9kMt-rE+FD_HePA=oEvMWXGdLBFH^`ebtj zQQk~@)xrF=J`9sagT?CJd#B1$U!^=B%SjAJ=?MHJLz>3sd`+l@k7#zeEYCR4MWB-u zYXaokbR9FKLx;67`??1&xmlybQBnq1g%P2I5a|-67zb&db~F81lc?6`5I;?Qg$%RU zt12A{rqButxX&t5k97?8Sl_>YcWl_%>*Y|cL8RHE3JgD-#6-S)k9p)A@2OKx#Uc&2 zGHS#*VTb9{4R@&6{1MZ^*RlFdJA!L@u|x)epI8R>_B^q{Vnd}&Ru_*_Egun5teh~e7vB|-cs z8Jc5yCjf>E`3T!LTynYjf|w`O0~Yet2Em(5dO;B!o!PHv4c0@1QO|(IRA`BQg#l;={2sFmdy*HEv+XYKN7W#%Rs$TTEXF(M!)&bnlRBiXXN^ za*6>(_Lz~H^+%wBl6GEWi7BlSPI3SAxRQ6@_|)*!`UIkiO8HBvpBHxaZ``K*i%5~j z2*Z!nDv+;l%ljZ`Kc*TuU*I`psXVP@W%J7L?nN15n7oNt=+pDj&+5l^ z11Jf!6g$7X!TQZ|5I|D@XSRWoc=To;G{BS97D)Hu-OhNm@ryiWsEh&SlsrJ#2HIx> zKGKBGh8zLgpG9h7m9K=kzUO)OROUTZe>+fKn(oFZk|`qbHdYeFYF9RXh-EBULg6g? z{MX_69!JC^Z>56pNvJy^!hJ7>OIu`u;HU;zLInEI99ucaU=>pl9Y!6&3)?Do$m}uv zcwmK5?0g-5(h!e3N5EZ=({KF$MQjtTPwm{15T>cV+h=Z)J)Y3U`=zJJ{?zVc+K6($t0nAY=s6n98D>?+fiv-6A zv`6gE4rYfY{RYTrye695$8Z5Z=M`tFfNpy+mAYIOyOO!dD$EIQv$2=&H82+o^$&0uqkLqW1K`jk{X-_P(E?9wkLE zGbnqLd7k?`cU(cz%QSkiX7km#o*Y_oC35Ph{7GiD={RiBWf*tLco;yoO!jyf6`|-8 zVR@ok!*QN4S9c;2gOf*DKMi&H1B33oH&bswy3-lm>e*}O@;lHG>r>x8QocOJjIGz2 zE4748YJ&xC9cDeVv{)T#8Mo}R*ky`bAmfr6%~&`yUJCJrVH_}LCZ*eI*(QhaZA@s% zqy6mVqQ0RT{Z)%eV_BI{ylNXdxb(sp>!FUVY$IL&Mr=%OBE6FWpCliyt-|%yVhd1J z2+gG~HSbhB2L{v!%ymv?WXca#U`Ai}@D#x^A&(!B=#vm~??U0E{4_o=A8qL|O6dZp zNAIp1gLGr$P+$3=UM%KA5I?Z)0S&hcd+BiSQhn`^2$b_(=}&+xsPifpP|VA#B2mOQ z=n^1$OQHrLbB@{bkl9JG7N6!AWVPPx!REMtI_WUHr*=QKpFWG!!NcP2$&5&mL6GYn zy7`?ta>pD4G;=}Q{hZQ4Cxqu28F}FQnCV??9L1$jBO^6I`R zPGD_*!IM+NSI1ed2@@I))$rqHaZ0FDrL#C**wtK->VSBJB;LoN$FpfGd1|lX2W625 z!?-CGl#|gl3-5KFMBKUPSA)r?%n+m7lQs4Q4IKgmyKm`W(I_c6tr+~f#=a>K*cZz4 zlHZ6i`eeBRO>v{ByYblG+RrIYd@PcvxPC=4hYgN317kE@oBgm%j37pSQG@-6b3#?z z{%yh@^JYkckPupnOzeK;Yl)fFyI9AuH<*wYVRlaUg`{+o30?cE=f5Mk;k2)Sn0I!fT(TacbBxb+-;59`erCH)Y4RCtQTI^2#=xUvZ49Y7 zcd4g>SNXJ`=?ak^4j7-k*7;iBzsz3v-PC>$&Z-`CUpWTems9eIm}}gxNBfRsh=O{H zcgvbgwNG?K`t;U?RsO*&!)fL@!V3taH<0(2+3$DDc>rL;Pm2pmqGePZ$csA^4nD+s zxFZ|<*{{ow+i3h_uf41kPGIw}p#$E3{PTX6V`ezMQl%z-|L#+{jfkuHk#wM#wwLyC zsLc9PK+@}lI7fQrilFZk60uW!g;Ct*+MgZp_ey3U-&cM|Rzz&*%Rsd`sq032U%Tu_ z-oBhQd!R?8Qb1LnJP&7OS(kv~w!bV9Mb0)uS8xC1%6Z$7jr*_zQ!W9T+^Z*T^yj*T;S7zP)0f#vc@ zU|){P4AcORv^fZwGEI4)gTf=Y_Wg0a!N8MG44PJJaWo(IC*{EQ{KH1gL(@~oX@^s0 z^FaJ-l`Syw8I3PwomCCWwS-1$2k>@dup5rGs8yEWC~A-w>(j?$Jk#%ks)Nd;x=DLd z4}L#$uq65Bf@fC~ z2z2Kf58V~=u~7o0qcSX1-^#DyGf8I?C&ZB_`@5upH`mM5dNMpLODLu4EYvgftRGoQ zMu-^VS9dx(VD9QS@Gc!mE_zv>S1~}VuJh^L(X2f$$LA^_-L8AtoWD3*CmjvVZZeJ7nw-56SQ_H5OW zWv-rI&>0|ouAkP}>*jdO$i(hCEyNEiYQ7U-6a5TJ9 z-{l9-ja8$#WksL`vebt$rpF=t@O9ieQ_APvX*~tQJopY*HO=g3NdV|f)uVBVJMqi` zI{c|aD>V*=I#pKCL){Qqqvk>U+KM`b-0qxMR8^EBZf!c#H_p+nZ^}*d$Zy7gd%bIp zJXrRhWR7?A!Yp-GRNC$u8dl1 z(qfz!QrHYa4TfT&QyZ_0_)Z-n;>;k8KWbB4ubdwr+?`ydAK<0K(a8NW_x)yF9{{BL zd+M`{5e;8{sp|*O%J_ntaY{q*p{L$kgEV;Eaq&8VTPpHI+lg1zCqzdUPRNGJaP-OV z25Awj#-5Qz7}>i_o&fmcj1zeKJ8>w7G@P4e*s6xHh1A*m21tj7GGbWQrrtF%DEF7P z-Kd`h!3xnMfD}7{MU0q1_I zMc)0DbEOE7akXsz4KlV6TTpTLVBg@1z;p9zH%Ib{?E6ze_oy$nR;p~GcItxB_swP; zW_cx6Z0V9!ipFIkFyMmG)a^4NjwXFIculB*C|b61z!?bd)EOnFO$mA<|( zV2hx9Li%EqT%Lr-sDmv#Qxg=Q=NrCwT$8i%YP^!vg30r!e?qVK`00)IZArBwlS8zj zESukHR1WTwUR&omI@!^x`>_;@^*3NPH{R!a(|2Xsv!e$H@6|g4emNk1v*ZrYIQeNn z$aDMvdJJ7bdjb?NtXqv?JKOJ`3;Bj|p;Mr8t*XkbMA1>epyDQcB4i{YbI0g3NOhDQ zVuY%b)F)R4t2jWSbI?Nlxf(D(yR&5aiNgw~-QG@j;^?DYHu48DtqGC2EWCz;5D^;l zVRnDROfENnlN_GK&fRq5iG>9$*2~PHIYHi2?;GA^Cur(L6xGg|uKcd@aJzk?HOMt$ z(iEy^>U+!gmLu2{q(U~^UNH-5aTb7dgOb$p1wuyqG2v~bX9jejsh`&DLM&rlK3sn( zlBl@}zMXUvsB{h5V}jS}@`KZs{(e3;Wc*^2>4Xn-B($pCC?_Lk#epypV$9Y4Ss0 zp*j$dOJr4Y7RM`Uv@{Km(syWO4DukIYwX-TGJF-V+MgR+?qb*+%_o%C>2$NVRX<$P zfEyj?Ra6?zz6JsO%vW34{ac2LCKjk=74Cl=Y`$}eoqVbjF;(;?B zKVt7wdm6g4-t2w4cH?P97GbnSG~=c_4fCL1c0FFXsMv``vw!G77o-$W|^ zOA7~^-~hG|LgU}$U4SB=ov!(U2@hAYypbET^Y7KRX$u4VOZ>5tG2%(A(0m|3s1V4$ zWo+VcsnmQ?Jj6d7EIzjJksmgX9crOgI+pYtb<>b`c{OQ`6aUK={^qIN#+zScBoc_l}9kTWXKZhPal4w0ffyVg|(Irze7*}e!JOqp$SSxit zxziG~OP(Pd+Qf#;xUU+-{gKpBn42918WYSc1bHOFvo^*m$&|yv_X23Hpq}|gR72Vy zAy8nJ%FR<8SiUPQP$>fUTV6%pcvmf-FYZlksiZ2_ph%VqFNHW?gJ=m55nSa^!rf20 z(Z!icohY#2kTOUwRbT@4VeNT_x8^Ue;_8I1+wl^9n0J)bBs#j=9(xWH_w&NfW8yTCVzJ#|GIlWe!q9LCxAPz;P_iM+~7=ne|I9rr-<&xaUn(S zcd)GSX1_cGf4lwspCeL<{ij5#ABv{*^#7xDs=v*p|2)e7F*+3kE8E}2V`=_trnKyT z5^4SwJI>7ho{*x!i~u)6fHenz zjzY`E$OaJg`{^V9H;UK)+;(<)R$6){dI0?XpRfM;YpehY88d(&_T$Fp*MA&<17cPuaRAtB0I^+m{C~XoWB&klA}s?42mSwgmKp%+ z|0nSOzsyque4hp2tNBm*z+X(Z|G)fa0bF^2KKMx<_V35e!unrPHe~_W;sEvvaLxJO z)3Yobf61G&yokiIa0vZN>sa{yoo(w25#(=Nkv}uzpEO1QdS3@XyQ* zIDIc$|Iw-!Wz-jkqL=RiP9fmK|7aCp10ej7dtSBzHvIV@^AZAj2@w8C8#4aURefr62N!`?CNLPQ}*9nUHJbHbB6tIlmDNj%D?M-F>^4|0&K%ybZ7s{ z#Pc zVh>;~rRpZawt9Eu=&6DuyzQ$YhFvht$0jK&ScmIFo%CfXkGu+MVhiEOZ9ImPYD~2< zusKu3Xjb(_0M=RGQj)Gh32Z7M3sFd%4@@n&qdg3=K>1+%?;foC8B&#;rA^mUO2GHvGZl+%}hli+6 z0RTomhh=t-Cx_B@V!XbYWt+L7-7skf{)sg2^>iOQ2&TITT3sHU4JcI;XV$McDgBrm zw^n`!Kzs}g~&*(_(W76@>jz6jBMilXB6}*zQ zH#oSZp&qd+`}HPKmR@XFFrAqO^JlC82r%orySzeFi#K4->vF@6jm(Zat;wKQ;a8V> zdS7;NbY90{IizMvcvF8(uF5t`jcU%W13OJ79VFv?I+RkB!!@M$qqIQ&3{Oe1Yqnf2 z+Fn}g84g1nbLTxfzBLtZ>G!F=*s`cIRs%)O>F|C8sh=3^tWa_+))RRB2}i~?vhFpy z4!-S*yLx}KgUQ@cbTx~qd6*yx$<*vTiGMH@q5{f znre(dL)z!pm0Z#4C?Gte22_R}4)lzC&2($e?$dO#Ew9K7KuF3w@75RCym(ymwLDF_ zu59Ya`z6AYS{Idyaxl%y)3ZTqh&ads{ttU^8CA#DrtR)PaCaxTLvWYi?ryTX1*hEV6s|yVITSPRsX=bI$0oeq>EbQfpS#l;^qTedEHaF5WGA85PQ& zPzloBA#uvzXN|Q4FjY#1wnl7`w;Tt!Zv;7xwOI!*NgJWdH{~dgNVUD~0S{g%1z*y1 z0wr~h?>DtgDV$_r+KR{{G#NuM+R&`d$oYJd&yFKH=>+GUM*ejU$6U)w!YHu=Euvl( z*J=AjF?Ezk0(OR6lZYcJAr}@`J(xw4@NVY|mDs$m=37R>kIL4Fz82S2OGOZk()Sfc zCft`-kFzZio^VdltuI^w`3J&u#ToUhPv`SbERC11qL4AhDh0oqF0uV)?1qKqry0G4 zqId)q3-sbFxtlklz>|GCtPd5*%_^vk^R{A4y;+4~ok%o2RqUjs>lx5RlMV)yTBE}3 zy9WB?D!eviV5TbY%rC-=NnJg|L}P9&q{=z~pc z3Pm6|V^U`+B1<|2N<$1~sa{_pL(91hJxzf0*=7(=R-f7!vJ&5J88dV0dSpN(u+L(J zk!Rb>X2Vw~+8kF4ZQJH*`O@>Wu@^TLuDmm=XZe8Hp(+K)ilNgqMP7PesvF2PCINY- z^o#syV}~xX$fXQ_n#Fe`;MR@k0Dq%BJSxXzW zsGsmX>{?gh5mDhvEv<}R89 zoaY)~k6_9VW5jV`0OKL2DFTZlKq=FFc*LI!{zUyo)HK2*2Y9Rbq1-GG>6t^LFdf^0 zKHhzke5)YV81X0yWSV5_BbZmeb>9kZ@_kT&4b^Gmb=^eVQ=pBU<=ByQtAg#C2#~O( zP0m32ijH=dzCP4f9t;L$A7vfIv#}nkBhPP7{_bTm#2q9Y@0WC3-yfSY#7K66QlBhe zl=Oz-c>2pW97h*|3r4{8qn7D37J|J=Ym>Qe?fpY`C^oazM$uuV^AA6En(HY)F-A~lRe6G=s~KNaiuQs z!j-No^e9*x>iKFVJzeD`XABo$NrQ&H>P16FX2>#55|13qmv`pK;qTsT2 zUCR(k{Fywg@FO&ZynI^1Qs-B9oD2RVrPqumRH|%trnVwXVR(CoA(reMtW!%VxL{G8 zijAdl-9nS#`+ZF^Oe)oi5bT4tXtWG81GlIZ@DU}D?91^835|qktG%OSdX+8ykK>d2 zp^bsJYfmE??^?_n2pD(wcM&Mz2}V?jo#D`NHtm4G1Nvr^lxc{r>nK>on)fED6L?7_ z;ueXFH0fc-P#{9L)2|iT3aMlRt{_HZ)hjHVy62L@+BO^DBI`>m&mTojoF6%`yY0VQ z6%8?+%yRe@*(i@+45UF-3bjmxY_uKSWm$}rwP`9|lUC+OYiH8HMU76^v&pX|G;Z<5 z5+jSjE0&E1<8_j5N=*5v1pgUZIA!@m-Y-7r# zUM3rPAX(_@D^=UL3aSX*{r;;~a;w1wU*u}l^1uu3%Nx~;j^YKX>jPlF4uT!Xy%q-JY3)`@tu>GB?D}hpmE^;6ob3MqeKl#8HBb zc{safKp+}&&c7aPi#u7iwh1E zvdrthyzt))^0Ko0%&sVkml6HhCA@*kerA`3@uB*7+zzu<#PSVJ#AO;!qe>u}5nFOT zN~NWvg_%mPa}9uEcf}KL;s4nsylBKr_I90lI}jCi>){W=Bh+?m6Rp+NzS)?$wAbU}7~EKo8wTHP$sD>{vN# ztwC4ybgB+Ev!kiRNAaH}(8{s&>`RzBe}Iv54fqsY{p8&!vQs}4dVX0wv0D5!q<#?Y zv`x-0lk@S#dsBmhZ=s8~Osx`#4@X!eTf(Ax_Tl`GJ3=CB(yIZDh+Oyylj7v1?T?i3 zQMU1><5L;1!(l+X8tUQ$Lp2HbWb?Lj(*)5%R7XTdIrv6-{9c9#EbwNojG{I=CdfEG z4oQf^p4#M6aIP6DG8v!SxyR*l_=Mh5lLCwyn~BM@aKFm5m-Zf>5FCHS&MhVIO_U=G zeSeUR?$IBVkGy;NePwEL6E*WOe$CzAOP~)Li$E0N6y=FJ9j4Od{cuTQt@LFZMM$3; zk90koB;%#J)APYwX~Z6BG$GaqEPo-SMAP(q>xN;F4wgiE}=Y{{7ke#6%IQG(eMb$Bo#4BZSa z`3u3H&tRwEltW0qr(b~QNR$b zzcsg^qx)%{tbOD^tW5Fv%m(Wo0am6WFP<>4H82ot0K?nrl9ifB(>K6o{arzSaKZG1 zcBNp>i21J*c4jSiBLy7AB`EQQvf+G=I&@LMJw2RsErK)i2>-T5Z%c~tvL4$9{Co|- z(e%Yy4B~OnOc;OZ>d5vQO8AX=8ROq)xK616TEr3n2MFHSLw?KzAMJM5f2+z07=M;1 zK}j9P`vq=X@(dmZAbx~++gUL`oVm!0!tK-uj_J=zrbndA{-}x{R(N#gPXeMQgH@3& za{JZ*)Fp=ATsDjr(%&o|M96{h5YMjuiw_B3VZPT$NfHUC0uo^94D)OndfBweZX8pv zCap81BW3!>decl1TQ{Bj5LGJfbvOeC|FL*>q~sat9!9H;XYYOg1bG70)o&s!VsYRC z+YEOt=Ia4w{%56=s8SNJ%%>Do#okN76upq6Pj;6bW~$qc<|G4-U|UI|dD&1km`J=oQfBY#3p@-UuWe^%$1eqDExqTJ_{d}auWm+lg%!M zk<=hrQ-5!{F)`aY>feFnb$NP;EbztFa3;OeSU2v;<)TKvR*jqBpx+CN0;pBfIxIo> zZBBUkR|F3tG6&{_46jr&6#1tcAPMCYLa?-!Vjq3{UPe5bWI+#wsA8WQC4rna`T3xM zL99qSBP+uU;~k{C0}&B$DEtW)5}THNp~JlXZpA=KXPr8F30=4V=)w3uR_z=ycx=rt^2 ziLPtTA&Dw;YVI!;x#f1Xg9_-kc%P3pY>nzXa*l8LvE^OZP$Mb8)ok_bLYSq#LwP74 zWWKLb*+^kfxf8Oa_CK0>+IhHIx{H05zC15%g@pMcjKg&@Eu2%yS=)9aT4WO#wDKSg8tz5SkM z2llonz@UO&$i}ysfsxdg1-=h?cGoxly^rBQ6&1VIl*{{dm6&a2&$mmZDLXezir6*Z zVAQR!JAZk7zZ(wvS(3#-M)cLGx_Jl1O&cCoe2qtOy89B~Ae2KfRKv39MW?M$=}ZRE z35G+kTT+9DGc4X{k2EFB$7M8jcgSvS%Kl*6^^#=GY;yXAWVdRUO|**I>Wm zG9f>wk@XdpK_jbg_ zeMc)9|Krg-H%p7auhxG4={EQqO%5Q7_tOadF9U192p#;~sUzS)K^E=!sa|o3LX1Z| zJz)KfuyV~IiQ*bRb5gQbI#6R)2Y>1Hw%m7FXa!pzIfIY+)YX(+81$jlW|?=S#96{4 zpcVV3sUXIMGkUiaZ{2q@>Dv1FL(Q_7HSc(OsO(CJs5`8j(rrO9 z+5;FBuniv@yqC^x;`$YT$3**^GkS)fZ=wZY0OhS>)q8U; zS7OGd-F-kQCc_}<)&+@z&)$9GNcx4s+hctkS4erh`zssN@}+$ob931VOop)8a}TgV zc*l5me`9I4F}qV6N4Jl)JvW>Pw6NniAqA^G4zLV#B#lch`PWb(+c0V~;uD=QV2Z8{ zksM*gN>$;q4_)z<#-t6xlia%k)h69E;o$`>w|AZR(Hgb6C*EGZiaNKaVE)$m;xuQ} zur;yx^O@A_!|}_4HmgV_R~Z9!3JnyF^+XmAfz1;RlFCm@Wfwp@uv31cgx^$G>fXym zn~$>?Q{!G0$8BYnZBGn-2chgaFX-0ukOYnMCGmMuSK?%4_{PjicQB`fmZrW8vLK+I zTFY*c(H2(M%gPnGXfRk2ZZeKT#PJc%Fx0i%U7CgK<$)o!KSNKmR@^jde0Ck3#@0-2 zvAOtW=;SyS=Crha5Cpq%UT0(xZOmg9n=B*!raVWyZC4}^Sw8vWY(#@)0a`3`pcD$n z0DRT~v{z3_#UDh101+4jF{O(?;H5gbEOSY8-f4lo6|zpG1k*MmHSzd*BOF%}Wyx@}w5WFQjld==`e1y$A zoIeP6KnX`+SO)I*Uxgc%#M!UhZafy9RUHNRpc%?Ek9LK`>c0ff%HmFW&9gIvDeOq= zQ!1VfpV3j^uSR&T9lYd6Eb>J1EK>}{{PK4H{-p5dc-!m30AXl=3Cli^pfO-!0N%jH z_vghA(-u6QcpScD#pJ=+JrqEDa_Ti|KbEBGZLE=}IMq-sF*HShbpe9L8kA$*aS%frv zVTQ)W9-!*LX)X>V|5me{GHmq=i^R9tvG2sJk_+)bVkYWkpjnt@iV)Q%1tWpmW0J7- ztlz8fqO5xss6(vsRr2{W!e%XP(W~d_uL}yAW4TjnkOcW!9UMOlha@WT2qgC)EbV!E zeKels=wMlbd%S>Qfaza16R2or88!{l)*^u<4vj_(BzO=V0V>JK7+La}F^M(Eo_3MZ z2^1H6zr#n56CXm~(jpwmZC{2xg{U*s>a&6~Pjzf0WGXn$AhEi8Am$*mrNeTYrZu`N zn085G(=1$0AXwSb-|sk0m2=oHQ}Day4W za(Zh{fKlMnXL#l*3=TuO-Ln8LU@){+cb}^Dm7P{oUVVkmo?vDkXHyV@ScBTpO?7;d zFm?zVll?TaP-s zy2&PY76fpx;qR!Ii_1qFs+tKSBsDuFQBl_6xXuda%!8Pu z7dc1dgq#=A#`$kkfw-4wb6#w>YHsU!>~mj}Ss0Zn@GwuE-6hRWC|?=zQ#-}=LGF1zRWgL3O?@dUVWBuXOAJiGWkx2r{m5o!wK9+@Kp)3< zZ=M&4EKhc#pNBH5|C|6LuKv!wW0vXj`HF_tscT+((n?k(U=7F+YC?ay5fu4?al*ji zUQmJtb5k+8fAED~;{r&yEsF@9&piToTD5n96!g&t2^`t`tm^v zSUuCpyz!08W8=0$!^j%kWi^C-g#S&d8@8P|+GLvR*(C*gL5Pjgy4B95u&*m~!YYcp zCVhdzY%b@-r3ay+k?O!g*|=(dEhEN^O{!7Tp(FnAP6I?lufwdYMdO8S@l(3pi{oQ! znP*vh`O6o{v{F^mur1gBA+D7(jV@QkZH`o&W#C2pvJEC*I>eo>9p`Z zWQX1fLlFQvP+Zq*;A43BD8_wWSq&J-6Ip5a!?NBv@cYvHc!d4*G9)yQ^|KO?E&H2Nl zC>!cc%RtUp=gzL&A3P^H#cKrj1YTOY!!%P4!7t1HF8lI!b6Dhv!v>1{&nsDuo(TPaq9mC#tR?>`gg_)Ad&oE(9CA~K@S1a z`@he4{VHAkSK9jT{{mdTS!vi9*nS9&{(ZxL?mHa=695onW%w~n{_{{eMgX70@=uw0~-w;Kx+FnNb&OrKufXGu(Hy<4z~a6AAngo04HOk`_+HI#J~*L^k;?s*Z+rq z??^yAh>?b#ndt{Y@sAw=V&i}s0@TOryZ?_59RLEL0aPB#zpjkeo#v92kHhmC*W}fl>XxHen4_RV&<=B`Qa$e_7@WfxYK|=|AOy+_=~gs z#ooR8i~kw;dOhydU;NKF(T@_~TK zDP(2(X+fAKKqc;<;Fvc^0F^j9c>Ob*7YjV)*5~E3owp788Z}2eW5Ud$3Wo$|;jREFhcNc7!D@ zDXDx&F{&OdqP7)89WBHGqFXPzYKp zh2g)q2K9XBW%8sUvDEPSd36VnXA|b0(Cw#vHyt!_%x26SV>lm;$Kz5%QS{ZkwM^+v zvlN3Sh^e8bVwe&}gv8{4Wwj#qN!uV6k&9R^k`O3X3#6_|9RbFOwK$*8`HWgR%*oy} zlDp;%G#bToS2zp}iZunxaJ+pXicf3-y+0>nI}JIThJlrR9P$Aov2p71vOn^S#!?ty ziGOoi7X7xf=AqBz#ldo}vE^CsWMIa@f`LEml?v5O##p!lXKO1B>a(vAr-TR170@^G zCzvsik%=_oAa=B3Q7f3Qjk5vLOcsJw&koVYOJ8&GP33E2@YaPPp+3V9m?<;R`|93F z^iQoy0x2gX$G9lHTRVVM%)LZ7f)OTHFcT;i(;q=5CdKU?I!JCfd&?i1|3Ne>qT^lP zm{^eUBH9kk(uj&|Q!!6DlNEB3CC{;|28t`hjI|gJHtl3~ph*s{eVrD(|tc)2Dv2@}f!c%fsD4r!eQ_tD)m*>26t%!n)LM@RNmm3w7HTj;H#T#Q71*`Nh^1 zeM6eUr1OVSJDbw-om=}S+b8!YFo}0Qy8n811ZbpwGnK@`{PVhEMbVf|fT#HZ%IzNr zbBQ-!^mJhrU)rU-Vl1ZZ?vl1+2K;p)_$4R*0Alv(oq0QKfCue)D?PHE_{GP-f1<3!3Rgmi39qpmIAGNUo31_mKw%F%BwfmXYWtL~}xg#atj zb<2c8t}tA8ge0-ayV@)CGpEpsu*#AJq$LY54`Y_TN5~c=e}InYUIHOWdu~=oSi(p& zynVFG^;!LPdVjmHQ;xYAYW+&qEw>N$T|_UIgY;qD8-K)bLYvQ8awQc4I2O`QxCyZ) zb$-NIyL<-PsI0+CDq=1LLp>{*4>%ncv@vMr7YVGcUd-*CWD?aSq^uUOrlmM>aE}fT z2M}OTE`?H4Z@Za*lydQ_oy~OxnRTSk96hKjmgTh#NZ4aBRA!C_C~yt(hexl5J|^d! z&`1PAPM6gdqJNC1buk+*EvBHmsS9Lzcgh)a^oiB?Wbmdi83j_XrFABh*FL$^IS!%j zFfp?s%3+-1j`@=Ts+b&|0@O9^z8HjCZ~pv8LIL(k4+J&r^1M!$m#5AZxP52Nj@iwJ zt3UeZS{-Q`iRPE(oe`Q;imhs50D||k-y$J8xI&?|;{5&5^oj_0shMaiG-Gn&DyjkMI zurSLk^}GoiSfdWMG4-PXWFFwRxZ}DVweKzbA;ZL2mJ@>KkhGN5eTgSgVI-2~ypc8@ zJD>|&Z|rL+TFg@|_4orSWF`4F_6R`Ji1|@K_R=J3SCLxFVgk4;B(jE<$QjN)lz!!{ za-Vf2ET?RV&It4Y`A$(CkH~x^l@94TAaB1V#b5qaabl;VG%IP|j5)+=Fju{w79mfc zn6<|lpS^F-J{gW=A=T2zTTCowo^z&w3pfooL*+KoCS&(TL+hQf7=AIU$vc;U=4ud2 zQ$D4z!m!-t;dSAT+1lj`lhZPqhLUrRg0ryk<%Kn9*>mLFjCGE4>lMTyv)0t?=0(|I z-gW=I`Fa;j96d=aAGfL7H(JWu9V9c6JXWP#M7DKbI^ZVaeOwqnNh?g5WU6)y6?l=U z%tDrWpRwy1bla#Ix1!r6zTHpDuUmLrCI-6ZT;T-uw7K%++z;R3f9O(0pOrUkV`$b1 zFbn3ki_e|Qr|*dTNcgO@XDN_r93^l z)xW>g7-KzImVEsYRY1iP3V&7f>4R2cq|V5q=bD*f-Q_nyh7womd{7>Qc7N)%XCeW2 zNzQ4zF`Ld5u}O&O=xkRzXLXL?hZ`3&<;z8>9UX>68VXQc>?xnUYUGnJUcmu3AFQC& z5Rb0=YAX-zSugaj)%;{xa!I{kv^F#$%+_S zKH3*vUX_<~lAbhXuNbi}J{>(kl%!?wtnp;@9Nh2RKiq?0dUEXj@+JAr)Hn;v&x{RV zD7YvBy?lV&@&O?=@Pf=(e|^altAgm^fYhXX3rsQE4Y(IEq)-U@tzgAmikB+3-#XYk z8gJ1d$R#p>zj{0DSkLu|agdIxF%W|qvoN1Pb^>xYeeR4MYh-TUHfmsRI9jliCR zN}r0-5kzu0jVUN4M7Qx!sxY0NnrY|0kbJZhnIzSyu}Vom+$6G0I>U0ykjd^1h^X-u zjyso(&uk}Eh&l58&T2299e?aEeChp+e6w4=IWdMb&3B^^Fl~sw-77kX!!Nj{U11%OcMuvE+1)g37-o+V9fK_Q$W+={E3eXcF5X_k}>B&H)*fBbR znkIo!84^t40`(zk?5zTt;;VL@tJ`t@2d zWTnvTeB(D}nPF$hN+x=OHr>t=29QRGDtq5rKhQbM%d~a@tJ|cWfi#`v`)nVJ=b#PKbCwC8=3jS?tp>WrFFr{HN z3Plee{`Ms#PMx$?CLw38^$Et2D(#SE@kKJ(w1PQ+FV>XYjVqEQBhqK5Ii*Qg>yesT z=~4gyDKl@lT{T;`pLgcwu)%fWebERN*3UGROZn>iOJzWs8W#5oz~&TI&Lg7k4~2?C%El&r z9WN_6XiG|+c&{O#O+p?@jws2Q#za3r!V6j=QLqZj*xIK(#CH}aFD8R}aNjfpKFv5n z4wBz7tJocpuC~02&YNPyO3v44U9#b&T31TlDe}D}9_OU9=Ph^MjJp9S9irkhONDQ%W9uy*hq2i+V6-cPsm!+8tD}0mF-QQba zQ)ho%N>u9R%A27vmC?U+fuR6P)i~ zl==$C9n6Zd1XbR1Q20HnXsvgNdmj4Xmr5JU5m)9Ie5-s_PgNg5yIfM4=y_YZ9JXxb zN?e!|XjjYKHZdF$Q91z>kuOg1y`R6Ff?hD5zu_K^Bz4oP&S6h{wzq$~Z)_F_GPhmU zMw8`Zm&)~oQRfDGe4tz8!S@Vzow?JU;Uu7UNZyAIdBi=-F5jNu*z&!1mBw~XkA_Rn zT4Is<1VRmBo%5|d5?SE1jb}4R?7e!bDzs8cjt+%SOhrjjYxBD}QQU-<`v*SHoErla zS~lJ14twkpi?_XTPfIzFSz4(5x#x4e?!ogDx#i0!YqqYO?KQg+!a;<{%)YI#I*D!k z{lp->qeNx}kvZQfxO;_o*L_&^J-y1VqHMHy*4)<0rRN0Ry|C48RqE4OReawY*7`Jt zO1K;A+~-8pZ+p0;SFCHxrdH=59lnd{g1m8YQ^zW;h7%Bs8@RHYWin+^+CQ@jx9RzD z^x@AAu5#Wc;+HSvZ(>7COh0A%6ct1xu;^ZAQ;%MlONlqE;M;4DFPJi+>u0^h%=Hv< z1duN9qR8+u+A(ZEI`|bG?=U0Y4xfH<8rVGk=nfrBD(L5ROBWQ=uYIp~idlFyZj)*r z$*Z(juny_yAHzJR?-UMcAwd**Ipz(2gq)IFnOU2>7^Uew?$ih-u?>R)&eg1c#Qp&t zHkMLJ09m5b>qaCGF3vm%ia=uY8xfIx$v1*o8RzKG_}I^u=pIhGHQqMX@X5TqlHqm$qv>AoEoI!p7Dnp`27^PwEhSm`KPo)9tP`l zA48w4i_YkNp+$OMUrutNPbNc|v{!4Qpb?{L z!$@zCw}Z$6)J(beSj5EzE8pcn zW>r{Sm->t9DekmdGkXh|-m?#8DTxl;4%W>`(;SyHOKV;6;%0DO!PiJ8}L8@zj0#K2{_Y?g0w*{iNJ&618BY4>++i2(n9Bz^W?{X!R~;mw zC31Oqf_cG%{0i$4UCDo)8vxz*!b zJ8URKY}Y0nW)K7HZDU*>Q4CCixWdcwhWdl=Ig^!$+=ZM9a^bNtSxD00SDhPYc`+#aWjks>@l=>9INi#%1`%Ay5zLs4+mq0%3MlJQ45Wn4 z3)xP-xJ}7z5ua!`n_dpWQ#hDmmTKQBf)oT~+hdj&k)4Q&V-&e8l93n9WlOE9u zedELbw$*r!UML37BIvY0&T(qTC%50$h*9XP2*t<^z?knh2cs|8kT^8Cd3%X+sRTB~bnDX}LN5o+B&SyZy63z;bM z#TuDGm0xST;(6Q(z(8+uMG(b4BMU&Wv$0rlRiaFxe{Fkr$iAds{Nk&IVroSyQD86( zY8ZShK9>Ha(!dxw=^DI9P0#}IYKB=}r>cqA7!fuu!v5isozb+J!CBR{vPXk5;vCE= z0(51SSXT6lE*DoLA>IH{g|euH|10|$}$l+?$aWti0pR3|L$Y}FQ#@i#4<`C%qxL-wZ#HYjtPvtLzp_7P z;UWLqf=qWnINUDp7uWnxan_VC{sCb;M)?PYD$k+ktqw|xW~N3`hKC*Lu$KE{RPJ^Z zK2<%AGly(q-#;hTijQK_ze|G)L`kz!>bsr^Jt|r;Zzs8UQ%=|-8`_p32}u_S0y*!sQ-=qukv*-Te#rtjoRvUNU%!+6Lxq)=?jU6rI}9_N95 z5(>q4mWG7x6P5dp=bF>20HY@PvM!gy(RI~?so_e<#bR?Jd9FPU?_?EmB=L`;=|Fc6 zp2LV6BgSe3)Gui<_pWKuhO36nAZ=X+;5YVb2LA6X7(DJDZqZ~HkDPwlG5jui#QM{K z1mMr~&m40mpksLT=t%-hxkdIaoj?cV;OG_Ias`T}LXdvb^r@zG0!_ zhmucy{nStewzqh${4riTm=W=q5B!}ichZHQ74kLbY!IFsWy5KI*PJT1TMaC>C#IpWMc12~*)Sw2q^+RaT(a+cUBygKY<*~K$+-P073$bd z@^W^|_1u56N_0loz^Wk|MVzoi}AX z0>Ar|F#;NYYp43*Vdv5Ea4IDCJ!|s*Cbj_~at`=9ddesgb&)H46^qg%WDYM2F#d{o zYeo}#mTavq%0m5HgHH^{&`h?;s_t=BSmqOJwP^|0%uujUd8+xt+dg?UdP{LVFvlZd zrX>R)!ui`@G@R&~)Y@4|Q1BR8IU9^Y>k6N$>b-1H4|-9Sy4;Lfz>}5f2itB~I9eQ^ zcKYWQtKIA0eKPR<)ha0fO7nX?Ex@b(?@Jc!V&r;k2ayG6QmpUpm=x6A@+1 zb?63!s?e7PAvFy0?3e|1I--cGJG0;k6)M9^2(CuASA4Ljy+)4TC}$zJ&)?EQ~M8Q0|WH zn|S@ns*ZmX&LQb^X=ua>2Toi_!-Jk@X4K(BV_zwJ#-{gZK6rn2a`N)7)x*FZX?C>* zGQ`ZjEfQF&tI$eKkN&vMXpT@E(j-PyVUdb->zK@r02M_Uxr!vMq@|KEi)MWp+6^AigcRwtq?QvAh|ycy}~- zyXu}KdAH*61{PxbSBuPF<*0sdzROTbOP}-D9H{tp8>xxcCUK5=^FWhPIG1C4E#rd#4nfd z(EVo0g8t{eK{NX6E0!vFbAh5p5{kFz%=iXhWb19qu5Z)bAL^LRK5D2{Ri~?Hq9pz_ zjHwtS{$Ft@imK=rknY!oRC7qvn1|LGxl;uub<1J4KxEbK^FkG2!$APMq?1PS8#E!H z6Z(1RmXn?sR5x^WLNGHJW2(_fKlT@|?J4`&B);oqQHVDBSmWg2>>J4_VozAR+ z1JH~*U4m|sgWXsI`}(nZu=#)%)-EI*YIspr-s2zz<^St;oAGZ^y8jypDig!s5magb zf%soxP=7of0G8$V8Pxw1RN{a4oOE=r(u53*Kj}FAcTf7CKOVrQGSUDh-wgl2K7U*p zBS2R0wNL+-AHe<$G%NrC#$S=KbaX6qG_BJw${fpwiJk{@%SpZNffb{%v%K;E7 zK)jKLjfI)%9~b-glK|Y~m}yvFcmG$H{rBBozcT^k3t3nJWbS{s=buLcwEX~QX8D11 z{rML_EdelE07JyA3He^oQty+#iKP)9C+GV=U!=eO0{LFR#L&>d#=ug~z!p#a?=;^3 ze*c-q`}gXDp7B4!IsSWR`v2lKde&cQC(^SD{U+)P5I+6gJ$e65KGX9u|K@T3leJ3E z|I;<_|7Wg&UV!d@;EL%5>Hi1L^7lHS7y8w&pcmrPKL=3!=c^KWy~rP<)}Q4Y zU*%MPZzTJ3_}3tc7ci0q2f0c2fpPtN^!Xk|beW4J5<)Es1%7yq011em zSsTeohCo1D@0N&u24U5a3Wq^F?;bd)-%VMI5Ng{eK7?uv^qYfhc_Zr86>v}dqKo3D zYVyK|gnHSr1q0QWzPSv!(v7vU;f^k3HV&(KxvYddja@QN3Aiw!rKlx_`1pBXauwH-pAP@}$LEg~y z>9%^B9oAJo@;L7m)*Qb9?yjI)SWCl`g7jrq5$-w-syC}Wg6-BY)l)EG7uKcOKJmOy z5dXM&f=>U->-x{Ia6&p5h^JaAj z#L(_{8iiB_9j4d{zQlUOF#grG9dHy=(0;6lf#xYyVtwW(VUBp@{10zy?Jn=J$%SYt zp;!mDu_&q2RmD?elxpey=BV>27=j@jyzzajXFs`xo#|V{g0)m-s$=I9GraN{h-tW2iFg@{G-UqF1_t*3a0>MXp@DitJPyFOuc zGY)*(2bdpz>w^l%xX0MSTAdUOx1D@pJrdExdGr$Y1vN)Z6S8RBNrk&)1<@HBFe;8- zhTy|1Easn?S7hNmm4J+|Bvwh$RR^PyS}gSJL)+SvZ5Q@zI7uNVH$PLUn{Pw6lR<@HD9o)V+aT(3HcRX6&;zkGRqH;u*o z)4Fc^7;#8!x>wZ&z&ie{Nv)kd_$m>AXqIJw#MlRi83rYk?>=4V#2Z9!fh|6y;sFCa zb@-6;_fd%Kj#W971*GrY=q(hEq-&n}W2NH4R9QPzN-X5{qD@Pf)%Tu2i3u1DO#5m`BsNRv{cK@78|Ilv-9AkIc2^4l?j5*>OT zq;%>x;E$C3szkKX8Y^K4*y?QN>*z(yu!ZVkp$u}qWz)u%;hCB^oD-nzb*;oM0{$Ei9Ts-7F0g4k?tgLNlzxl&33AX8+^1}zsD2A3By&BB?5 zm0&GIPy*6hs_)RnIbK#hRyyc%0&_q|y%YN#W5%A(0;nX99Zm=I?gQ zoY`~4EU}Dd7;Ws8Ol%kAhZ-E`u_GNPKu->FpIkR1)%Y+SOCNf!%Wgg2OYOJMj9sCf zhNbuX^0xhE3X6sQXZ8`0^1eGMXrb4#qWaKcLD zpo<|WV~V{*(c^n{DmjW2n}Ota3!4S7h&i`G3?Xxqx+y|5vN@MYVD+<&DdgS_gh$;z zoWqg9-Cn)vhRV}p*R?6R7E{^tAHr~F-&mF%c`D&TiiKBWW+_4KpFH=1B&GK#OG;V**)Hj@JDw0Qb?aXa#gItdA3$K33b=taCtzzNK~Ip^7HA?D?W*1h2?+ z?5kXNwb(|!l_TANdoUBGutfLt+-H}vF4SuFoN)R#=9RV6m;|>$jGSbqAqqHm0d{9rMEC1aSi1>+V=>%Adzjd>ROo8CHV{Joi{qn!aT8`W^e0HkZWn z`LYepQG%d4W=5=O<2!}CN8m?e`phjLTkEEcCULGXu0%wGpfVYPx(}Js@@=|e3dpwk zzHJI3))zPd0iQD13lkqJoSYikLi!9y6YIcfD;)FPkG;%J| zg@P;dfV<>NB)BSEp8B>ihOek(#*%hyTeacP=3s|AjQ2W|e-X5BkJm_b__UJ!Q(7vV zlh%5;N6fu`SNR9x$)G(SX~d-Fda-Gnj|bp zZNR5?UnNmg<=|7MGqoHkD-uQ79+cEnnjU`l&=L)H9<@|A0_A_3rFx8Fzx1LkK*I8( z@$#mMRG8$Kuf}iYUjUQdzsH;v6~wESXu+2rkTpKgoT0Ff<;tnHIKEgwMwyQcX+!K< zE(q;kkl^a^fe9Ob5%3a$?KuT|e*h_P>I#$lIT?fSs%+d6#4&)xh0?9e1l;0U{SC)@ zxFK_n)>dCVA7T1wBYgA9=rAxQQh&u8$spy2Aw`#!(xf$`-h9~k&f&1E@Bvo=8f28T zd($Zr42gqr!!8?A73}{*uL;izMnXm<`t*bNeS`2zYKdLnnG$@=Ex52 zZ1R?X5`}dU%`-39$5v0pkrDoKGM9nr-E^CQ)m7F%?(G*EU=eXCr@|G-#N9weyJq zPShxVP_#PWzSFs*H#38?_c0O027|nFnlsmYaRw9_)to4uJM>TN7|V4opRPn)OP;&0 z$erL>_h~3oakZul*Y}%qSzR>Tm?IS&eNL(_**=2IPXaCsLhOtpo{Rg&2g9WvMm?aZ7-QSjWcCBsSSZ zq9{<+ybvl9n;wiQ;Pe(Aro`4HUP6;168rIC$j(L7sqaHSJiu_{41DJ%jpEMO_Vy8I zmr?o%t@K#I!SVKiD@%b*)=!soX#9MdO~KJa(GhFRVIzF(?r||k{&8Z3P2L)#K}O<1 zsPSB1=IrZni96HWQ@z~Iqw*M%!IzKFri6NvdQDCY(CwyR8Bf9)S{D`zXhTDxogwcW z6tP;0jZEY&_==H4O$Q71J<932xlJ4q!-yxOT+QD`}iprSv7o603cK6HszF+zuYH9OMopj>fA zCsENoT^N$d-K~v^tA_kiqE3z%CU4*9{c+yR2UY(6;q5)3qFTCjQG#R|$)Smob82Ek zlarEj&fVlFQ4jr6`a;If*^$nar~ib`|LHH)vfHj?bDHOU^M<(Yh9;;ymka zilZ@#viXMCUZ?6`zv(`RTidZ5b`h_hg}sP*<~9~IJ}EFVukx7NCJc}MaOIBx=S6G2 zGzqDzJ}G!Wp|+_V{@Xh4KX#?RPS~}C?v4@orl%Izdj#AG?@d1&|9qWr*Yz#as_Sgu zucPm~?}u8IjEpB%iyf14R5N8OGko&k$p@^XIMPxtwT9u%*5txQ2(t5d4hidg`+l;< z+=UYF8XLX}$8J*_I?@1m#Y`MHv8}xS>VpaDJ`}lv*|-w680j2s#SE2eJ#^*}W4PoC%eibX%^ASaJGXt5shX3`H9s23Jj>M3 z6O^KJ1TD!CXm_o+n)H5Sk@WtT;W8V*wZ4b5o2au;sjO$%y}4k__Sb$%eLD(iMsc># z!iC!RJR5!b;G_$O$wIWcPPs zdIr6GM$wq^SYOGsJNe(v9>16V{{Y_$lKE?I%EJ2H#lpJI!B{V31pndJaryi+aPClm>93LMQuu)VNN->1Uo>`uhzdG^L|aptGCZ?2N2lh z&5zM)ofec9Pa^N+HVZGX;2AP}e0g6;2h3NSH`ox6V=F->s3kg%8z^ zbrvc+uQ!d+(=+7OyxrkjzihrXUmP48Jc7S!Szc;=epWOn(~Jc{Z`4-Y`DqsvO7=>R=*_2HtaYB(*+jlCe7Rrq zV}{4$L-C2R;;|Z@{l~=0;E!apRY|%WhA2^7{ZCYeGW+pPro;+<3IipD4ANE;#aHOIi zb1O9Ex$p?LA}w?8m`*Ly6GFm1TXu3nQkUAa_(@K^?gh)7qZV{#LhXG?=FVC_Fk&D} z=L>X*@A5IW)4tLPglZ3c0||1fehr#k*nM2`*HZ=aL|tpmQRVb@v96nUwvm)5q+3>S z@+dCKhy@$1&~Byq(F`Tk9hi6oq0I$2zTHG zm^mouShU>PR0J02)Tt*1DG?kV^*itEHTfv|91v^kng}h^c!9?b3dt%mQ=alt9YF_BO;EmwzIw^zzOHhX)rcEUy?8Lz2!QUq$|ow2kC{i`mwr1gr}4t2ZxIY+%M zfu+eXrt|7m`-RWJ=J#H`C|+F!eB@~tfy;^myu)Ie(GUfy_Ve?{SuFvP-8)2^+f~Z54W;3>uLMy z*qYdoSAc3{L*Lm3#V3SB+iw^3&0GS{4eotlzwjv6 zL41D3{zzy$iJ;u+$P?2$%w+CYL1FH}eNN5ULY1L}qNJKh9a=jSkN9$um`TgO`XGLZ z>!XQ-;x%%P(S@_(@UsUm*Dlp?ksR`3sptYaOhsTw8F}wpJkH|}iuCzxKi+Am|LE=s z$X?(+{_aLO$1-!B=iJTL;?X5DrkdUVroOL|FlaV?KKUmQgCW>U$7pw!fIpNxhr$?KG z_0>SP4~kM%tbvO!P>9{63d{rqOzdnY5~_2ti-Z+&~pBKxx|e>)%iLyJ8K^jE0p ze?fDt;XTsK+}`CFFAci!T?;kLAc_qe#J3jAMVQBfRyBC+L&@^Y@~y_jR&+EYZJ#hn z(xVSY&5d49B?S_WeB~)8e&uO038>cA1$Ifj709TS6qhl$gSu;Z&%D3Ni<`17SLXF% zOg)=;^-}fuP$;vy$X@QYMeCYG4Ze^^4V+WC6;eF=S~Amy&)dvv3R!lzHr;Q&YJ>NQC+-(m zAOTa!y$!@_jzLOo{wRB$#1X2=Fbmn`7C?E@(JANsB(80#tB-cce{l8KUa51hIsW)~ zR6UaV7V!OL7^kwB@7NzaBSSM&ifo1tcx^V20m8HIGRNq5ckVsi|1#ZDB{gwjQ~ciV z<{Y1GrRd=N`)$?J;=lb2NAe$TzhkYv|8xO@ciB5<(!x5y#T|ev?CI{bL`1 z`$Oy_d_Q{B?b#gacw#5ON{xE|c9DloN6 zT9jk(F{vzPdbZj^I|b&K@B$b-|ClkkmA8+gPFISkzq%%4h}wpv(pbU*^2Un;0yHkJQ4(^5RCK(F=mXBy?8+#cyNqkFJ|h+cpW4m9Us zYU{F4ai4hm#x?)S*v;JYM1cZ-okv@X5rZcH*Oh>u)r&Qel5M*I1~f6Dqk326phNLO zhaI`dZ6DE5E7CE&;VFG{Kcb>P zzf^vIxXm7sI->A*9TfBrtr8Lve{oK1|MXuhzW9;)B?Q9o**CL?G>igDm+i6XICnp? zjdR_tFuz}}_9}!6oV`;rPXz0*-A=RE(IsstFZ#fv(H-cNQLV}K?qinQi?NI4UPZDm zmQkm;dy_P7)}sKz@{!h`{!cs=+{`{*9KPW(l-~m6(Fh#MS zch+(9^Im$WxWkOwK3rvAdfe9kD4tf*{JAPB#trkxS9A&S@_|OoApPYsmP93T_Z>d1 za@>?qOOxX5mwlOr4+(hYLmW58_PuZ%i^I=8!tZb0l*gxv1(M4> z%o+R^$f@s_$mS4Mrch4q+CP8YkRM7jY1JL~OW0|7?EA0ld)}M(xgw)imOQn$ZHCWSVuOgc76=rvDqE*t>y5Aoemnc1%B9pR|V>R zpv?ikiWAQGMcS1+DRr*1(PL%}n?ADvZ0e-42WT{fht93Y2-?eRx0>YChMWRUf*;nZ zJeuws*wmglXPe&mgZTzLm$SWiiQoQ3zI7}oWhg{RvPTY6;P6JXBTANSdtA_5P5SoR zy!n(0aoo7ux~xLT4qpFf#Y1j?a87N^R|+)c@e$gL#6l*0UJ^vPEH%~cI!yDK#=nYX zrYU~b^6dR->&e}T)|P&mJWZQ{4L{q2CT-VLv4GX3lKrq&NOi}eG9{B?frBoH{WE;z z$w7Hr(ON8=ee{o*A%hs*m%)y2-gZ<4y_$?Y<2+^6zM=kg^DxW%+M#dJ(SjV2{8LxYRHvb-$5m+R}JF$f^imQ`hC8BeqDS=q>iN z+a-^VDHiZ^)&FevVYpP-`oX6zGW6`L_O-j8T$cF!z_;?f|3Ekg4va8M-Z14+?sS1j zyxoyO8*fF~2siIWm05YVgKj@VUFk;L=^fjK+>|jucJZBq6(0TV1O3B2M3DGjzVfu6 znMxVrpu}0bR7@EAZlpIWa}Y;d>&cOH?c5v{W5#Fg>^i)x{wdm6m*IQy!^iK$pPEUT zySDJ14e2*&8bUCS6Z+yVN+L1D4+#td-<3PXehZ>fOQ|4vh=Pugo_$DCzGzW+3F}`IrD4v z!bUiYbMyg5%Yf8<#_Arr9&88b=3a%eVEikg~d?JUa@x}OMAw;)8J5pwhL6?sYOM?60g@M*TU zOdpQF+B_-~|Gr(bwTk6V|D|7G_(z(|#g&r62RPlL7>-)H;s2_1ssAz%{@;M?iT?$% zhvj(vKSAvM3lE0H9Q?b8J!z1%sD!xue?eXS2lnc}|CNxF0EvP?|A`s46aRkRAj#jvvLMNS3iJ9ixBpxJAZh8pc`A_ff2WCmr)(e@^}k8~-$~(jT#&5B zznKaM>*Md=udRQ#T>o8skm~=g1R&Law>5y&{!gHjAa%L_4K(dvkgneVvfmx*KjBXQ z60to1EB@~D{}QohSn*GI+3&WD75{{n{chA)@%OOzugKVzgcbjUm;G)+Sn*GI+3$9M z6@QPK|B8&QP^|bT=5E)RO(pHV(gIm zJLSLd4r6B??6v>g;QkL1UJ2}&gqW&=IIj*yU!t} z<>MR-(|}>oz}Sm_lK09>{`G}!e>LPG>eDB=Bbt(gy4RFCL^UFC3Vvao5>IR9Y8?F+ z-H{dc-64hDe}=HHqSx2ok)OA}b-j=J8day*9kzn(x$&URdic)WnwmN*$l$}hoXI%x zX?%`iJFk11hM}QJ5jZLtxHuKFJr1jZ3w$^#cS!q>xL`u4!dDvCNq9H_T%7r8leW0q zm4Mz(d>l$yAL~Bz5jR76yck6y9Hm*Q>gZP+-yUk=6yL*%i7(f0#t=Dj*W5h1Ho{Rk zE*Cjf7&e55;Bk16;n=6N*L*I?u`u~++arV%Q(W*?>Yog@p25ygor)9Lw{>0~p$ai*ai)(s?v-XE2gAZ};kl+Xw+?sX+Fw1%@ zHUvgDYguPsIx!+LiYiTFIJ*E zh|h3T`(1<@m=DtT-%RSf;h$`P#Wy{E^JB6i=RNp_bhKB3 zDrp=#zx_z*WcmWUd1(NY^!=11z`hvWak?H-Qf6dob>W+F;}{fmW4a~yD|atw^>tAD zE}!L+y-k?&YDq}s(uXBK>r zpTknwTiNy za+5gn3kJudJQWjulS&&S`B~y6I&$P^&K-i7YlA?^Uy~27&-wY*ipT_T>K>VV?7z7w zilxQb%y@T)gJW&!JIEfyMNqu;AL4cbZOqmo<>O1G4_6EKd*8GQnc$f8X%{@w#^(QX zM*h~-1MJB!Y(aE%a5;WKf4)~ry)cI3!H+DzjNQzH&)$?2^zC&~2;h`IYN?62$uHWC zUUQG3jd4*1C&k1(vQ%CPb5ZH9-^!?;i7t}4>hOssFT=Tr4yNeKx*3kTb*tAKFIpn@ zb6d2i4zBpk4hvp10mD$Dx&Fd|MfZQ zu!}r4viC+&2lwb|hvgSb8IIAvvb@pI88{RP`BetTE582y0N1}vu16j{54tW=x_xbZ zU9)tF`#*(8@6I18T?r}qUv2(O>5J%A?A!Q$LwDUOL;P!Q&w%LG)#NWaUsf&xj^iSG zEtUTFyhp2yl-O`|eqp9jD{-JxY{;Q(x8S{}hX%EBc()Hwl&>e!}*&;pL{xGoNwa;PH zjnJi{I;jfS1V=D>Ed1syO!*Ok4sJtqh1|_v$V&Y~y&FDNQkB|ACUz%9ROgoG&rv@~ zu-RYOUhAFH_1(L4z&^1up$U#;pL*J(yUK{qd!KlwwJseKX>ks*4Pov5rJ=v}cf$yepA^4>GTQ$TNkyo`#y0MYsV=ZIvtT zCVsY&sD?EYc790jjrznv4P+z%09k;nB;S%aOK^|!ON^a@8|h~abB(s{^Z#7Y@OTS1 z@}epwn9P$$eY&7qsk~smdY%4mpRfI35R1jK#@;qn?J^WA*fz zJ1Q1(;YWv$r`HBbN_C2_a_=kBNBL6|XHej-tDdXBq-CNOyjj+)%<0D}f-;tal6+VN zPfdl2l5{YJHXfe|j!(`XL%qgPqN{A8u{H<0MUn8PPMM(pBg^$n#>#iY2yVR7cSxIqJo z;_SjWWCNTHjKa9O1Ck9aH8?^8f(^hLT<-yJ1Dg*H^8jxHlMk-#fJ_7HK90hGXan;; zZsdSc13L>2(ZHPmMiyM{0f_*X0vx^pfdF6uuKR#|0Gk~S!vIeJlO3+*fOG)sM;zG! zkpSk8xM2g30Cw6KqP08Wx7Z%@tqFt^zI@EE#uHB9@K|(Rq z$M+t{ipQ()bH~LMJL!<$Ev7^e(~>5rn((t^sop2XYMOemgc!kJ7B>$k6eQGCGd7Yc zO9+OuaTYTo%njeBY`xcM7)Ub;1 zu&QD<-fJ~aBk)#i5B&CI%q@PJ6ZO}{vqnq^VKWNB+vYKXYB|M|Msx^4Ge8x^LX4MM zYca}*6(MSNyXv-d3{Wk-SQsHOf6I$h`f;ARNU;xsCmSEFR$IJi#5PYjnS@e1DE@9l zgy5Pd!H|cJ*|;F~AI0KUckRJ$(zHI3uJAw>)%2gD|-4Hd6X6MJw=kpcnf zv7>66#mCdPJUFFD^2qgL%hl$Jcc;lcc%{hl08_DF)J}_kOyhanX(6^D7m3YPdsB>_ zCiUQHA+-V2#xAPu6@Qy1^x$eCL6Q5$wyCWYA52qt@U@Vk00*(()h>&#r*U^Uf{DT8 ztg%nk#)>zmNp`q{Nx^`^*mr8%#i!E*JDkBJUF7z$b!tn+d((g&-e9sWz-sJQwe#Xj zBiu8b2x3Sao4R3f#WZL~{tPdI1R3X`?qA$Kt*`?*!~IDd6{n=`SX^&(hun!c(fO8^ zGZo7%q9GS6yrh23H6uCl+`;t*^4uZDnwT7M3hjPPXS$k1=>Q2i>Zft9oJDFLe-pmPB(_legJ5cWwF2_X3+zP16-Hbfyu5jrR;$5y^}OO7gZh-aN!j;Y+4(9N0R%Q~$b zox$Td=iB=UQ2~U){Vy8WMG2lKzUhap-w$}ufoDfmcgr%dy5D@=D1MrjIOsxb8zD>nw5%egy4_r)x3+N+0R{h}x4B`dQZv z0^B>uKGJ<93`>gahpamU_;=j?$ncfuJc+0ue_i#+DV$i5mW}Xsl6F7Wy77@mIJqJ{ z8&O6QUq8+I-6Lo?sUqD=Lc=8Ye$cx0kxw{Wb2woF5x6Sv<`$~NtXRW z>*hyZ;eZ}`2cr5U*?#7A{Uf($M}FbAdl)_u9VXrGCt6oOa=svb zNUKE1o@9tcl9?WPUXVYeS0XA(66CE2dv~j}pkJu%8X3aS*3G zfpc&(QgKmp-x7$6=X8ETOQH>Z!ZJWfP^uBYjVF+Tpp-6EO}Ue)Lrb0RLB(3CP0URw z@RX5~%SFwF3gn`CkAvGq)8`3mAV=U6n!r29#0lIS$xoOClDY3p5T}b1rv?yblyOw* z0JENkQ;KbxTN8EIwEBkkJ1i4o%;So3=12m=q zrsf%w+2HXQ3wfy@An?=G3lU`L+5%Fz`WmYqccn=5wLG&`t+Ul1ND=63&P@l;KaMbF z&xT77DLdVMN= zI(-^_hAGM^+9~QO`YEa@x+$6|1`$dTS`lgydJ!rSIuRNXhFZ#6+FI&b`dX@5x>}lA z246~FT3>2kdS5DEI$s)Jh6Aim!UO69`U9#1x&xX623AT|T2^XSdR8h{I#wE1hC<3h z+Coy!$2F>L#R;mZar8tYBsRbnVUGvXDaARe)o~U?wInvoEutP#(}~6Ds`+s;M7|^_ zV2g-HU^ zFpMiAR3?jNyW+fn9aXO_4fw}>ChQ}NX1}^~;d)fD_I|)Iu8)u*C6ZeW(2wO%TdgwU7a z9y!edK?9nKRESIcGT%E&vJJgPN4tA=Hg;Ne7Ip@94tA<`#&&n@tnD=I%K96zdjH2SDhz~d+E$LS~N$LlBRcjp~_JMH$9ppn|)+K~qvG8+#A zZ37hoBLj&7wFCJA-2)i{Edyl(!vb#y8U~65`UkQHItD5SK03xZRypQ4b~>g!HaZr+ z+cnH}eD7fvc{0aD_65&t?$QEzQ%)-O3Zf z9m4aC`x_5{8^Dv!ZJjlm#hX>0<(Bm&i$2Tet}fOky5;P>S(_|APp*mQEjcY%D10zH zI6F8iI5#*mI4Ag7@bfeHS@v1hS?*cpSJj2 z$S}`-qW7DemtMkKeb2b zq<1`tlRfpJ;7RBBb56%p+Qc{`ep(7mwHYJhoug^05-xS^gr^j&G+>!vyPb<^k`fwq zz61k`LTa#du+7fdG*byk-96zQMIjAXHrQe3YMP*gOr0S?l)|36ODfoU=VY3$L`dB- zAqODDV4+l_W;N1q&pBtPD&8DWO>Y6I(XyIquyJl3!o)8Csu?VlYgDa<8nm3PozsW% z;-vxJ^fChb9?Ojlo6dZL28o5F3ap{L`##H^4X4fwgQAJ{q}?o`Jo{eDtqps#cAi3> z-kvX8(xn_x7AOOh14qU^}oH*aUnJYy;K;TYwF~4q#QVG59Xn8mtL62kV3F!RlaBurAmZtPQpV8-g9X zRJx41bh@m%G`h^X^t$Z2IPHkvlbstLryCSXv?Q%(ap39k3U58a ztV<6TB`Dv1MD z`U>U>b%kw0H(@kT8rU=FGngsV6gCH)gMpwRSTnR476c7~okCAxWKc3#Dl`?Q3)O|a zfxdwWL4{z|&}x`B)El-3-GebhnPK_Re3&iN7PbOifhj;0VBOGeSR^zOb_u02__4bg|$Q5VPViP z*g5nZM$kmml+>hs5-!hU2u%|y-)y}>3vCIZtGBAr-do=2y{$bo^AY$>3-x4O}h zTaoC?txGh~77;pWD+#T=rHvlj8bkAK@u4fWD$wp*?&$5UZ8XCc1N!;abF}4_C3ZL4;k%pvTyXW3acSnq}faOHu}>ksxjK?kq?dxC38GrG|@@D(Rn$*=avjL zb3*#)sFQ1B;BvSRo(xrfy#8pplWC*pa*os(sw_j1TSVJJ;^!s_T( zr?AGz<)|8*$QZ~ln{!4Z-?HgG(|4B0SmdySbA6-ivh6Jcup;2J7*(CI$q71!I}pCd;B^H=FXG56>D??DQ22^oc8O+;dDxxiE2hr!K)OLl-U%?l%|yXDJLnUDJd!UQYKRb zQ>s$DQZOmNl)Mz16jTa0r7I;OzfNdA0dy@UMuCSzTHj@(o2HO)Y}x>4zH2}SCR z!B>GIbwl6eV#n4-0`dKZ^}~hzMn%F&3WjSt0PUL;iWFfRqKa%4N4FHI!Zvx1xfPiz z0twv%DYlPk73mCz<^pej9f=Aj6kU7K!7i5YeDuv4?D&58gC0Bws`_}#(dsqxW3TX# z9zqA2`h=y?y|s|zi14T$+)tGL@$T#C$GqXDJxrfi{A1lWMUGh%8T=F4M^BGr!j(SJ z`zN)JDXg&`8-%;}kbR;%Obi=~T!S1tg!}j0{={&YbUsG3hJUPj;q;JLiIzR__L%k> z*Rk=1$3t=@diJD@F}^jLkFTU6iN(5N$KD#e#L=|MiR@#BYkbG17oJz-(e%nmMPp)X49B_`uq)DNy1qomG5YVhr^7F=4oo12&&HG zvXnI?R2Wt1v0ZAP5-NhK^*Aquqm8fbk0$c^I1Xp(_W75~~s` z6RWilT2)$=TGgY7(W=qP(P~}rRq!Nmuh+h zeHDEreRVD(w<@>N7SX&QvLKJK3lR$O4td#?4t89%ST$I6SXEs$UcI|&y{frtzN)`! zzpB1!x~jWsyQ;lvxoWuT2vLC;L3AKi5DkbKL=R#IQG=L3?m=uIS`Z6}0mK2K3NeP< zg;+y0A?6T$h&@CdVhYiP*g~`+mJmaTBT@xvgw#P=AvKU@NIj$-QVnT>yoauM4BV@k@iS+q$yGtX^YfGS|SaRj!`O6Mo~IZR#6&JW>I=kc2R0k zCUd%TwsYEZmUD)4jvy6~5l9DQ1=0YSf%HIjAT^K)=pM)hqy@478Gsx>svu*~U63_M z6J!q3$J#U0L8c&GkS$0XWC=0^IX0^_8#U`RTQzGmn>Fh-+cm2-n>62RwrSRCwrDnJ zc4$^@Hg3M#Y~8HcY~HNjY~QTj+-&vA#d-wD;BB(+-8iU2NuoKJslyEvNFh%le~Pu3 za;kHtY9wkUYTn}-;(}$K=m?uoRi+JdadD<}n!5?<+&!ArkX;`M!(b~&*-3wmWxtt-Gxn0VxrJNGYa?SnI^Q?Jidq%9(QL8T{ zn)RCZr|((!&iM>`sj}9ilwT~@JU_jIOXxlBh}3AdAS}uNvxMFwHpwy?wi?V;fVq3E z>ozYe>PA{fYfVzUxmq+^1#4}pXXxj&yk51;*wk87EO?XnrnPk}7E62SqpWJJy=Sl# z^fuLt<*nYVD7jkGz1dN30pBYeVL@15;k?49Xd=$-3bik^<1kDiTQjGl>J zpvS~e%npDxk}w)w9QF+cHP3e3cHQ>A?0ms|+5NIdzeA6q-=*Kn-O0t|?&j`U>{wtd zb}jZ6cNQ^=yNi1=J2DuVU75YMoi=>)+LMInyCjv)yV z#YtxkY%{MSGL>}LYZ&%;eo{tJMIn^*#1@kFU=f{cb3$kLAaxnj3=7p~UPvuRJ@(3s zS?#^nh(d>YzB7rR8xfB`A!K)5zquhb9n}mmwGsKB>cVz5&kT^d?DZ9ABtJEfwvHx6 zWrmA$5nAst@{oGNnF`F@*=|I}r|R=v&{>?4>EY7z+2@PTXPz%SpL@P!Ic+&_IcvFS zIb*qCIcK@FG`%#xG`qC8G_$m@G`F-QJ1sjeJL|s7yqCX|kICQ7-?QCm{wDHG{-<4( zP?UGn%ieS)$Ilj@4L&=3R{fl*!>1Vk{D_JvUIj`WT}o@5$FH8vGf9O`Ce_d^r8a(n zP&4DHqFP7>YUr2J8|Nd`=Xo$x-;xP6)Jv%{HKlm-DD{)wG=fSAGWA=y??16CrJKnc z=R#5b(6B9Koq4&V63h*zDohsDuqVD6&!! z=BB4gP39RkabapKuu`qzwxFs`mL9foVQqZ5tm4Cseep~d8Mbg?ZY*3@-RH)>4<6ic=o_Qoz&bHlZJ_>?HwlMRR6 zH^`22_|tGDjL2CY4;M?6Vrh8R7z5L|dAZAV^gQ&e(xiA5wdlDr23%+*!d$+NeoXE3 z=Kxqdo^q0vBM&637=S&IHA=jtUOM2*@2Mln&Fq2i>I5i=l`Ug50eB_`KOS3?z945J z9DsWsG2dgl$2`e637lk_WENx;1PU?Mf&Z znxqzUt5%`0KX;nM=!Vwg84oEY*L1g6BUXbtz*?>R8NXo0%`}5oZy5c{(%z)KNf$~J zO0Q055l zO4m-)P9IAfOXo}DORq?)NOwaXf$b5yPU^xRp9;nXtuu>*2lP)KgJ2;fq`OtFfJG`j2p%er+jjN5fjk}FM z$_eFxf}(s-E+{XQ8_EymjPgXmP`)TvlsC#9WRy&lM3gk$Xq**4{Zmbs87pHSBcFg8ISXoL zYFlm@DH&l4ATyg#YR;HTV~Q0_n2njrR?32|T4pS7$}P1s{)Lq7luYyLzWCUSLbvDg zpY&ePyiIm%?<|v_DDWwtN_!z41Xq``;OPyDpTb*B>bDd`$tj@R2wa&ZFz0Tjy$y+vWwm?fhc#Wf98+%N*3(S=(9IiR^sb`Kt3-XLDz2XLVk9y%K>b2@M>$Sgac-!)}>22HF#<#6+ zo8PtzHwd=~Hwm{1Hww23Hw(AdG}N@zG}W}#G}g4%G}pBIH2AdmH2JjoH2SpqH2bvg zH|)3UH|@9WH}1FYH}AKzG_bU=G_ka?G_tg^G_$l9G!(QH2+lNX)KeoT=%F$nvfkba zny`R+OJ?|}e|hFR5ekjO+66NAH9~p2;r0`L(6A<=56|{Bzw=(gqb8!EkFaI}IEw}a zZxUR6!g(v;{w?_|7R{%;V{q4rz^!ns)gZG#!+^H}ZaU$)6?~si{#k+MJKk-0(8PnS zhgc&5+)hK3_c>g50=9MkK0#-eon{^H65M+tWGez|Q^@?N;m6w!x1I3a3cXL%`Rt?S zSKf1YP{KR_*51WYGifW3%8X&mYGczXmwoFf$eiS@Z?d5jNte=qGvOQt_@$yO~ znp-)uXhLkuvT2&M22R(;X)!O@L}>lE)}?wF=py0*Xicm&L;L~cQYjwAJ!K)cnOW|Fx;2C1Q zS(`0AkmnI%t84SDX2JqBX=N?szUR;E#O#6H)be3=VfJEnWAgtS7MA??TpWDBwh*@kRHwj!I6?NJR;Em2KTZBdO;t#qhZ z)~2D*;io9g?;Md0_CC*-)%P{`OTLSD&$IbG|9}pCTh}0T&;c2An6GQ9J^)5aM3zA& z*?gB!A)&~^hOy<;6+q~#RcJ}e%1Yb1KD@I?#~XB4k(9Fhed~X4xbzb9A+FQ96mUV zI4n3!IjlMiIm|h{aaeH}qgv<37|G95q`&%uYnBTAB-Dcyob*Xm&V^-!l`v_>`Tj8Y zEk)|9_{YIktTIWf>jA^^1r*P@KB>x6vm{frzbfOJ$lNbxO?w;?K=CPaLnow6ewLLj zX=yzODtAk}eCUuL&40kZ$-l?H&3}kkL+l{75c`M?1P1X1@fER-*hQcb2Z&9?9%37D z=&|OpSD^JD`xj2>%E_hwj9s#CWc>o5o`-0T_-N#CPig4Ai-z3*@c zL>8*PbE;St2uzeql~XTtHmC%B6bPCu{KItJ3>@el-;6Ltn<+@Yb9txZo()1(hF}UJ z_}0?`>BE2pS``yadr}G_@2CxCJws3hp%p_++reP_cj0_!y#QYD>btCW-0n@!LM06r zC*&Wvr+^k-e9;SwC~&BF|6-lC;Dte7b9Qq}P)1OFP*G6dY0PQyDg3nI^vNmW^pDey z)A-Y})9llh)3no?(}L5U>YVCUq4x`;Ifq_*UfW)Wm^I7}W(%{A*}z~hUoc-W>zG{( z8gqcz#Oz_VF^9l4;0|yLxDVU_Vt`+OUxDkuT_75G0Ne!b0k?sNd24w)dDt&;^EUD@ zd0+Cr=B?-L=ArWr@;3AK^0xC1ZPsjdY_@FnZ8mH$HeYPM+N|5`+MsO?Y&LE7Y_@F< zQER9j)D~(VwSmH*zM#IM)=|4CH0l7giP}SLqYlAq;2rQ5cptn0#(=+ozk=7nyI?f< z0K5s_18;*5yVkmPy0*IZyEeKoU0=GscCB~qcA>itx;DG^y0*Ix1p^=fkYLDt$WwM^ zWzpz|SMe9g$ImwS#tf5-fXX7#5m#v!FOHix+{fN07cnb~MMq!7T_hZ*ZZM3AB|8H9 zgrgr^rCj73S8rI3)h9bL_lZVFT_s+mALk<&tK?wCY1zpsuis`T2&!gg=QJ6IPO6R= z8%%1Bn9}B`@R;~jap!38m`Y(8HAjpUbJSj&c$$IHB|X_0lf}0LpPiV#M$DQqRSBCv z6*M$27BtC0Oq$VE37V%@87vfgnY1EMW~^1B<{4Fn(#1fNbcAq~#6rB+J?U3@rXmQR zDxMs5v`H;u(Tr^&ak2tsa)9`5MpVVMkc`m_Dd{pH$g;O@Qf@Mb*qtZ$;+0O#)1NB& zVseW3F^}hUr}c@Ao=8cq$r}WEp45w{HN{51wq(&{5AkiD(2J`z8Kvi2(uU=bIGCsK z;%iMs=^vDQH@QSy&*Ne^LY{#2SWBLoj3G9$U>oj`6tI3_$vcy6#OXW%hBG9&OV7Tf z&SVL(HxIz@hNO1suaBLaK0m(8(wsDXWezMBK|#zBXut? zEpMC#Kb3(7^^AtGi;+t}shn{ZW0n=Sgp`D^aUSDKe%)+7m*f-;80XjW)wKMOAiqzA z8wMd2opY;f?Mnwi?i~bSBkZPCLztTUy$t-AfX4eV6? z-N^38-LJZzbvJjXc2{@jV{!jU-4)%>yW6`ny6d}(y89wyB8wy8kqwbgA`y{)M0P~R zN0voqN48+s2{n-gkv)-dk)@GYkxh{)kyVj-kzJ9Ak>!!Ok!_JrBkLkxM)pR=MmkT_ z@pR|xJ2YueyyS`Gk-qDdH!ocIz$CS7zbyBz{N2vGwOKZNXr9))lZIaT^P-heCP`&a z?-pi(`9khu^5#V)LZl13+uNgA6pE@^zygyh=Eb&~5Q*GsOS+#tDOa--y|haWdJsLB9zqYLhtb375%frU6g`?ALyx7$(c|d} z^hA0RJ(-?DPo<~P)9D%XOnMeQo1R0@rRUM}=>_ycdJ(;tUP3RWm(k1V74%Aa6}_5X zL$9UR(d+3A^hSCUy_w!ZZ>6`<+vy$jPI?!;o8Ck3rT5YM=>zmZ`Vf7XK0+U*kI~2J z6ZA>?6n&aLL!YJ3(dX$4^hNp-eVM*OU!||n*XbMdP5Ksno4!NerSH-A=>qxz{g8e{ zKc=71Pw8j$bNU7Sl7238&d`UCxu{zQMKztCUlLIyAp12YJNG9o6331-BM zgb87aFriEsBW1!F86#&fM!_fkkM zSjNm)m=X-hSQ#5*XB&Y~ zm<&c>G8sQpiYd*MVahV)nDR^orXo{`smxSisxsA>>P!u$CR2;4&D3G)GWD4HOarDN z(}>Ap8Z%9prc5)YIn#p4W?C{iOfJ)kY0cy@ZJ2zfEz^!^&valqGM$*tOc$mr(~arQ z^k8~2y_nuiAEqzUkLk}0U|k~>yO`a~9%e7IkJ-;0U=A{en8VBw<|uQFInJD5PBN#M z)65y>EOU-I&s<M8^MrZI zJY$|SFPN9iE9N!xhIz}pW8O0#n2*dS<}>q!`N|ZsfQ49?MOc&-u|aGwD`q8Z2wQ{= zWy4r08_vpDIg7ChR>|UQ1Y49+E_d5VB=UP>tf?sicMe>SvOmfO=6Q-nq^p)whCL7t;SYoYp^xhT5N5$4qKP4$JS>XunpNpY!=&? zZNfHXo3YK=7Hl@#lFear*;Z_8Hjiz?=Cf_tc5HjL1KW}9#CB%8uwB`1Y~wYpJCmKo&SvMZbJ=<9e0Bl5kX^(sW|y!_*=6i~?ksyOZ6;?q>I}d)a;Le)a%+kUhj6W{~;1Ady~Dz-e&KxciDUFeYSvoz&>Ojv5(m&>{Ip``<#8j zzGPpquh}>3TlO9Mp8ddnWIwT=*)Qx@wvYoH#K9cGp`3^d;(|FbC*eZ4B3vjJ#!0zw zPR7YOj8kw*4(B4cqMV9Ta~iG~7s*9&(VUjkae9v6Vz}a*firR@E|xQM7On(Ga#qg9 z**OOn$2mC{7tc{#0+-0SxsqHGm(0-|!?7I4@mva*%B6AXoQLyrJ}!e3xJ=H^mEuZs zWw^3jIj%fcfvd<>;wp1hxT;(=t~ytPtI5^kYIAkCx?DZ3KG%S2$Ti}!xW-%)t|`}y zYtFUcvbmOA4wuWd;#zZgTpKQ*Ysgd55Yoj6JfA@_)T%st_ra?iNu+zaj{_lkSX zz2V++@3{Be2ks;HiTlib;l6T(Jm4W7<`Ev{MSKt+%!_#mAHo;mL-{aX%7^nZUe05@ zf>-i5AHf&pRlJ(l@WuE@K8la#wY-kk^8_Em7v~MUkvH+NyqUM~C3upz@;2ViJNP)> z$-DS?p5hbuMBdGp+$vZ27E)l5ue33=9}F-m{gehN4O1GW zWTiAtX_C@3rCCbzloqL@Q^%x^O&ymyK6OIs#MDWtlT)XpPEDPbIz4qp>de$xsk2k( zq|Qy9mpVUnLF&TPMX8HZm!vLDU6#5$bw%pR)K#ggQ`e-fO zZcW{mx;?FXT934zX^+#Mq&-c0mi9dDMcT`>S81=)-lV-vdzbb;?L*qfv`=ZD)4rsA zO)E?X=}~>B@9GJtDnmx+-0r zu1PPJ{y6Ce+&q`ypmmHs;YP5RsPcj@obKcs(5|CIhY{Y(1S^g<8tKpxnG zcuWdh^L4r)Dz~Bdcr+2kKBWK6dt7q_e6M#dQ={@N8>5xiS$HyqCHxV z&ZGAbo)}MYkHKT~m^`r_v&Z5o;UPU%kIiHEI6QG4r^n@q_fVb$Pol@|Dd|b_BztHN z<6%9Vhxep-Qax#&bdSe#({syn+jGZr*K^Nv-&5cn<{j=G;T`E6 z=e_SO@ILT9^gi-F_CE1G^*-}H_rCDH^uF@G_P+7H^}h4I_kQqx^nUVw_I~kx^%nYo z5Awl2#E1Gsz93()PwbQULVQJhp}sJm)EDlP`Q$##r|>C#xG%z2)Ti>PeHvdeU!*U} z7wyyfbUwY0@WuFw`wTv#&*Y2snSB;t2_NaR`fNVC&*6*nIeji)ypQrF_!50?UrAq* zFWE=?7$587e7rBkm+DLNrTaWSug~Yp@Cm+5pWj!?SK3#`SJqd~SKe2_SJ79=SJ_v^ zSJhX|SKU{`SJPL^SKC*|SJzk1SKrsb*U;C{rr;M!38jTHLRq1lP+q7YR1_)+m4zxo zRiT$Q4=%t%W?H zjgT+271{~yg$_bTp_9;A=pu9#x(VHd9zsu{m(W}2BlH#e3H^lu!a!k=FjyEO3>Ah6 z!-WyTNMV#PS{NgY6~+nUg$cq$VUjRem?BISrU}!98Ny6qmM~kGBg_@%3G;;o!a`w@ zuvl0kEESds%Y_xfN@10-T392j71jysg$=?+VUw^~*dlBdwh7yX9l}mwm#|ydBkUFS z3HyZu!a?DXa9B7Z92JfU$AuHZN#T@mS~w$|70wCgg$u$(;gWD!xFTE?t_jzL8^TTD zmT+6RBizlroOvblYUZ`f>zOw)Z)V=gyq$R`^KRz7%=?)InGZ4_W7jK8?w;5YhB z{#d`+Z}FG#lYXn;=C}JD{y4wW@AAj{DSv`L(eL(`^e6d~{j{I)vwqIc`&0a>{xpBO z-{bfCef|u;;Lr5?{iXb+{bl@R{pI}S{T2Kb{gwQc{Z;%`{nh-{{WbhG{k8nH{dN3x z{q_9y{SEvL{f+!t{>J_${-*wB{^tG`{%n6s|Nm>}y~C==(tTkQRb{t2+TG>U)^1Q# zf(V#n8xR$>c2S}tARr);B!dXZCJTsLq9Qp-&RJAML`6)9sA!vW7Liu_t<78Xd=E48 zec!qF%stP{Jw0>JnLEEf_EXQ=&#GGQyH>s7x87B5tUK$$da_=uH@l1VVRy5>tRL&o z?qLI185_t3vB7Kz8_I^U;p|>Ef{kRO*nMm?yPuV_2iO=kmW^ZM*#tI`J;)wnli0&- zGMmDtvT1BOo55zXS!_0&!{)L_*gQ6$Eno}TBDR<Zxnyq1L**dnK zZD5bGjqEY@ID3L^Vo$Qo>?yW|J@D^-`xASIz02NX@3RlshwLNvG5dsl%06SCvoF|}>?`&)`-XkXzGL6B zJ?sazm;K20u|Kn)*w5@2_7@gdfmN{mEV3dy!2ZhqK{`Y_R60yLTslIkBqgMzl#-5= zekJ`{I!ZcPI!5|C=~(GF={M4ErQb3HeyrHoV}ogkek{a*TmR9UJbog|$sRh3SW zPL)oRs!7$Q8d6Q^bg7nfhE!XsBh{78l+KdQmd=sRmClpSmoAVllrEAkmM)S0C|xRD zCS5LFA=Q(vlVX|9z!!=2^Mac$gruARHU zUF0rtm$@rk2X~e0X8 z8V)lYZaBhF$&fH44JpHshF=+eZ8*wswBZ>3EBArF&j=P%_&__u)4~iX&v>Ju<3HX=F{o=H1MhX ziTr8m(~>8-*UGLnT%%?XWBO(H6rFVanzA)V))dc6n=79ypC_B^Hg}hS^P26eskg+5 zj_S^Wu98RT&*U%UuL7RBKJvU_-)V7Wu=Bqk3dAZ1+DGoUR~8_X?e&xU$bAz1(`0F~ ztngfUt~~Q#dRkiA!AyBBCC?4dlBETt`zQLyDRJ0{zrEAnNt@uT=%BZX+mwX!gdFuk zRDB$LouqrF$bIGZu_p1wGnjpq718ArVVwLyZcRhYv20i%he}FpB2q!3Bs}XC?-0o_ zYU)8H{84;Ns|)SDVmtZAdmk4HXmyAqcN_Su^=2u-hp;eRZ@S2g%U+*pkg<6Y12cDk zmN96oX?ww#=WNY3$$WkFT1Vp*>V>$CJY06T@^BR;)b@(WL}E!|Nn#l#ta&faA`&VR zD-xpbjJgFe*%0{YPR5&NEi+jX+Rq1pMI+p)LI)P|+!Om0wM z{t*p{ik7mAW!;)pjO!A6J)6~(_$~3M!R?~!8Ruq6hPatN+E8&kznOvzqF`&4)7MT@p%;O}_kGZ$IpK&`W`F}?$Y*1XLHLcoKxBPfwj^tg_wnrv+ zjIK-If*Ea#+ZW<89ETDd1%wVvUI#yF88h9u@&jtXSR6fN9)7bHH7we-7?|Ax6K=xr zw=i@Te7g#!Zs~Z>;G`xTb6NEPOn_<6z_1bgrW|4ZE{p8%gnk)ZRV33ISI9j$-wMCg z*FHUs$tlP#&MGV4RqkHlY&CC#fu4DbHUrCGNH1(Eg(B(&>XV682{m!G6fFOMPl>1E zEIPG3x$}l`3%rlbxTPpIJZ&E%1yM2i^(;Gsxdi zdO-_HX;|8WOW(p~xPixi{q`dm!m{_ctd|fD!4?{>W4RWr!EbP_7F3dW)qvJ2CX<#I ztgK(P&2qCn>vnbybEV{5&B+t>md$qO-A}$?EOWP2SRXrjx%8*37t~9Y`hx+PK38mcpZ{y821LpX_HusOK36nlfsBBxR7%xqeJsJHDJ{XSYe;9EaGQox{M0+Iwf3yH4FM z>WhbOscg_dkz846e_a{o5S8+R!jm?(TmYO@dwHX+8>hAgDoz-XZ9v+6_ z6wJgtLZ{Z^t};v_%3}(Wva-{&Qah7?QZHko=0t7{4-O3piwKib3kdh1>>3q_ht!Ya z?_m~P|A^N?SrwIW9+_NrxFV@iHJ5RnVydC9{ZYykHxwSrJ4yXZx4$1y-GnOZ z@%uO1nG3+2fl19UUAO8#vbFs(SjEzc@9n<`-MAgDiJS2nZWp`1R1=Et`{;r1;RS4m zP6)wH*p4p-GNGD+ zxIQtQ05wsSPA^I;O)aNjJ`uRqm-F0YUADD!bIETI@bt_2XA4#Iz$-NU)T8+Q^iNqu5!N>?I~TIEdi>Detr9@X%O}C0-5{&)$tArFX(32Kti7vhOphNhczz#e`gAMFN8{GN7 z@b~>Ph!Tuwg-PFl35*~hG6CFjU`v(h8wR)AV#sdHh^DZUj6_oh)Lw_f?kr*+z=TFv zmjJt|L{c#ZhtlFjk^5W&VE0+z2+@@CyVN|f{pbI20ADzgUe!b@gj z`=-`SC#Wiz`yS^4O|~Srq@T*%`h?MS#Bts@GpIs`X^cG<-FlG+9`6`rVGF%({Z;c8%PJem&6`#Y#z)zs5_5P$yP@(X z9JxrVYbMilw&8L`7X^((G}iCKA0y2p%y)Y^$Svi@FcbpGBDvEXj%S?qhEGj(4waa+L%Ln2L*d6 zZ;%@wFpDWtV_*%@QBiSK1zLp>ed35N@?FQ{>$ke8o&jx5;RvbE>1|nVMd27x``^!c zzpQ_$f}(L9QGT@SblF85QpdQhc3Nl4QK(HkY;ZmA-0FN%GQ+amvUE%F1_^E@+Dn|z zI-hbnKGLy4g3po+i}9O2KTd!@Rkx>Dju4DEx- zit+e;AISc~s_d63RG^4Hfs)%e{LAd_r;J+H%2$@4)OO@d(W$c4UCdImMfP*O{3~{q zxtHXo)=uaKG@yJLh@M^glh9fl*bjD=wE(2VxGyC?52fUU|5DOPE7| zUtpk9xUrlvAu4s1N{LtU_N>CH+>+!o@(24{_BI6`PmWEFO^%~*tk6tP@;~gGEWKfh5-(f$M*#jl9a($J#N{NIY{`eQO@LhHhW<+zwkI1_uWeL^S9(#HwpHcX>o z1WqL6PJ6tagNtS|KxBW&dsyWAma+0T4KNCzzyQ7`e?lGjP94@*oczETCU4F%FDO4! zQe0GN)W-C_!S%O6{S~U;0AYUkp% zbGK{0XYsBIDjA;A`nc={EF*Cl?xkNkZ}od@o@=B8HX|sWm1ByN8CUpW+rAOWK!_#9bO>fv*NSjvMK0$j~j^eqU6$~ zG8~r1ggXQ~$ebv&C4y^$DuYXKs6UhHnd+A8O5qOT^#Dt^)-=^0Jxaj}9D`l|X)E0? z6IvD5=*j-ce#yQ`J`$0@n?y8j^*|jH9Da8da}_33!kRenqF|R|=R5pD1{a4E1m{ue z_?G7Q%g$$9kGo2+Qwu6_C*c_!v`g7qzAe@~E?1KQP2yT*WtR$s15dhGI@vim-{F{( z&Bv}Z+@bE{Au>5REHNxGEJ4!Qc&X+51*%(YoFmL3t(~^Hn0weA*?z?G2=%8?f_o)B zO<~oCo5-^;`2@_Vfi+W#8EdpK!=)QhnG$sg7%yz2XSvoPS%#wuaGc~rfiwKz2%~Mk zNMO@VdX{SieqD%TbMZULhkOs1>;mJQV3;Hk(r6s%o4zZ}E7e1S1K37H;}%bxVTMDW z|H!n%gfdtYJE#F`h3iM`Cj%>GWwO7Hzv-8KRwUDEpodOm#Qw;L3Fxf`E=0IN&<1}q z_tnN57F(Q~%{)JL`AY4h;;Y#YlX@sf7WF<0dSLqzZD9}0`Z!QdK$#j1akvNLiG&03 z2@}AH{QsYDQK3pt6MV>n_*JTE&a8Iyx{Kt8i1YHs+a;i--Na1UBij-<(Nn(jtPPBC z?)8DOA)rRV(LNkUTrP8Oa&L64lgzUzawy!MzfFQuhl&$dm#A%uM6fz7eTl;}>R zVmPe{3o(r3LZxBSy@ToRl6;s|0_v4iAGy}wAiyAy0(V&0Bd+=r*{#^8xJ3Ut_jCVT zRZ={IeKhnymuRgG3j7Z56UKN~Nti&$r$w#{a}9CX9Frl#?Y;iofJbYQij}iIm4CthRS|%vx9Q01~ zJm~SVlJURhaoh2sjwf@-=g_W0yPTt3BAufs7zs8|k2Y6fCFG07m=DX>qAe*bMhhB; z!w49TBM5XJk4i8ClyC$gt^+R`RzVlmYr#hR4wn$l*rfzJ2>FyKgT2mso!tYr%H8Ge zF&;7bGnnY2!sx<@uM%2HliQNo5`Y+#1Z{{6n4l#50e(+oQZFQ_6aS+~ZHh8l^Cc$Y zFf|xLhT|ef{2jOC?i%Lq+eT131f~>>6b-%z2A@BwLgMotF^&K;O&Ul{L=qAS;Vz7$ z^_R~y#1ZC=GZ^^lbnn#%_t)HIj$sz9zd&a#Dwzznf8F-+=ELV}?l4ENgr0>Ij?~5} z`p2{wP`?Y~dVhw|tMB~1Iq-hjCB+DOpLXzU-vy7nnamf5-^TPVNnoHnpVr@{1jeer z&iJgbA+xrmZ%W-zo5Vx}M+8R%-C4twwdG&R?4;m3bVAQ*;E7gPs3s^rVjx(7Ss$8# z6Kwy8+d+Ra>f;b1t}Lc3rea146SX98#V-Az#=!c3n%~5`_REA+SWQEn1=gJ)pzaQh zb<$Upt-LzEKv$`oxLQ$uSw)y2`ia3kphLb^B+;ADdjWV`q0u5R zvcV`))*NtrPracp0~@COI=xT9kr@_gW+^78Qy3@V(-Vwo0K*4p*a#kv(BteBQfxvq zI$Aqqw%`0aK1|k&!*61GmnQtT+P?T(&@U5?2w!Lzod@4l!}m=_511)7IMfLVZwkIr z!#q;I+~KM+93|@IB?q(9bJEjJ9eS))%0wAQIERLYg$70LkyE&r@C{AQRjDKK!@y>` zqoSfy1v1I1)T*?qbm|M~xW^&DK9GV%y&u$JwHmI*-)X?_(1NrGG!HfpEl_1@57#Ew zrck(z^bQW*rR*+uiE)lQqQQJ36kdWSE&7N7KQ};u&1WHi5Xayb`Uw=w!vYf4jCceE z3$WmyF0b#GDHaPq(J+pPM9O!n<7}sHkHo4&&^_PH(zQ$ zb>pPoIsUTM`KOFQqfz_TJLiEY2jv8qPo4aL`-p>e2kR4$s%J6*_?6dG$2rt#&0CLN zEqJCi2Zub>nmb?j@d|ZqVHX+V733Z0LzRl(ip9OK7^GI@AK$nou?4zHkBN?o@(vY2 zmAtex{YYAVT9G7gVabXL14`tDN%SokvI2*Y_V@=Hq^2l6MS%1PjnWp7nh<}MY4+eQ z$QU9DmG-E)&e?g(=aV~NDtg!+WWX_<^4O6^g7GY-45m`N{6FHI}YTU4Z1wvG~A zVFMlEzt?}SFNG?zKM?-*yLWioHtspPr*6*{Z*I4KK+|02L&1acj)qpRWHdIGv}CkVkI<5gPmNDYNYhMadhj6aoZ_79oRpfEnx9fYfd;XAyNmsHXA0*i zHq(nebM13%vdtykULL4pyB}SZ|iC6y#1yO3#L!tq&OE!Yz3wIaCZRdx^_noffV`!~fhm@0STG zgKYj!1LdD?f``JEKo4<%250yho$+fDu8jb5_!`aeYf_lyPlGqAqBp1#;QgK+ycldC za1XwqVb7q$4hryAc93t6v5GC8#=tkkjq0i!DvEs3K$MZuILQGi{aFu}GhNRbU|1?J zziF*Ozf2e|@U$>wi8$mQAq>G~^ipxi9bpKGKaN;T`UHn~D?7^_W9(z|wHX*eT#czH zZkr&~il$^nae8rj2_Gdc6**i^h-%~2K$&#J5u4TZ<{U$cX};a?u>2JzI)4^| z$O4Bli)y2bub3_8Oiq~`r|MzcM;!O3&Qt$eS;~Hy@C!Vrfg*h7I4`wX?Q_cQoa3c6 zR!oXlidV9itFNoSYXAjCFkg^kyvUQT$6b%Q)KfP*-mQa`+PHGM*86>=Hxjn$o97(G zp-l1l{7bo=l(_1RU`?jFr|rz#(b&OYI4PHfh4_c(&1N1~->kh*chEo4FVTOGub-c< z|7`>2W>?#@hF>ULMw*s-URKT~YGd=04rd(BN;oBdxVngu+wOOc-nHK+JUB3#3L?T| zqT&-LK=xKLK07`qK9_<~Z>JDRUGd!q?omhYzQRsjm~Kt(|1n}k=xWNGNN7*ImT+gu zAtqv0_>^EANg)pl=x+Q*556I~pU`^nbvJ(f58)E~WuT*2Nc-b-J0vzPZ_#C%&(_{9 z>7hOoVSLcWfGwW6?ip^W){B@@S*dS{*EUUV`I0Sz+i^=_STC5ALOJyU^~l8Xgv$6D z3fLZTwB{Q^_+bkD4khTR2@44m9KJ+%vVQ9<=9ee;zO=%3l&JPmm`+wA)v9_^>*^zB z>HUo_o%$$H>%r|Hfh9e-1hmyqdmVAG>|jM=g;ox;N6U4l&HN{une>YEs?^^m{QT|E zFB2{)+G*6l-DQ!@M3as)i@=d1hp0a03aKpuuZwJ)`KlNcg=)(SwxF0ko6XLQ6dWHUV<1=P8 z7Lx8;+fEvvWSb>k7)0yoU)kJjT4^b{)os&k*1Vxv@&c=9Yy8R-sSP;dvnA64!osEo7GOi`^HyFDCS0NL;YoL~g>H;F$ZXnHLp#$I>PqlqW?T4odgQ@h^~-_%(*K z?JL<|wZB150ZZieEsa_ky+$tC?s&j;qN99gifbO|yn<0M_9^I4uh4}IYzk})tffRb zEcvY@{pUl!OgOE$OrsQoaX%S_D;!XDH4=9WnERky4~t;S1eguqt|nCjl9#+rRoX#r zs&c!b49Y~6ydWXta8^=EW#akyMa(|eNWbui@Q9FoGC8G9xCJIAt5lG%I6v?n&e)}N z7Hr5c*HHIhuNPiSRe!Di|hmbO65BaCTMBgJ{4^h$#+^D|a8Hj?Ytts0FRrAH;+ z7)I-@>fF*|R%I!x zytZ(8-aN^J2Cw^W-Og7fqOm6})Aw5Az~0-+lywx`&3v^agMk*zq08h)64DQ+Cnwh? zUYTFWL_0<9j);he2p=p*F(!6}BqpnXfi7+(HO<_ z+r{pP%h6=uTjFy0AnzFWsb@;-G-EtNKF2ZiV$-HgH6}$Cl80^X4R$BZ&Pl|tp`N~s z;RNr`2XZ0#YRu`>mh_ek3L8JdJ+dIF@NnT_s)zIp_6%_kp}_i9?+P$eLo+int}3P` zrbauFi9%`*4tG_3>B*!VJAC|L)8Ega4-zFov?hEaT{qb8u=2}V#5Bbnk8O-IF|u}W z4hY^CvM(e$XC`wrwjr(|j#@6NY6z-m@&!zUsUO6t&&k}lBe8jL34FbU$mfEE0Ft=;I`o*6l_we-PcLr&D@|U% zOwdr2(xN}u=%UMXaM8g;HR01ojCl>t@6q`cSPA~(AySwr{yvnF)#^3X!W<~LGB2(4d1@EK%M!N-&69ciuy>p1i1t|hfrYj zzIQrU!_W_SM+1hT^>0_f*e`H27fU7pR0VR3YpFd|j2DfYu zgyAFt-@_ytC!q&S0*}8q`hFRx59)LwEGAhaZFBs_?(9tFNo9B4#beQY$W}i)50i~n za~-ZNU|>j7XM53&ymQIdqZZX-z4ol3J&xFy8os6;kW8 zFD+!Mo61@X+bM`7qOocpE{ZUZ*sRU) z+2^s(J<5#|M-kvT;7y+wbT)`OBupOBF6i)sSE?i01RbM4wOtT&3`L#)R!Q6c2Kr?R zS78~wmZ-n%oV7F4F+)<6U6fl~px?;2c<%Ie^4XHNDc305nq}$&>jLWit^K#jEQ0IS zG8|ZFU@e3YGIJ%Y5-0bZ80mE`PexPef-$MTZJBi<8Ot^!W6IbPBFRtp-{UxCH&^bkB5; zbhmY(24SniGs`lnGU};M#CB+=>wW8YHF#23M_kQoJ<^a%CBajAl7Etal3$XqMEt#$ z;+J$PC!uBvshBU8)3ST?qQeYfh`5w=50UvQ&xy^~R(eQ?F2Y_~R2IG!l*MmJsKpC3@;89jCy)mnx(oQ# z$dkANzR=4pn$2siO6(**op!IXtv5L#aqp&Eh&+c}yG+|xl}vDcK!I-&1>;^~1QDMa zpPG=Sp38XY*{tT*J=@3>R}@s|)ltH-@t24rPT3Bb4ugGi1M~dzDVXvSi;1|@!Co4< zjPDw!^;->}ZDevwa>_C*ssB%~MZ!B;oC&{kC*=|QBlhp5FmM)_6Z@n0@82Ko?P0NN zjo;~o%$?kGrImGQnJKwRc@!k$%%5Q?xv4F_V%Ph<&qAn1bUg@5x9*@eH z@YK-skaP+rKf`n)J|#XSK2<%J@nsziw{E;?!H5$G@D*p$5Nd&8M8bi@gb76?e7Qr5 zUUh<(Eg^craJowHauB`9Uq)05UiP9FX$l+ZD@4YwH18Cz$7M`-N?1y0D)sX-+)X5; zC8j5&YveLsD{TyT_Q__Zs4TzYNcI0lK-n)7ngwh6lf%!Jy+-GrGB~UW$J8NHK_vw`0|S6@hAE<5-@QQtTI3ShQa9- zII3;V0}9^07k?lU3gQdnim1s%lzW6nxF;nJn+`XK-~d@bfQ&cMvc(B*4bz#yefr_2 zE?>?o$Suw)r_e_+m!9QXVx7M&+d}f}h)=8c36FY-U>igG7<+AVb$IH+l-C!Y$Z4IK z_cvs`{W8H`jlNPoSc9ZNFtHbOL85hnv9h(X-|n<7a&6?gsM9s4nwrjnS`vJd{!6auQ^p=GFv<^WCzi~5 zB)=DPCq`moWNq)b$0u}Ggx9{Dnaq>;hw*n378owuw#L;X)HPz~zT%k-42%Dm@Fsym zM{;*)h@bLKxl^oTT;4PW2m)l#Mz2}>`N#Wu=L{s>-D|HeysmjeB5LiW*R5Q_YHhwU zpXqIXc>U`Al~?{b6aRnVU-%dPUg($ge>IrC8H$&B1xJV!9eagKgvYN#=n8rM!Ho2b zjO5b?pX(Mg(MFL@5y255;Sqo2oA!h!WvamDrDXc$LpNgYQ?Nl3H;_>{YWH+|y&Y@x zjBu#Mxxo`=$L?J|`7k9fx$tl?g_`90(w!HTKN168iiPwlgNw`0=$+J;SfP@1`r<{` zmNK_*Uwq!wSF|mE+YzhoZpOLI@tobcDj1prV-jE@bqAlQLkPKdLC}xBdNyrVZ5C~R z$>a6QgdWJEf7U_A8Q_RqA8?@a7Ij{O3!S0H#vnT3r}Lh*A{ki>lmbA`&;#SJCM~E0M`6 z9V6OG3R_i#Pt(ZEf{fD4O6vMxrDgh{W1o@BY@cGW*mz?z&tMz5ABXtQaa`TSGL=_y z?!f5u|TusK0WkJUAvOhPnhkwDj{O zRRT7RkoH{CByd^}t;zLV{M+)aei^J#oTOJ7Tr+7ktF@F|zhTv6+{89XP=eL8I?(uu zl>3DF?UB`KGu=&Hr#sr+U>LL0#l_vtlM?1&015p#idH{I<}E$8`ZB9;IoEEgYug+K zi1N3Mcg}QdeQ4EVd-er0yL3e*S9kf+@mobtsJEhw1YLC+{0MiW9j2z1CdVCGe9lpG zg#a4AC*|v{%@#OzEn&W#ZN2|#LLum&gj`+icuN_GxAO?E;N)Btuto9DRc1dZmeT{1 zaEK5$O^lm4O)<0&cftiQc#j4k2jf2R>NLnBMMwBOy>iVplhcDl{PmkwO(sp;NeNED zdRiU6$DTn!{rv;$W-y&6uAIKm<^jVPcXtmjPj5<4$Kby?k?ofWzZXOrU%@Cc5S68x zNNhYeivi_(x8U1USVi5$3}S7m(5Tj|l4O(y;wFo>TSkSsw)fN>d zWk!;xjV|YQwm3CO@LmwTa#fef8S|PyPxMJ?lLS@&DE|-GN6Nj!eD?&@X*1VOTseKQ z-3^8g%J1p5ixPA(?C+S!_sbM-gljZf5Jg4B)`Np zSAS%(Q*%;t(fym`oHF6cpwcQ;x_Y^Lc~hswm9)t+7;OV1 zjeuAoX?ux7F5#$F9N#FxkO+Gy#TE zpsMz7iYy^eNTi{GkgZojTm1YH4#6Mr&`0=;@kH7cCAjep&l0iOu{kl>Q&N~PJtaJU zg@6Nb;GGTT6{fElw712*yYa|A3U88;Xy$}EQXGDB`QS08qhJsZKGY3Tm@9rqn=I|M z?=gM5Uefk*))|cxIIKpZ1zYG4ot^r|W}D6C+acwCR*Ql0RqvWFUAlO&>SZ!~rIz@A zU8LAAg9(aOdX>QqqcfXp%_O&PTeNIEwYEhfy!ll^gCmju*(=&U+B{ma-`rxq<;2DE zRR{P3T#V%*msIZ*uWavvsJN)us5nX(i-DRj0Sif6A4?OnML(@#UY)8uo;@*Ho*JII zr^Kmh*U{jkp=TpH_g~$AasN3v#?xs|Yher4LnL`V^clel<<_N*qsm1_pX6 z+sdtDt>TWTGcbw3Fu{~wY}TfCY+Z$sr?Mlxe={+Wa z-Za$1!_&cp%G7MhPpg<0%@vJV6O-l1;VFBHoho+K1viAYL|oo~Y5)2C zt#S%R_D`l4xEF6Pw8%4-+^h0w@@jPZM{^y&HTq>Of-S8HQ%Q%Jn-{OpZ%}1g+mBtT zx=!J>KDbNfxfa`1ShhcB%$l|~n%7d*Fun)JLp0fR=y+1&;hoPI9O{l^{ZKhHONVKW zZ;C&WK%qbCl7bpupf$k)=Y4{CVA_MGcVO8&T=sOzTwJOJOP8Vrxj@LH0}b|U^tF88 z%H*EPI-lA(?+Amzd*}sjx!ZC~GI`0}%79kC=G`YG!st>uhpXPyy4BR1-)#`kJcoId zd$aID#Tn-gw>#b^pEG=xNw#H9Yjbs5)>Z16Xr$dpf*De@S(S55Km!G)gpalJ4lAes zVpR$Mx1(PM4;2>&t1_}QAPdJ~lsZHqjSU*mfV;o+&z?*|(D+|xe}Ual@c}D(^l(FUfeN{0pi_FP%4G-m8jZ* zBi=3Oc*1DklD>3;Ar!25y91sOcnhD<5Y~Y^$Y@t3mVkv2Mt5KsM?{qeIZno6m~4pibznYD>47OQ>ov~004h+7Dot-;(#1F2)tPH2UDaJ{K*C&Y`WJpu zI{~`lSlR@JwBQf|r;pzPLr&w6|MEu?`(;9b5KS9HT^m{AT;W>dI!L{ZdNu!-tuTht zB{raB0S>`o3(qWIDhkSrOUo%ZR7ayHQQuO1zWiztTeac%W=b3@9;VfW)4liuS^aY< zj4Xih>IIAks=MGgrzsS66F@;PJ=>*hUg6B#8ItEY-d{Z4xIU18PANUxtzbd!oQ#>0 z=Q)0TJ}RQF_qQ3Q`6--H1PF8lo^^F&$X^P+?omA;BSw$6k3ZK6FmRt1R z0HMs54r8&gqJC5Q>mz!N&+ql86m=J7uEjtDl7=9`31=j_jTGruHKrZ=aOq$4#bsCK z4mO%iIzh^b4ek8s#8NP97A$#*Fc?+=)*+-+SK0jLXFMwt+ogBX9z6S;u{vBEKjrw* zOA@6mq>rWXl2BhHlCpyS9BTLx=XCd#xKUwDh$Vzl^^f;WdL*tLkli|FezKhWfDoc9 zB>wL@&>+>yzw(&>RH*!y6113!laZr^y|bO;f51SlF6L7}%OA zi!vyifaZAYtc^jJSsR!+ffSG7nS`B;Ol+Nj-0Yy^zZLyGVPRtiDPB68*rYqQR-iA{Vn=WVNekRCzHQb{$Kq2 zFS$-pX|cbT|7|Rgsh~3zJ4tEK@*aC2le96&R|{v4eJ&chAyE8jIZhj2e3B3r|vl^0iSDA=sZ%CVqfkwwMG& z>!kM%GRMBew~(CFTo9)PA(1q_s#2DzS@2qqO#H0&oopGXW;{P;AwKl%>6!{#?OwVy zvHoEhmpX7G_e4_tQl?pSUhB1<>bVhHqSc_=a(-gQuXi!=YTk1ji1NmHy0UB*-~|B`aU7rn>%mba#6x?q00I2UckiQQ+)^LLL|PuV6_ z{jo(t+Y!&)hcKSY5ht4^5!gD5Uqwmv7ANknGZ%{;soC%Sl(T;J4 zAx55QmhQ_T^aW>q`$lG#U+o0Wy^Q#HNLG)V8~*A~A6xMN#m{v?gQ=u0PHM)apxG!p z9srn_{tBoB zAeqirS1BCPNTYlSmq|-s1T>Qd@KmIu{^Bk*BaNV+p(i-m;0bV=5eNj-V}5m6-Okqq zSkEb&DAAP97v~#&k!91N)g(28z#pBbm4sK?dEh!HDlH_=Lc?A_$chxtid1PjMa(W< z$Z+I2HJDG!Yk)GghtUaF;3V1r{IWv&qLLn^>knNjc}L9)9%zx2I?>_&@EY9S*8*5=C_Gy`RSQ(<D)6CYw5O-frOSTTn(ja zbf(MIJ@b%8T`M5C*rEBo_gl(nYIt1q0lb#{>+~bR(h{q`J$ob70VUptDuVs zOs%8Ad%$0zUvswb1PP1=z;etWooZF@r(;IxlY284(HuU`UsAo4VNpds zc~X;^@AvM!|M~ge!xw_;4NKbScoMJ}R>))yN$Slja@3|ACur#)Qhk(ee80`Lq@Ae$EfK%?1PH-zVD&X)vOs=Z?Zq-arDEyUC>DAeF@NiyUOX9MX>u_yw7?p^*I5FR4R5A$a!BZo_bYNUV&92hi-KaX zA4DQY003lWrj%&(;me#Es_+>Kd2qoI1Z@6~6Q>#X!?}Zwl?K}@7}y; znTHQOl#RiTG+}xhozZ$hI2=rN4~7_|uO|m_S5{YF9$&CGo~I_B#N9n^Zw^{z9)E+< zqwFniZ%hY@PRCQE=Y%rWsB^k){2m{-Xg$vyee+{B5@ zOxS!KbMUI~>^D$1@E*zD_a{wLcDBAww{aiOkJZoKd$}ZjIv3cwB6_@yjnG%G^$<)^ zQeq{qZ60LGgo;2IBuUEPQM?*@` zBayZv)mF=3cW#d6smYcedV(8Zik^BY@@#?fIvcii>@l0?XIJk#^ExAz&1t1>!snkWA{rS*~nUf=Tj8pJXU@rP;tHXdrt!o}K9P!D;dV9;oT=aOqbN zNg;Z+z9ikzELW<={ketM>p>#!m?7IRG{HSPu{KX=@O^#~4`Ehc$1%4+@X5n@<$L0KjwAJZe)Api1=J&LeGM&29#fz&-$Dq^6cJtr%v1&IKyuQ zP3OVP(K7gWK`z%o=4of^ zu+~IiBE8=Z6h$G?bIgD%ar4-(bh$YC9&}ql%#~9wPsM@HcEC8*@Q41pB(YmMv*@;7as25(ZtWgk*?2dNe2lGNpwtgAcc zFrYzpbCx;|QMLW62-8!Enfw%wvn%ax{Oe8rS_+FRm4oe=BQ{Pd%k-XOzhmf%xx2^8 zx7$*6dETxlne=JS2|WE@Fu3~_Q8G)Kr|WI16A3t}YUn9Obyh3{O)I5c-!(LKb>+CY zE}x3!xsPVQ2Vvtn3}1hx#?HbdD8g3LgU?fr{!K}ot*tB2)qW=A;n6nGSMRb4C%>jV zp&C}B(U3B*uP(0@`?;%i5B4F6d{sF@)^sHxxm;Aof%k`Xwl0R8oaPys5$Dd=+_%&1 zX3LE}QIzX>J8wg6&&mb*|RN`ZNvx#!h1KuSD?MI_;en*QjWWi#fcl{uw;qtK_2X| zgb;QuMf4_0#!A*3IW?EZZQ8H~DT$>SqGH3Lzhm0A&*O2jzVPb|cffHQ7K~m+WoD^8 zQhq%DZf|4IFcX-61w%vN5^4^A{oc_-68mZCL(*;wQ74N@l{YCq6s8y{8$0_Dh5oWK za%DB1;fhCd)+nQTw!H~b`hGb^StU5H1f5kHkx?>xf9&-*{zz=ZIQ~rR*f_q)NX~dh zZ*19k#%S#Ec*bDte&j}SkLX`dSJb8gc+*-`vd5dFcB-Q6t{Bx?bm*;hyazkXRpSej z?Z!(WDscGK@N(ClCsdZ=RjYYc#_?+lbu@AJmp0 zUC$~iBhEC+E2YmgDl`hK`ySLQv8dY(zpf!y%65DT!73THcFp^Jmzw>qw1`)!v6SV4 zVY6B>zya~_t4Qke#i5y#69luK|BG%o9t8W;x!&V)JG2fgx(|dx7)x#>L6^gL&s(1!^A{GLUl?PPK zBu$VC?KjIcoe~z$Z^}BJ4wVe`mc_v2g^*hUc&>`+m9lx1!8%<>OTDKZxYHP`y z%_*`JzVmLAq4qf$YZT?RU}9Gdk*P=_hs& zh%}cAL5^9Uekbqv<+kQ@RwNs>t3_r!>HghyHlZkk-O_B`eU00q&cj7zXSQ?T@X>lk zhmUe|bd`6tK7CByI&;ifU5AdouPtZ4I+B{MS=C5s{ama#6&oWgCAD&He{~fMcfY*h zG@~L6J?fWscKc3OjoXOx(2AyS7tXXwR>BSU1ilG}tL@Xl59I7>ZixMI*3T*+uZfQz(lc)#CPUHGp+L2TrgteY8GD z6g^F}F$Ow-dzfBvT+}qUG!9aIkmKMQ+Z=-~!JYDMJIOKy)fGBd+ouVt+^y|4gH}De zW5c6v4)non`AFAI*V;Lkmx-f&D;tM^e|tJAhS>RVNCE}q_)!Xg#I=VzaliZ)+OD-i z+lAOb#I5Hm$P@xPtJ!>y1p=0g5pDdVSw3A&Q6nvRpTw7`u3b30(F^yV1S~h4>PvZ| zSJ-x=u$w1HcztW1tjxVnJ?z|i+V(E5LZe@^H{%loRW*Z<`#L&F$=zExjUnaLmu3f- zZZ~&*oyN9Kk?@{bLD%%u)I$>mK6;5t*iRF%1e(#|U~)FNnEwWZjh%hZmNrgFEg6q> zA0}-ZqHgbNkF3?Y^+U=G2ZHBI)S}UI1iHQ%m7Ka*>pnXWEuoseLB9HJ+vU+V`VU5V znIQ$A?n^Z5n?ZFzi=M-oH-@d6n-fX^twZmmS{37hp|H+Q%_EzIpe*qd+AUx|1=}m; z;ftMoV6GEnu!_M44`j8k71#rAzZ3r$qd1WK3JAW6^yP9ji<>EAUah|@Ss}DZqFpbgl8l2tO5Gc(4xgX6Hoqp1REE$RfCz+Xw z4@Mqb(JZPf|H@J(hli`_LwAQjj~sx)N6GTlSS2Sb$m@)Fr&RI!MHN||kniYp%_!~s zop9rWYgw3|r-S~CCx`?JfD3jjHqWfzreMCDzNrJB@PIref0hj9#1jt&Mv5Nh)UX1M z1_4I-5gj5?U3>kQoXrR3>-%Vn3>Mq~tKf4h`Q*3#YnHI!l$T!r#sE=KzRSQAEPCF- z+&#mzfEE*>s(3=MAyx{W^8_PJXCx5bL|-B>cY}2vzsJv7Dr8p@(l4K?mF+R3>Q<%I$`ClFJvjH}Gh3o(499wt9%iBj3E#g-~BjT$Y`Ix!QW zq3yewMBLFu{WwTqdKq&HeEjXtv{?f8d$Kn*?FGg*-A$=RnKS?lZB$Sn_5d?VD%wx~r^g@uG*rW3QT_sR zTSH|3REVgS5bjAh0zT+!Izi$`M?hbax(k{8t6v}BeEfp?so}_0?AHuco-XmY=k)uZ ztd@-3S;L!(06OFHHmNaV#3=`DGkXhtiE-PzJ$eOlbm9O^Se04?ChAlqk~Y%I2*%6a z#mOC`sH|{OBczz0(Wd3SpM!4%3;;$OlFZbDcV(m#1>GPR%&Qg!!q2Igdvd~Ce#Tqs zHyCV)8$Xl~d)HU7eux8)`UtK7oP{3==tsPpCj&_VbVF;kJ8T7~29WnGxo@{YP9w3`r;YTsT#^FYs){J@{P$0D-DROeG8Hz?wtj@28l6h%|et@+2o_ix?h|%IfqxCi#!+yPIWHeap z@Dk$qHrvkK0Ce|*F1`?(RIGXiLNa|T=_@*K;wfOefQehzR^kFA1Q=5#%5jxQ#Wo(B zG6jYq`Pn{HwJF;&loTLS&0p8<-)r2B6{i!2M1Y75WvP=Jq$UR&q(qc7^gH}0=`foc@FW%&pBICLL zAZCB3J>ZHpz!(O^8jSDLJiKuI8Z`-mi0!yJ#J%Z2-f|d8(2)pV!Jg>i%cJ{Fg>befz`BH<)CEt6Uhbgl-rr2 zvZRY*5CeZgUR&@IEMO|w%q&W%27ZRodp!-w91>PRF@yQ(@wZwWN?ODY#tV7c>m}rB zl{AJC0M}>|%|)I};9MQbdh(cLh&0){pqHHJTEP!LDBPrso_bJ`Bn)DYL1DXCwOo;VsC=qab@N57?-Df5~Y zJ4%1ps&@(Sl%hWyP|Uv&Du{%=ml(IzzPru;xXIaqa+fH5N=h>mTPDo~fd~3_?rzBTV`Jtq)fPfzl4YqBYJ-}lT z`W;Uou6Wi)s?*)Q+tsFNj`^uJs%$ejy>nyl%H^s-%eG!yXee-QjALyLK0emqBaG=q z68Q=2C8GfamRkOY5~u%ARpg#^k^C~oWQeA)q1nzhngdVj>^>u+vn=ie29o9AAW;k+ z(e~H4a!$yugg^#Bh5XU&r3vRm$l!%QGfrMN_l0F;1oqsy)O&wj(2FZls8rV^=bDjy zRevZ?t&r{Dcnq2_}ncjuR3UE3pecn4wxTHIJxnxaf`}z<9@!W-`hJ(A{WOV zGwZWyha0M6tlx1z$OYnvMJ~mE54G^K{P@U-X}!*$kI;|y3aT2%XbyC5)}Y}S8H-ns zsg;=Q0lw{8>FZUQ66o&yw6tv~mJ{mBeaZ6F^2>?pY!V5v$Wbr+qz-$vU?!&ARp81yTS?okLYBhKt*~vnGfCx9<&HW6f3QdMk z#s*kee?{{}c_(*9cWW?(--$XE8d<&_#-5x8F^tTO3tb zW8>MI;<(7%V0We>BEJM@V96l#Tg4Gzr=U($xw;%|&&B$-UWHJ<+5_CB^2t#7#_LIN zo0Ye&gAaF^=L-RgZT3J+BCjrH?G$h`M|9poaUK6%&WY@qcN~KOdy73HSqtCLm<7P` zz{Ga?c&~z)mi0qm2S%lUFjv@royhmePm~%>=duSsigz*93Nc15a?Kbj4JOHC)RmtF zLoTRqTo)(JvUS<`?3WaC2UeP9IGRdEh&<({si29KEmR62dk|U0@OfT+2Q|M<$^e{9 z9{lyZibf&8`;i}v!+u#FY7#ub`x~>xq9GsOq54R@?->qrX13lF;YXI;l@UL$w{3%`DDwNt$aM+7$>FlYFY;XZ|X(^VVl^zZTt$BUKrPSJ)h!dv*gMl zv`-Q%U`SNJc89lPf6)!)@dsZ!i5fjJ_Ojj}1s1hFls9`{Jan<)&K23cC(vvYU@AY& zypJnrx~?w2qJeu8pNl&4_niUOCv)>dztrnqFe!jrqy;#E;~n^oAth{lUgJ z+b{*IhQhhi)XA&XGs^kd96||P9}c6bISnTF`dsx%n3GxI3r1XKeP&sPL0#BcFu#{C z!maAk>(HUj5JrN%kY_DoQio#>Y72N^?lvYTr9FmY@I|uK!3-ZUYrbL z>`b8>X*==nme#X}TBt}~*hnp+kd+lfj1I2$F2Oo}aW~DSut;0Jhend)Z_*{Dk+|*L zY#^E&83%pXgQbKCvP1-s&$m+)Vg0)01FNjFD>aPM&Dj+XVHs=>We+5Bc^gq*rB%oD z+w3K}z6)l{3fSWJj}UT_W?GXs9q~kl48*i=q{XQHoT9>Nn4wd11Ma<#*sw6--eYBdJWh;_QEEe>Daz5Fdws6aM;BLDwkwM0&`wRR;B?~{8 zT(+PZ#}wh$TITF=6P~T`w~r>{v93jNs%A{Ii@VYQ6bAg3U`i2>Sm;=!@vRUT_p)r~ z{Yq0iBob!hPx@7Pzsna-d)-1Y@YO5h(yqhr?MuGSm< zqyz6;kHC6bxO74fj~s)TsAD4*LcNarK#Xz>52PRUB?kXO+FR-80GPWk7^Sdr7Efnz zCJ-a;l@|&~zi$>0QZLt>zc=`q+;KXjP5@4nx%4^Yx2%F8Lmqizn08@96m!m?kx$r< zcpEe-sxtyyFDI!7diN(bR7O-Lu}cgJx^TFf(vHFycZGa^(OcEy4f!DqUQDty^xfEW zY=!im)9R6Tx!*j=?R40J_qPOoNWlpADv5T9Z%Y27%O!BZ`yFQ--Jg7Z@49V`*xSH} zJn=s9We7QU$?C+p5!B@bY*XQXGUavQVBVNV9PMIRV}sm#aNt#2?WLX+<$FGs|16ny zf2xr{9UJu$E4~s587~yCVW>cs_Iee@*L8y;lp-JQ6-xyrjY$zsw?140J1j;H2)kBv zjq)~UVioD_^!D@Sf=UvnB<#BJkOljZ&L5y6`*1U$*ITn~vLNJ@;Os9R?yStt zwBMTXkq$M(%oE{ULORh2A6*4Sz@+1P9o27zAT7;|G;WZ9kWh;?COhbk%@6a(!n`~S zVBo5MXxzmae?vfkGhdbyT@yEeM7jQp7yIZMJnPoZTaPKg{ET%uGWaqa3-6AVbf+9q zG&vnC+nZjUNEV8tJF`M;D00+C<}PG{H5o!u8q8p!!vpUftS9`7IdlZh$S3IGd&f~x zMQi-%Avw}ngK}>0^T4jfQFwM<12u>sS9mZcPOVUsKs(N<6mJJTr`Jc@%ZM$JQzSw* z$Z6w#>OFNMjX+Z*3_~M)Br(<%4W827+eixAS6tYy^oIas@A*g`$s&B0YYW#NNMc2dmDj#aEm zX!fr>#4$mWl{cpv>!3LfggNw~bvJjCL)SA=f{zLCneA3>6WuW%TmzLe^YUPcc=tNZ z1dT^veN!wm;Jyl8XcS(ZuDZHkB-=L7!g=yM^CdRwpu-L(CP{*#_u%LD9G`xXil@80 zxScE6+2k_L~~9*eu^5?FnK zj0N0kBpVKU@Se~I&?mRPr7}Jl_@=OLM5+2|8)cICL?agL)V6z$-?VhuaWxlW~_iyLLjpA`^`dck6b4V zExqs@OX483I9z33Smk@rr+nX_TcmHKZGt3H0^Eh-61ASAACn#4a14=;E?vQWn|kQ< zjcZfkOYSfF8p$L0@FidN+wunQFjqSfA)X4Qgy*F?TL;i}Ds4RzO(tQpf6gg5z>Uw^ z@Uh6TU1=AcGcb7FC!ShYJ;;Ql5ue7KC{l(O8ps$e0wh%v;(lQqZ&INwej-sx{t|s9 zE&DvXE@Xf@V8f>yiCN&;%K3+SPRbO~y|=)X-fAiG9q4;AR!dlTfJPG5wjE3U76Kgl z2#0{Rd-raDBXMX;13m1%S582+YK!q`yML|<6mB453_Y>MDTe7BYDX^h>TJ6ws{rKJ zprT0FGv-U~xBix43+z?YRS?g>A6?D6K_JDoj_-Yc*J$LLB|s3T*B!r5$X^+j{4LI! zMw6j;x$`5Nk_>?Tb{hhTvd)GC{r+TS=&>r_kZw#$I3A*J7W*>)G0)`g3f(ivRL~G! z9cQ?V%{yWs^O}9^DkPLAQj))*I)+{D;Y=@Tk5jICbRz9mXba~yaPg9!oh=u9K4%UR zT{WA}*We&~@?QB?s)2w42@UxEeYPnrzy(WLKrvF>N;K(@6Q1A$Epz_}yPmPUKwJ=X zAK?Y0G4$onVNq?NnOMt+P1$PvB_oc$?n<>vXe|8kqhddmvqeJ~u}LVqhP(U>71X!x zG|*-vCE|Wkw_^&=S799i86JiPw=APi;tLYa{KKELQT9d8MH+^a^$9FlJ~OXxcVhiX zlm6V-*|Qqz1~`D-r_iNRjBOGdgNe9o`CO{)FB7^^TP!LhrDj~Dcz<2lF@vV&?eW5m zsn~X7g7qRD7Y+^+iwDL>jR@sBX8msK@=&L{PLDvSBxIG0eR`W1lu(Y`G1j#^;x;@$7i_rBP;jDV_B*V>3NdEdny` zB=^4nMv;V?Q~Vgkgi#$Y85XyosP<>+_A`$hRpn13x-)vCy3wChf9=$r z%%p^%q13)|!1C&3t#;!RK#iDrjN;r$H(;8e|6p>*3sC@%z^SVBp0W&s*UGGsDq&sk z9_Rm|DwCBaf4KFr&WsoSkRS3MSbaGbqRPd_9M6p8j+eCSL{5G?5!GQ1B<6Yt?L|h* zX?~~i0*tA;INNA}*#Rv!iXHF^lQ}|d$BDp^XGDQTe5?6#Z&|)6JnHKvsTjF1z}wY4 zR%3@_t+$w9wet`!^wrJAGzy$4=TX6rhWK3b^Zto{=1iC&wOigKQa-)LIdIzRi~s~T3|wH=yk2E#Mwz-;D@^h65m9X zOPp6n1`ffz=F_Shc^$7Yt1=?3ywaSiRFvK=qUD?ec76b4Gk3;}m?piBvCUTV>{j+yi zA4rGS{O6#DG1qrdCk8BBZnXO2c5Ra3!2W>`Ne&yTRTB{ zM@N9gP>etOrfA?anKSkC-8h$>&Cm<3&Uq6Fins{4ASxngTZpaHB^D(TJ9uB=0w13y z(F$m}A%Mge$bRvPp=PSb#f5jU(Cuy3N6L`bk^#?IbdTm+`2}dBVyrx}t6sF6Qwt>Z zOxDhf#(N=&-6#8@B~|I~P)_mqE3YdKQ&Oq8ZuF9CQ6vs-^(vyaf*nStzw8zXjaJQF zIT~t*57dUXZTOGyiRY(S;R0$N$Hf}Zj8tJdMu2UG9EM6yKe zv$LuCecJeXW#N9b`AbKHn^>vSq{~N;zO|v$ro*^;I_IL=bv1`ckj~Rq?8tOZ+fIMClbzMd04(lu0V;9YC zN{n-YCGZd7Tk4oTG658 z7XrL?HphAg?-yhylHV)Y_g5!cRCa%$rk&b7UdoJ;vMOEUQh5S_&_(^x)%M!mt7+fu zU?ELuGnp2d%^5Mp{!9vWr+%)8u;U}f=Oc_kDZRF)Sun_8i1-vWfEOAVL9o+*QJ{K? zV36TgIu=ig&%9ljn`i4?&k0%+xP#6UdE|+dw$Vu7(mXv!ySN^szX265#b3Yit+{uj zp@apqeT{Ziwptgk!~Wp6z1!5P_ce@CAPp5(@l}Q8`{LpdaV~Z9UNG51hROj+(3P^MOWYGM-+R)& zbKwmh2tzG|kKGoM?I){vY(H#_`4TYFUM}H+;vqcV^nG80|tOLqqJ)WJ=-ko*n>_frwHI_@Dl;eiI z0uoA@vT|^&l~!|22K*wo$&00r7ASf&J54U{2A&Z6(+F0N&I4D~&4n5QQC;Yi?=+yZ{0z6Ttp?aD+NtmltLp3mPzCxbZ(&#+( zK$`hUhuPCNf}>tkI?c&-pFa=~qbKdH@BRzsvY6L~odH%FQflRF$ijVP3S+|e;9Q-P zuPv)}4#}-~&TJ!u%B~5s(?-a4XsK=&I#%&bKgv)s4lfD8UnL)`oo5Y~3%3`y0-8ji zZ9X**V%Gr6opkFnc*PZfQUNr*0r}Q&>n1}%JAZvB+HOspj*DxPOhND1r!yk15X%rV z%tdMc+ZqkbAZhIt${WiMqiK#1ok{KzH+n}-zNdBHxVWxqw-Qm)ZN8m%9v>57BRe)a zgIIrM3-5VTNBO(@)r_#i-;$?iA=_EWJ#-vpz`9Al?XOkkUdx8B747$ez-K&ibtjI187la)@s`!E4fQH8OS#iKN%;gwl4I_)~y zz@`~H;L*x}Hi7wPeqL|{{6bBz$rw|T+ZkSw2FBo*!i=g^I$`B_!(;1p;_dkit$@3J zrk(GZtg5>`b$}J!MSl{#aYUY; ze@|C&0rlu6sGSjdLVuT{G$p)-cygyMe7;7l>3HfT%+OQ~i;!x`MYFA~>5une9}0w1 zcy=uhe;Zg?`*a+xaBMO5EIGWnIlk<&hD)fi|8@fQp(-Vb)z$JdP7kV^#gPNeeWuXq zF?8|nN(=g%p4Z5ove^Vi+*cZ~*Bt&2N}5g=YpRPi_9(D>yLUpAZ5+jbx08W$Hjc1m zK9|s;z$xnun_E{tH$X-jp3)9VVE(S+6E>uG0Ut)<1tAd;(d{vJ!bk7fq{Xxp0?Yd^ z--NqeI=vwXUqz*$Om|mT*OnP2pZ=GUVzB-%s)kGWD`zepe3i{`;nmGiTIb7TqF?O# z3av^pT77&r{Wcucl=FJbA837*F(KM5dnMP=O$m38^K>U}+6WKj%Z3G7`}&jD)yR^U z@`FpE-&k@=q-S5dbFIGI0g;+RPz0DLc{Jaf=u}y#Tkx0`r;sWKDA{@+B&<)@EN8D$ zEILA04Q3b{dFXOCa!Jli7?xMT`ow@Gg4s7XuT)zvoFs8$6kv_o*VsH=KG#=)WIxrr zCm$SedhU9K6tH4Sda^N=?V@$MCAL;v8T-`&0{>d3EP=QK+JWytz zS1WoTh8qb*&P;N*T=s2UaE;u+kHjPS&V(iTj`<<7fHa-Q7q2)F@`sYVCRs0BtG#zi z+&1+=5MM+Z{0Lg&{Z0_@Nz@Jb$5&x!JY`k5lPsx71VtUJ2Iw;wr#x%3@1Ehfggg7K zq&pr`aW7=P-Cc!g1+w}fOUpXUn~x2Xt^%WSg3#Q44XM5N8P+q@BE4jPg)y?7 znV9HZu>I8*^ks5{f36RKzqoi7^cUov!XA)*^YRl7?ggj5U@;R}(k15)05WNXc85t| z3J*IwjiS3T9;H}J&xGeNlixxgxsiBl*pvcq4~z17j8nowC@M;9``*hKF)&@t-oD$< zL)Yy#R(IK7hUWaDfYA)gj;L{YjCXy?nyADu6FjP#pR8sx@64^vHnxd1XeM6B;gRLR z!9dUIW=bZsd^yCPj4Beml|Qr2Ez^>XMy*n$THlw6a=>mr|9}}Q{BpT^-;ZFYFd|HS zw*Wr%aY@4RSeeyTZ#u`!L(%h=g*XI90bMo0y)I3uTBqdv;#b~&mCiywqlD|kN2+Pu z;O~))IZQsUX{q@HMO{IjPU@R7Ey+KT#Ttyw6+Q;y+ye8f%-)0Xa8GxQ(fcAF1Cn77 ze8$)lK6KCK7PUQ{>obkS%de7?0|=$wO{eV8#M>^GT)b-=K?@c{aBNoXUeHV?CtpPJ znuL8zdzFVuP|FOKY5%0l-%5}WFj!L#TdmCBM-FXwDcWwX#oqvs))y^Y zEIsKV#{J&z?wa6NTPKqiMM7p~OV|DF<@)^90Z0W-k~Mvt1|K2i*YOY=u-RuMt(vUz zCx!e?05R1T4+Uy^oyAV!)h^J0Q02{U^rxAT$);4dQ|jp0fE&dCvkeViu)@>wtWR?P zWhxBzVLgJX_YXf9t&N|cS*5idtj6%8_F$e4_v#Cw)(rm5((By^`05AG_2Q)m+u$hv zR+SM)$EQ|eOzSAU!oC?N{SO8%b5eAn^`jY!+~T z!cIq_xkm=y0?FmL5K@wlx-TDPTK#;7se7X*3@TR9ff{I{LrO#Pj`cN4q-T$o0V3^= zK*NU;0Q$~=hnRv#LqN%ORB0^LEI5Uq!OUc=E2f6P_Dbs-Zk)59NBfXxBB>lwvrAl9 zhRwr3{xGEbL7H8Ag$F)vb}nd-V5_6pSjtC&SINt-&~4_J7(I$ub>neF54UxL>DOu* zVRbP*_;zq_?DU(99N(`Fh~7TMuY#$6;Uhe(6Qw=ygOBX7k0RE2&;HC`*Z%7Sg-+Ce8#_DO=YMfy z|2Ozn_CMfT83Pp)4ZW`h&gKmN0nLICvwx7c99;iJ-f}W?{3p!@B5#>N8UG}2xj={i zB5ygkSpO&TmX-T2dCLXjPuZD)pep~3yk+@I!Tn|4{ulC=jro7)&HskH{fFC1@J#=r z_5RP!{TJc)Z`dt}EB^l(yHy8jeFkc=uz%J8GP41-IN3h~IoY{Et-ucCV&MXEf)GFs zHdY`f7YC4wl^MwP50ALmxPcs8%s_6=&p@uvpj-}C&{ZrzPHs^9fl6~QgNS7=HqbSH zf3pI)+1UP38#}1XKhjvZfoy+&SV8$Lpj)%C1GU(=KLgn~If3k)96(l30vm{hW@ljr zvT$<&xi~>)d;vbH)Lbu0F?om!@&(?bN_{^L3jDgp#$nKAbOdNgX7;x$$tkq|0gt(m4*4=!AKpY3EQC0 zsGTo#-m=IENZ{YUz?KQcbKT|t^aiWLu`I)#;DUMYuIEH4gNZgxOV_#VFK@POa!m4B z)pXuI%4=+_om8ju*VR|a5MxgM(n7ye~}D%f>@Vy!ouby-mfOCx$0c!aBv zP4)@G@@Kr44A4mcAsFb45(Zd-w<+u)f9U&+vlxtRsL8tX>LqHP|sY@?HNj09u{VaLxGf3ceIq zp!na%9#H4~FJkpyBhO#{+|U^WwgZ{|8&Lay4$=S5H0?hIi2pZD`;Q*+zm6mSX4`+# zv>;FxG~DI>^^wTNjW zzJHZ&bfy+x%67*rTK4?r`h&~&M=VBItksCcM&s9aI3>)OS?3g4g&`X-0-H!o+Svm0 zc*tWC>2Hm~N)+N5#X_qYLubTHNeqZSTa&M*2VPU0GT;DzFg_SUHWD5IZGq?4 z7Hn{PBCrg))Nkr@n4VZ*Z#ZC`X8U6VV%%`@5I_#wte$q)W9?(XTmY;u25?);ir*It zED-F92@F`n?|S;0pZjJ*Ec8SNR^w>Uw5aQGnoa`9Ljmu73PGq~IHuEv28#g*eT2wx z+7|ajBZ7IufY}PTniM5}e0gvJJCX<2|D$wzp!#IFtqgXh3y{(%6TRQd;AJ^ zmsp`r+*5aNKm(CSL(t>tb8p%4CoC7REdjRu2oAow3cyO6@&PT5)<=2y+CKp{i*d!x zpLL6%HPg^^aSa4xY<5ACyM9=D+YRoOhe?urU`!vV5wlBH706ZFV*#_kZkW zde<^rEb~iMy?BX!4_GhRT2Im1T5BKH+r`zoIGW0_e|*Ehlpql!5fhXY9I0t#3fsIF z81cy#9Qz3WNVpRD+~4~X8ZHP&cYHlmpS^-bEd%J03p2Qr%>ZP)<$V- zn5$%yQ_L=uTtfxpUSQj-R}IJ#@gY5@`iS69QOF0|xa&vy#N!I*`rzeqv7hOA-l+Al zst0!M(W-k*fVBi)Y6%{|0|@LPrbQ8Q{0Z!#7<JtyKK2`cq;ooq0)%LN%;5b0zbmA zE^XgVp0Tw9D(n%edC75jT&sHH3&&uidx<|2HLlHBBC8RRRB;RNAk*2SsqL^-_I|<@ z+Rh7-$$K47b{jBv+y8%vd&}U)nruy1W@d)6U1lmXGcz+YGnJXK%*>6sA{8m^t(B45nF_`G?Da0mp+&f9Cp8~{S{{V0Mu@b-80W;f zj5o%RKNw6NYFRKO_1BI!&o-UG+RqO|oE3kfjt8(e$u~?Mkln*h7HTX-R~r|jb)Tog znSeI|HPkkHz{$#6uymT3Fi&B4XPou`^e+xv+>BPHR?>(6BsVy)6(A(9sXV#4cG6-_ZID$athQN0ZJg(!QVlS?n(>YCoSGIQ?IEVW`$Vp*_43sEv0#8MIW^3>S4w|!@h*=aIB`jN?qk{sDm zXUto_;b=RgUgg!Qhm(s77wDm}x@tuYJWv637o^9xeG`QK4PlF>)YNUO9C^}z( z2qhe0-P`8jet~3$ue*YLx9P?fJ1B_A&(XDRC~Ry1I`W1EH&YCaw&dnQq0XR9Y<&A> z_;|UQPe}xXl=Cwfb+$gLxM0-vai0fPh(nHWV*$%vmq7O>E|u@K#pNBE9-@${+M8{_ z5qpB*o`k?d_D$lN-R@cSy+`2E?CwDq^tF+eSg*eU4mILuvAt=SUTaMXGV-CQJrVKU zjGrieFN_|&0R)tCdg4&6=cBb>&Os=lH!qH|7eLVcjC&oJ^&At_%z0wI^6fO+Wg~KE zEZLnn=SN-DO~9K!U5l95Q@%U#rI^eX3NeNIIF8+Ioy4x&wE9j9d2lG*FIi zUMfhRo`h3{*b z#8u8GBfI*8P0owSx+J7Y(%=(0Y5Fk%{o&r=S+N@wY3%Bs&P=88gbp#%-E>++cN8&B zO{@+rxs)Uq~JU&_Cu)oY> z%)maT!In}KZ>LjztdMS!$gDYUQ$dJ3E#SYyOT<|bf(My0Ym zw>F?8q}LiV=tx36sQ{3bR}f!_E{HI}^{f*&o&${r-7}RWN{U?=_EegKFBmpN{82jc z%^_1BV{#*FAq7>5(|*@z9RWM}IlB1@I;dXca$V*e+o`7CQen5Zy^7~W^p)(RGRshD z!xmip=+u~)1`@58hpu8H68Ks0RccA^NAEs*lS8bXLkz2-$P$+c<%1JpAEUFbo!jFS zIQL;5-9b-262(7DKKwm;gQx@I^} z=?mj#?Davz9vJ|{)w;S6@(j|sh|~NjP*lecVLaLl=uAduFq{r9awmx?hdgPnn+|Pw^4c0&vL}o>g7zn zYx%qHPa(IRwp@}((T#u}7TI`IlItO1TaX&eDh09V7Y(m|BY44l?&Fb{ly*ugc^%RuEacUGU67#jAQw|*{Pgg8fcM} zZ6aBC6JF=6E>1J~u-UQ_HZ$3KY^t~Or(y2 zummy$BH5;2jCjO2j&OWbFz+%u=d%Jhjotv1Ko1c*LDdp&FzseQ_lzht0l#W-A?_C& zmZ`*turu@{txG}&npe(miTS`nA}7x0^ql3ItW->tmO1QHZ1+()j8x`vkK|aW+xD$Y8NVI$F1x`AMC)5N>-&Q8}CoWz(p&} zREuj=^lfeWQC!*f5k@gA$II&9E!OL}z@vY|_&A5(z9{1b4cjlMS*cVkFei<%#$;ES z-$ym-QMg!^=H%BSL{CeGlH(y5wVkVFBGN4|XJh7**mwssZt0XI-kJDxh?dl;*jojo zvK29~OisHiTeIOJMDOB1Xwsm^EKt!hIfcH`+QvUJ&NnT$q6K3NHj{L>h!t*FDX7@6 zaAC4YWDb7oSY;?Rh{MhIu38{hsY^LknJrgYEY~8R%PX-|nsH=5i1=wMeN+~Vz~s!T z?(-Ix;e}Ooz1IPTvEc=<)Xq^YN8OU zx(+xG)nqFXuRaY9)U#FezT^?5L1!&hVJICUl3DX_a0&}^4z3h1&qNTjoa9`k9t@=b zs8wnWyPyqOuV+i}xnZcxQ)whku}a$N+SlfBO+rRP1fxbzx_%LB$=b|tZo1ww=ep1@ zs~@R<%0Oqp4`O@g+qRN^h$=G24T+Le?Hgc=EfStv)qHK{cI zE)*o!E(Dn`I7GFNh(vSd85vqZu4#{oJ6ql=**CcBv~jrR9PN9mzhIxiVnj<&Nl)O$ z-5^t#E0*<9Vko@q*=!fqhbdY~jexNdU&x`}p!$f`-$E_wn5{t9q|%iBhcdUksv51) zwkB?d%F5Pw;)}Vm!{mvj!h%+wpmo0F%|=hFJhZL<4?gjDQA1C#ulpi2X8s7xjXK4K z9a2^-dFrM5#U+|#6Z~@ID8WRa3s%V{TdT$RF|g*{_secEJYE>c`5q8m5H;F(0wu8aG@s#(weL=&T8G@TvM7yUJ? zmCkZP&^L%Y6_2WEKo+pO-t+JP;Uj1t|H>Jys@u`Z7_LC8#c-k*B$P#dPkrE=G{woX z2Bmu15K(?cmK|66AengCmMJE6>8UbbzGfqoSy41jP-%ZFLbOVri{*){s%D81S#dTA z@6#zMdX_!ZFjAK7MRTK8U#Z+<)sT9c)TD)rQ9)kra+NhV3zP4ymuoL;#id%|;c85k zQZJpjZjH84Sz54Q(u3^ujk?`hb@V75m9q#u)w+>8`5w!QRfenK0!|1TmO-h1HAir}Q)N4$J&QL^+{q<23G-MV|Lkw)kVjMVk>p-1Nh}o`ArPD?kR)ujzE5j(S+aP@ zarRq*AItNK?6T?O47#MLLSq_mvhlh7P@&c$<5FU=oM22pFyDOej(oi@v*wak$d-vu z;9Jr3+pNLhQ{TwB?UFeO`K+cjW2@z2`z3Fc{^cdX(&b)e@W6&L=sd02XkKYCOTLyEfC+5QHu8{a z*hd00KWzsM4U!$PIi@(^D>ywTFl0S@W+L+=WAxxVmVh1cFCEyP~9(O8E}M@8TVYyt#f6VvaijCg@{L?a5zUWVL@D36bN{aZt6a{b53UK zE?+Yp$3mh$eEY<{^eWSt1S2)aq2#dHq+M1$Ma?-KPqoI)Bp-V4yzX}?AjH}d^n6-*#N-#^? zrCL6IWv-<*yzrwbWWxWe{s&|af9baWVyX9^4w?T`xBs8UpR)hR9)y8bo#sx44i=Wi z-+-=`-)#(?{>~s+{u4oPaQ-KPU}OP;hW{r7!9es4_+g;=Cs1o<=ivO`5X9d^%zu^+ zS^uj^{Z|O$ui5_-g7`nr@jtZD|F2O55CgEW0ucZc@Jj#+??4v8_!oTP0OEkZ#CD+g z&IzOiOhEmfjfw4Vn1Pc62q}QL0eC7C>;F>Xfi&Zvl=y!ze*Jg4DiixZEAjCYR{cci zAy0e*x|6h!vT47Sp?l|%hYR>wvY{9}6H#zU25D~}$+)ru=+OCij@AiFEy@Nn0QYn9 zWdneY+SNUtZ+c%{IIyMb@P8}rh~20ax&%iQSuJsHFE9HNo5BcmIWRb1)0|Iwo;t`M zhbh~x;iG5%<4m9^aTso&Mm{;B8pWWF+ej-;qBx$ZxgM2bbe6QfX-6Js2u zc}Wj{-Vz){QW{T%RK0ch$es)&I}y?*Cq2|7$(`i@yFho7;c7^8etF`*(dEXfpd39Q=0+ft8hs ztiTsV}{fE9+czj9%u0gtE0o|_W zInLsKuNlw0{xP`zOK#qsoNi0KAxMC2Vn9+XVXi$a+U*ob4LG1<2um(E+T0OW;1v_l z;V|V>Kar~UT5bPyT^h3Io<@$5ozDxppCHP4I}926hQANtup5L^{IY=Z%& zsRw<$yJw#H9ZO9OP-UIVwzkz(S9kkxwsnQjzV4m*sFpiYem(0lA@C-Vy`yep5VVpA zIlN#haD22KAuSRX5;!l?c&dIvNyPC7p+>z67V`skt2=EbGV+g=jZ5v|nX|DNVYPlk zzyiSdAuWDKR=2g|dkQ1=N6tri^DPG&pA9m08}Xzh1KS`OLPbaQ9afiR zhe^u#EZE^6CLc`=bj*P#>9z4E?Jl2B`K{db^W^f|f)iUN{9OXNz2%2-vtV5CsD`%Fhs-s_KsH>OLO_)X5$y4v?X3ckM~dWs52n09Xx<6FDx6 z`j;RN=c%D_-l=ZdEPsz?EHgs_76pT*@Vo8jXl5iKOWQ+3XZoRh%gI(WvwRpJAc1p0 z1o%EYddu>`Jbqtx*5&fX7cy&g6BxohYC~om)4apq`%XBMXRiBcpS#8PX-|0SKl*7f z4nGcHm_~<$vfBGDn%)kZNKlB}V!asxPC4nG6*guY z=g@1BRk*9HAy~VgKeK*T8I^eQuU|#I_{t4pGKR2M&JHSvCF?&}Paiy^;?bQ?>fwv5 z;mJ8UdvrW)5(YRU6|<({-vBHn@uTYs})8me)jHLNkqFSelyvUPTxNzY;{@9X1eNDmfgVfA&oyglUx z5gFO}KWLnX3-CgND>}}!L*BT3p#==poni8M4Aokd%!JjlOX!Ep7YBbmCl}~o7`RH> zGIeb#q~OBdm8-H2fv)a?Rb_5|O^Yj|`$pxhsqZIbx~wz6Se}dYm8$;N zWcw@l-3c0kSQY!Ctc(Q!e1S2PE9heEhlLhRMF5D2w_h~Gd>PXuk5zJuYG`!X?6Z?N zR3KrXLZw;@q>xpz;T-fz-MR3JMqQ3E%7niI+fYG9K>PVLeD9dtL|*&(EPOyJ;{>wD zN+k{|y%&q{p{WkDP5XKtj;o#->vz>p87rB~>QbqkoopU0CmHP}9L+QD*oAcMrF6YB z9@FpCxD57>MSo0|y*F2>w~k)l$ymUWY+}e*!8}T>Aa_iw%@p*CScJDtwU|Zp%vgkX zO>@nL+t*8Q*z_K)L$gyoWN{e3xF!~{Xow5Xv_Q97D%sTVJgtC4+m6=BzH_pbP>lvV zp;?zr7$#FZx|#GpU&57>v+>MwJaMos+yB5Os79Ed(8XLTJu=HmD1uKc6LJ=@jiDu1tqgkG= zzEsuJqrqYAQ{joK`_5 z-ZzC>2bpu9si58uW{rw;aI&i!2X00&D%xMmJS{THsw$?%skyO+8B;qSw>^g+Oi!rd zjz(iDR%TJ3AlSh(E|~1DnVAY@z{T$hO{*AJWlL`9l;;?el(#CNhlHOr(#^;3;IB0< z4&a-8(tQu4AFXWmkqz-?PAS4UuRcgdVKvNYx)2K)TVR7oRFaXo(DQSvjdCZkx7U_F zpzAWuCI#j{;l2glEq<%ca92@I=2_aM!(6adu08RT#VI|C27xzqwmJIVF;`o9=2^~; z|3{9*CE9kRb1u*rcP&F#DGBA$Sh|nBm`QS~KENg>I#c`bBfXJj%Y?4M$~K$3q%4Zk z<9jpjC*6btbm{47+-H%r{F}W8;}+VKG0CX|ZSAB!>O*4|S_X)AUAb0^D6@ezTYlri z?B+xUtgAJAui7#_SnRbyPVygTn-rLx6|3-VcI%J??-*AsIVbNoc@dsbf$$mGs8(UF5gm@5R} z-X><@H_h8=(nM{mD@0|Z@G8ddRYYe3r+e-!^8#+pDUqvP9<+^tCH$#FjiBlg!Nls3 z9+XaUsQN5tX||z5j<6sPU^q%(xbY-w+Dzji*%l5i!_k46Hejc9Eh)0lOQwZGi{W7R zSWlTQ=5h`mTa$TPvVKskp7W6a?sEKanX1aAUTxxV`8^}RcG42gX%dVaYAuU717vN{ z%%@tDSv;$Oh|qB|FzbVFqML0;5YDOB1K9qsf;Co8xb;+|--po-pCD<+&GF~qER*vX z3Cg+82WDNTnRUlByb!QklfMUH?%ziOo9JHw5+FDYM}Wt_+OAk`+N7gvV?uwaE)CZx z(5p5}x6PT^EUhmO`;PeIMR#196dv8gzo6@Q3jN(`XQV|aAh^0iQQ+gf?Ti1qFkK%d zexUI+5pB;uFmKgjIf+RA|bV;OS zYV8^wTJ_On6eWVMCn)%%#^j}s##*vS$$>j|#37_DX_G(SJEd9*1{u*$25U5=%xA4; zBX^AQb*LQ2DIN>ZOVjQkWQ7KGD(k)s^eRv#P8xCG!pt1${ZJU1F)=t3D{f=iAv$hv zBIxSd>bKB(`obbjij`YRViH+M)eavNU? zj2>fr@ZyOFwiU$BlH)rFA{y6iI-+v4GyJYMYu@-9SNxuRsjW%2S=azS~w;tNf=L6K< z&sJaA_FK_mkkrIG{MDIvhX&u(*YH?R%6MW| zm%=fE6TGLF2Y(6u)cAo(3-)uVw?cu=28+hDi#{RIO-zynQ)>>9B?phcXXP&M$s?|}C zZ(exp)daV<;FY;s;LUePt}UNIo5jCO`5q?9^SIiH7b^@GNe$E;v=Aiqea%U?%d5+5 z{w$mHAb=C6S%Z0c8PC++iNioJ>)fk87i3MBRQ{elmO3lEz9)U4Qj}XV!cZInm+VBA zHu%#7@j}qMVeSg`Qwu$?Kp?0VdFgo$sVEpvtY_}XtEGXlLE-B;gT#$9jQ0I$!$V9Fgyp$)ksF-c??N3p)SoyD_eh!J*6 zhV9~n?PNdF2;ZIlceyZ`#mr-~uRRDdCShmcLowe~JQ?PHh4&vFDpHSrd_2Dm2L$Om zc|j|sYKtTd7oPP6c$Oe=GguW81RgsDU-aYL>ij8WkV7DOX<5eE=Fbu`IoKLzA2wYE zn=|n8eO)YwMXyUn%1HVXI+zW zoW#k)+)>tUSNkbaaH|PAvaO_4yBv(-&r0&rtQRBo?w!OnEoZ2M#U`ySOcNo|C_`){ zo)-<5C4@6`cQQh|~83GJx)Xw`)3@+jskR=RHDftPgHSSyL$9uxYj2&H+YE-$33;X->OrLX@%X3_3DStRp7DjVdrJI;IG}=WWOTgE#lc*(NK~<@Q zi4z#{cltd2Th1RFCsyyx4_9=>*>Op&hJCZBQkT4Ik*t9x+t=rSi14+a22?Xp1*Lmf z!=@bYvE5fa=KeSJcW_gDFMp(C`Mswg(bt}`hF2d#gM}6EHkD~bnosL3sJS~}7Tjc5 z&!TEP!8|iDc3IGO-0}$a*~=apx6RKKsQSoi#(Ouii|VnJ$TSheB6$dm?oXEj`y1^i z1GJ7NJ5M*j)`v{OC`HI$=lCKx*3NaAmy0K>e`OFgX-rG8^6Qw_sY*~ETs1eUv9&U= zv7RP{MD5@F--*$fCNuvE_xE{Kn#b^K*E zzE)zg!e+D)y-LMDQkjKAefJZU^-93Z{hFO@K)ZCD_l$~1yy^F-_T7oZ4^!Zy6T@hlhE)_Zg1$0dk**(acOkIS}Ak?A6 z-cdj5e1$}shOQhEu);H^uP0^8f>dt5x*64!GygU%DrBxTbg5qY^4rVz_>$JP%Coj+ z!8mgzX9A(qM!cz{e{bod!dhGJKK^7Pz@nm>d0`8$3C)V+UD@g=MaZFV`*97Gjx63G z?X$e@7V?GL3CFdU1s`%K^$g1X3yt*eI0W(~!uGd=lM;=(Sy`^c@!xlz+?C}Cv;nlH zDq~!vi7_eER!sdDXg@Byl|rxo&>@vdOdq;H6Y`hel3rfkwn<#L&VKh2xCgftNfM<` z&n3}Q#GDE35VUDfa4E#TK0m$JOES)Nla*P{0@rpT!hTie5$!LjJ|~uzTbbbli+4Z2 zEwbkqZ}O`|x%x3cxf(=Vfc={!LC^ET_$@X}<*if-l-(0@PmkX5Ma1dCp0|a^%DqVc z{O4r602cDcAA%P;#%=^(eg5o)9mG zSlybDB}@_S$N0krd9Z-=WafS8eIA!S0H6yyLsBY^M6u^yhjk$n_}7cZbQ8zXkcFpW#10)+h`QXKjVK zu|y@|;|8QfTsX-<4%C?ZBV$n`KrtZ7!4^lbL-_m+N_A+Pr=!@}wcKh{$dV81#FrX+ zqI4S#VfS>9DzBRKl0j7j4pNu&5=ZF5UxOFangk$6U`BjSP$Ry^>u8aJD57FbRSZ}1 zl5W>&>7WWiy+O4UtwQ~)91X-g|4=RLuY0gz%-TrV0!;f%4gza{zoNWH(vIy?25mb4sD{SNoER5 zJhBq3pwSFr@*%(gXbii=+8XrQjlUEU?0(QH_Ri%2 zHovb&gB)#IECg>rJG#=iy=2TR9W18df+EEf@CF9O4As?r__G+XDXPmOdUF|sEwx~U zX;UZr&mf8|pyw7yb)vB7E4^&R!3k{Jv|V_FuQw-{9N7@Y8=sdj9+6_kT}#{+4tF+#~;3kL+(({h#&-FbC*A z*1_Ki4-*p;CvcnoyJf-1%=*s@qr)4<1#jv5afiLxCOl-f0Uj;5fP?>6KmtGzm4>Ve zwAo^dEV0fcan)2i#fBzkiGzRBgi~(4B3jqn`u1!woEM#BE&9unBks`3-3FWGoc@61 z+Poub6KC>Vt_bL-A2UFdDkbslZfXeM@v`0RXyfU!?aJ;d8UP{?;06lCjMsR-UtF!* z0T1wl1TcFcP7zGNe*)>s2N{5;{%Ft`mvdbSq#FvvVCbU|3h`<(yA7e+175%pKdobj z63`6d-$DPS`S9?4il5V&Utm8Q0CvUQZ0~xtDc`y02fB?8NJ1i5XSaq6rvuP}3jFEm z8?t*n2;U|EoX`UN_E^Oq$9vLK0o3&9lz&1R-t3A>c3>8UoBcb#L6}Cl8yyeDD$tAsy3z~=6n;_u{Z(pd8!sW!D|ul(#e4td zuwzs66KQ60W6a(3aktX%>ltw@C^A3bWw+P*9I?%i{U?zq0T_||E*b!?&+I)Bt~#FL z<|Tw36PBC+&@;6iWHY}H?tux|wB5MDIPQZx?n2v^-vCsz<+5KAZow7ibrd+R3h|$B zUy3$CUT@NH0N!{C;cwH*>( z!(rCSrhatSr`Nbm1a!Q@NA;Gx+^5>m4IZxEJQq!ZE~|M_2lHHbW{7+o($_` zVEE{HQV{WbdQUByLHx(zrbHa^@ISq8x;vIp~*?`6kj z2!xeqHvolw69qdofPZ8+AXv>`^@k|QNa!=LO0f^~ao}ACgl$9Xz~SBtBEA{`SU4bu z4EV=;*S4|o1A-i&t3r(P1fkX~j2?s$VW(lN4KN#f`O*Su48M$LxNp?pJobRNv6yR5}aM z(}3I{pEp+`2=X}`MoJ^u0`=NPJ`b`sL^=BmRPR=ar@j22iw}ixRrGXk2fc}Kgd9)L zE4kV4P4%BnkK*Qj?vKgpn;)YH)%b5c@BGbYP@8j~POtiMejoSxIlia&XvKv5@9A@X zzOOTLey*>5#aq6wqjPO?)!Z9iT70&Dia+1N?)m#Wy`o(&jozO=FOF<=5~I(G&wGig z`jg$!Kfyo2a|f>y>6nBMTj(ySFVDPVx{^PCF_5&&KjXpv&eU`4dHC)c&TH=oG$Ux$ z_m+91xuMvV|CxQrO8;${ZS`a9QUBK8qho{M_m=5r9m&x!=jPsXbp3XFu5N@f=TDx4 zh-TudrWOL-_RjOyx-<2~1A?~xhKGW)uTPPeSiFYv%k@KdSx1~#TENGa{_E|-pI4uz zKYVt&Wx5UJpH{jb&sUCLZU}Eai$D3n(z}HNut4d-eKF7B9wDp`S<$?yo~6%VFW@fV zHc+`RUNxn)$Es4ov=3E=oKtMp$ZMDWx(owWBGhn?d?ELgeFI!In6 z?%}%bUKMHFdRQCWc~@Um0nZPpe?F`M@ZGP!dIu`~Kggrp`Y_ztRmPogUNf7|W6bji zrvz}Px-ogcJb1u#-60F4w_$SvqF|Wc02N0j%e||HPtq{#FU}U4!TS72pI`ZJxt{6h z`T*+|kDLGy9x(BVI_5YHZwfdVZ_I+UFov9f#X;^Jva7HbjA@~|>E1!fy1a~oA;AGO zwLtJXUO)tIn{m59{yYMmHtlwe+#s^ppfe&(9-X$6l+v=r;)?|n0PTHrv z--K(kdL<{BCSW&+F2Odb+8^HoyD@NJsWS4tZr?p=en)b8$tFinR6<9O272;Je%pY*zmxJazj^3D{6MsGtD&daT5ti5v%;HuT zGgg!kmrkfeKX+PWCFiKTX+&E=mYysm^4%|(m9>K46+g=6!V@vV z+-e4mVSlWm7n*}xH9!i9td-+T*|R*)$0U9^u86+EVLyIWS>H~W%cReZIJ+4RrK8@CE=ceElez`-p~ z#8EL*@E~Vm=H>muC^73W|A<}VG3w6>&uPbD70)UbC0NT^FW+W})aS0{zcDxGWnPRh zE+fw_#!z{|3d-8SwP6dbX{*Ehynn7YfozRe46j&?o1honzc&Xt>4G+#hntf_xS>Q&p^+~KYo~ldm)8+M$D;-ohD>fJ``?ELiqUfn%4Owgz`5v;GIPH# z+q8ABw{Dc1xbYe)T0=PEdoQx|$;bw?w_TghTGD2AXtZ)? zvKhf4)y#IT<+n?yz{Q?s4U)FY$}m1>el~gNhl!5=?l$lp%skVfzs$Tk?x!Y`ZL?Kk zXd4@+aU2}Q8LBb|)b`vEd<71JH!8}+%B{H};_&k#RbRP!gQM_Fd8jh`u#9S^2Q|9T zwLenX0`;DMnL0vNw(_qiM?dm}v`aS770zq()@TD)#1-D8Y?AZMgzUX#-mL7s72X7( z>kDs2cH#MEMmE|CZ%TIJa>qArbK@r&HT&DGJZ9iTPqZexb!{44@K(r@0|rLVDn>8K zl1qV|N~v#fp)}4Tj<_6Nqqx*~N3%Br_0D;wt;j5U&OJSLg`aNu zxEgD7Teh@glPJ)n4Owg>DuIFt<#JhR^Ar!7wpMPzmbx9Db%Zn3uHW&->LJ0S^7L4r zfA&zw{^o>ILGb!keq$9H!R|D?h%@o23=CJ!fm`&cXBj zk{^E*cM-0VWr!qOlA&f^%|w~`mMvw?Y{L}1U-9)#tsFAfC|jaV&S50I13}g^XVImJ zad|(a$TBp}>RN~p`1=-$Sq{HakvmO+qsSK77fEXpRLf!8y;z#XRx%{(wMIFw(S@sQ zIQ{c0srt7E-3m!>W=s3=lt~d^6G?fiiIWUN#K{3+JGmPRwI!#hNHnn;wg$#J4^Jt) ztjURof{YV3H64XE&bphx)zi$*KWg^#b%VF#+9>#AxM1mM8EnHQ=OUlK6cMz>a5~cM zjMwp*5~q>|UNrmi)hqLvK^7VWzZE~RujURq zr#`zB<|eLiYUEftnVPyHLNYma^rQ}2U~1M-Tl;TmJyHZzI_OVQx_!qhr&sJG=Y}eI zjgnGts%5jLJv(JvWTcBZ(~`^N$e&_sY2X_JU)4xGVPi9q2bD2tjgDSP^oL(g;te+& zIXstSk#1zj8j)$LP2OQJ!0R*Yb`9) z*C5lzpkTc|JeSF1q@a5GyV3N5Sr@iT^a?%X7q&kGdDauYjK>nd$zoAlm%NxnnYBir z(K?70tu^N`Zg`ggU*gp{FL!gA1;8KKk|VM?*o{y2OdFNkv*(Vp+tmp?4o+YWPuq`7 z8iMVp!I?leX%Y!H^KwJ=MP79Dc{9yi)d+-s$ibN$e}3Z*LkM>J>+l>XPOt6?C$^@| zmEGNlNY@Z3&T9uSO04-&O@Ko#1XC~?<}mW*RL<|roJv6w3Xk4s`I8$7Z_m~Y#-Bcr zOPx1GMYWfZMu&NN#J<}aYI)mK?z0fFIiJ&;-Z{@x?<}#-0tUQ9-XY##I@7STrT*IF zq`5a3Vdt%}-zwO?C_xvHpcP!rzX4Ek# zi5jNQ@uWP9Y3a7YRf4(za6i^}4^JFEQwUJ40jq*ID)BZrdVE+gl?<6OXQ&Al`lT}r z1=b_bsZ<3I7ve1du9ixTL1Vhba0*W!#+x>aRuE`KgpJ+p{Y!`XHRFm6?@p7_m(`sB zMm+1pq(yeCxpfzL);4kN#L01qi5NKsjUy9mDm&3#u@3DmS6w$OIbSQe(4_Jd$M>v|p@$mUC@Y`I~%J+U%tZowbPI6EU{BJey zSZt^7=#N`XY&N2N-l0MyRMLn4l?C zC2gFjv~mo?1sd1dh6#(j?1Y(;@{6CotGxfxe)3LYosvF&2IqW)fs(2?dWVZmOdTP8 z4w&?!JY+sFBGY4{7)L`YFEB>KNr~ck%q*3v?G1a#l#<%aX&_xsS z^VJOlq77j9-pkMq&n^r%?ZM5sM#C; zV^0V~i^bv??DQOBbZ!nw4~Yl*U7$^YXvgi)X;bK^DJqaFTzOAn4?j*-<|VwmDDz-= zrYPoX>|$bfv4+pKLAmUW@%x>=h8C=%>vbc+$&Ca&$iu0m;5R3}MMfbia&Xg)xk?^( z0>EeCs(09jh4X|6C5l(UEO z{5JTGRtagQgeDxILCe4rp8=zCQbfHsfeG-A;sJNeyZbtr$)RoNS=zl=M)6e%5}1)I z#YuSo3<}mCOZe1&v_T;5-XiXVmZ5!kXM6F)6;541Lx|+86C=!x!a;w?q3i1O`@`*_ z>-z!rx5ljx(OYB{|H&b6^7um@^xMb^2gA6TZ|YJIUB|J^@7+~O@!umNR9FWB^zarC zt2cbJ6OU(XFABk|3FAFR$G*(Gf`K>T+m%Nn(c4q-Q2hQqa8rM=lMLlrdDEJL)vDHj z@KESq=7TfDJMf|sbKc77^RjyC5|0HjOJHSKzu9n&>znKi&IXnpJ3XMMmZ2;riVLri zFc&u(nxuqPCrN{3$e4Zlb#a=yPlLMXTjfFTpqHD-sw;f6m}fbGovJAE50>8z^DF#% z8&}DRI~HCXL@5;1ic=*tO9LoU1+_MEPhodddcdkv>LiYDuEcdV+1NjjMsfmlsRc=M zbioELzIJpCZB;jk2f_rnr0yD@CgX~d%4kF1*X3h?kO|rF#7dwBDBwejfLwd+&*cf@ z{!|`u#TfR$VMyl>wvkmI1;f5ae{0PxJu>LYeRL3fOL6Lxji~%aBF(cnEiD)2)z+se~4>vEld! zgpsz5PiVL?w|YmkWVs_SIe6?kzNwejPw=9wt~!Q0tlr@~;2R1MCn|oin?koT0Td#q zNNN>T5MY%Su+0|ft)a3eB&NL>ECXvgPeuLk@kX#)n8#_yCxWHU#KpysWW*e|=?UEX z&KK*At`$6W-gOO4$&qG>J$zy7c=RGV2_i*c>)R23+>i3;8B`s9djy>d)UHiBZz{X# z-;G?(JG78t+Mf6}@GiT#bD^9`y`-wIUz(1|THoM)(7d4U2TY24kUt!t&?4sPNACb$ zMMKgy)GcZ1S|l{3oxv-=Qz^|ndQc+6s5b2!2vpUc{TbNm|8nSJd z@Cf|!%{`>b0FP%(+d=XU=f?g0P9A{oWa4HSR zGeKXg2LmcJlos#7p=S-8!MoQ!Eu(-?q9k0%-)U0pFL)NhMaqf@=(ncQ%`!tl(c8>E zWNrr9rZ&}J;nv?!;_nk#?Q=W7d%!u`7UZYCa`!uwcKp)C)`e1D_ZKSjW6}|WWaTS3NL&I1ITP?kGFZ$J~Kv<@$xHkgR=*8YJ~DHd>dR0 z=g^1{@9p-sep2hSq=*xI-^HsP48FAM@Q$0`(=DFHe%8|3Wz7jsufJql#`8LhdFrar zZ8j*plu^2rkzbW6)8lkeXPG}J!z_f;Id0!6L@aIEeJYy0zn4*>3bn7%wS8{XzmtH8 z7d}g)!oXJ&oJl-bB~~3A5T}x)1&Od@P#e zr#4?5S(YhgYnS8p7^|=_k#DJp^^wCPS%7Tg$rvbwcELNmk3#DvCa8xFx-Xfj^!edM zh)%}z^9LIW`;y-^6)LLF{C6W8owy57PhFLQv`+hXPzca>2X+sfSbuoILH=Tsm&ard zYvmusZv#?1gDVGS@?ihgv2#O1BT>6kS%y&<}M%VY7z0MI9}3 z(~k~Jd>)wyfX*BWqNgGoI?^Lj)EhaQR)xex1m4w@39l!wH1lIOCGXXRLub|3;20EV zE!1&;V$iAuLiX5G)bO#eLoflicDIxjpj`UQwtk3no>Z6i!d-esYve;tNVw;A1OR$S~W3uBsAc+$$|faxOWb(Ykj+g<1}e(+qTu1 zjjbk)ZQG4)vq>7Kv2A++54w+zJI=R^?KH|I`Pa$b7tOS-D3=WQ<`By zMqLdu4?`@vhucJR^0j3W0xC!&U z+BV#dZ(FO4lf8#6_YaShLYMR}L0&n0Q0+not;x{^U+&UbAdl(YfPZbFFlA8lrDdIa zPcLs>Y-{I>bv%{3&L@{2C%3-p(g%#!dA4SSmxBw6es(~e=p}9*V9*FMjwW?R?<9SC zIc-Lr^v0vk3%a@;fQ0?H>x|^jB2S#dyoM;>?YrY$SJ%0(cgE#e4UVJtRJZG_kgnHK zHKfCCrU80*zf2v&iyxoma4R3@`)hc6Io&M5IQtpQQ?OcS>nl7@=3@u7JEZ(($Fs?B z1iq;V{wg7OkK%Se?{GpcSeC2yl?pI*h(Y!?*WBFthBUu0c3mfipG;|6ZP%q38TF&>=H!(-mOngEmR36neZ1FzrIz|=C3Eon)V+wt zrLxS=5*b(yugQ=I9VYhH>`Ukui)u4^GT+{jwVVj4iQCtC%@jW>g?=e>XcTSRHgb9g zy$)M3`#O@Mz;89>Xfy{2Kf9n~N$-nJ+dT$ZaJvQQbKOX5y7k0z*6593Iv{_VlEgRWiEM^?pXY7NCTII*Ey@52Xx= zaT-vzAK52sxrFk8%L#Qk1U*uzWId;RlvP6CQA3o?>8U3ymLEY=naw~|HlIC1eT95U z)p)O25lAvuJ;QS@%d{QMtukIl$k|DUZ}WOg%CM#tEy7YiYFtMWTRfh#kefeM*|+Xb z|FY56#@~E{fL&EdfZ(uHPS5J>gar~4$0+-tJfv z_r|XgnttiwUs$jH{q>(&cXhWr3UO=s4OhnZ13rYqr*Ra3(J1L7ur?iT)4`$5rH=s0b&z{@CDS`w`2LGPu5;9`&$zhgK_2QsVpp z@8Elb3(TrKSdy^icqtTjso+tR<@zp5+@?gWwLv3}vM5>DP%ETx)5QA3FE^FjV}kIo zfCK5_gQ8&n1`R@I=Y|%t6}6F~x}-`cZ5l7_Wb#5jwyhC=-pXY4Aop4FO#p=r4#U{dAV{6?Oi+DE3%Hm{BqM%Ji8i<4eHQ(LYB zDu{UT1$mf6w^QqT;zxfD9a%Vzr|CoSQY#+RVkni;v28Kt2D#| zw|bQ8x1S@3Z5&?oq%7qQ$>&Ci)%i{_kF?d9FpjZ*TC-r)FD+im7(Tc!fjO=FGQY2< z+xs$U+dQ;C*k3h0_I7#>b@HKlIiYE$C|&(BC^)mOD*fXkf-|u|TT2Co}Y{7TwL6lWbV!6sc2`)P8hQ z5ft-lmO+H?eWHUmEH!8YfANGl7%j@T;8~cbLEd(i!AGM981mYNq#H6<{shb$<+9^k zF1eGbpeQRJIn6EOTq{fAOG?k%ZQ%sL zbLDBi44-gwK00-Dzg~)@NHILHc^j6J@ETwwVU_7YsooI5K{Mpk`#p!~Lh>j2LZgQ_ z3ggONgTcB_pm3NB%30#N7&Va_rq8#NAy6}D9zv^!l45S#CEi(PtG<_`#G?<1w0qDz z=k1trG#+XL2;F)ki4u^jUt~fYjYe*r&bt9SmA?uTXKpiB;s~k25LZ)nwLIn8Yc4}d zIidU~T(eVxgh+|isad9f7IW%XqS0Y+>NJ^%&pAb;!h~NEn&1da)=PMg8teR8q1*Is zTS~ek7pF8bqEMayT){k-mYDZhM%V~fFai!-o@EEmb`Nj}R^2{fc!qDcB7~ARvfsFX z^z5M8LC!jwxV(GaIY5j{$)(!EB}@k7H1~H)lRnM{KE*4D*SxsVE?7xB6HhWND{;IY zslAk0o>=gzQtWui+dP8QxSP|_G%VJV)BKE)q(|Px4?2LHZuYK-3inQ@MMBa3=II7$ z5AXK9&AViAU>Q8aE^J4aWveL@=^zw((UycGdiTRHjEjx5G@0AR*wi+5$1guDFRNp@jEzs&5)oz~C zscOGUr&0!$M865|mzs`Ecwm53b*}HoF)m_m&zeqel{HnnRWj)cL zQG!EZI{t3cz=PIocAu%jw?63Z{M@!E!o76|~; z)VrytBCY`!yJn(PT=vh~oEYPCP~vKtjzY^33m2{Cj@$G>fINn^G17Og(8zU*Z$nVc zy*X1Okf;x8)iCrRF{M}@8N;_WA|F9-P@*eYaIn{mAFln$Y_!bHC)I9=$O}Uf6J7I} zx9Dzy89F9R6xO&zDz+?kL9VyHbsV|l zNR=rO3yf5)jO!HKeuMAKsDYsv8v~V1;BQ)7!K|;TSWdG>A*^-Ez|N{`p7| zn=&jxG~iUbu}F@58^aQoaXZqt_|j0lJ@}-mezzh5yx1cu~(bIGZUe;|8g!4 z`Bl=!X(_0$B`~yd+wHRh%6V6JAT-x@?1#Nd9w$3p;cD)OKxjmQU2XEvhV#w5z`h@a za53psv4Noom9s#r417MP!(50DJEFaV!ycRIY1sPI=Y)eIqN981*#{8rXthEIJDo`< zwENXZrb;m}*fr!MF3ed6iirpThpTo@31q0E!}vcbNuw`YFD{oEM*w-dn}~3zhC9cC zrJWQoO{sHWJsp6}wq4v@Kf*#~f)s2q^riiZJ^BEB^jWcJ`*Na9jA%qiNQA}@gm1?0 zOBJ1DV8rq_`9nF{QVfl6#WE(-oW5;ZFAveV$$OBk8h`T9Tu}a~G zFv%^5=^4~d?%;dx>v-xOk}oFrrUS~-_X z>-KvNhV^BF;-4^2CKdfjlcO%L9@cz2-aMjRJ(dfm{CB$yU9J^}YWSau9Iy7xB^`x* zXyK)@AJ@1g90kV6c190o!;QYb6+9uP6k>xetF!JBU#AW?gUmikL5lh6$Ux6fCwE~P z!2C2US{+u>uQ1#58-MNMfD6+hg&sQ<_2&~6E_~~KGDm=}Lcfk~^D{58Z1$>B?2`u4#J*CPq*^J7?KwX9HLN zqkI^9r=*_*-C?fF0>up#{x~j9-VOoqdf_(dox~2 z!;c>gheoN*dbFSI^MFnuOC6uPzmh;KXER$$+#~gCzjrJmORW@yXXRS%UAiFVn?7Gk zW1`S-=`b|Vw58VCt;W}$FJPpU?=3io|1>;CjE?%4`Qt8S9jgi+f%{vR2^gd~&bP!v zT{&;PmKIK8jw>}E@yN|EZX<@~?oC6dBdRyX5zk%tnFt*SKFj8CqzVm_r%aAe?i z)yK6PRvn$_*v$C1QC(%$W&Zq0RZ(E03EOrcZQ;mY{WVQJeyzZ~QDP`Li;q&8&jl&P z^Wd0>n4?rKp&wjV_j%M>WnqOZ@a1DAyiXKDLQKQHC(Sod) zd=xrlCEf-BlBB5x{S%Q9z$E~Tv2mZbGPA--jDV^P@U%d=LR+Wq@~c17WT3Kk%HK7C zF_7-x*diKUGogRwL&*I~lj)fJdJ#UhV8Rr+sh=cu6EM_HjxA zhkrjE?<(T8NC^NXhRTwZVr0T7@W)pW#N z=0{;(L8g^jB4PT3AjUGLQ!eE46Dm|(@)>*iu0ju>yF*HZ!KkK`I{3m978yU1~Q9nBmR$$?oz+;0?9YFTcE z0TQkeXA{q0Lb+eJ*sqMZ3%XjnEXbw6!&uqbo*G-t(6!M(U<}J z88iCK^$dd}!hBdU&Vz-Q&mL?UU8A~{ZdBi8;wqiWchlzD>FMz^N4pstiMyY0gGhU5 z;-1rUT7sipm@8Yk{0E&Oz$>LQHuF~3`M0mFOLhB2ixQAX0B+x|+sf?vg7pcsvOW=$ zJ8-HzeM7NezW=el38&+S2Exl~3Wa`Z7LgYFCBc|HW-NC-QF1>rJ43cn@;i@ckCgxG zR}R3^o8J)X^j3-WV&;wy0fvmFhv$bFm+s;x%g}(#jE@9mkKVOk4!|01*^W9!u=|ET z8`gM#wR}pOv^Y|mhxMmVC&eEy6Fb8k9mGS{ zy-NPXc`laUC7lY@H9+tYU3Fi8od<_>+=rz`In0c?WazG)4v?#zOp(QsQWG1^I>;~; zVm~TB5Gj;JAfV;312=e(FDz8ZC+Om;0}LY`UVHiE`~8sUv)p%jv^3RrC?y-uR@HBb zH5tgQ3JqlvjhcfFGTTHF)l`t(J399_jmhTj@?Z$}*7$BKyr;xrM%s4bKWIwXmZ(@J z6mmo_Mn*9v@uBJ^A8wCV2@vgs%dk*O0KMro`J`n$I$+u6HMoo%^0hn|gT6g-3RQzncC8 z>F86UwYKJ9bL5GjSZ0%y8Yk)5wD<}Q z#gVhpMzLIa)DVWj!^CmA+rOFWE%OMqwoZV)6SupF&|Jfr)MRD+BJETefkE;7g%38fqq9k`H2dnEeLlH z{(J?_cSii6ijThX6jF)(G-FlcDK{n<-N9-q>tU1`&0_&aV4A!!+Jg4r7X4EMDL0#O zm+9qgXgSW!$6x0>Z_9?_0zWUFZcR-*xA#woB)}i~zW{U=AF`9aOi(4y;wNE)&Wfeq>P?Bu<(ux1pm35~$Wl!)9UDqK% zAv>NWE$H|p=Ngs;!td)xYYjSPmLy9%hQg3!prna%`Bu&vgkt}c+4F@=xOA2=!F6U8 zA!CvJYL&S}-k!d+XV=Y=9kZ5(*(C;GD&oY;=c*vEqui{ZK_NmG`;(eMkXZY|o>!Nl zM6>isgWLl}TD!|Y72F?IRs*IOflq(Z0kE{BE zBuH}#aM?P#T};GLmf$d$7B`<bgYx`;KufV=#vHR5`c%PZiep=ff{r`opv zxV(PONuq==u>4L9`kqQ@)oYaoRmkl*z%0AD8WaM>JSJ`J>cw7zE#}+1bT{EnOjc!` zF_GOOSU>5mvt1y<7i0g`WI(b=OvY6{{MSSK2;&Ic^H#`4S(rS8ZzM7L#RwUGe6@D+ z4hq70il;BjEVd<*Hoc?|B2pN!t7`8B9;qnVEAHo($p>#Z%OVY|@R1bbOf2`qV>+?* zJ>OubQI8C<>^178&@S2%+)DedUgqFy;`s5Aza5Yrle?}Q`2>eQe`kTh7=E-CS_xM+Kz6VHS!AQv{8;H0 z#QF0>9AKqV%V*FiAYcE{MSFuEw%f^5-KTnLS*r66y{{Cu3lOcgSY81F;GV^&|pyn-GR70qK*aa75Z{3>0I?l?KUTN|d z{GKxR6|TNBPvDv}?MK0IqEX1ua1$fOoW=W<<@k6-hqeQgXF?pVLh@zICCX9!;5E zOM8`}a^0E~FDjUnUs@)@wry?8AlYZMCuZarAQa7n@M)a(nBddyZLLIAa!x#C_U4QMNTxXLIzzm&&`!h6okk;#OaAm6ialflmp$Nq2YTrCaleR< z+b#s!Ht{wC+$zhZ=4##Kvm4z;YufNIt+S19)AytI3K(kLIvSh=epQb?)=2PE*|aQt zqpGUt)1JRWC3I{NxDIQ&Anhokh!Igiv`r*2FgM~j&X|pITYO~p?%?=ak5+84x0;PJu z3PvP7rx$h$guJL~C!KpKns_%4LlS&Sl0Cxv&=z-5=;xf31;&>T9X)G+AratjL7(B? z&u@AU@|I?pcSJDx_}z#FH5hieeO7n#mP1G0>)?hQJJn$!xSDY9t{d%>Ob{9PW+QE{ ze)U`&g1X-YIF9>z9#IOpdHHXb$a%sEoMd1nl`1Qv5FX$!>huE6UdAG+!%Oh_@`$A; zY!s%fv+6}D-SPQA0;rqEm7h-Q*qmxzO-z8w8LfBKW3MWoI8Bj`>y-_UBgqp3OY1}N z4X@Y^PbRtDmJKjXO|Wh)ea3m4QdYlbu6>E`jIEu71x48(1V1HGe&lqCTSAlj=D{f~> zhT;A8L=dyRHmt;$j~l*$ zyLM;0&beBrG<_dUY~C!}V)l`wkdHjV-yx-%#v}dJA_!_@2NJ>B(wU48Zn@dCb#QhhYFCC`*V z>0Lz!x$Fd8N(jpNXEGR&diUG@=%46d|C(nh|5u)+oPoK`zb9I9GXXhU|IM>x;r!n` zOBUw;4_01mK-EZk;MqjXzkR8Ib^Zg(@(;e)-x*|o@!Tv=q1=3f4*QyIN`}(ghK%Xq_-(*douNJTd4xr%{`)|*!-&J#R z6KVgxFmN}}atnCopQKJ!ZWba|pwZUvw){8ElO5Eo#Fsi1?>oq*djkis0PW6z$FKmot1LjwuD@zycf);9#))9x!GO*5A_sY!nO7>I_&JaQy=g8zx;$j-s? zH}-4ds7-+olGwc$Ix8qW_?F8Lx~PcIr{ns2sRJK?_O$}J(T)yBQJEY6~d-c8{V-uLSx z?mS|gx)@-+UZ-qzjKy4*9@}2LafkVgwdaIhp$N1u?>Hji3l<;6bUxX`s8(-;whKbX zy}G1#ZXD-2CjF-rv3y%3CDcqCYG&EY7a-p}$BW9frI{p_rJjPKjz(I4MABNVr)+ zPDflP;p3iz37sZvos!Oi0!jTIof1`uLs$knxoENjKkEpRdNNYBF*zFUcU>t<2Q}F3 z1yvH2ZB0|*adF5*q4-&+PtNP3%j9TFkj|Tr#FVv6yDz?K)u|<17a-jz`#hfJ| zDQD-kJSKHvq}t2WrnIV(njdO5etnq}boUzm#$OJRHkE8>Jz^+ISk`~YRLc>CHg*>? z@s$rXk~&)|1Ubq0SHfl*PGltM9s{-XNSd^kffbWOQDUnR?AO2%CJb12=C|}{3zz(c zaiw+_EacLnmhmNW?P@m;y57xYt8I#dg}5C{yCCg_vxn2n@3Zx?!^r2N$u;rOY`|vC zr8V|9@Gt!Ixj1S4^_c2Jcyl@^M!@JUv{3RD>-FH7W38Co;`RAsfHE`8KR^9}B=&#t z?Eg)KkKmPT3CVzQ*j81bH z86RRuBxN&uga5#F@*t}f9F!c(j<-*=<-NX7jrc;7AP)yW)uyc4 zewE(%J%IVKT3S{R>B=O6GJpKybvCfS)|c}ITk-**6qw~G4}t^2=Stet8r?bR zgW2T^63ZEgOW*5zeB$@^QRt=jsREF(Hfex^RA8mQVOCM4`!JjXy29bt8RU29!u+AK zIcSoo+lKTY^im8&qV_e8Vxiz!^X@h_2BhAz^K`q`r|J3Tyz^*~B<9{%n!oeZ9PQhX z04zR=9|FIY;OyDJ#+vWx8Rpfy#Q9?|CiKA@D{Jb5x>~2!%T1%J(fvW^>G5E_=juii zy{FglcZvR2-TSI~+lU;Oiprurj}wKL`e%(cD7($Zw|f+541HAnPbgC>D;ppW!gT$D z2GVVu7tk&0`W5WVF{YQY!Y;H;Kh{u%!SsEILBo8f*Y}2nznJ4*(6#0v>0e8>rG0{m zx{*8RZrPT2!1g+}Y^%v_Ctv2qwyDiVtv8`< zeS%0W_js=t^@j)T4Nj22yZBe*!LFPND{&(kK>jn&kv<%|N@M&uTAAu*=N*^GdyK%! zB2k{0dq=@utPoBrb~d&EGpm)X?@w<2ioLgkjS{gBpv&zg?Umk$s)Y@(EvXz4&~@qd zFMUDweBRqS`=?{v_8uU26vTlJTnxc-F}4TfzC> z^m|-Q6JES8eSCbH8u_w)_(lp2{aj}b^bNS2zQ`Pj(Qk6&Jt>UA=XyG<7VtF#qV0SR zY|ryoHEO;;AIwxNa8e%4=k7rtFnktz!9uSJ2o_@d5k0y5KQ^uR@<>;Ea>4L=G+>vI zygHg0fH&I1H`<}1C{ulfl@~Td&Cn3@<6Y{b|FMN*V~C1EdF9YomK%x97eWr9@#!Oj zULP0-(&o-mAHG#r4~te)IB!!l2(Ct$p_RA;xcYQJAKOT3P#boc-=MSx=8K4PE*EHMBoSB)!f- zU8(a^`VNHL%!w;+dNFs0T<}61m?iIWW_66@3|{YfWEk>bBfRjMwR;wGo*1aJ7)*jg z^yrn@n7v0(o0YUj>*uGwy$LDi%{d%)>G@SK^6>R*iM0U5p+;S)+ZOFycSgq2p6}c4 zERoBf5tzaqkc459BUDV? z&TPbF{>4k!?7~MG1{l^!@1r6^MXhOp!Be4#!A!;a$!d5hrc=Lq+Hx`+GB4>Ax|I?# z(+p=E08gdlozP9kAX+DmF`$I!xz^6YrL@}9?yejfQOWmIEETGoxczWc3-H11yJB73 zfq(4S?2An=l_Fb!1)kxTm@_s#SNEHjUJhebm8k_GL6n~@+C#XIRVvkH3c=}W1ttnV z%_QS4iwZv-fbqt%nJp2(Us)_Cv7wDyYDnRPr;{`~v#p2=^+q!SItmSXIp}zDlhsxg zY}MNBam=t?>2VZgFxQG?YFP9y2h7Q4V#<)9GfmenyFf!lzsyz-$KaWZ@#5`P5m%Tc zV6l>shdXob-o@$F1FVM)LZu-CMXLjEYO)&5`XzU!bL%8UCi3N10()1!1`#tEsz`AK zIpPzGvQ=aXf2e5Ko&oJmW*@=ffX5>9(th&wK8)>R68{3=aQ!k@Ed{Y=yN?!~(mnQ|OB7?j_=&(yU!^@MhcqM(+x?FO(aXRlmCBp9Cs>*wHhP{) z;qDoQya5NDV3=ev^kX_o6=3zk!0IVgQ%xRIfz`{b~5I1%DRYqahi&hV|u$RwOvwTCcbSOtM0 zavpKN3`IXa8_fC)TKyaiNpw657n2u|OxRl@EQ0e4r5`@vHGa!)EgCHxvpqr`?#&+O zw9X*~h}ZXOTvG3~-P_+jHbnR)IStz4Bsv9{tdXz5TqintbsVj?QZf~idG~01pm7g; z%7lFDKX%Ng>hRJ)BJEICj-Kq5!~mCm3s;|^1qz{aFfj%GYTgFbAWaPS_cQ@_38HqJM-v+~XTJ`W*cHGNUN1*KgZazJWsF8AW z3;p9x2hh zcps_O0RnEqV8}4?$%6#PP!=7=Hd;nXGETlvmyS`v6xv-kW^jq;h~*_}4QeMF zq4Tr9>T|JJ_6kbPdF}6yf-%%cfq}LU{F7}T+Pi>dh}p7OOkmIm$xaqZor@w6%2B{f zYt9HE5W^Ac2TN%8JXKYh`LtFdW`U)mUZfA_NW}DDK^vBC%(bBtDeynzRE*+{Dq+oQ zpp_D|>74W))FJX27}j>P1xeOgPTIlwgUgY`j_0Cy(>rZHg!z7++}`J_*6-NBxewAZ z8$D5~PSUxdO-&-qTmwjpuE)rnrwF-o{&)4f3|4TF5( z#MRa3N5wlNls6LNKfn3|fuDc*^8c@aABDdHKjIDsmQKzN{~r6{WMldZ_QTHkKN?%i zK%bTWZR5_#0<>EB(+mESjj5F}5%4T=TN@`~VOuvMZF(SpK+gh1Du6cbz|fhE=^vq= z-{HaE1BTzB{XZdD|3YBvkDmVx`uWfO`+tW1009VX4vznJB>x8=6!yOer2QwFIT#yQ!@6ba#&%ouGQovh_`u==L~3wduv5G2U>>Sn=uW`78sc#%c28G9lrqa_6uxK z6yzZ9eZ!30)^=`=23@2(jk`?l>6>=yuW?sCQCGO8g>V5s>ACQ*)h{UY#v{9EU1kud zpWCv|%ifi}tda9dZypz;;1N>H=qN-`S*U}M=!Ys#T9S#Ieebhy#Gjc;zh^9B6e2N} zmEC)9jrhtdyU4*%FCvx28Fr%zIEE8rl+7VZf!eD5^KxhVH*4d6ruH{h2wZ={29CzR z*B}w&e_j&*_rdP(3;$EF`-j5Y-vrS9A`bW8!7c~;|H(QWD0}s{x$RfCv;qdZ09XYu)3{8&;AMvKYlyva#& zSsh<`D^Q8pS0Sh)x8cZn9V`o;l(~X|kGAl7AyoC(JtFw<7fEei^kHDUi>-uM!dTDR zm3^`PyyiIhIFZF$*9AfZmm&o9TsO=6jNog!#|m<43)01qO-E< zukECS&C=&;X}F+NJ{xSw5Im?n27Q77Ob8$31q&o#@G~Fxd%}iyGu);&$fb81lR6dp zy&fN2R|gnK;Kz@S!DS`OBp{<8LW4cSj+k1b4)A`zXewN{oobL?%nvg_tUy7Yy*Bm?K{{3|77Z2zy~^$Pj=EYa2cs6% zK+L|c7TAG(?qa=!^LlJ}_IAr5*Nkr`I!n5fZq#9f+mx>rjOJ70y=LszdJNq?J?c}p z{jsba)u@Nqb}|~bo-_nX_DJ^(KO#;ea{<;><(|A2q(`xa%^O+4?r^h=68TBpQ+mI= zm+545IL5(G-&aNNz|l2CMUfn=77*R}q73(XqkBBOqScb0CZ!gv*T~zpEA~XB zE0*Qj5iVhI3!v;CTEnP4v<@ST6dr*90SBE6sLPYP!v|Ta1#K5;HpxVA+518;Sh-uO zJHn+q*FgYL1k#Y7!mA+S~Y~hLoaNy0Uid8hCdk=`YCvC1-d~e;GJo#8=LFn;1*jZ7(#n& zfZh@~-b6QdYA6^V!oemRU6(x<XZlKKxtR2*V?)!m`CscGdp50*}+AomMwXXLBJ&wk6fx)2J>JRcg*jxyMU-D2K zkzJZ-?}QLf!Pdmu&yTTF9d88p_XXj_xDXueV8fZ9!MO13>|upFryLo7Re2J)IBNL? zoHz@j<$;i=1}0nFtr! zgH%fj$<<8k3cV}zD)6kJ!90K~dE-Y&x4$hss=NNWpY&>+*Pk8e93){MO)+}k^7Y+| zv3=|HqT z*%wMO=AN8p$73pWwFL-26bic2!NVOVPxf}IVu2rdI1}mW-%m>{CJz4^%qe{BgoX=I z7f%vQ+6aLFi8wcqyYhG15KtqmvR$1bVQ1q&vQ+|rOMC9@O-bt>rdeN)U^GNGTCJty z!BR5@XU9~&Ea!E1LzgAm(s$OpJQL70G+3A7<7MV4+nO2AxeEK>x`47FoPQa&R;pV` zE96DC4cRyI6Pxien`)nZ)7sxr3HP>2g#Tpf8}3{?@rJCKo@C;>c&XJ)Tipx9oYs>% zwH|$9UyJ&duH`#MJC@)2pM5=BsAtGyPW9dft{06v3mf#;Cxyoz#&v1mM|Le|A^?PD z_rWDktn4g++LwHNrR2_uLLrgC>C|(e#vX+fsMOKvQx>>YN#BoqLPJW+45}yXs?o#I zZYrU#WJuQ0#RWEn@KFWVQ(sybSMaWs&7VVgq}YG*Z@St_xm2uVpPo{#a6*w4*=x&j z@lTbF>qT>v%m8)(vjq;?Khh9~93(5PFQxbhE-U~R`rFe%Q-i;}QKA?I>#OM`G~}L4 zC%x&|CACe9^|-LCnLV@t?hzPjySZqFsuCuG4;72a?>_E(nvVAO9kTM4nSr9y&o)id zf;WPZ8~5)CZ7TP^RobJz>bCCQjk{Z9UT+-z63YrR{6^x-3Lf9P0ay16Omx$$#gas0 zU=~6vg_O8SA#*M`R}$$30L_glDw$udEeSnJL~>_&-BD%FJtKkNRKj!EL{t%7PmU() z@!B%N>CdEx1_>mKl>qW-d1chP@>L&40{pF`;;Tdo@6?}P<3jUg;~Q(|>QEBOdRd~V z=jr!J*=H#Bv=JrZJ;#m$ciO-DbTjC>FCSJJx`w;o1tzambnKpA1=b+_i0a?@fDuq?lI-Vij?2U1znZhy>r zi|W_XIQI00Jd)jO#|5QCsq=tvACD3~4Z zX23i=(aw|Z2Rmi;L}s<(ip~$u#3@iS71klyplR}fRP721Pz1^4G(L{+P?Lrl?A798 z)$lgHxnP$I?YxY5gLfza z6;x%@R zQU?*5*ZVTHGz-iu=iI>s^mui6KtoM5LrF7HSFW2D4(0V!TI9Z2~S$; zVqK+aQw-^5J{l9^5P{j^g!4OY$RtOV_+vK%u42O>yb?~eAt&{k$2APacGh{@6%{!B ze7_Ffw*2@)A{4Zs%xamWgkJ}inmo}z%)7ZI^lS5jd02kztltvDHSg>kL(ogB;_0Tu z#$P3hrw*4qgyFbuG$wuiY_BTq{|51d0?pym>L%6(u&Gj!DWdPR6(QT#YPNdnYUbbj zi4p^oR3h1LZ^d!byp))9K&m!!WPmI;_?jVJV%RKKFra(jvjV5QX>&GnW zk6(?TgA@JL1lE%czs_c)UN9m18uEu4JfrhUE)C%pwR6+9uMQV6xxo*)M@E~YZ|@bl zvfR_$9Qg=?+qic!t7U!M#CS^;6{QY2c3)yJ)M;B(YBf_f{e;Y}37*MwDchKX1J`)g zePiCFwm>4-wiOzq5kIWXSL_598mjG43+SnRw6x$SGZWbfOpne%mjT&HkLIp{i0t}Q z)3=&U{rkgwTh@$c0x7hMcpJ$rl?wtPq8#Ll1XXxqQ+=Q6{_S{p`Pd1sFrWBg zO4vcZ#P9O$Ab-$o{6}$toFxj?R60cTOgcn(U$gvdjVK7Hwk!Dg?gEQlbcjzZ;T)TgceSt{N?_7z0LPq{I z)T8)Us7Kk{!F9DhN2xHy2RJ^xZootfo#B>V579$*#*I}ttbd?IFUE@18k zu-bn_d;ZXm{%gbxJosPq>0h8de{}wDXwQG@;{N~w|9^Ys{wb&q?9=am?7*xUVEI!` z9hf5X8!uq~Gyml`ZpX|7%qRgK1x&^HGogfy6POwDd***nGH~->a=QK_G{p5c_&_&q z6bKCg6H1=KH7O!;B{Dc5NzF2G+71I-9zi5xRjEDeH!H;jsjKFcP4h!ehh<=>H~? zm-wA!4OuG9T%u6#FexJE$+45&Q9i^_CUnKvn&L5*{th#OPRm2DwjIiFf;nHF4FuNU zvE#-qOA)I#Uu%KUs3W5CU))gtCdcf5*3LhHN&jiZ{a-^#f2{a_gp&T4>c7FD9Dixu z|3FDhT))9pb1Nrf2cVIHm4TD7sPR`@BV$;`KMx^d1*TT~6(+1u_qM_tboQ-lz3(Qy zaFbZaC(ja{w09@#&*G2c3+I!n7d^Y~mN4f=_9qv$xvx zDHaWE1*`_L-ucUS+tRsYa9$)7Ql{NG&?kv$C@G|0IT+u!D1@|g*}beb&f|)#hRyxY zLGFE6FF08*EKTnHK!w1vp|LZc5zn!>Uls}9!9kvpKr;KuUEPm2Og%sgJwbC@9(K7A zx^Jr3P7beYih{R&`QWFn`Taxz%=f1(AY`C^`w}r(ZFawmo%hv2@)ki853ka-b-6Ax z;k%;2yOyqY*g0S1j-Ws?!2H&CWDX`ueCfS0g?irg-uDtpFxMV#tUIB;Y=HWCCa>O% zUYcy1g2;k`_>Ab5?dbzlp(PJoW&$st0**PkvqBo27nO-+rgy zi4<-VAlS@xWA@zFDF)c{CF!pV7HsdJ5OnXnvM@{FldrMV`Xnz=m$dl-&wp@}+3l|3 z4Bjn}Jmc&%=W$pbVM*?hv%)*{Luh}PG z%t+smPQn52@l|#=+x2TK&t>sDHMIQdrqfS-mmpB!*sW3>kRTPfQ`%@L)Kw|Ed|$S9 z#Uh^Oscrq97W0wdx)QT)p3D!Qrw{z86EHCmE2s~zh?w1?DtyqBsytC-b>UTenZ!(K zz$B6pvuJh(aO>F!r|E(LOykwZ6jg%=)r`(UP0$VnQj7YXlLzU zx!^>QLktk@xS$U5s4I#M!C{>?qey=zlxhvk{o zoqz{qARd3G$ch3VrX*gMY`#NglCOguPb4z9Q9xke*lG!WRQe{FiS5DCg9gp=#-bokL#T0Ut<^)?;Lg=|v{nal3bCE5Gwt`69YRi@ zW12XHlh#wd)=L{pDw=YBLXbe*sL>w`lL`GJjV$`F2H6ruvCj_kT758TzL2+TL~wd5MRi{S;f5AOJQRv)PFzaIJZ?<;L#FQhJq>_ z=Wcl)DK~f|EQ2`uu(7z2axrX_M~iE)JY&P5hJ#z8CS5HVc7K0{ zhrcm;S2K-2bC|{A8THzKr=cz@T~c@czsP$FxT@N2UzC)Tl9EmV$whakbcfR2-Ccro zmxLhQC5^OnNk})+-5_u$zVG{e`hD*AdiLJu+;h)i{nliSnNQDW{Gb0A>Li;K&17X1m~_5$i4OR*AwMyek#KYz+l> zuDz!E5P%DVt;l&9ZJ>3tPZXOSTrAG_QbVt(s6-+}aTU^3fX)Xl3O_S|LXAt(xUn)P z`l#Zur9tudAmf(JaKndNPcvDvHj?Fc1w3m#ZEYoQ)s&)N#v7;_dnmpv??mQX$NUKkMWod7(LPxj2`wZ>7%|t0rY;E^+$!_7q0jmG2}R zzn3AF!pWfak=dKTEX((^X7nF#+jrhCJ`FnQj&;_w35AjzwFUT^L$RL^~39cv;jrv+zwJUt~IK2Z0H>GilsT%(;k+ye}w&@nXNB zOj*yng@epFXd3Em*hd@kA+iF;e$DehlU29X`9sz_>_$6A-jm&GdCc?_6JigZYsdEZ4Fd@bl$4?+LW;;aVw)0oh9k z<*Qv8MXsW31qHh{>m9vs(sJhb^gJPUwMPPrlv&hdpqHb@azpO9&fEH625aI0RE|hX zBP*mvILG1oFEQofVdlhY<$HzZq+=G1TfT!uNi518lOVE7X0eQ zm~B`_#KO=TXhf`hW)|rVZpBo52~H($ucQPSIpM59kd4W$*p}H!Lhr#F zs+eyI!d#jv#bJF`z-DbLb$#^$E<%Ej@>>c-sN+Oe+}2@32Pg-pFalq1KWd$7f~pZ~ zmF27{B291KhsBuzdtiM}YxlH!tlb~!qq&isD}but@5aU36n+1F(pvX`3i}xdOfjDm>ZN_y*b?z^_!& z5clko$}K2tNPKFrb8cd&U4tvXr(}k z=v|C-sY)X5K!c1!L9&}btY;iVO|ZRt?V&Mv=voN9SxZm6+V)ZA+N6;HKqz7>FOEYk zI|U!DPN)OlpA!jT$oR^#vY^2*p6-0uaINPi`UATAn?q)0JS1c{;)LXy*A|QYpI;x& zMKC?TlvzAZgGfo;8s2{+)tE!ej5K|4$8|BdJk;U=WW=W$y!{m2#y zXWmXL6s%oXmUq6AOcWwy&v0_3?TQs#7YSKGbV^nsXS06k(N58Kvx*=KOk43W+ZpHN?JD}^c2$a>I71$c{4< z2J=GRmP?Boc+#jtaWIAs6jCt8*T{iTV1q|CRGhmCfI;k1co4_{E`-&o4938MPiq^` zo5qZ9X&Vo%FV?Ay8O9?H07AqoSDU)P7Zv!*&)92>jb`$|)m2mYLeIpulGyHlb|^** z;tywsia-l$1ud3RNq4V))C`chbV9w(vc}5n_GpAnJKZCxUYix!j01K6-TuuP6x|I^ z>bQdkx6cg={;=H0ZF=UGi;7EeF9#O?3iqlXyUDyeD_ERhf@zcD( z?vwyy2=M@8Nb!J041!%v?E{XMjjo;ASmOA@ z3X0)7iRl3=0$?rrpLh_6?I%3w2ddZKfdGvEiU&zsbr1pJ^-}c`dPyM0 za;3=-3WzJ$M7)*QU~F`DNhYv$D-ZXmkxfY)!8f0r5Om;{?&$AnLfoN>jp_Iex#HU5 z(2o+ORye0)pcON1y{LYh`8aIndTKziJ@b6Nrw`4?Tkjwj-B_)8>L|?o)8hNCO%LRv zSgXk}wnP*!8~zM_hMZQt?m92aj+b0SHZhiFp}h6X)-nzCsvd*j0%%zExJ(+Ug60f0 zAH`GvJjk!IuAmp z`s-f43wNeS1IikQ9(>cBfm41=4K3PAlP%ZYbIjoS&S2hAFv@`So1s-pQC-APGxZj0 ziqPg?bf;f-roS_z`MWmv`*_fI1{_e~KgQH!eW>c6yT%XHr@yOw5Zg~+pkb5%k`OU0 z^hLTKf(Il#{Do->-OP>k+iMJod7fvHa2in!!S_o;<^!P%A$?W2k=rX(~gZ zB&8#V_a<|SvR0{b*i_NKHbV1cj>h+6Jj6TEx=rkOBB0U;f9$&y@)ok#$LUbc5w`LzlgIpueFDuV=Z+3%e?;P>IjID z<;UScITD1_!4C`NuGI$P=K~#aBa5C>_pK#-S9r4C0IH)jQ<*`?KYr{=7q#t?HLDkn zp^QWl1+{m+W{!Q9x~t_FX%UofbW_jLSqp~+d(><$zml*vJ%ZI?ZTiP+=T?ep;x$?O8h4n#qsN?Dvew2qKQ3Z{!{m~#R|=pE6yv>hwt z;zpNyp(pjhc-g{2kmc9PS8Ob(m1JDiuU}Q$@}%zUA9R1&hU*869m3Ne(`uQ*_k~0G z*}us$C5vLZH&RwP^}kaAhvIvIo~n9*24&5tiY9y&b44jIhmlOk>NWH&$w|A`LbZm> z>imox$_~^OPh)LV^8RI(*ZEsB_ZI1DXOmx);t!+mkF&;qO#2>o0`a0B7{SuI4tAyh zFP#psE@x(EXJiMO2hiOah-m+H&%KfbafKf;-@VfSCh` z9nHbaK|~AUU;zQw0n>PA#3;?J2hn;^OVqsvS12MCM9*W~X{{b%mzzdpCyqbL^foe%8!Np|>!W|?M6O|HtyBI%7f>wo@h+$G{tlnN zf(t2vMPV+|I0nl!gco>d1Vum(k;Y;q4T7PvZ|j60v2r34#!Ow$Azo?a<#cxCb1UeF zhHR}HpU-~nxV;=;aas%Jb9z$tn2`K-hatGkFL7c1Zgz-ZX#E05>#Mp9X^vChaz^*? zj6X@(_NhB_RopOjM#=FM7D>Uz$GQ+^O((n(91?Z;8fJ_4@}o7yYWB~KruLG%SalrD zanN%F6xis`?V6A)@LjQ=S7Yb8XuLetNf^NGTjEWm$_e7(7t8Jgin9Ym!yoI@o?^|AApmWC)OB7(rm2*8yc`C>i9Ilrvmx}g+@{?x~qrTGQ zH;fy*P~D6e3$2O#r=Fg1SBlNN28jq~U^rC2OxaU#xcpnn9D zTJz2b8hTrM>2_~P@ho%RXH8hG0-p#r1q!L*9UKHB+$jR&HuKg6*k|ka5_~XP#e#f7 z`UEDA8loI$iQ7%GJ_0TPNibPV#!@D$0hd_d%A2Bzjf>D1BvSj9ZMH$9Obi{?b&Vq! z$+hbWU`tP=KfD(4=|M9t85joJl}2@lpB#GRlGmDg3@6(YaSVm0877_iV#juPx6JQ| z6AR**mDXGKZI{}n532M)>>%XA!pSnu7t80oViiqx>+g)SMJ3HeQmwc21JV?WF=gyB z_RN=!lcu}Jb7D<)HYO##B>0D;sM0zUW4UG2jwAy8TrrG68>o&BchFIieyRwi5Vsw4$shKp7JME%XbyXz>>`h$)AROwuN|M*K9B3O z)~%?@8MbBwn|_i``xX`E&BX%NiTgBWQ6CTf7Q0Hnr>tvX?O05jv`z8k+WXWEFRd+@ z*UnWji!!fuypKb;M@Sn<&a@Wrg%_=wAm7Pg4WB)6^=9W=y+2yKgyi8}{; zP{qa!`my~=D@#<)Gr-Q>pugg$19iA+J&*4izOAL=Kkx4|dpyGLAMM%kh|Di=<&ijA zD`LxGrJRmmOJd%lk&!yXXR!JTSHVxOMG!L(YT;-GIpF!To1h1=F-ah@W&y74{0=AT zB3BYVCS0O^BL=4a!ZpeCS-~uF#LMN4u9*#SN=pr)olr{G#&*W&Ys`8Mbs)Zr(Zaw0 zY(EEaj7~k7N2$6Qhs2wUm}v=tW(%QZwsWNYqe=+m>9od!fK7Z$u;^k-j$&AXn7;Cu z6$asq@rm62xt_lHXWogU1@8PR&mO%~H%v;8BLNWx1#>$@p;2HRVZJ7hP@Q9rCZ@p3 zQ`#<<%SX7VUnzKJQgvP)>yH-c2R-jLnIQ?OO(u~Bx7F=6CrMF^H^QznZ8;JmatZg^ zBVfF7H;BF>HUHJ~!k&*>0;u~G=kkO*{vX12OPS4@7c5FBmzVFlxYdfITfRAC2k(!% zs^@9;qLdK`&OZrRTWir$GSw7l>^DgyoiNE74H=E2OP&Mp@d%0Sh1kym8U0j|+37qN zxB1nyb%MLBL9TtDWbYF$N-eQlBFlHsN6qosqK|k53Z>T0d&PvG93DhSp=fhI^*A~g z;`rQXu;o#lnDs)RO1WcXR5c6FN#O13Y2C<9vqdgg;cDG)CY2&4IjLlrF2^d@3|~4l#Iw~REH9In*EPdkkI`Gq;J!NX zI;9MbW#V1UxQ9`|sz|_~cn=YQjp^uSx+7JYdt5K>D%xGD_(?27Qf$_ub=om=mG|)J zIX4@#zpRXkad;jt^3Yp0zmhX?U6CU6x3a&1OC8rWf=U*Ar)>g_Dw_LJ#WuE8> zAL+)ovJ-bGrkqBRA@3=d{6as@Y6oFqN@)G}6M0!3<&^|4@X;7Mx6J6yGvW1Z3ZAK7 z_2fXOHKrOQgpRf)JFu*}ablkrnjBBUZjVJ)Z)0vNi>St$zHH0?BBsX8%DDa17_}{% zfN9e#-&jo!na5r?(gNNwlFWwoy}=p1%Qp|1L(*5qmt)Ku&!>x*PaOrj$4qy*5D_U9 zIf|gaFeMgc-z`iSn#_^tiP%mfY$k2;}{FuPg5>SB`zd<5bW*+`m5H2s}5Jz5QV0>mhjf| zP?8)ChDSy^lRZFKUho+|UlIs$!B%j-!wLhPpha048q&|tQq&=~$90UP#mnIRJ!0B# zmMU4O*BCqom2<&KO!F8Kvs2#~X>>=VHCebBKe-;vU9$Qdh4P3?nx}?+*wfpc6N9%~ z@#Le})I9!c2?#wMVmz55Gb;(5hg@Ucv z6wu~czTU9wGqri@L>oJi2FjF5I6*;Mq}=oX5DpT=w5PXGvB*mKN2E!N)F%MdCp?stGk2Ho)3%M zkzZDKY8GZ1DlX{!>YDm#Vz8+XNn1YS!Fvm5Ql}}B{3HA%`T~fQ@LqXmPcE~87@=B* za4qk&aXp3FBVM|i!IUxScJ6*SE#>KBakAY;0ec?vp$|y-9HtUYPwAUK&xB3vJ}c;u zYZoe<*I2l*7=z&L?xfZ9FSKi@vc8hMP{1Cj>)p6MemBSGD{yJXZ*WVi0UdOC`1}}u zk!y=ZF2XaWO@j-WX!{ zUMZ{Xo@?BG#NpT|TRS|7A73#vDjkVm)G-P&jM@88P3c%#`IKpMrhtJ)wrMEZDW_cU zTVaiXraCG}b&P8;-l0T{vv~Zme8I%Z3A^k!4)~MJd=!;FULp;3N+IZ@jnO(>>I>fP zc=|Q!R|2)o_=FuBs2NJoDnx$bcs&V?_}l@F=x`Z9V@6j@l1IlkC&72x?;4fbV}p{| zP|P&6B`mNl`js^0-4+A3i#|uEj0q^{qf`06m+y~o(qZm?Tc~(sUgsPzym~*6T9&%(atzNl%8gUGaupP~kJN>U2$qjA)^W=ugv*d}Il z)3gM!`9>4;+*s`~m~29|`PYP`x6@YQx=tiTX0AO+RI2^5a)K^~1UEb=A$lJ99G#%w<5x$h*Jo?6z4t)#94Kt*RR5(uB!E?&vRwbnIaeU zwZN3!NiK1G*%ezcf0x>qTqWLUTM&1+OKK)%6W7>%oNgq*+Yx3C(TzXRLpAu~b!u;< za?{xMB5J7KIHEJ`u24FU>}F%>_L^!;wl#}+SOmiKs$WMp^m`yqi9zM6pK!}={x}8$ zm*a|407X2w{RQ~;24w?6#FG2Ub%@u9MFjy2^jfM)o@u6=o9D3kH0tMcQ+Zhno4wc( za<)BFQ!>rOl8a_wsboc4Y#<}0Fz8!sg z9NU;?@XHSQn}{s?PdJ0&VB=#zM}r!jQ?`IiZMsVxx+N0Uxt8rk@w3okX4aNd($g3A zbAYZ;lrkqnPt2C4)DWk(VD=<#7t6}|+QTP}Puu@-kY#i@b3IPT3hoikuU}lhiL+}0|3WV3S#1el~eg2C1u02g0-Duyp<7bKxfH1%c&e5ruZ|xt<*KNQfd`#WFS7sh@Rur@Rp8~6!_ijT zRR&-ryo^?AOe=g?OMczKCgHemwj<2vGNv zYpVK@##bn_`7wv|I+*)gmVQ`jZ|BP5SgQI|d*g2nVO#+8USI}8xrWP5NRI~&m+MM zpWnOsOENDikvS-MqUvT`!thpdA3V1mN|-~&HE*UeH@7m1nD?AN_l>L~Qkj)Ab8u2M z)o|oE8k@*%0QVRc$Xbj@iXrTT0)9gTDB`-LG|>}$B$L- z&IvG&zfc~zk6&^H71SIg-En+%j+iz#KYiz}?3Dmsxqi@013T%ScKD4B&&ln8)OO*+ zD*M}A`&(yA3BxmQ`uGW~*&Hx2gO7HpragT`#pDx-*=dz=DBN0DL&g7@5yzcQ*BRbixo95tBnYJs+B&P_>cyB*qiB
    #B8wJYdWSUib+MHXPdc?1`sj5;-X}x$C@3omDj7wYU z(i9;yQ(%@-wye*r4vq4qD9LN&Ii=oTMg*CawOpgtA5JjyxdSmR?M?Qqz>@~H&k`gU zqKewbc?dEcT`YU4EWkvn5%n4(1aUuAwaV^!egG8UdrE z{N-`>QMNb&hrWq>*Q{T;Bc#IqofeV%JXkx11cID-cL}F)82R|vEoFmO#LBaEcm%Z! znnAx41iHwakfg;6!8i?7-)~t5a82ZE)9EA=eR(*V(uZ0}}k86oNG~V=L!MbA^B)JXdSURnX;?p{ZJ}qA! zH&Gy0O|H50xX$tU8Fqj*|1P%13+Af@A4JLK1M9v6!)jzNLs0BAhJI-}q-rF%Gh6Eo zrU4^E4&Xd)7z}TVurZFuQhY_~t*&`RPChiQtd};rN7>;%BLjUxd zD%J_-<>d*?534lBJO#{eu)V@w@=j0GNX_}?!>}vhjIR2#SoY(j?XZt;MIWrXlVX;B za(mY?C^@L%LQl>YHPM&L#DbC{QQc|wdOn!LIAD1IF?&Cl)>qbA&P`={B^A#k76Tb~ z3{#p!i^i@;oU&?YnluJ}#RJUhGtRSbmPlGOG@P*%ST1g*{Wx=&^84^-5lm1R#<}VvW1eV2p>>OTTamh5|KMM zc4QY3WPJ>q4mloyt}~s78hwu}r?c-+l`RKVog${t#G4|odRrvf!O~#vzQfBU%7znl z&g~xv$)5_tA|{#xLFCj9)@!5#X3*dR^2cJmp@>@>2yH^;39w$GeS*h7PxtKUGbWGR z$3;@rTL;x!d;#}&d`$prU;9f7ty~WD~;%JTOsAV0-&d z#ydM{-1b}cP)hEKob$=Z2#v_3(NMQ7AVOY2IbU}Sx;!SW8@qNfY2Tq+AV&t7QSYue(|PRcB1x@!#vaaug)O>7jH!Bf7kD323M z_an5*8^=B{O;V>1&Pe7u>ASry-=bL-p;&<861o*997>CC7WYpNcbH_DX`Jbgv#fG* zkO(2v_8HktPmYzWO{o-UntHO9d?au}J_#z}Z})46@dN_Y7(?h4EKe z4D^go@G0mLY0~^wGB$aHR^`~DHt)TqyI>mKW1z(S#lYlN;-Ysy_H@3M-&PaNFiKZl z1UVqE_fR171#!QBE*^!DA9^^&tBMcSIu71UJ{Q)2voCFFxt?&ao+3l99lVFA%!(>h zxZn6;kah~yI4*Fy_!ECPv1nSCjp%g8K3pnihl?6msM0RUW^tc`j^%5?jD!<9Z`}Su zgDEdf(Om^k@^f%^3>e#OQ^d1a^|iT@G$Yq!%r{&1eNVaG7qhDv@u&=p>F2$Tc?p#) z(pr$0zM=nIWQyi|Bvz?_{)U%Os-UquM|HO2V*-wAeal=AWs2*zeyPwghQJg8*(ScS z%vMI@~8aVrrbw7cvPW^lkN{f#gx z^mI#jFoZ+i1{YK4J0BjK^1>{@$)OD>d8QVg0F9c@S#NlmlCz+z)6&^YXq zU}V|?uun#pbB*DuEtj}&oP(baRxXFA1wLiGZo(5uDWP`uGD})Lq7um{J$B9+-7mmQ ze?zfrYBj@iWN1@rNHJB^?_y!Ie@&TjOvmTqCw216Z2u?Hbg;D-zD zb7ef+w)}cGOC|T-NQB~>gSV-86!=@g&R00FOmcz9j}qX?4j+@(D(!*PL!OB|;i&+^ zRdMD#Ly=g5^NY!5A{9=i#R!1QGK-Pd-RgDMG?A?-Zv(xs7(7@JU1*6E8`67R_Mt~u zC!yH|!uTn-X)L(a8l`~A4_(e(}O`D`#vXu^EG=^Ra22RgAj`AFCshgd$ zFVr&I(6wGl^6p3;bZM-yz05Psa6gnPH}FZ#&FdZRE2XY8giPz`qJJ;+AMNV@7x0BZ ztUnQkfS?lp8Nv_{pyNBy?#l7KAb;n~ z-#G^adI)dwu=(R`Hqb)>0^9#CM%3RiivBCdSb)0ygNMZe@WuZ6B?$at0SSHI{>5@) z0f|1yjDJ0i1u$QDkeR-3nSt$JNB(d7&jJ{*03`v~qWt%j0Snt-_42=4X|ixUv2t2fhht#qNF#iV(x9=3R2bS7HvjbRa-%TFAix1(3*#4wE0!IZO#J}ip4=oW8 z|DwaOfWGtJ{-VP@v`ZG2?+cRO?+i3hK>Uji_s~iK@y|i?dvgWEKS`H>$oz2h&yf?T z!iRuJKxm&osB{lC3W)zm6_6l6{70&Qasb4CqzWhyK>SClfYM+A{JH*hD}jewaePnJ z&#XL--vp#VtUuA0AM81RIV99UQ#+x!fj;goz{*2@VCDH`s?^iQ&ZA~#VH4GL2$Vvt ztq_$Sz7q^4qC2Eo({uKSRO3pgnLC3Bo^@5yc2?o8$5Bp8Cxo39NVDz)E%K)$?zGX# z!&#Dy&GzJiy5ycuQ_F_rR?^|3JhMF24OMy3aJ#-AdKyp{aZW5Yn~keZJ*xI`5TfbH zh~N^ZmH}FIB7c8OEy3PV26yjsuNC{17%-coqXpQ0v})tPu**VhOoeU?7@Ji07n&*5 z^Wf1vVl2PR>2E6YfE%G7XNHd9TuA=>hya-%&@%KUwfFtA(AVxPtHpz*ee6D^Un~`% zEthgLeRlOr202hYDkCxw{~*}n-BS%kFzEW#Qe2Vw$^0TK#Q6Hh9qLUx5^p`{NS_up zr{hOwLY`qKg2VFnxmcdy4PK0IewpZpD*O$i6Nu#}f`DU`Bs?StQRsprke=bwF@?;& z;tQ;;+gftn8AL?QZCwNjlicEHvH(QRrTqXLiFYvYm3Cu~NHd*nDM?3h;KD;Wi3*ut z)RhaY!c_ZKeQ{jTV}3EVR#<^ZwDMBehj{*+w%WgO{oKE({F_jJu4wrV+p5TrS^osd z)KKXYhqJ0x-2}X%HcCw#$%XP^5xPb9Os-@&t#x(Yn`a`wZic_9J~J`@L`XD@m5f+p z0P@KjNQWXYzPM5FNe6T5#u{cwiQMW`0hv+gGZIaJeXb0eAT+*>v!C0OO@xkY_RT}P zAwf3JNOm9R@!zynEFSKiiUzkFxzSFdc-UgP@*)m%f^o zB#~BMs7}LROpAya{-On0*!DCbHlk3kD&m!GjAhOa)J0r%_@D`^<&@)HE|s;L6*^k4 zvgGj<%94&Uw%4U!JNp=U;vpvFOmCFM2d!%>*}k(qC=5iLTgx9ap+40W2$aWS5d1#v^Pq$XZR3Oj(6GZL-A}^X8ja{DZ{GK(D3wG5?`OzE+MqBqclT zNTE&lIu=p|e--!P)2*B7JL$F0H%xcn??uZIe%Ta%6GH&PzWvyLH08d#&-z2Ng6g#z zJ12q)pZ7ublw%_#k~CM9lN3xqzPr)m$R6pStJ)pfWhge={xlu1OX@bS(7wR=#PryH zJOKakq=0-@1*c}-+*v+Ed11k<;R|Ng(hDLelAG){87jIuch-;ZdCD(LC^guY_7y(3 z>+IpRBZse{*+ro}K5H#h#aI{@?_t~UNBA13KVKRfIGq8M4fPxk-p(f`zz{%N!DhYf?MuBEAk zD-k7~q9~D!BGn%|6#;Mc4*DiU^fK0Vmbw;y>{K;0H8yb|0`B{VETd~_NJOvrhjlV= zxs2jpcFEe#fC+@QwT-z@ROrAOLtS1+HcU-uuAczd57(XH)`!%nn$5{9(1s z$O`;a6aVA6fO7NjU<+Midm^CTA9DPVx$ivsf6L{+7=Qlv*^n?Y0hZJMG$H{g|NkkS z@XuMtzv_g4)EO`<`Zt~MS1;PXUbsL02LXo454I%Vt(1Q}@c*CRAQm zcS$ygor#g|Asoj4sssT#I|Cgn2P-4Te?=pG&~yGP`UvR1dV~MU!~bu+765MkYqj=& z>h*%G{|6R~h~R&qdw*9nA2j3#9rwE)_8U6{Zhr`>eSd%m||wTgGW9JZ^HyHLAXmqHB*Ss z@Xij?);JRa6;6|ml9o}NF;|X3tin5Z3{^Unh>^5%@&}zR(`B|Gl0K%k{G zC2Ch^!H2zIpTM-GP!+{N;ai{#gahsg!XzPRVUZo7URR@g*ybQ2+YCc{UGUClHHFab zy^Hq(eBJ9(KW?hVpr(dQRimg%k+Mc8hupZC@f**2rqIIX@~jkW?jv!~u|gNT{IO&A z+SZ%KlZI%4H}-E&{94L@PpLQfT)?wmt--Q>U-tN&{>bpN{lBG(bm<8z;&(6dIu(^nn8pi4|PlYh+{NZ`E^X&v%Ex@zL(gPi97~|0$@+MPa zruEa(1SVC~__-O`+Z63zeYkpEba88)4=T8Qjba-Fo5W2opal2)28a;JAkGB-=Ht}z zGWdsViH_j#@E8nEo7KBD8@B~!d9zm>&t+3G>}R-PV+g2YB|5&DflbGhV)WJ;w2XdP zE+A_&YOyKGE^m-?UWqF-l0k zDckDuRII3SSK)4u-rJbPaQiBAACy&d@>va{#1CN{;S%#ArI#*>8v8?d#@n;WG4!72 zK2i;|l)KR*SeKl|r}u}$Yl zH{8ClY`DdFvPg7T(2g~5OVtiDX%m80Fp(l#l@FEEA12e(D58=7DKif#JWsvzEp}f+ z-%WaVUVaq0L;lx}SBFWrJ3WZUh4a{!oklU#Ip^2}^YNnun@rakTCU|^P=oI?c^{`T z+QXF8roP&Zt^;!(lOd+47_FCy&N>F!R%JnHoBPG6R1{b2O%Zs%m~N(TLfRuSe_9$s z^i?7uVgD`-ku!hJ$iMgFxo`R#M%9zF=!(jnje$Flngyhu z@pUuiTIh}`T{($1&2Q-f)hb9)Yh~#%&#HY(mKA#>lG(b*?e=PYx}0!o_0_Mn?2N2Q zLe24~0;gbj-KR5H>%JTfA6*;~E+iZt{Sx8$O-PxU`6npe5y0~1v2O>g?LX zo99Cebac%t#i`j6@2|W%X}foML$Y}LFG=#$6jpJCZ8Oc^e5lCDQ^-;$UX@gy#(f-O zhJ-7@S*AjRA`wYiTwhhbs-L2)OO&B2^*BMJ+)*vI+XlN7DZ6z~MIf>RG`Cg3BAg2uW(|Doe$yRN9hs`Ck<8v8ix zP1|?=FO^b;I?JWYUX&I2JWoT-SOjkmrWQNUZHDl`v%Z|4y+Hfsc7@vXPUdWDZ9L%tJ#quX{C}nce+QcWD%XlU4K7N@<6+1Y3*>ab~cIUC7 z4Uv9dRaxmp=nXE?_^I-jt>8D|cJ`kdf#pEO<5mV(;n8#|wbq^~n^s==xORXM^;wus zVIg*3wNR==Yfc@1POg`ubr6ggteoh_W>L7q0vFRk_4otSq^L z1dT8gXYMfTN|P0}(FNixe#IiwwjeOA7c7b}`uvLl6dM8n>$Qw>D%6L!;a% zxMNl0&9mHXT~B@72j8WN(f65IT_@U`TJlH1eTX_&p`* zF+I5;Q55+vWf0XCd)qyC!8#WleM=^G_#oMxkLqv1DD^(a{IXtta~S}De1685rLBQg zyyg>X4+~@rI3B536a^6#svu7jb#E|m3K0!3RJ)#*3?g-kJ)gk6i*LJPhO^Z}&)yM^ z?jSuuoJ87jGttxMXJW9ZQ`we~DNn;b`+iVO8_(BiiqMT+fa2ZSEJqg=RKm77m!Dx5$ zIsij^VP!&?-rDXD}TGOh1OJ_s*fN-63(+@eMe+q_@Stm*jW9CI9Q- z*MFhpaQvqzIjrA(@Bqs6@58VEIn)ot0Ai+NU}R%?fO`Q4Kman!#t1kN0%#{3bS$i_ zKzvz%ro%$V%)t&Uum9(s@&DyjK(gtWKpYGY+54aKVP#{aV`FAy`)_kp^gkOK`+pK<^vhlT|NlKKZP=7DkZ2SW76QGjvthid(Y2vA*E z0jE@d@?su{FsuxJ!Gyrm9>niB;ZNKa*6%&}cXadr6Sys`pocN*H*(AN(-gom6qq;y zL>_=ij{tQQZmE+2n?rO{i;6GO$2Bif#b{Ow53RqX$FS^x!WLK%SZWI1MJ+>ZX>cG{ z?0=4-W_7gCb2hh*n7ghLnhg)0T;mGZN z&;QdDWz)q>em$pas2;Ij@A!uDQgYPhvN_?VU2xKe`Q_oRO9gosJ4YAmp zvXxx!lfCL}2QhEo)C(HLrN@!tODHk-ZgcYN!k+J`UT9d=wDyjtv1UP!C8N9&dBy{2 zgj=Ci47sc1TO&_vD#xEZa2&R&m@tX}TTk0ZG2&H^#cpvDdI!#Q2D*2S##5Q9Vz;G$b>a>!n{f z*($u^R--KF!W%^7lx~mdT^#pMelZ>frp%|6C@5%Hk-nBrqv#0xo*_C*Ah(B84>;O=h0-66r ze0OH<{A>QjYR;+Z>N;IrRo%VodG>zt(9r9dJXfn6QVd+SqIyCd+1}ncHTu!%mJhEG z+t)x)d`qbQRIu@lbK>(MnKgq+!>hcdU`>nK0hYR3_~CSADOe-_#o{|_GhulR`X3Q^ zej|FG18C7Rr1WWZp6hUnVoYILrFT!PpF2c1#JMOJLCwq0xr*jEE*oRy-hGFaa`*E< zD7nTAFB^t&FXqRU{m>;7)E0segocV}gL)dr13o%ZVZ}yYZG)8w z_pBo@_>0K-AP60M_puMzH%=(sBIGwJT_9`5ViKrLV-kie#7HllZ`+QGFhzq2&%u<* z$C;#*YQIu2UwM~1b1n<(#R?*4X$lglC=>hR{Fqeml3 zaAfW=M;GGZ46Iy^CGt9Czj3u}EYZdmXeEaz!cSJ7pKM6Q|qNYB(JN*bS(uXy_I*%6D4vT&M~ipBzjllCC4HtKE+LhCc?R2FEDqFI)B|+JM7(V{DH-yYj?8UXk+v_ zNr&O6p~KrUkO-Bs?qd6JQ=fx8s%DBQC5XccQGDOP5C*9eSAA3PU~;*VP00w-4o`js zdI2X2;^x~1C%4YC!ybrbktQh(r*URXlm1vI=wYa{?E?OJaB@V3mDOTovMhvXuj#fU z=hO}HD4?I@a{L^}_2Yd7)AK_1#Z489nHeSDJmuN-DP*-tIO(BAc^z2I;%h1xF;(oi zFB@(t0mk@U-EL+8S~_vN%%rQmil7)i%F)tzlhEmQ6gD^!Tn0E8vNR(|3si% zpQ38V3YYxReSv*6Bth3sx;bpt@zArl=Wy_3oaPQmBof{ z@otl_{1`^9HLsXlat)Wn&W>nO(ZP#MpgebcEH;5g9F3?E7H0{(vB8L#B5hNHEmYRR zc|D3xcpohpaRQy;hx~;-VmqSZoC3Z zqpU%SABPAt>&%`ao?C0!fic{5=*lIp*QJkghadKwf%-xBNXwt zSyA+AKZAQBw|f%}2?tsvT^}Y_FRk(*$_DDz$cIcx(KIH_-a@g?+8m*J(I-=zdxSIBr1i`&@h1hr9=@UZpe3O9 zu^)E--t?e01YtF!$r(Fi)1!o%8eC?oW&nGvv$7hCgmA0WN)WS4cU2TVtfmM%v&O75 zD09AZl~EfVB=~IB0$mh-WX90Ej_<>#plKVi*$Y$hOXInYQ_DkpKS^SWCtpHnA%1#G zXoELh;&Q&}p!)EX6XbOK?9p?w6jlxUd&dO#=r*hD0@QjbXJI4c zk?dtRv~EAlFvyR$xa(S}?(H&*g40U_T1_rK`Zxq|wzz0Yh04BL01RDBQd=g#1r8a| z`(T|Poh&EHrB7l0xGY~7?8H+FLbJ#q#Y}+nP||yIdimtlOf#U)_v9Du6${u>AW>1j zlM4;!-dt!$4u!w+N%m@px8gGgwcUL?Pa0KsQ!#AOl6uiF3(KG8*!;GV&832Mz2t}J zn&cVG&>VJ)?FB~Kw zVe~DfqM)fxvn0N|P!k4xRwKf1$p!VAo^e>zgFle+_uL0b<1CmUnlY*;o>BQ0>Q!Ds z;B_Nyq7a-KA02?jDnz{A>nB4L>z&twOC1p>-FQkuDsf19UmFo>?UQ@q($JE3*rQ_u9(+>niRA#9c!Q^ks27g2i%OJo(BG zdZd)NJF!49>lRztO)geAj~3y@VRq`8xgeD3@pE^psdM;5YMC?-pf>k1v1hp(zd};F za(Yonvslo$Es_f890`)+1`<*|>%+7Kv*JFsFuqUBbT)B1lo<7y@3^^)&(g7cMJ)o` zhifQzP1~8IomsT6Cn(0`I?UnWo_x>OmV5S(_K(hwU~5#9Zoj>y{2_z^_^a;)kfRdC z5w=VR>+728jdA+Au5kOph&W#D8;zOjX1I19bdIDVWsv9wT&fe?&% zgEwdw$-7HOV$u}(_jI9c$i|zH$?gf6kRujy`KK!2sg#thQ+js1o6Q`gtxNGuUu(*+ zBv7qqz=a)`>Twl}$|-p$^V-z+B8;767!5htyP2tOh|>*Mm=O{MySFYh61@ldY2eHx z(jXY4b3nQ}FWUz-%Y1m_6x;_ZwgTIf>6p+GSKDMKIA0Sgdni=^8 zN$i}N-41kW&)#wf!mxJx4VNF+^oT9piGmYq{gCJJF@|0rPe~!vg1|kk#}ARUyI{u~ ztIJ)_JoYj*9LRC2-lr-Fh%RgsgBcsrHPOb2k9ITzH`06f;6>s}=b~0*J1x7-f)5&= z(155k~kdw2#iC%!Ogxtw&tK#5W~Gd)-G=v{gyaYxL9G$sG=2&uj>+eg1+%8<4* znH**Q!%YDpI(D|r(p}EVPppd_zQ+U3X{NNPotx+#!t}SjQVfEe=Qs@uw(<8a9V=8Q zA7=>(dGr_NyIHaUB6UPi0Y;pg3(%Ah#9>Zx@K+=XXId)Cvex6a zj?r_d3HY=z`CVB}SNbD@y>La~(JY2zR=BtOk6WKc1P8{-;e+ps zQEsC$v99$L^Mfh5W7BIw!yzW7r1Sw|XjrPpRDnc+zTBksajNX2`@ah{Ej1Z(^}o z&t~rYm3-J^Pims|EPaZ>^@_#&{rjhfP%F8tT|&anI@k|b?XZUD#=~3mwWAnewV2Pg zZ=WB-OdnNSW_UEJ^QM2>n}6s_0(6D`E6!&h!3He=>`m8nevIpDWdjzPpm^k zZgLM67+4ulsyVy5D8$Kpfqp1&yiqW?eGT1Fyi7-**4b_50|uNePQ6c~CdX|w>MLE) zr>H)uaMp2ED-u58cj5RsoY_>4y5}49w3Q??Z`94jt;iWHCs2o@taVEDIofX|p02&8 zw2tPuttmJ)f7d9W$K)R^axk#|En3Wf)tA3OQ+v@Kajy2`i|D0y8iTOE015l0J<>u8 zj1{RF!s@f#{vDv9D70l}@IVOLklU+vAemuZ2QGCeo@yVlHK>AfvUI-ReAcR{I5~k? zP^Q80ia`G%nw_JYu3~BoR#^?q6T#ox9!FhM;rkn{m8R#+Gz|mLYy*F_)%}_?ODUNU z+Da+IULmZ!A)zTx6zyozI9m6(#oe~iT`Z|gYa9@0{I_vAuWhzhv`L~i=l4%YUIqCW zkahBjwHAwNh_<@L-%x?ns;fU0bKq6S5Zx%_5=+ZfEDN${;yzo^sLMPAaMDU&G+Aq1B$XR&;Z3$ zeoA5dx9q=uqi0}breS0JsgCj2{Qq6wfpUd3%s}Vk7fbqo_D2r{Wodx^CO;X}|9)Xs zI$#I|R<^%sy8QKsKWO=1i~p~E2f9@OXaIDqKhgK!R|Sl1z)AyPU}pT^7SR9zP@w>7BmS52% zez*5`dBE4A{|&$UyPE&A^8oxWQ8oV6Uj+!T{@$PCAK>Z>I{Pw_fI#2Ny#1L3j{JYa z{eC8aLmim>1@yj*VPNv*=KOOnaDV`lzXBk<^fEB{3+R36E@1K((EHLCz~oP$_vLqi z4FV=#-fw?aCBXWU{OOALcNiFW27mN^@&AT{2r%HpAGMa1@oz8uhKg)a8?1O(NKd0xP`ze5ymJf)ray^Sz+_-4sLq}(;B;yndwKun8El+*>_O5!MT8Yso zIv|vVAcTMBKpZJs^=#ho6A&Xc21jX59I3Z3qs+n`Pfk4@!XLn2I|K3j-d5dALt>wg z`fOi60m@f$1)=rzG$mb9W7PpCYRbwyXeuYbvTVty9R2vJVLokd`q(02NPjBSEkBxG zqsA%rUGI8`m{_m#k|e61b60&MmZnD2*ZnW3BGNv!xwMvGIB_St2R7n#j?)kp;^qBq zUm~m0b97fZZRv8d()qGcV!s9~QT-@K0c1D!W|+xhrTW3zmz9X*R9(+>>F%DPl`Rph zB5!pG=O>Spl7(m$+n_VPp@bdIge&rlIaSD$+~} zZxV*G|A7e)PhqKU1iih9n|dUIFwnr&;t<^ywoAhe!;QB9sKj_aT!V1a)b+c$Sl;#j zA}!vHE5u(RhvvxWK%6;@+>Nm5eE2cso0+=hH`=c~w3e&0chUnQf+3Ke#0EvA^AhHU z?|K9Jl`K?*cEmrX97^2wRi$n+*9G*WeW-iSt4VQ!v|Au}3k_^TAMVqK;kqOqfUU^Ba*<;NsWA{oW{V3jb3>$cC#}CM-`* zc6ay_$L#wC25t029E&n}l$6uC&3Rlcge2FKaUT}GAL3C3cO4GyPb>juh9 z#m+qZ(T~CWp~JX?&^T>M61lu0Wn5_SdB$4t=P`Bh)B>^w=lRkZy}P%=9&SF`GoCXo zGqh;JpMMuSnEB@`=^uc(EX;qibIfBT!Zt+zVTwn*eonv0r%&*^e_8;Mw^7BNWHyT& zT!pEW!xQ@m2IAVGxAO|!2+^Cz&45lV5#0*ku!8l0s~^p8Y9sR-w9A(chQToLfMemA zTWhw=1@sXga!?#4i2f@PBN~PNTT+Ou+)n_yM%~8Bc4XT@g(~vaq1~l&1t>Nk!v0RZ z4myq;Uo66-z#@#IiygfAa#0_(sreF8NW$D_iN>c|$B@h)&;`5mDG9!as$w}O5i61U z^|T8A=3*;qVBDJ`j`F4+Spxo#2!34#-t(yPUlqr=VnxcDAl{9bKI_v1)|f4(FKEsP z(?rf`ZG3eB$)Td&hMBPVAz};bOCcR(tDKxLB_%%)*$}Ph>yYj|#zGeJk78G264)cC zNbt?x!4G$gmkVg_%z1Ys!5MMo_TFsxt;-K(TPiErW*%Xr2UM8FHE+(y8+}ag0>@vl zxDOW8UKxF+Aj&$$yky7Kck7#08Dpztc=OivbB;bn_>F0+t0eM1IVk}koQOV@M_s(yyph@f%FjJ{l-&ytuZd9%RNcZ(exLMZGJz1n=Q)7lm=nLO< zt>?FF+g9W^)VZ`}paLH-=YITR(Rd&a*%a1$K;H8$CP=ro;2mVvYei9K1Y7xZ6U>xF zc^24U0JxHp4g!zPbt;7laUel4RB8R5oXS=hx9eRNCvHZxF@%{PS&Y zRGYwyZIaok)hm*w+SGJZ=n|@ktYT|l3Kdnb!>mMf4n8W`sOm*d%y?5=+=Ru*;xMSZ z;L~g=f~9YBdZcV1$J@AQRg51~ADq6v^Chh({-L?PERQoe6~^-P6Emzv&klXUU53j2 zJ`XOv!WpXn<6=}_^5D5cmHCi8MZgrL>Q06EVNyf#!S`nKn>SmLpS33#=VQG_jY=-t zzaI0gbkn~c&?#px^m`ahQ@ZZfs(bBt|pf zi%p{5iI2l{D0T4#b)wKKwJ-hy-bYk{{xJ$Ui2+@PC3Aaz%+xoGu$&{M=9{ub!#Sm_ z+_P~HocF=?Xv3?`czHXs_b_l!ySD|IyXeO?S)LSeo@vs6#bH;?iSKlwPIG<>oVi|~ z-iwK2HB*5dGuu%hyRX>8V=hQ$vD2-R9ZDLRvY=SdrmHSWJ$aW=7Pf8^F4CrS=P$5K zxwu7l<>P`}iwUJJFx^^nL3GhaR`^0Gm!uNw*jFiPjodhhKaO&jrt%(Q&$%(2avwL# zUu$1>8sv>rU$-ib?q(`7_TeDV`+b!Y_7Vrrk-_Y0O#wtI@rS%889`}?sA)9nMXubo zoJly4ER=mWMY(x4Y6L9;wbv(rHEu>^uz%+pfF@)k*KU?hZnbgv+49t$jcI;F`nEk3 z$Gp=9dO%gCLE%E*o+LONp%aUn^CJlTKKfUzJ(><_6g@W6?Zob}K{PkehlT{OoUM7& zkBkY1_MZzZO+~mi9zbQFw{I=Y+HFLeTXds62)Gey#KsSap&04Aj49Kq^d72?d?BOw zJWgc8Q-YCS;Qs6C;BS~GyFZyHdp};=Rt0(!$z`kbRU|Kb&cH$EfS^X`-aikEno9@EA2fElv3`6;$cUy*dL% z;)FA}ts<5A{2V5@vhw_y5hF?RVCD>S1M4s_ZvIWtciF}IOe2>*M3tqNyZ)Sg0YtDE zr0WDvIQ87I%rx-%5D~RIkLp8`g@z#zlUXQ3n=8Ia2hAEzC)`X4fQs{DaKdWnENzp- zBphW1y+>b#OADySF_>_7&K#q4aOGaa{dBgn%}Fv-i(g+Bbo( z{SMX9l$J!PmVZF#%9C@+`Gk${?@EytYeD0Q5YB(RXynu}9GW@=Cy{UUkf}506j~_= zR+f<#V65v}&=ythiX>cx?C8f-)U1(%CW@k=vLC2hV?Rcx;IJ>ov1Bp1W?zt6X;=mE zLv_%ZbF7TI8TS(;{)I-KNETUJZ;EhwrX1Y;K;L^%)j(u}H@Tsm>_1Ayrav_r)?cU` zCrEM?Ye04xR;uUBauy38Qg#(JL^yaao8I#7ATi-)XECWG=!pn&&4vD6vk3Z{^cs~+1Q4iB6&sn)Zbh^d;Nss1QtL!{ z?O#e*=V=tM)eRy)Z9Kp*;E-9#)lR%E_g-cwW4PAY%!xOYNzyUD-CEkp@_1f9%e?QJ zJf__$^`QD_VGcAazxT&w&n}OkUex*h4a81@*28b-&mZEJtaN{yKlZT_VI9K27c_Th ztqiCqo}CYf25XC+SmngwTzr)PT%zb=0tu>^S?WdJQTXIUumn{;)TdRn#a+A*&D_1y z>mX(#j3C;icS7>+#VaH(qp&YUTBP;4$#*pd)vPBi* zuGUFkTt~|=A%3Rv4|O)50OQ7cYJ;649pb(Px!`4r_)aWbmuYu3{jST?w5?9n3sHgc zy%~)3%UhOwm_ao zzW3|FIHnqeK? zm8T33;t<&aq{TJGGenn%f0|)97dg|^2hyt zEjE%#vvj=+xUC;qlb!}*jTq-mI(gFKtB|T6SZB%zjde_1-8#Y_X71XV&uj)gN=n-o zPPizFD z!?^3)eWU32Cf{KKV5&!4%M-th_SI)HoWhR`8F;y^@2d%&Xt4SLz@pv)grfp?YEAfV zZByU7P^Zg(y+`I*R7nq6Al+=3fK|9qZ8hev=p9By_GQLtJBEivN7N%4QDrBd97NQy z%>Ibhk9`Zv(U%~qc?9js4M%)DYCYeOY8rxl)SQv5%SrIiez!Wq!Yn2^#+;ycC^;XE zio%-XpoZcOI=vZrrv~u1$!#^FMcp%2_4XVVJXMf2ujXK*E*~i~eM{PKcANBh1b^D# za!2CkB{*I9+N^Uk zDxxT_^3}+mdDbJj^~R)=OfFG`{70Bcf1yd{_0zKnNU2eU?S52)A!8q-e7e-7bPN(( zO9f*uJ5$X9c;jnjR!F5HS_gg&+O3vLXIW6HS4KVe5lejF;K0=@=g=(fG^} z9GwtI;Bv}T+`}z1Ta4W#u4OI{Zk!)LWWCCM7k7}E;SXVDV3@PN-z$~Gq6mSku^Gx6 zFFh;mWqJ4jgrsL}oWbHa@wBrNtR(_IP{E)aIH@97NVPQsBM>8)QRtiCa74b!d{AnE zt7&g-5piAB8m>`fVKm24QM&@je2Z#W1X;ymQH#2;;m!zH5Mq9O84wbw!whCb3_F{* z<-1RuENc%LRyczMz{XC1A4&e#Pw#Q`w!x9UP~hf9USL;Me$4}dFAv+asjIBx^xbeZeW#NT8y z{*c9`f=VvL{EA#+rkvjzmH5owj@@TFPamyAf#Ktrd0}SJNgSf;tFCuTa`vXIL!(0A z@xYS_&F_#p$#qZ22Ar5i9x#ksOhT)GnNvhN@&bP|GyQj$WKr=ZMg z7Fl85MH}@X8^4LfHccl8S&9P(FofD!*&rq%$@@fQo?_k^z#GIS?y@t!t+7vu3L!qm z))^*DMNOH;bTzf8a!TcLYdtts3Q@_uY1Q=|wAIdoaA|-M>bQVPKWHUpHvI(*CWhSSlpaPM!1zL zOI=HWaB~Ic`Do#_$&V&G_UYh9<5(ymtoZ9JcYa=!BW7Fa6QMNQ?o$R)5=OBk-rK&C z2;Ks=B?JeY<6EqKqE8YwG(u>`ATZ4`2|m`TpQRAzD!}9mx zBVc2i0}mE2O%fJft)H^1!0mK4(=V|kd3`T=WS@Oqvq%EML_cJcFQ^0V$Y>=aJJRoW z?l9!UiV=N)C^3nuA3^^m^c8znvY-z%{?6oBOk>#mh`V;c96FCq%JIM_ny~GS%@NzP zynrqCCpP{Yb5K%^<0pG3Or@bV57`|RpLZ$9E-2-&)v-c(j4P659gK0OaCtVFWv>}* ziq&#w>fdF~Bg}_=wSA(wo-!VsqMj&=!JhGHAUKJ!%H4u|0=3nedAucM*XU*_BjqGL zL`FT`MN6%l@;DX0NLP0Yi7>C@I>r2^5UF&>gDxK}ClPkwL{&j?GQ{(3sq@UsvBb=?hZ|Wg47=v~vRxGZ`c<8B8W@g`DFG@KC zie=Td=MjFqbL2T6@E@=?1xSRM&v7&x`7Kr@9$9RBt~pFQ(M$)*`nC@5%N%5m_EXE&{Y`yE$TIInO*EP43KZySAWn;22`6T*$sB zL#qr5FW0%0hn}*2A~Bt`8n=U&0L*7#7Dvg>C%3WYP{LcZMXedgnLQE~LvatFC4KG) zcd=x_ZTExBu`iuk1wBTlY10ijT~;!5e5Rm1a7IO7l2Yra+g%n6M$=zRZagD*km{o2 zM$rb>dD=@Z938$6B~f*Fu6#R=%~+N4Tv8xYcEB6_Y(LOK+fw`S-nfMx(c`yIR=^7$ z^9PHK49tJKKWj!vnRL)0`d!-wsRBtA9QNa{eeo3Eoqpw+>;o|~K7=+=?LBX=rL6># zDn8x#kLho7kqp=xOY#2LgHZg?I<0bKj7?GoiM1c%=N3GlZ*>w^csCCcy;Yyo!|QIm z0KzI_pgoyLfAdzEl#8+Y&5t!EXMGNhC4-tbN>cwO=)j+mi=N!FM5NWP<5M&_OM-%v_|kN)oR{<26vw!6+d6liHQ0>uQ%O-bkf8&FA+9 z>m{!|22pr~Jj660SMxO2Q(w`XG=;l~K2UvbK@SWcc)HJZ5|cd8{UEg*4JVNuT=J<` z#U=ar4Tj>`BPfEANBKXG$)DlF{}Xu>46J_*&dEgoAL3E`90)*w>|fc+r&jG{8zi>mC z|5qY){;N3i|6j{9F#bnS`Ttk076a?=_#q6eFG?SO(nbbg#Ed^I$@hPf?ej{w2r2!`-O;bC{_#A1q+{B`E8z!-NnSp+Y0kY`*8C5E*w z9yQ`kX4t*T>wGU}A+KECF=nRyeuMiFD%J706!cxH@@L24=hO@BkwmXoqoMH;{HOI3 z5D1=Yq&&l5-Q2JEu59W;)NkJ6ErZDxFKa}Krg?5C1`lA+q|-k1T<~r~jxO2bH#Ng% zV6@7BRBP8=F0Nm_=duD972{=fmi=jd z7U4_$E9^SEns-5tT^FC}KwvfDEvYvg8`8l$eO_(Gp4xC-?@#i88NnfX*1KKZ_211{ zV${W0z^ zL>YQ@!1E%jg=YrvSoI@qlBfJw;&#Q=Q~(%MpDXdn;*NQzdF#l3<#6wn+!+lR9X+}& z@^pt2^hj};Z8u8w)5g`zwD!V!k?uqAjZ`*Bmag0T)-qDLrT~HV)*m0$ePg@i-~g5Vi;6cp;CS#^5eQ}rV;r0w?Be!IVSI^ z&%GYm!eO}12Js0_k|79i@YRMP&C5@kjR7Gn0E9%>u#)fYZ!5LJ+{$NGX4bI!tZz7k1N07r zCO2+qJI~UE(J(&rpecL^@b5&Sr^(pZId+2-VRlRl(O2WgJh@{ng!~|Y6Mu%yI~rxx zO?fL9cam|hkjRiX;$lZ60r8;ofqB@;V6$TrPkHLrj7H=Xs+58mfAvk66n``dIDG2wSO&DOCiykH1wib z8^#?u?xdFB)G*XvW9x=Fr-n+5;X+qRE?NC7Uy5zAG{uZ&CmPbMzjH4)hS>DOg0o0v zRL2m>@dXb)nIbt?QuO3;zrR^T`PT}&w82PuE!jT*i{`wC6k6l$YLWJS8!ffc*~whv z08=JiB14OrY5_KJr|~TFgzB4dgYQ?-?*8UtE9i zrA@8)}lpt5`iffC3hQyVSU#-$PwyqQ1v~FO^9Hz zbxv?ZBE*ezLq42CSjrPD?M1s=k4B^*V)vIGPTfNBklmQMD z{HwjIGX4SJccTbB)~sM){rE`2U`Ocg1O3NW=I_Rl-cTny9Eg@1frQ@x-3;J=k;KiO>)9yYJaot=e4MP0&tE|Zwiv`VgucLtk|o_vYEHJW=K95}xG z6?;xWOCmxC!eH+)0LvHQt6G!PRbJG!V49k3Eby)w`?tQUTR5w&&ba z3TxTx!H+0!Rl}Z6g#)vWB?CFa;6sIt=~d3VA6Wa(sQ2pM?|g|9(H{vnsbl2XdM_ai7Iw>! zZ}=>hSNJJVSYLXmK-Oia%I$z6kBz)@wKZQV+@u}xNC`gCnc;$-df!_hwN%j(H6~^v zR4h67+k^rBTsTAjoQ?$ajdUX0R!I^Abyd-}=pD$)TJpD!SU9vY*(wmj#ckrh~z*pBAtECS7IOi6i&U8yBDe0u--tU)`R=szV8^o^nSe&GvrO}0w zOunfTC5eLG`XA9sbxF82+76|(3>QH|RheVgBkFlXq6Pydb5e-xEM$rE4EdzK{Yans5RmA|9QW{E-R1bX zD430;xhHqZfVnnD+s0#HgbioygDD|p`WRAfaf-=S4%(0rblRwI+vY4w8);JuFG?13 zYSW0Dst6+3<7IEYRQi;i*<>y$TQD&(jLo;q_E57&?`{8FQtD*xyyVtmLwO+T?<+XG z?HX@)?Y;$Ws=y6D>mG*5W@)!l$$!k2_|V5P8+J^ z(gV?IR!S&?;m`y^wUlJ`_Ol^PPd3~xN(dmIBT8T z9<<$A2~R~(26qy`E#96;%~x9j52ZPZm&8p`#L3LIrK}5B;OaHQBNnj006Q{uI}1v$ zuQ0F@>ZQYw7Bli_^CaQI%>oVPo%=AMBYW|qqQ!Y9)rDtpdnr=9e_r+i%F_LXQ~W>H z-uZ`uj>10_bR={Y3{|w{ja>`@zjSnf@9_VSyMdrB0Db&TL17cq6XH(iboAR{-s8sSSYYs;Nrzg0ie}j_+o4P zv@3wZ0WYn4S-}J5yx29rS)AP50hNRV!~|bT zzg#W`U|Yll6)Z)>1f_JX@My&hfXy|wbN-nv?`&&lXf9@9WQoVgNh@dg(b(3`2B=`f z2Ru(hpn#E#je((!vBgI`vR{V*Gv)2Atjr9}U#=R^(GMuFgQrf1r_R9iYdMDnz>Ejn zG=Wz^P#KSj0cailrR9G}qGR}bAb!n=5ffiJ#O@R4Ahu)NIKjPfbfR*_*9eaSN8G%U z!dUsyh#PISw8D)rTn6nuZahZY8;0^s285^Kt9HRiE)pcGo7)*k?ATNlR1o_1i;9IV z3TbDR1@neMtjv=fN~o_MP#`$E%3Ig;Gy+7rSA5!Zj6ZkOn1zSbR$cS35(ptmiqp*k zw3;cNbA?~0mCNf#d<`AgQ~T!FGqa9#o?T^*bp$J|Wegki#=sAeUzBXWp_EvF;rZ@X z*#7&I5`O)AVpRSVZ3DTHh>NOkqtIp%-0+fCVv_wZ0JLgL-d;|@j_1`2tgoQ1a7F7xV4;1%Es zLz#Gd$Nig{8qlVd+v2eR%YD<(NF&0c{OS_)2ICb@e7dLc-lgLe46iV#o=N>%rnJU8 zn^#|0UZtpMSqR@kZM?xt1Glof-QO>H#Ofx%(*mKpd$@8TT1J`yi3F!}Vrr=IUO5PR zb%yxLnYv-VdYSX$g!hLk@5504RdSKKcF*g3y~qC0?f!uk?hEr)C$!cR0bVonOo;cM zck}5K78}f39i}$|5003x*sbA(+r?V6cgl`SUw@R_C@HHPx#t9>J6Y!Ng}L4Ju{3{V z^`vIAzMcqtUNlW+`*O_yp-T+E)9Ix^5U&Egy7IIc+TvFFai0{2EAf5R@xT_3ldHPN zX^CsV`OILW#=S%Jg0*e-V=qzOC1LQHZ*(PYH=wSrrVCAGY?{a7d;QgRsY>Wz{teFN zt1Lq|gjUl6RGvmirOpnjqF zoH#UrMy58)^R$$#k_unX`p@3IGt>@;8!X;=M`C28L-gp}gUS2GdDUsnNq5tUPwK%! zU#}hW=5z@PNnrK6Yd~mvlH-T{Y z*omgm!z79=0N!Ku2DwP33z?wlv!X^1L+R=}C4BlI43udi3f8cIiqDWcW4_@#R`AMJ zSW+pUeS{dT-_ou+3)XqfZ9Ys1F1H#o;?sLUcjKR7Za$yKd@s6RaHUSWU!vqzp!m!942j;5BHA;l}>q>lmI!R7svYL;r_6(3z>6C_^Mr z?>wVvyj8za0ifX=kIhhB8M7rTJkafu>-nlwL`cRz6ASAx4J#gi`*!(OJ*olqZ5jp> znR;W55vD&zg8|d~N+-t>SKc}VF$T`9QZ%747)_!4+aVouSz|cNl>3VB&<*?B)&b2q#c~7j3Prc*QV_&q(IF&0yxrs+CZnH* zYUe4%Hj3YW++JYPrs-3njG9!v=!hcfYmgSs!%T&i&_#Sr%+No%H3b#St?Si?Ztt7} z&fd8@%3nPe%no3-sY87oN`|Kk!N=jl%M27*u~?Or9w^K1!$cV$XH@6UnXild^$ zLt-}|*~$%}#j{Vxzs_ca( zn#8>mT`r*!??48>#dLIW$b@N}%)xjhUmEp#OV~g|jouu3OS72A*+> zIv~hpt+>UCW{FC*?E?kL{Uf_@`gQgD>nmp>f_P}=78`?@rMiF?m(WTHJz25-7*mhI ztt_)S^BSVYBb+MKz)x85a$L!nTLz>VxRzlq-|Hhnz7M(Z!sut@8;Lsk_RRPqiq*bh z)We**;JzYPRw_`hx8p_PSN30FbCS*YOrSBd1${{wFNk^#bPJMdv?H?mB-?{oj`ME3 zLdRLQ=gol39&5+>1p9C$)gEilIX+G@m8W!%b6kMkV%vFn*mXs9&3q|O;##}2b{}+L z@WVIOY)5hk#~5w#*kPKj)39^l!kBlH`aEEIv6>aDF zVF0QDVD;G3)?r&;!ldG|*oUj!RC;izdhD9Q4TS~@40PU)F=YE>UZMt$N~lrr7oHA= znYwi5igaVM=jNnDBkbk|k)UZGruULr|3F!w4r?5ukio{m3bxhD*bj#gi|cWW-Qi0? zQA?8~;3*i}R^T~~_H|!TaeD9Lne1LM}{ z=E&Em)BR}p)aeSZw#wpOwr1pBvXNRfTN7!a@fL-3b>(`~XnxqsaJI_?64>zw8*=qr zGq%hwO)KM;k1XnF#9Ioc%f?G(@&i9OAvRi*Nwj)bb0& z0=TQPz77lW6m8FvJD#1TBHJ(+=RoZ|2BpX;ox3h9$6zZrq8Y@IE2phIt`M8AKjwa4 zqV6Jmp3{tUS~!BfMHm*5U$!`_R;p}QOv%9?DT_r1)0PI0b<((8faj_ZX;djZ8f&<& zc_f07nb7}1%9b)_*KHxj)&-bOa-)ltEaTt!CNM>0m^QLjeU4;L&LWixq0mRJ`XT!0 z;-mdyB6Z^e$#YL++Wm8q-f-Ya1v!&yrNdA#TJ=WC1U+t5ZP7U!&PIrNfrIA!++mE4 z7RsCP84tJze+)`Hlfg{V_vI}a`d^+1xY)NxM@-qdwnybPx(cJv*cRl*9BMrHE_f&8 zzX_zzn6?%l$x4;+(XkfI2v%0*1OM5EvDtnTc(Is`x9M&`Z80CdYC){d!QZ;1KC{ok zgS%*EyJB26h+e1Zrs-T#T_D>2!4F&pR+r_yNY_vq!W7|#n`ff%$liFfRfn6o2m0c3#26yH- z!OUyQ^1Z&ac@a=8x%!;Vw#x&36q%mHev&WSv;9i}7P(&EvfK!$vVF|-CAJgOmjYbC zox;$G9wI$orEZ2$88Tz}N!;Yij%1$ZqEyue-X#{66-S}HE|tQO>c=iwnt!Trc!KHv zFYLWlKpaiiwu`$4cZcBa?(XgZ5`q&TxI=*865N9`gFC??_~7mqd~o+Y&-=+MpX`4h z{U`fi26~t-y1G_X*LAN|wcM!x+ucARAoky2=D((`{Wo;h{a1A6`CrhPpBI7`|AEes z?HV9Q|2;eN@a=1^$vL{y)L<|7JA*=kWYDZ}h*y^WS{Z|J1_&5O??=@C?~}{{ID@ zxjFwi!}{2Nz%%GIvEZJ@RgsRF(UaFmYq_<)par+F&L%2%E2++wK{-^ZEl|_p}ub89h`T4J=*-PA0Uowg9jDx;#$Kp9(4x0 zEew@g)m1~?82Ga4F7YfJ#Qkr6=rwO-n>P5b9wtat?63z2=g>i*uwnuN{ea78a>@>h zNj)|;xY)3L^HYRxs2{-F{bBi{iDD?-ZCkbvx+Q?p zqoRc14*d87%PXl zX;Q;&v%B$D7Z;&Uw_@-3*EhVJcRJ!_FVF2i``L>_HGto4ef@X347T0d<1}OJ#Niq! zBAbI_BZmTfchZ&}FXBnM*2`o>ByhwR*7s2CR8JhC0^ccLaFf2%WXnK2az6vG>XD@X z=5ac3Eezp)bey6JUdUU3zF_kW|JDr_3h*4!@qBm*?xH0!ijgff8m2r3!`nu zMrt{im7!1h?g#(zRTe_$`eM$ZqD@Y}d+mk0lArJ_M`Nl(5eF|GUGoli*FHyt_!H9UbfZYwmniHF=Zy4zO>qaUYblZsDlnAa*dQM>aG{r& z>mG1bn zFalP6;7APx8Vp3Yge$iMMOQ8!31E2>4sgWvMos=4TEWFH5Mh_`&Xpods|jK*vw}u> zr!Lp>?N;6N0ZXn~uS!PHLVHe z+)8c3?3C}ZuRob`uffsc?C;CdKo%E58k}EZ7d?p2?N<}exEXD4qCE`$(34eBo}A&c zM)8n~KU?HXBqJ2&(jz~lIG`9>ck@nHwg9UZYab#uhL#Ali{mnK8k{W(`denv0~}Y< zs=qerhKVIG=h=Lg-A@7LIO?)`+q8LcTj9sw+4iM4ZnO{gwEJ+g-l>o}w7F);Z@f6w zMF9IYYD<5wq|4YKm zo(gVz&I(5y3U1l?l99`?x~emz8zs-ZRU-EK!u7rDbc$|hzK#0VLYyLD#`BBuO-KF_^+or{Q2tUa{o*_Rz1&X2vQyqsAJ5c1$_}P z%>TWaeZ1h>qd39a-p*iqnXKFkaxpdfX^^ZpyO$1}+~)g?+ep+zg&a_^A`=iO483)+^~ug$CF*D(pwSQ(mAmVu-|de#&jx*^TM+rhKqOyZ?2am z*R2{G6-&zh?PDB$Gm4x~4^oLG!3qUu&h4B@uE;};Vh)p%jiWE(wcXg*eoVVQ$auC` zN)@O@lU`S5oOoVb#J109CZUyP;X6B4_@k=mw9H&oNy}3Qw>4Ly!xjz_&{21&e8lO{ zS3qXxv5t-t%jituXwKneFblNaUtQ9!~`$Z5%2Xp zbF;975?No}_Xfm}@=vvYj@RY)!i`Ge(HmlvbM(7*q0F#gmT~memG$za($NhTqWfwn z=6O6$b1K}c&1!9FN8W*J3PS10Sd6|ZC<@Y0OsUe85&G2xQqv4B#XB?!fK_z82d92o zrsFOFgu$|gsb|a+g#v|2G!+UmSh>#&^C#IrkKA44oRRV)A>90<5WCjKzjAPJ&E2>5&WT{sJq^>5q(N@mk>>!>NC+GPnfytLQ#z z?ajXn9iH&z%WF7^b0D5Vvsx}qzM5K?+n-^3WuhbPve1}DCgx3hrqn_Q#;^DOi2_+Cmk)^hg^bQkURp$Tzjd=qpa&~=)qJW*@07M` z4!Bu;wxN%QO-`VJFO#i#Jbjwi=?{t+rMP6=Sz2*dR9L1r{>}cFA046Fn`L z(C&mD*+R}5(s83nnzohVmA$tzJ?q(*Z>!VXd2?)g+4rO*{7kLS{!esgjoaCpROH3pn!a$O_@H#=RK%pZTfX@fF2Su;OlgwB90&Obqf z1=dD{ZcbL$IpQ~=418}p)!)Ck|9Yzj;l$*AGW(Wm1$lio`!-%X0kBP+5F>&E|LF0) z9nK%m#wn3S-{Ua&fDtOY$I*h-&-=;fD`!;nRPlQ@xh}H){sYf~7D858h@LzvZXDbN9b-_`hiidjF^?s9M-Mu}V2Re1v@C zUtIBmyqtfR6S(*w?)HCI6Zj#Y|J@VMCjjA~|5;4n<>8`ag`7>v#lgo#2`Temm4tr} z`TaXjLy`vmw=DRVLh<(+L6n5QRr;Tlg#W2(|JPImNL`Hi{}v!E$iZPs3Bg=rK5ju% zO2NN=;o$#wK>?z){3C8c?%03cfd4hd`LEL`A+Z6UEF4k1vj6hN_i>;NoCTnetw`6B z{HhB5a4-$;x=4|F15Ii?j27)cx}VTY;h}^mtZ**El|yfkWVcFwm#8{ZxlILoFx+QwkJ{Kf3p<1eH4z8r)s=ryf+ zC#e@6x37ruMMxov$OygzK>gi~+3(%;4hw`uHam4~dM6tL5O;hO=xGj;w}+vc2SFCL zP78^OHrd^DA&Dv@@Tw1R_=PuASj1M;)NkrQ+`y{a^b7WQpsSmC#&vX zXIDGLUs+u;2o>p(wN}^GezvsX+b9P&X+#ltqV%t=nMSt>_pe0@&v>A`n0e*i81JvU z1s*dW=U!#IJDUZnc+}m!UgvyNUv3n#C+2ZnhWh@2ush!(WkeNlcQDmO17(8(wP`m; z%nPG8@!pdRYMU7I-0j zU*uO{;*0|;RBGUhE@n`;L_92%1k@K}D5%#Qydw7})15O(sP7Kq{7@3tDl0#lLXaNZ z|2QAIK#f535XSCm0ZvC*K-&B3!S+CL1Skmuw_~)S*}_nrQ<83h3;l`0o-h4pC%@Ac zW^RjiX{63`&1s+?>tR9`ws0k2U;@I-0}&rP!ptSHzhnk~XL#M)|MO@?^X5}N4+!|A zQU0Ns2fA4`I$Zm^Lk%P4Ygv@hb`vEOT#)&XsXTouvhFV58EDAfK?{Mm1YkXJQ-9~s zpRq|OY(kT~I#^BKzmdEhS46!m(Fdc|y)2bT@SWQSM+75bq1XlGZ>-SgGYw%9hkn39 zc?=?_M3M>a&F6U!g%Zq`FMxy~`{tz9eP#&#W- zFZsG*^{RfP51$ChHv&~4L5KuzD#?QcW&c*8Pl$^Moli^%MJ+LTmbjI_ac0z$4}}Dk zB8fQ(3->&>y54mcBI%5URv=-Hh4w25rYn_D5(??(JO>MPgPewp&4--l*ih-GYow@0 z_ZDp*0Wr~REas0Yn1j97Uq~PM7-7?MJIe<1)w`i^rvCZkKbzqo?J@tNk|#ATd$RL0Of8;vGDMhd4(wT z_gA51QScavH5?^mH0FlR10*$j;9;2V4zSPLx;!OxzMO5Ab@rH|Jo_Jvm{JSFFC4ui z#U{fS-8^f%;*W^}6A|H&;S*uc?ksGFJ^mJ7f9WFE#j;k!v(i%6#Y32>S8zap(H{A_D2|KO70<;x)29S;UQ?(5EDxNA=t|hKT2^(^SySibj_=C zYLF&F(Md9D5GO-_k`&Y+*MY*5q|+eMf!3Ae)gYUNf@}g?25%QCl+RX%cod3|Ph|r~ z97>9xgOt14xJV6?RP$6AObnpt{G5 z66G3UDj)Lz^)dMM0~8?=LNFl*AsV!F4+jTn3=~bzdk*3lXsaFp4ssQ!+7Hy}aNFG< zIp9^`XS%;~z=GiFyB#Aj>f@Lj?;+#)Ji z!y!p>6pe4>?}?^IPJtf;Z$V{1h#xF#!D&F68boKoXh57A{K-PlfLt#K&w|c?NH18|g4cj-K8V+X zvI5?|PpF2i0`a&Hp@zx)IkFSQ+0db`dqlN}8B~}H4I?*!Vk`b=uh39H56b>#O~lPSTVt&TUY|P7@>VzNCNNT zLJGGC1@PlScedaNQ5kv_IWW}1wKsJH(A6TiH&p~s$HUz=O$0E1CzjanetT1YnKT9BQ>jW_jL(48WLH`Q8DPs4pbh^(UC^}L)zi6CM2 z^qnJ#pv3p=oWqGAtM|;DqlutS^jw|8v?Hmy-;;I*v0G64!JGH-pR@WQZuDWE(>%k8_pzTdKO=NWQ>cUtbHG1Z zFg-&D_VU1C$sk$CP`=arE{A4`9pObwiS3>6?PC!op6z?G>BL}_KeG6BiJ{YlXzyu8 zzQJf%C&Pb|UDEJKhTWBE)o@Bi+?9RM2!Qk=nJ^6t9XLGMehn8Lm=u{}4O<CrGs;gb!?TNB z&TlFsvx^tXk9&{gE|sH6fEy#F@%|{PSA&0+>_%eiJ&bHYZW%$8REH+dQRrhqK$$pk z5JG|Edjxbj=}8S9G<12INd+F1SUIan10IZ6c^nOv%ixTjcn zNX8`HrbKusSS3)Ws2d1bC6%YR8b~W8n5UQ;h$|)Sr-T~F9VJMn=o^R}C5@-}8puv0 zgs0dVNKPa#Y}l70ZVO=#D22XZ6w(~L7YdIn#5tf93R5fOK41}w7%xOUp#JrZt&sVE z=~wu>Nq5NbAk#eQ_!V(Y_HNSu8cI|qe$wh1PE>Yc((M|iLniV7&nI?0zxja7CtfT+ z{s8AOrZd0#faEdG?>#bIA?_df@&m-j$Z3vlESeb3U_})RV(#>Q(!JUsS#Zz0)Y=f; zimk5(g9v=J1jdU47;5p{n=t}77~L5z_}O@$`<7fVvT^o%TV2Sr3HJLQT%b*`2ztX@ zuuX6Y`ubgvP2Q#T7P}Cc;HUNNy1<)Y>-VO(;F;j*_szMWo8TaB8@2FNg&uGFw1_zc zk!;Jga5{x#ZCkepIt3eV>$UJYg|2LSw1}Pt32#%bB6|*)e&N9A`PssZ(YN-+a}_pX z2Z=P&ciT(=m*hX`qWH_gR+5#snBs|x`Ua`o<7 zFY4THJLexo;MMzQ&c8y2qTluB4kCyX{a5FH?NIE$qt7kd;n@2}&t2PLs(%B|?b;El z`;X6k+M%6)XPsNO!#nq{oO`sxp8ak+cWOr*-0AS5SdYit486w^i;3SXg!Gp<_01pm zxMHyroAvjkV)5*o(f98&&BJC%q;ErgvD$tJ^rE%oi4X(UGh$yCmPg9;n;nV*uNDlaXB*yrDNy@u=yj6e>-ktxTLknuQHHhVMfaT zw%SI%NcNHwVKBpDkCfTQyU6sCZl_zvK8wWsEx(O(k#R5ON7sqHflQGoLyN=sEl+_i z082cQ=UqaA3@tr!5-npAJy8;!U=jno7OiNJ%t(g4;O4k zB1i@yA!C^3qaGJYMh-}FkJc@*by(!185c!H9*YD%Eox%eF!e{xIzq#27Rgjv<;3D) zu8)Rwq=vbqDi~A|NfE;|e>5)%y|YCmb7|ERONY7t7+#Wk=eA3j(XuC|4Kx4Iy(G?% zFk^5|;2$>r<9LbToz^bD&OniXIV}Ij>Js@O*-uW4!90O|SmqM%A=6K~lWrsNY#8&8 z{3Xsq#6 zm?ZFuP&C8JsdY2~gu2;Gk|{+>n#JW@I)(sJ-CTf#ZV{7aN;#8`E`V4!2Ov3D1XFIL z;|RdeO#{f!l@e>9m&@r`0g&gC?c{h%jWk%x^>pk3=yR!d@{OfJ8f4{^0GzpuBPn=o zDxLRpDJX@%G}p?>bp-GvWwk`h&2(_*vZ6{JHT=s1bOP<5coT?a`ZYq!sb)3o2zj%K zC1Z=^Gz$;6zasylHH~6ZP5U`Iy?b!^75*2sX=Ig({!ifa+`-XT^k4L33JV4HGwuh! zzKZ@5TMKeh;4dJVQ9UU6%Kb}lEyPK&xxjeF@u2Ce@GsG|;8O)eh^>x)B@jx-_$hr@ z^_6ff_EhaIzwZ!9DCt!3uAuN>{VUH}#HsRK;nNK4LGU%DP&l~?=Ff=fzJsl6Bp+JQ zD00>KpM%po2N&0HLaDh5>IFLo!`HYzOro*5Y7_aNr|S=vu1S5^MB{VS+4BjeqYwJ8 z-}x|h#F(j7=j%@c59Y3keONo<%+#Ip`KPlE#;);wm^)(E)z0!gr`rzJuE~XR*Oku- z?`9AWLa(VFIsCtgDNz*0&oCVPxMqCh@edbM&MTalAvlP>rhDY_59?Gihdfn|uhAdr z{i8coH-4T?-yJ+%!#+~Id=F3&|Cu*Eaj<`l`bd|f&{beQ<9yJ3E&M3@68x$VSRg)Q zeo%eQ|0sM?_~YQCP}uEE`8DPvL(Tvc0@wE*w4MaC{z~AZmB7y=+4eVBFLO9%c&PZ6 zz|JHhTMBXJWU#4l;PiguGR@#9A(_cJ?D@uxtwKBV8Q35NYh3P3qQ00<1Drb<$SN${i5b6tbNTv=yctJ+iWc9gA-3}l5II}WXL3-9C z^*KvD;Ex`hZ5g5}BK2uYgW%5?9EcgxAd5XDw`9Qq($8uf3>n%W+dVY5RKdaQ&ule3 zqctp}wIa+l)W;Tdde(S)pLqGmfb|IWb!PLHj`J2X^+by?4)lCMV<2mb`nsh>umc7k zLss3#c18`;-v$86SZ+a3#cXxXIGE-f^+XLAXhD zCHQ0rp*Cl6+<|~E9o<5Dsmg(HCH7?e_Cwzi5?|8E@U3Ox;<^LRO2o|!vO zk}sSLgkcd;*SEL@M)IH)jv^b2vly(~S-b$l@ulVrsaftU4uf$$n1o|<#>YQ=uB%^M z0+V{M3CHJ5uzet?i(c#pzw=;hi!mLq`k-G2T$}?Fd$6{}nNB!;;IGSC90TKfFt^37 zjh}w-tZQ3b1C#URu8p2r-PI#5hJvYXIefo~j*wf$*E1~s05jh5_=by)=2}hE6D&r9 z>2A4v!#YOHtZ){O!RWX2zR?|H>lSBqcZ*M8*juWn@BSb$i@dst#eFd9EnU`7r=@wl z^I|ht_*V2O_+==-QoP=Lu^P;OD|~GAWAP(j*iC&o81t4PYXBO<^?M&_PaEK0ncVu?N4}lDAfs~n+ui4{7*~8v~(e;86$`hY9xm+_^pxC(6!bV3v?bNvmwq%>I zvGJ!xjE?T^T)M%xgqToOap-?z9>Lp*a-(ZWGGVOZ(GO=HP1zZ7!)u8$p{wH34+D?(w3Q3qEi;nIN=G?O*YrG zmeEzbQzp+?<;^NL{+6s&)>A&uh_=zSol`f=mWWlFQ_j0@z9XVLxo+$&X(rTnQNCjx zTkEc8EqAMkr!;qwPayxTPS=f=v+Q`~?W9)R@rhzr@s>OjVoa|g8uBYR^-Em!E3}DA z(upe=_DgcJ?N4S~x@J2w7edbG^k=)Q>w9EkqItm+L!Y-{??Ha}V$6B56XW}vZkMh1 ztA6BS?0NAM69k*6mtpt4e%PJw&12Zd(>9eai|?oXh&ox!R}?nnIaI+@I4 ztH&2M?JtAe|r}{B>@@|AXk2deDT#?I{<2Pv@a{buFqRz(Tul(;j{lq)P#e*n@Ft@Gl zd!DfZ-iyajjK^=vUl!g^Jrf47h{sV(sBc<5L_X7s#pQw2w@NQ(?hl{Q0_eq~^TsB& z_AjsQAD&?XsJgzJgV?vyE=TWopHU$5izxH4>aB&#$}`z3TVQVHUk#EWUAQ5z@ur4Gs-L#MbB;FjNrm zA(4cs_F7v+*XS%JBKMZ1M=75@~;Gt9Twe=GQ0!;4k~KNm?o z>~pW%R@k|g0|xen9f$jxwZmM zFp?~-Wg?bh;yc?!Y{NtxZ%r)ODH^2$7N!CwJ4+!=0`w`|jsm*n0-6#6?(anXDwaX% zh9GKdy!yzceo{*{&a`x65X~OmRpdiIjHP64f`I`GH9lT+WPkrVOU2q`10xoiRJ_s1 z-F_5H+1exn!wPCWJYeKpKe44Mr$zDxa10$n^3ah5=2J#(`{?HWVDz-#$#OlNMJwjwvkIti`gor z6E1&bRzK^uo=aAX=_=JJu4iOhzo=zO`j*uN9>D{p_gi1N~Hr>FnE&`+|hdXeg7+)lHOcNTfqkGL&;k$7+5M=f@v za;0(yItN{YE2T|C;c(+{Y_;`E#3dJ#+7JF>@i)*4&9)_T1`R=iD>$Jci*PV8x4j z(ehl1+`L>KWCabWcd1B`$?qdm2_sVkBGcd$lSLqlijt_yljw_od>u|u8D=(2VinZ# zVGK>y9HE6*$S7vf(qqg@HXWhbO?FjmEf&!-W6Vo7XQISQMo|narqLxQOrW7-2>6T~em;$Kgl3|LCv>eOhbo2oXb7{m1=*4ncR^^ei zI(GEDX+{dH#d=!y<*~DRb_|VaLJDNXl;uBW4Ueedm8rDKW_3}1{8C&iCf91grIJ+= zEjH6io;8k2eN^x-4uC9~4dT%trtMbS}xKd0ut!A6nV7yGzuk2gwKOJxw^i@NMmMk?+LB7~( z+U4-uS1lpBoYZlJ&&6)j-iIMyH6av~TBV?0Y_Apa)$|wDS~3J|iiM|54|Bho`%sD| zlPks-GfZnAW?Y;2P<14~E7qU3Ka9QB^I_;n6H}llR-gWS7=5h^L4-6vt)yg@Vub)k zT?ip0Pk*G8CK@)N|EN{+(a8Fv-rh$u{EwQqLrE;7Q57SZ*=qBjr1?HoI}A60hYokq zT;&9RkWzk5tsgSnb#V0%jL6m=r`u1x8uH%ta}8(>GSOh8B}k1PlHIj*b!q)(qQyp+ zmO480Y1h@&yEVi_vx-(f6*#23Yv=0T8g8PEk!(NQxGUsp+L~)(?nKF-Ofnq1OYf@P znz3r)MAe)OnRe{*xf-|TteTxtdM1bdQFHy=8coU)G4#__Ur^LYS6Kn5IFPwwJ7iOn)Irdyg44Ic$XbQ*E7$A%I0Ym6L60FSD9B0~3z8ZnwEr4|H3P>9>EhNK1rl``b<*Qmw%$~_@Bci*Vkme|Z zv;gF$myU4nwq8nkm(wy;CohbU>{ec?c~|>sh%x0QPmB=k0xwk`s_v6%=?oP$pOpZY z(hucD z0(NIF?cf^=j1(&?^fZBhx!EH-^u`k6vUx3gp!@7EJJH6@WeLYJJ}nZU>THP}cVp|a zlw*05mNC$Aw#iPov13{Cqzs`vXLj6!kcvt8jMR zu3=gJ1bD0c1caRpKBDB6BdfsBi~#h_ZXF@H7YQkmRmN!!0(NFEj^KFpa>~@Sc4mi< zaNPkysyS8T8lM66vr9*$?o~qSIn`_$1c2z-{-by9<-b%+tEx2g0l?Y0BVzZ;Uuve+ zP8$4xtl6<6e0Sh4)wQZq4NpMZ?Aj4Iuh|;#RQnEyI2(FIbyMRbBMKnbjt4T#{y1X1 zY4DK~1?Fl`010NJkLYgdd}KQSX4*Kj$4BTlB|gd>mFt>kfV%jHrD1;`BC8R%%weiLx>SoWsRN;GXQTU%AT$v$%wJCK~Ihum@+eB zkJk`oL|0j-Ckq7V&H(Ir8#0aZ^^}2?b5lolHw}+Qu$4dO73?c`r!wuv8upA(D~soq z>?<3mmhDa&ZjBHt3-OEGr-kfI8$Phgpw9iWvoPYXY@3%xU7&7Is4SgVj-K|hpE9DT zte#gtu123kunTP4rY;BSvZSZoeZc<;VCY!{ti)iRu#y%`RYHwwH0irXI zyzmWaMg_M@zLgzQ>vm@icgu(;g|~`N75-D5b{h?6nd-{ZNsYK;)x~z=4S7aJLJ1fp z(uZG!q}Z#{CY6thucv*8Ix5W6*sJv?nU7MgM||)gmZVx;wJ>Ra6buo;n#|;@feSOo z$LQDLJ~SP*>oU#&{+X;}*6UP=Cf2wv=L~F~Sve-Vj`K-aS3IlmoC>|c64f~aL>#VN zpZZ{mn#51i+~oSOiz=N}${+h*clwBTbcsn&lwnR=UH3d<`Im{QP*lZF${!V8PdySs zY*me-T7A;$Ci0P1R4uPUeX8_m=KAmv&A$Yqs#Q)*?H^rTKRm+t|LjySuV9}_I~u*- zeMIpuhKOvH)l&;c$JaNH2>ykgiW?QqQ_V*!*C&q{{-vGD8^Y03f5HF*c z#ypn4E_~#CX$g=LFVCA+KmL4O|0wv<9w6COWnlwL(d}MxUe3c6XcFk-YQ(VVCGQ8Bk%Dw>tXS$BX zL>1NNwZC@d0^TMAk8BY*@`KSFun=rD5F9xW?7tv5BZb>|p$#XX_iLb!DSSQ%w@43P zs6ku#5_2twKvS4FjKsl3Vi;2)$4Aqa*f(VRhs%}3JEmPujHXMo`@Ib=7Yd1NOo1F{ zVT)$(d)s6#C6Z4ub#j7*?V3GhHac8PB)TyGIbMji+gD}_N8A{*EJs#Yr8!aN%)>!U z92+wrhf`QS1+sB!;4mVtjG31sDXg3tw{iZ;Aw(=G$52>5)sMs{6{ArI#I}YAwj`o4 zUub&2^Y{>V#Jn$T#&*2sd?bE}c^!bV%I6&V&WS)G9rJU5!>Wa|m(VtbOOC`UrglKU zs-3gvJ1;%)j~D@~I?n!dI~DE{67HCc0T!z!&cSqh5ceJlYE0MwwN-8HZv#6P?o<-y zn3Mq~tH#;^1N#c@c@mPC*a3R0`r7_QJBXe}A{>)5z-HB4JNTXdmiQ^=WdM37-(^U^ zfs`|jcra#X0C}g#WkkR+n{%9aKjvxxey6}?xW&PQvx;~j25#q7aVfZY4hP}^YU`%lxKz8W}3}# zInHp-WD$X4tm(PCK@JchG;;|Aw#MKt%@_qa?r~maK7gLBq3iPvhgcjSx@cxUXxkdO zzQ}Nd#W9t0G;tNf&Wt`;*YO)rt?|?|CHV6<;%D6QF_aYjn^jMX3`qCKK>6W8!42gRh zY6fc;$kkuiEjxE>9#cJ8;G9dCW6F>6Jt9y73U zZotmIv3}W@tRhY?VQ%=y!M!%55{nr!ISDgdt2oueWL}M`p{~r;V`m;Ya+Edpujteh z2X^sx6WgHISyuGSW7(JSf{2}BYvhayE2icNAEURGaonJ4EWf0)UO*;RK(9S9M|9UKic`%cN&W^4=Xikv2>-_z0?F4+49x=jCF9p z;j`7|bL8f;cjI$LZL;xo7*2KU*K-_G`+VGFk=3-&dUYQRU2EL$VwT9`L|vD_;XSIW^Z9FIR%+JxJOr z*T$WkJ!^!QB|RA0>eu=)nxw%RZ9p<>&-%6%QScYx-na(eB}>(f@4!6~;)zKtCNX7<(f3o9hxSctk_-_gHr z=Um^sA`H&CW%F(B7>sMaTYdt++(JL)`wxjZP}IgR4}y0fB3P0Ch?rwu?Zomv`05t^ zslb1@)4{y9dU*j1_w>uZuhVv;&UwWX+y)WiJ72m3Y{cs*R@A|zkO83er8mHqVYwQ- za7*%3`7$2h99Sd1oClt`C3ph9jJ-NNfoX-8)M{Tm055&7wxxpI!5FSJ(gH=&f(?BF z6@7y3Gy(-XF0}F*v)$9^A?$XwoUfaV4S0iD^>?Sqg(vF#) z!vi?Moa}Km0)|Co7pa^owe*>>!_(_8y*Wq>(}#!Gt_9iaY7H}khsW1$kHWCo!Q+$+ z14LjnmvEuJ?5%O6&qdrLL?Rzoob?goM2$mP-;vP6B5g*t~(ZQR|Ys30CCc(Tkmd#4Mb(ov7 zLXKG(1H}WCJB*^d=JLe7)sAu~+@9eN#FYO{NTJN58q|PDtH43gnLmJnhLB*CfqpwgW-d|(eC&9 z`a0HWki!FPv*+{v4(%rrtNaVeq_xO>BiO71A;dTlJ4H#)Jb%=wTF~HNtul|U|J}i0PAA`WIi5%M?PEVM;58;s z804p7=S$aE$sT`pi}&W3XYycvVPaC%rJ$sul~y$Ht1Br`Qgs6+&<22;?)PE|*hak> z>->{<0{pY$b|^2Qy5X@*aBN<{e}cc^pbXR{tFSWmJwaPq+55h0pVT0E$Dl3Ugto-t zr5g5gy|rUc4s*!gA8RoTwVvuf>Ezzo9Pr)k0t)gF{$Zhcd&wPS5^u|T(3MB<9uN07!^AS>gl zCo6BZ+Q@Dm@F~yiPP9_xA@A|)i~i_a^6igTL!UL;4jH?{Uy8*qx`*qb5!awa(WaH6 z$rf+k4l$J+gZf7sdUI{_rutWhc)#tX+2d>dH=7RGp`Z9|MvgY0$<~NFfqkz7@|9hW zcCD|7%8?h1s%BMB;>ogQy8GV3)=owR)+hHR>z_tbs|@Pw{2n-W<@G+mz=&(~jbg9~ zm$Ceq{Xr~l^IUUb6)uk%b;u2vNMGOa83=##*;6;t8f~)}`;9lAxOg(7H(@FoICYtE z%%B=?jMbd!?OMWvM?m4}>I!ppZHa6*UEH$bqMk9!IJ=#Ks?TcDho(GtUG#N!ab$-$ z&VHh3FW;Ih!^Q4VkbbzmtaM~Hx$j5(V2)*yfSupVMeJbnhi7TOhnrh649~SCM@LU) zF);_}$#A{nO6*s{4*v*gQ;%;I==HY)5ss$~t#j7QjkeS8I%JPg$uJNc4;{!va2x7( z;}BLVC0}cOqV))tUtF#~Opd3v5rZ4Vo_201#qG!@X-E5!&VH&t`F$ykFK=Fb(%)cD zJARXe*nHK;>Qi<#RxysV1Mm;s&pz@zgsWxdI3?ZjeEQ^1cKn@5Cc&5LilTrgYX8QU z#Mk8pXVk6ZKfsf-Kh>%Xx{KxfC>2pehm+$iuyLjo?w#*aoS9W7_DDC z@x_^gMPgz%_^$RqE82cJmj3bSffU{K5-24Co{BZ^ryS8wW= zQ@VvOCqCE(tM5khA={iSNHx#hJc3We9?yYS)kjb1shvUjC#4+$R?!sw1R|G5x4XaB z#JaPuCeC@!$BGb}NeE}z|F{O80dS(#$3^=cF2t`QQ)~kz?5so?Vdq-EtX=lo?R61) zF&qf)@UtIwB6RM)BE0UNo_$^jtV~X)J=bK%O%m*7zs=B`JGM&oH+%Bqc1yV>P;x4b zcsNvBTEQh3^IAOrX@#$UMV{^bWj=VR^2!4R?O4R}Pfen<96MmwpX;grQa>x>>TAb= z59|@9pzBMLdiy@JzI~Xd#6Gks!nd#FOP_Sk5AL%r@^0^EGlA`$uXJDE2+aH5y&?r} z!*AG`i@mKeceZs>zgm9%GuhL@J^$UxXl4*946@^9Dhnv(G7D$-bl- z$TcJUYvuejw2k{UNhfKc%lM8#e4UC$?lXj+~cM-j;dT7P`o@k+@#wh)k;9*uGHPJn4V_@^Tl1BRSk96#Ad1 zKQ4shNY?-RC$FN}NUpDtGyc8&H-o?@LCEfsfBRnxUHI8ZD1Vjr?|-d&V-mpTdF>+1 z`hRG9>!>Kde(#@ z*Y`f>xu5TO&hOmoe%AW^_>Z-&#q1gOT-V;8&-?Y-H%tZn|1q9Fz;T`Ugx8^d{~X*u zF1|^5LpgZ@yviTBSW1PAFV5{hx_^1!;2k((1EZ6YAiww5-@TK$K9W=W-){|d2VC6! zx3L{x|L<47GnF8pLDvem{pWCQeI&^3|Mt7(ov|15;7!VdKmYkbp|ExDncdRb#HmO8 zcTx#}*#2KprT@*j{hi!<{vYI?9^eI4wefH?RQf+YbrwmBq zztDRUe_i!I(|h87!Fz&$0!R=z$3s$7=x^}eU#EHegJ$}#eAC}Nqkku_{yV()4@K$U zb*TU1-Tf1d`kMs^82A6r3SGdHD<~lFU(vk3xtsnKoFyy-D1!cm=B14!0HR!#i>m~l zN?IL?A8+otiLTi`N}6V}9+)EU=MemiJdB-!;W?yrl^pQac)&~fT!p2EW%ugny_%SG z9Bm2@O|U{UOQVoS?T&s(mu2qrlUPd2hwv zT1|K&$93`@zU#rrF*fA`HOaJe{|QQyj+PM%X-r7_zGZ;*@=nW1v(qh=)e_dsk{QGF z&ZkH}XVLjtVtJu)$s7?wO-_w2-@Dx&Ik(mqVXfKrPt|+C<3#aB)aecitZyP`6bK9g z6(Gg7(NwI}Eu(%@%FdKw z3C%Z=?<*@y8922y>x{XU=U$Jd5N$kx{{G$GY`q*>FC#eWB7%InBgDVcb3r8Aly3Ro zzd3>e|HDlC=Un-3jNiYQVE;bm_Yd*a|6vRg`G?Z#zaX4{vtj)&%uiBC{4ZtDKgaj) zVSYkFqT)h-pG$j9#$KDtEqqcqaK^76SO?Nq;(6cKo4#bxdJB;r8yzM7tt(Y{Ag`34 z_s<_XAKg1wnYy5hPzk@<@sau)87HK8j6c zn&NNopKaSZH91(1UC1%O!_OP*S)O&FbvRyRb_reI*im@HK9<1Ooe zFy&VI~7C!wjGK5)A%u zf^fHVyvFQOJK$%+5Dh;O!N9=6aK^%rzs;lGYQ2fw1d`vYEy2PVPUvg*tHg=fFqu1o zZD$N}4AkiWeuyIUCqD|J_C4(Tjhqh#hEv4vl$Mpnm1WBk=X z!n|*vwO{{&!^lNbpbpBUAe?z@iFMQc zTCel(zT_e7%{@j=6P$lbzRG*Ga#zr1S!U;fUVi&3?~`P;S(rGDH}rb$!)*xo$>7g$ z)rXW1i0@y4)NU;voPm<{Nv&_BKRDPxM=>05u^mSBw#debj~dE*z6*4TB6gr01zT20<5*aw>lC zV*+(~+|XhS>U+1JvVn;v5Eo9Rcb^I?T7g`TiVBD<5$I6>;S>crJsN;{Qozw82k<5Z zYCURzWKtl}qnyENR$$bloxwg+z@E4-f|aa5IYA|YJ*GgEN@)JZOpMiW?$tH9>ZYhutMFfKQC8)TJjt zOpFKWQWqdh!nNx%6(CK*qwG=^AkfA&>@pG{(Z&<*(iR{Z#r5g36d)VLBkEFokI#dv z)n)LWmy?9Tyhlkgt z;DyhCtJbCOMa+Q5-lgG1_zu^x%gl@P9Ug6$iWh+;?(;5VFA_^U@h%-NqGjBGF0dEb zG9Fo%62PkAKI<|BAT>PxE-ipg!}aX4K$3RgF?9h44+Y~|bv;Lt1mnqdJwp;*h>ldO(Fu_k=-6!67bOeGu!bqDkBvr$O9>5-dFiDl*B(?0xb) zeF{&v-Ylo$Q54@BB#PH#-il0rOpyLWu3VmrDm=a9ak;`14q}yJs;b9E_*}%)5ebT4 zi#PNLs#uH&xk$1ih82GnAM4>%F&h!o5F1C-D1I;A)g!55Ga>?jhKOCovtpDUcGZ&^ zd>3NThFMsWyO;d51e>JNFS2v zgtIAT6c0^MIdO@Q4QpMQf-U;#@4qsv^ z(!y|E#meI83A!B~Us5SDa5$f0PVvYD^$r(6R*(WPg<@;*(gfoUpD!7LOeXx1VoLGA z1mzCrDe-I4&*3i=8;j>A=y!NeNnewNgv%-x6@Qzc-QfmE1k#)EP{l9BKPH$sm~aK| z^$K8>c~R9xp1sF>8zU%zE7l|7_GU}~GvhtZ+vs`$oay%@ExkBv5)zO6yL59S%yJ`N z&EvG&knwa8yr-pESDwdX@224C4KIxoG+tcG6dpL0-M_tDC9plP9edo@{k>@3k!*K;@(OCh2C~fewz~`0`MjRD z(JwO|U;^>v?$7J8URG^P%S?|j$fEGNBiEk*q0R?S86IJ#M5%R`tqUSe0~ww^f?_<2 zV(-pa=R_I>K77gu#rziK*!^)`5@{Lu=qb|+4E`wE?!%2&lK>7~GRm{VvfbRBn8RUyVrVb`q45lcu?$~t@QvdQnFoP^+ zQPi{U%5`C+*(F2pqfQK~DE{u8b#A2b<-=gcPD~(*+}*k^jRapl3T6t$kc(pKPFZJ1 z8eY;}GlXJ(iL&Z$To*@LTryriy2S{KlIt#7=SM!jqz7`mn0HZO-Cx$_ykxQN<42I+ zQ%K`bj@=>0rbxC{C$?4g>Wj)H$9h6eM3HDpPFO-tZ>vW5_@(;O4f%KYk?-+ik#R&X zL64N>Dem(#Gsnk~X(+NNt6s;wsZz(#P<;~@6O}4Jp zI%m0v0WN1^rqVEoIyFI^wOq&mr#it%sRksPny=1VE@psNoj9Yk3nEF4Q3sU^PTg}( z5K+np@unI9YkWctrKz-8b=)c3A>~Ep{Zt+n`XL4Hv~zX5a?ljPkdhP#oZ6r+UM@X_ z{X70t@iizUwNqWLTuumsE{<3c7o?P0GALj#A%sO2pQNY?vP*>zO4vUY!pw`)R%8Pi zrdAJ%*h>L0S^TJ?1IQ=!)8JEk*$)_IaXgANAg$DjK_Pp|4_IdLb&4h+*VN`gDSMd@ zmPrIusQx(ou z{K80?QlBY5O0y~nrH^AgiIJa#t4~5wVk7bfR*W;L=w#D`Z%)Mu&9WUQ|QWT8QZ&e41?IvID1o~nDG-DK?#4k3Sbl&mx z#g(Egj2>6rF7}yxwG-@%iMS7r;#18j)|!Oucmw8m9 zN=o0aY**!bip%})0yX+Zn^kQ3I%WAPqA4yViBrFQUl%IS*7y1fN|lk$<@q`=mVo?d zz;)v_Wxh@0u#bNTcQ$;F5OBmx#1Vo35s%P73?VoX)d*+AZv-784`GH_Ku97!AzmS_ z5IBfvgbLy-f)!DLfFOP%s1aERW5jm^aLx$A4{?SdK_nw|5Mu~lL_NYCv5#Ox6e7Tg z6@(1pGa>|WgTO{aB9sul2oRzSVTag6P$DuAhKOl|FybS^2XTTRLL?%z5F-d~L@mM< z@drVVC_q>smJrg2c0>>Yjle_1BGeEA2zEpz!V$5Jphe^$o+IWE;)qs60IC7yfjU4v zLP1e4P^&0eR3|DFb&JA8MW7T=-KZz15|j;U9Yu~xL+PU?QGzHq>Luz3MSzM&X`qHs zoTzG)GwL^r4wZ*8LoJ{rQJ+w+P**4%R5VHj^%cd6sz5_)oiWgOna!2i>7*T~NFlq%QgZhjLLEWIRQIRMmR4)pIDnr?!Hc^zQ43r^i z8YPVSi1I<5pomb3C@s_oiW^mnaz*_?(W44b7N{kZG^!mHghHe6P_ZaA)BuVdRf%#$ zZKG&WIjHBTIg~i66%~NGK#`$RP|r}`Q2eMylqc#C#e^zCS)qQQ`cpU`t|x4JjrOi(Jv`y6+e#ETWuW`Q?Kg5c$SDGlMQ;d24#8zF9N`y*?N{mX7N|Z{N zN<32_QzTO;Q!G<3Q#4aJQ`|_vNW@6UQpi%wQqWS=GSP!>g-ePT_4+hhRM2V4PSNC-(lE8V`0)V@TpNKHYYv*|-vTlYU8RD=iQP#L-sTAit6H--blVDY ztJ;V-^zNBr@{lGDFyvC&3D9f`Jo2&e7>y(_#rpMCnTPzuMk6+YFQa7SnL4_iav-lnhWuuRBnqm27&tc~F=rhav} zCX}_&-}`s1{ot=nL+UVrkVTYef4;R2+`-hR4ktUIxzF6j*;H!w;Yin_b)Kn39b$H~?UNaIJaBo~CwfZd2}Q?yMl4pu4S* z-C}=J;!wiS+oAZOWM`)7Conth%G{3JaY3*xqTe_1_oHdhFYD2g++IPoq>f35FTIRv zcdqs6LlwKyNk?rVP1S`RaW2*G4+PlgBUQ&92*o6m+aTV@HluCJQv;ukAj!O zGvQ6}BzPVC9lQhn23`tJhkt-4z-!?7a0EOC4ufaITi|cu4R9#D6CMFCfv3UY@OXGN zJP-Z}9xeENerkR=*FjsnMa<#B(gWdS_vHN~vwkhI z(QWsVTX$W=qjx_L^C@Y{0Am}aqZiG#*Q0=SkL5_BK&*qWDo@ET)-~FqM%tL3dr_0E z4F%qxL*9SX4+P@JHwLkE}tCyaQi#V7(v*R)zhwYsN<| zfqoshFDM(M=lcJw`5nCu4C%mJy$>uB`wP}|jvNAgI&h!~t$h~j&Vf>^55ILSt>poT z3L`YyaZ@soZ}rh(ctD@@`l~?44k7?si3u18T9Y|?5$M@Lwn}>#doh5whJB=PX&sC& zOT`pJHlVf!I?}&%3MQ7NVTw%|U|*v=(zvt_CX}Tvig`BRxF&pLcIg&ODoa}w`)vT= z<&IP?ZG#CqsjOo72LM3s$oSGFn52^iVB!YE*XWOQE**l2I;jB&ZXjSy`UrgK5lq%e z`y=*nfNTx#Na@n%8b6duE{18~*&6$i;iWSGvC+uI77g&P(H?1CLI7%w`b&(}fajX{ zk;SDufT_`biTyFav_^KMc4>D_a7z^yBR62R#((r2mIX70eTRv{nqhvhGZ+ah8Kwgp zgYm-ZVeYVf7$d9@28OM`WMH3RA+Q@5HY^gR1nY%?U}Z2n*d~k;mH{(_O~Zs?A7MVQ z6BrRJ5vBzjfpNoXVXm-0FnU-4%mTIqlZLg!f?#ME9xN871{;8}!zy8pux%JEEC==+ zHU|@jwZZ~m7ceqd3hWu|8;l>;2=jy;!kA!1Fe}&(m>euvSU|~PJ}FnQ2gW z_>|<#(H!bj%!HIGaiz+Fr4ssYI5aYuH7Ox+ACx6apXx_csT(nKQ5wh9D2tX#=|@&+ z%rLu9`o$rXWlCiy!+~cK^FvCVIGD0d`Iaq)dDwnBo@xtiJ_7^QGrULTLGm|$$K7Qo6;62(RLG205l zqf9jcIF6D#E~}5rRump%s#OP?rKFEb?qjnR1^_rsH&6?ubX;K{pRG7Nc3x`_bWVvE z7uok@L*QkUgeJhUQL@Kn^l@&8yo{01ng#vIAQ_CY2YnD+h;q{u0~KWO4jO%6T}aRd zO%Ki5<1WOEvMiZHtg8A^jCTLRt^l5ZF^-ZHCY*bTyg9mP}0hE}&g20jhu%pqy{5->Tuo>8I$b5=eRtK=*42!|~EirHD zPm#+S2h0H(L4%*SWWD8Hg+En)#7vfXhsp2?kL7eSG0$*sk!MRVDI3S%(m1D(!$eH(_+_xR(z~Ttf;LhsA#WLG=Y&yYw+ z86*Sp5t0aTbu)K+?e=FrX&{{1Dv7DKleZrk&GaIjtb zSO1iK@+IMx=Wd7dvhWZ)^w;wg#{1F&{;7Y(IsHrvP5Ot;CAmHQ%vMZNjNh}Fem0rR zcRDl6s7p6)LDeT1H{;d~%@!MfjH$D6?aR02b>g+>b>p?=b>Vg3_29MPb>@Zey7Suc zy7D^mde&RlJJs9QyVcv)yVN_>d(_+1JJ&<%-Rte@UF#j|J>9L{o!sr+-P~>6UECeq zJ=|?{np>J$KETYT>+9?3X2oW;T`gRtU9&}(^6kc&TU!0!`#1T2_+=(-(Qevq-fq@z z5o8)<9%L3|fi^{(qs`D3c&2#fcxHGOv8J)+v1YLrYNl%DYG!H{1EvG!17-sj?56DI z>}Kp1m3m^sy41xRRe{3_lAJNNoNqTcX@A0=X3Debz0fSD;AF~D*2vVp;*2(^#>mpf z;Y=pfx8YK((8H-#G_t9|2gpKI>Pk&L)@lPIXQ1Mj&83!A$)!hKtqHg-2#vF9RE;ZL z^hE!q@1)vDtA;vDwZgEznz)7}OQX4BQQyo+EKBJpK>3gwsnt+ssrkVWdf;jgqktN` z?-{!)XaCiALIR7?Q>wO^@p8E*n*LBF8P>07SN(D(&;?60Enis&2GcXFcAoKd!4=KO zR~du-((|c)H4_ZbOR46{ys&INt!fAmOT=kTH&>~L&FZ;U`^~&|!ER1lRCb58=vh>| z&-lCGHD@fU?8DCWf~rGiLU%FzQl*p`VQ=-+s_kZ8?%wlDmr^N&0Z37`&&;b`EWb2_ zG8hIhMAfb{e!IAS83>gX7yu1b2hD`+VxFY}oDdAE_pI7+#%CAjEFA!YV5@qb)d4d> z01K3cQVxN2>RDBL&IIh@on@d@ZeX{1S0cqv9>T~UR+Kq0)>o4FiX=}8Hl_7DQ@XRBdE6^F^I`5yg?#b@lSfUF{!_$bQw(F%e2Y3kP7%7rpPSU#r(~t#vz_wJrwQw) zFs1THryeqv_WDNYmJm%v@AUYRBRIfGe7e9EeX3$-%9jqo1Afc*?0GTwRMyV0FExS- zoZO%b?AWK8cNTpa5q#j3hG*i%^i#<@{l1h4&Xpt&-PU5m-`T$0QpviN7SnXT^imlf zTCHUtciaF;SH;papSK$s|H`zLjiGo$OozWq>E2<6dae9ihf0bpcG z=BEDaoB>q<(C7G7ZO@X{simELpwPoMliFzCo2M{hLDN_SGo2LXQ zmXHKlouZO&Q`DIN-R6Au6=C10j~ z>>U2(gtr<+AV|YkQU70vN zK(`^ZvDgRcZ%%fl&7sa=%%RMoFQTv#=+p~dzhpjA*-ZROo5D|SCDdsY{QFYq2(mfy zH7BLm$t#N!?DG&$Fae&%khijfMcEGH^)zoeU43zKOEZ}hgEA; zJ5^g%dsQ1%yH&rc4yx9xepmgh+OOKI`ct)Cb?CI_wBxkpwCA+pwCnWC>A-1S-LJ{F z$-7)~im{%N?ycBcZ8ZxuX|-(7QrhOAU+FkU<#=_#!*`RqqjZ}hQZFlqoc$?ur<{QV zbG`1chP1nG`^RwMak@iai9+4}At_1rLtn`i-4sJFHi^%=lX*L*k{R#P4gFDt35I^S z?}o;U4ejt_?0K|#>>wO54sJ<>oLzl_M@f+{g@}8F7O^i@)?)oUc1B-A1-B^-MztCpx(daz~X5sj}QEeNT&~)zaQDOk!Nz5Aq z%tJyaxmTlD4o^PDnT_(;WDAYt{v0KAVEve2HdbddEA%J#Y!uf41n3+_-E3NfmU8z; zNgdcfCIZNf&AAXd_huCH*JGbJ$x#NIw?YHCo1+AP;Vc2bXl%xXwsTKLaeguT!~@)n zO@q)}?w?VTUu-^!04QT~Aas$79>oUOn7CJ?Pi>$=-*UG{i2xWT;ni4&&8pC0?!_n` zaAZUL)o8Fyr_hhw!%?zd>?es=W7jsvW?hOrqs%bdu?o6go2BX4hqzI2!-f7h0!k%p zHz9g^QL(<51^j{@8havm^a8V+e#-;kuF{=tuLZAI5OOnXVX%PKcbV98!?PB++>Bcu zS`^lI&)U1fn-`?qz%7p~irl-z?CIgj3v2+>Ot!C|+oPqt{T_cvJA7r~k=rw%I8w0Rdk#UvZx%53w1K&>R7vG*-x0KU0Eu&3-#A)Qy)qYJ5oPcP8zX#=H`g2LW$$Ts|B0SBn{ zlegyr1PLSuKC(c)r|D1Ko(~`+kU99D1(H2gfD*}D>G6QH!j~2p_jLVf+Y45D4j zv4Fj&aDG217XUsWDe!>>N?^@T6_hX23x#}xZ!Zw-shm>;<$dmX0cnKKEzs}joYMpq zeC}O^9KtUa@b;9>$kX{=L2{K9)dUJ`eHM*rk#E&2t~Twn#ufA`lQIJWj*=nctN1>GbD@Wy4@@8XGbEQoBP3-vTswi89Oo@ z1GBdSp#eu8tGz_QScgAVWYaE=G&=f5I*OhLW|1L>f>Y-%?=$@Z1rq`q!#>(yiAa?z z+u)a-_pH+SzvlcJK|-#)gI{%GS*11hJ^xjUG`?~P_Upv8%4qyL_v;VR@9K4M2+);G z_3RV>Re;pFatQY6#3>qX-Lg1x4wm|n|7~pvnHOx)$yoH&@kBD1?+5g-D_~3d=vA;| zC()0r!~THnAf(LIi(t=AvL88z0~gzPNbDhvTZda=t}?EDU?_)n`t0r zn;l7crEzT^N+_3A)c(fBQL-`^xy* zC6we#w$(u6wm6dhO6S@kl;}&=kABbX0HpL4_}U|s>`Ts%fx~SwB;J+MwGEJQ&XntC z+J1&)2PcBHEVaNRmLp(pOKxzjWi8m%(iQy2@(-Bak{(=OSpc@Mv;Z$zE`g;jrNQl% z?cgBGATZhz4aT#?1IJp%g4Hb5z`!xqV0KG(aHVA>*wNAvyluG+rnRI6=UC=|pIbf$ z&sola#Vy6bt(L9e0LuXIh2;g9%#sY8VwnPdX88>K&GH+V-;y8PXxRw%wDbfYS{{O# zESbPXmPKGIODpgX%O7AlOF8ft%P-(C%PWtynC18MFUt-%TF2`H=$9uwMj1E75HDMY z-2Ev%rrci+AnHAab=uuM+S|j?;pk#?D*8P-4qb)LMYo}&(B$?m)jm zm!i|rAJ7Tt8gxDyfsR4L(Anq~^jmZT8j9{jN1#j4X=pe)9$k&jLw`a?qbtx^=w@^> zx*lDK{)~=9m!UJzAJK{ET66)r9UY6VMCYJe(J9hDu%D*loj-;eL%%~sq0LY~=oyp* znhe!}jzM{$^-y={K9mt!2n9n|pfb?U&=BYi6dM`|Rf6_HLC`X&9dr{)3C(~SLZ_j^ z(2r0b=n0evnh4c`jzGDgwNO{+A1FPv0BQkUf=WZ%p+QhI6b~8;Rf7&d*`bwCN9Z<` z7Mk;~)H(m~%Icqde-#li)f1yA{fm4*qqW*^G5|Ca+ho|z~!_mPf zuzA8X2Er_~F8HF+ z=8EnmZ}py6vCq&x#3zYXRkSOKpD=P_6QMQ7uU6D5$x3A_C#sJoE=f-1Y@%KyFjH(v z1#J=TN0Tb5m1Lx{`_drr!OzT6f&}8FlMMHYLZKB^Bn6lQ<%;LL7`}MrG ziF~g=&*DbYf^QM+-s5i*``&P#b&uv8KPWn+Cv-jBOHYD@f#xl~TC`oy%k?NP0}0l5 zGyp~y?bGvW{f(D?8;d1P1OD@9*MCRC70BA5JD>hu)W)LcJc^M(n$n+j?|l4p{CNC) z{Am1a{AB!s56O4Rcg%Orcf@zbcfxnkfNVHzIBqy^IBGa+IBB@>Kzf{d9DAI59C@61 zoOoOuAP-Itjt|Zcjt}As?MSI(~Hi=;+beqmxG$P$cvedJH{>9s!g11bXoT z`Qr4&@r&~pM=#D^oV>VLMXsK%9ATk)5ZV z$DQY$N1bP#C!H6e$k5Z!(a%Jz=A1JrVrQ}!dvIn_PBv{ zOd@t)#Kz;7?Gs4{TBr5s44?2F%EdHF#?ciiKY+lfSd(HqP!;cd#6Tzr%{iQIiz8(c4&+f*&N8z|=z>HCs5*j|2YQvn|H zl&y)RVxwFIhlaIaDxCX)5VZh(&9m&(ChvXn)M{Czna+(*rqs(>(% z@<$?5U&;pi(Z@@bYpzhrFNtz}MH~D_t(R(}&+Y+Hw|8+YrSbal2*BL@L{N%cD@j9y zZ6hA0>;shJ*~}^ID4AGfwSzM+C5|*Uru!V@zfoGTbZQ4@0lP_^jitVT_(MuLmQd~M z%uC55t&O=p&-fpdVJx@W*IAd+N6&0K$u1u=?I{IU@efy?{0_mjY9c%NdYL4&nqzopIZF~l(YJ)pjincOB zLW?#GLolsA@b63qKe3vpJ*v1QL=j#Qq7yC?PzhHFXw6Gal;)KtdiZh}HGDOU=DOrU zab0ntYc6Y0HCHugmrECv%asdy_i`7td$o&xc=-_Z@aiEt|1uwyf0d6mzcdKp4XF=y z?)0^CwTfv>=AWLMog2^jIdcB<(mP~7gfW;gq!3t_jCb;NHgtM)9&|qHgm%8@Tk_TQI|49X1tS9-$GLj>}G> z@i1S6$2o8+t~^bnEM1j7S>s`W2%mHCR8)DqMn*atyN*VFz6h`L>#3yjJdKa(4(wwZ z`2`~U&Y@Fp%A++B(`mGDDijTDs^g4|xY($3G}T!v3=EvBlK^WodsYsYI(3Dn0R%`r z8P~8G=eVeg{!0s5wSiW3Rwi48R(%C=b#f+WbJn7UnL$e?=%?m>1*w5rbw(z;Up7J= zT;X95P#rsC2pE3;s|AfDJ4Rip!e+|LIZDLfA!~AWzq(z;%c(%;HzNA^EIQdRb;Anh zDPQLp5yO1evFu;!J{7N~f}JCp^vqd!v$NH;Dj-wd&e2Tw3 zanEj1x2SNR@^_AHGF)Wc&pucGztx{j`TdUZHAJwkWFM#pR0K_h{Ej%)d(9&Amx#H- zamwd+^r-<*LCaoM_pAt*3i=&+st**!vH_b*h38bj@7PmA6zfg)t@@Qv>Jz$ba=NTC z`@*^$67Qy@A;Ay&{g4c|Y=XQ@Uhg`$EY7@a_YYvc#{)x0AC&xulSYT%jgIgw@CMl{ z=%#-Dz`;H&E2)ufZ+8BdC=FB6jC44kA-&gISvQSnIC`tcoBUIir8Xa5PO8>$#nzNJ z9iYb2<>P;z$~~O5HSA6Osm4;Lfp0F=b+~zJ(VOv8gXOaZe(_ZL;pDA;Z^}>A%i11% zt*M4Tv%R?`b#!wqM(DihB@I2eTQfdxxk;*xXDy8|ZoTzpmwX0jRnyvsSGEqk$$+C` zwGMbM($K>P-6&(_&7?yEAO zfy3jO);hejwGX(>D?7ASc@NVrhS6I$K-jDp=;!b-rKJoHY;6Ln^YUO#S>B?wZ^PSL zC&xHfr9gX!2iO!0&u#rVCb@zIYjyGh?(^Y`Ei{l!D*?JaJaTD8!{4^HkBP1-t~En> z0Tuf2;nu}5-c=dU{NV{p`!f7v>+qQDs`6UvmiI306@gYGoR4a!{hdwM_<;SA%kv8 z>|LO#zwDA-X51)z`9*fsdmAVB)oQ|O&}!bQ&uYeM)M`1bJ8Uv+C~P6@ zYuNX&v9Oh}-mvMgk+7w(fv~x-Z(%>~y6z_K2JhzY`tD}#M(>vIdhVv~hVK^d`tN4% z#_v||y6-0MhVB;bzTSPm8@pS%>%E)48@XG$8z^eTz%j7K(br?uoaB7{wOE-um!j+e zwWT1Z1K@P~TH42D0*Kwd!sfHEG~ZD)N>EkyaMbm1c5E0dC#aEU-uqe`r&+pTm`Lzfhl4FSa!2KhXa1b9vcGxb(33;D=xh!)F$NA#$`r@HP1<0ni8r7 zYxKVwXSkRUWEt_g)VUaQW|_FxfO(7itB-1w{A!YhYu*jl@_ny=ZKR;1_qnEutwvT< zBg@F_tTv&h22<3Gq$dBNL9dIljy_RM^h}Qnd2^MyHg5yaOsT1unR20Pt~1x=Z8Xv2 zuF0AicA;*rG1sYY0D3Dm%`=NGjLi+^&*~e+^yq7nXZl?zo2wVK-5Xl;48Lc)aEt2b zJh!N&bDVK=*o;d-!JEgBR0C$&uW6j*ZBYs0^hSYcJ|EM{fxd3`U zWhjlCx={TuH9uw!cLCWOO6#WnR{sS1F$T^W28BGfJ|pqQ|56RF7FtNRLZTN{>xXOpi}bR`1C| z+Maf3{x#3ltK-D2oT0{aEA}rMp#|4`S0Tr-TPZ_D>2mC08n^k^yjMZTDO*KDfN+8R zPGg+x&10&lNcH<9syKcMArtqLNNu}wiv{EGbQFA2@zWKw1jL+33>2iCh!!Jp-n{I- zEC%fm3jvf8&eht zwIb_IToLt1QDvoO4xP&1qLDQ9Hs(nVGhSomd7_FS(L|bBGf~Yl(E^7#LZ_GJ9ls{t z{iixl%g6PR&IE->Bb!V7Us^U6o!RUB(rR;gt=TvEu;`}uG?NBR|Cf$D-uf03wc6V6 z)4Q%DO)-GV6h5o$S|d80@5^Jf7T8vD3H~+(!H>)u+ zEd?0!8va9-2S|JXM_x!%r@37H7cqHyfZ)P)Rca~$P6uccQ>3p>o>FzSYl1IIxOa#t z6jbR<{eLXS`@AUY{>5Kjx{7g%)K#siY*BE(&0kTvx^PO@)v@X0qU3&uze0Nzc#6;U zc~kA8=sv<<2@v*7dAJ5NwJ*x-cb>}!Rmn^}a(&iRxhTB<>0B|W`t#HaSI?%_Md|&| z=L+bmkSSSLtER?9@%{F5C3N-8RH$oM)AfCPg(nhGQ4@Mb>aZQDr5ARiZ+2vQgQq~rLB@>9N8zugH(2wC_v0KzX!ci5CZjCIK}uH6b-AH32mVH4!yg7Je3S7GV}?7C{zC7EudXv}d zHa`i_GTS>k4|)&UaYDyfpPom3QoO!-HF_O-6?y&e z`r>tm3`ce$i;-){ROAHmJraqGLk=RVkUPj+_@_ozmVC; zS!4_HT)jZuq1?S3%)*_{I26C7x~L|lETt-?a?D%^0yBd_E6gh(8D<&KXXekK5atlj z4f72Mn;9Dv$s7q%Vpan6GWUW&%pg!1a~a5v*$%YHya}RYrUYd$XMhZu4MEe)(;#7H zVbDkBk02jrAJ7T&35bZ92$aa22-0HK0*x?_fVi2tLAA`aAXjEr&>!YMAbMtcPyurR z$b#7dw8Xpwk~Vl)E~4$6IVDk{p*fxDz&U1UUS1As(ss^D&rXL}TauE}o0;+a0Tge2-6FkKJGb==CWSS^Lf>4>7f z^Xx8>uM8HkqCZJF`i|92^~!wsGdOFvn_|HRXnD+Jf{m}|?!K>n?)sj2Musi-Ztruf z&C~uzXaU9F&~i&}dZh|QiiDlgDHV-sCn0buhnl!Xy5ZXcgD2H28tE3^;vSLR61gy2 z=yvO~FDutSTJr){17yF2{R;Ud7fJkQY1_x#vB+okc7MbyXy0%41)6E9{TLg9$0cO* zjw*q!Bta8fgY4EO(JMnUnk<(6qD!ME#3a$viTvTtofz62B36sJbYy2aDR_-jSHiz& z#K`|C_e`GIf-PV?FJPB^8@w4}Z}v)2H`pUs7CYOB<*k>>qVI71@8$TIDd~m!AO>$o zD&42(%--&%9|(RWV?Rporq|cC{5s3eBWS!_tX8F%D`R$?q+$Q^nH+x0HbiSb> zvw5RFQd#eab}g747N2MWeHf>?JVt)Y*p0 z$P(_pwEh;J%|>#whBwRby(z8xw*O3(L7){HG3@tXHO`GF!8-M*T8+U)?l~Sc{m!?Y zyVZwx7OrHG8N=rOeCG6Jr00rRjXILW3UwHpTJMcoGdJ-FKkecF2q7YLzZg%qzPrEG z^KuQ{`4EM`bV!ZaJ#pAPwIob(IhNWi67jt^1EH@D)kyRUWY zi3|Fq>@RJI9!5%qvV6KF2_?*wby|q1*vfJ8;QnJKQ@O#4rlDTc@T$fQrdIwcAmNQWy zU%{{RjA-Y!xzoa@99Oh z&PEM3eqGABQNq4Ucww=^R~pt+No)Z#Y-@9cWNadX(ZuJN!7{jCU^e-~jF+z!9bJz3 ztBty|3p?b0&;5kc53(pmTOLnOh~S~DK{x{sN8NzM|r9lJ7?Kk*lIjKBmvjT z5GQ0#&vW_`KgtW2bxOiM%zZgQhFFPCLwCbRFSp8FVHx|rg=xnU^&<*DrkLK!Idupf zcK6U!Y7u&DbsznNeNTbD!+I&}HR^1sJhCgCZ!ew)BTd6iDp|L%p-g1zd`JBGv-M7P z5-%V=|AkvuiJe9u_CmA(Q_dy&sAp)JC-+CnQLZLA{x{s0#oVX~x$TN;+Qwl*a-)|w zt0$5<4?>M=t<~J+G7VblgLgg)o5R?T&)cFGlQZM%ihsPUJ$uxa-@?hSH$Nfx?&qH_ z<0_@+<`Tn8aD?@TH2?2;&QD)^<4i4A6R9<3uR7e*AoA3v4a}6tG%LEzE?5$1^j{^1 z-BS&VEsFq5?5Ri9Fp_(U_tUb znk*B-Xv1eK^x03%z}z5TfeVkq*Ky@M@aN?(jaFYXM%w+Cc5rayJC3*EE>X=#CY>SLAvt5Ef+e|@@(Np zW&I7P#!hFz#6;3$;ftM{+FfgKZF6k*lb`C@+e`%8RrU+BN#&#Kbnh3rZ|YGgcTaW*znW<-K? zFaxm*{Rikva{}C@fuVC`}E)M-t*sc z&lqoP7Gp2jwW{W-n)S`E=9*Jw>Q%q%@%;;^R7J_AgNGt;oOoD=B8H5_v=x3>v~)tZ z=(Mso@h7pRqkP#s2%6V|D$r~G0!gNJ^%gPX4(bkbrxTwO8HccXhXkkik2~0pge?r$ zy)^>1CTTb-*8-t;JVALCws7BH!QX|#>*IZSkwQxzh)IbM-~MQ{fGnh|UzwgBBdH5Y zZJ+h(QViW6D_w#jjv#(3ZL1fCaHWA2I|rC7)55o`)$XE%=b&jUWYW)k?j=w4CT7$B?&_rF6yJ9Uby)~W%rPy+&Ts~0Im(|hZDsm#ndq4AV^xUb=Nu_+PNr1=of37!HuuGw+Igk5XFXBBI zJ-*D-lD=#0aWU$;MJ*uEDMf-=K{0I@){h0jzCkm)uRfpyqEwdt5$fK60pxHy&qKuy z6DoDIOtjifBF^ak zcn*pb{6le2P0<;T-l4p9YkE-E?C&B)x-_iJY3FH^ITU*!j4rYN=yBUr#R08Yx6=pw zd`cRx@3=jvtRRQFU1!wH2c;f`v}18Gr2gm&&t8=QP6J-6Vh=v9YZCN|Dubbfq2!Gx zbgil0^>%v>>gH-d3-?K*1FO%qh#U4(q%B(THYelUkpNo~=B6kdk6$iLoe-OSuO)M` zlDEhRB9=prr)F60+> z1=OhB^u9jj0{AcI>*i>eCbl{P53Wl>(T!^N1^UbVg(&IvxeWX}I_+4l8T6N#tC?^# zAK%qsyN%xG$zl4)A^P%%`lKJv3<+;Tz)i2{V@|CIe`8zgCsL-**GQIhZ-Ih-$fLfK zEJ2Vrg2xoZ#t#;1jsW0aT%aF~bu#XxLM@ox_}HhCyH!9r$)&~K`ui8DC9x!cTOyBe z48sc&+OQIDnUQ~(b$KJBkWP%>%-2BCz)u@J|FUkU{n$*6q+hc=HkU&HYW zl2lInJyh@(hR%^x20mw*PHh-mNC=DyVnoR&4T3n9AU8o442^qsMhJ$L{^4R&PZz@1*UU=XT|rDI8#ZD+6wZQA_RM=F++W|* zPVkT;R7`EEdKmX2bKWjy8qwn8EoX|%A)q-Qwa%VCwc;DbUMd+9Yd;t|=TlF|gb za6<4CSy2v~{xS&5-Do>>Y#e>Dk+lQDKF_$rqh78X>q2CrP_AT2e6;O7X5Fw4D3TaB zwv2Z>Qw`H7hxaWX^^=b+Lm_N+6=j$JMs&LOttmbdIlt!)EV*i1pg<{GMA1=b?A+Xe?Tlj{)_;NW} zS>+oyiFFVlBJpO@VPdf%g37iS7ml0{mB9*nzReG9R%7ZHOJhk;Ru?~7D7Rp4X1Meb zK9Mr8$dO6X@$RKvDL{_D zTknEA`DL?7XJ#8eR(`m>X|kPrEGU+u;tOiR@5SHM)b|#n-2zwWAyeCps5W(Mcc&^= zx!5a_*e=z#9tOYp%+_9$9mL8+8%%c) z-ocrqA*vWv0~IqYJ7U)MbCo$jp6KKjl+qpHDIX2adg6Yr|vPNVC7 zkBSA^h4qEPMd}4)fEYpb%XTU0P0;IQj2OOUv!V_lY>Lb%3`jb(&)9^ zur~y7lUk&qY&y;U+laRy&t=xOqzu-c2*f!Oxfc;J9n#9@%508H{#z^&`WU6o5rx<+e zj)SpJ4zZp%M!@hfI|{YmuBl>iBkaW&#P-Mz94gV7P#Mn&A%SWhgESv!h@j5ML4c z^ulNRHqUq(?MU6+&)nfXwrQ)sr>^z3X})BPt&|M*Kq{iS%a>*d^S)6^FD$)NkQLQX z>-OPg&*J4Ak9Uu8@VgMR=7Drl!qdG#)s!ZNFI3k&L@1;-F>dNpS#dR1TV@%gJk-6% z&c+PBjV`j?El-5@aZPwGUQ!vP^?D!;Yemxwso*vrw^@37VZ0SxgxNf^w69< z>GN^8net0xauwNmE3$gkV-KUz%>*aX6A;#N=cqaL>UA}V!xMZ>6eLH1p7&kqXqKMJ zx)zq;;JEo}G=c4>qrq8mB}k{Y`5#wa0J9rd6i@~Z;(h0TtDJ00xoP=|Caxn`RSwMx z*-Y8eptsF}bF3Qr2phUEKko!lSAG>Cl@R&B&f zU*Tv6|(A-pb1!QP9>j#ch^O8pi z<=;&KSgF++5BqU^|WTQ;`>(jp;rOhXLa>eyif8`*hH+D{Ou8ID38s%ot z;HfbnVgO9v^Hrb!33nj<#W>nHn$zyV)|A@q;9I@(P@dQQvoUEcaW|g*cFFWQVkZT_ z3|{csZFp*&{yj&o>^f9oWqkT=?P9(B?)5hS-@+$YvmI9b>k)*HbnK@gOar*B!{3SQ z5;-;EwfP`0*HYfUyU0&>jUEb#*v#2JrioUPw;h&3RyS6QoYk$*a6yRYZr7s{kBv@< z&L`UzlzyOz8{ppkx;u=fM9B+C`Ch8E@$G*-4H2h58IhBqtVFVTBn=0OUQJj>f8Y7=)#)7zy2W30V zfLinWRU{rhDvdkGTh+#reo~VKIMyl}0Ev8TSJha?XvV0vFq8YY(`_F*L{9t$8k3eb z-tQH8hVo1D224L89aUcW%H%q_?yr$oi&uN$y;l< zzrPRj!i4#_d7(vEobRb`4 zL5M7d9AAQJ`m+tO$$nUaom{pJ_iO4I<>(JYW`d6suc)DT$SaW|;a_1D>8JA{n74Zq zO$h^#Mtz9$#D}%`*uJrHY9xVIOJT<&KAa_BzP*+*9o+L`Jxt%_>}NAk9QYW20XUP# z`~K$9SiU>Dzcty- zsPKpxu-xNy^@f;i-#h;-TW8}Y-ETZSy*YKjr(o(DXy>TbG@+XC>H}pk z>cfVhlPld?w^G*$D)x1=kWLxCpeS5I4j;Mv?Fl98_?Ys(kWi=OMSTv*c6eF|ve!{^ zt0(`;H=>Wz9eu3=>Q6)Ok=HAujnyUum@F8w*;ZarPqcj?0j3r}gdBBmjc#US z(|y@>?~4?L%Z6vRMNnB3c_Ql>UA7`^_=JMJkJHGmQsGj*Zj>v4_QgoUyhg2;!$Kn! zvx05}KZBZSgom>GkEtQ3IdqvbrXJo+i zqzIcuOWDo9)@OyS+;e~LZ*z1B^&?^&Ns}OMbMU>=-KlS+x!69MSvK8P!QE1bF5=n< zUG+F1QCY$d% zSbkoQRKHe!Vro%iQ{47pQM1n=Ek6wN>X2Q%#oWr3 zSl`=*CUwPQ#cxIE9KE5U4!WV8;NTJyGx)gqlEE+x>8`Hg`z4BDG)mFetAiaGw^G;( zdHk1Yx#R0@1)cBeBM(14%z0D_)_8&J(#Ht-zc5S-^tl~QbWPg z)8z7l-PiG~rR@dWWHYkX0Z6JFv?7%D{WH`QV?<*J7R+XTh<6m3Bk-8ze7U2+TMm9A z2gPG!8bZFsy}>JQq3-<$3zbLZHm zkL!34TD%{Niu+;M40vQi*4pYoyW)lx4Qq6}BtOlFYQ2Q#$??t5^7rXXy&*v!$kWr= zX3DS%Y=}DvNmQWWKDONt?C46Nwn+aZDs{6cwD zdxBCBw@7M}m=oJJ>%yGL{dVqan*gfE{m!yd*4R>@_4Uj#`3?_8PAG_meU9oeTx7roDP|W|&mnHYHw(O%>H9kF zol*V8QH1l#8f%(+8aQJpFr26;WQJ`qQO#BJ1}}UUvtNM5s2A}IK+EbvBj(qoiDW@B zRAh|6D9sL`zZ|tjV4g+Qk?8$^dfxhkt%N4Zjd;v`@CNs3{#;gj`+mu()XnV$#Hd3T+~`3`n78xO zCyZBFz%N8gkb3?mYO1~bC{`U-)m*5aOY?G$pD;2olT6veKa> zb0(lnz(qDn>VX&h`gi&*5Mz<*Y3A1dqi!VH|MbW{glb+1H^Ci`KcK<-5G|>;R*g2xS~wU;fdEghmEJa&Z}nl@ zTk(xSZ%(383y&|aGz~mqZNFOx_U9=Rzsm zo#V2==l|r)Q!KKJ+<9uVJbqD@Y$YBENxa+OyHn+(~8X;;1dNqmn7)h~v(R+@Wwmmdf`(`qs|ZDH`u3j18d;A-@X5xDtB`C~{a z35aI-KMIXTR7K;P#fOI5lf7{frx zPG|*f`Lu5=eY4OTcwl?=FKsf072R?t#($U=SnUh#9t7p50u@-pkz zNP-QZ3KP{MYQ>vyHm>Oy>Zrt>_%d^2bb+EHbn1n)6XP;!+mK&j_r^s7;7VSogLb^f zeV2hnXkwHF*5j@uSHecY*(&O0&&vL7OwBjhR}6DrO>=B`{>^ku>g2QrHeU@bE!Psk z5#Qpyi@5f%U2`$I$g=ii$!XB>`RhT`pYN;i4?)v^>es&+ z$}E6id-~skrn3Ur*@1)E)ZE_CmgrgO*c%EP>RTBY!qNYH2@w+`;5V`MCsoYM@unSk zuZ|9Uscml-$g;D)G&X5U%+*(Bz6r`COUyBL?CvXC!w{Kgl0X}_j*E`oYwxR~VhdZJ z5#KXUghu(Y6AnQEhYl0;ie0EDXbig;6xUh~-Nbu}-H??_$PY9Lqf0joYccDO}(PAdDxBU2UFc_oJ}K8c*MmK@N^V+Df$%r)DEgYe5e7 zLFDq67f?=pq4~huazR!;o9$zjmP9Xmq7u=9Fs5MnZcl-xLxVixgD7B?HkH-9N__(G zpJ9SL4P{TJkIr0;!GYL;>fDZHPZHe>m)n4dK8n(7E!M@{<6eV<=)-t7SWKbP6>@pSj25(!Wm3Ph!JAYMOxSZ>>+M_e48QkK= zV$)Q}70=OIO3#4i#fJF`lcvr)%YC}m;tRV(r^bu%OSNHeuWqiBEHXBOgF=D|LOH~} zePYtX;!|BDGQrY*C8wZV5_7Uka^|Bl&lylCWjk3)Kb}iuU4pHP9cZOR3HERAxVG2s z&FDgLV@?=CkG~Kp@OSqI1iZO0&X4oPIWL`zt3|YLekXO2?q?9wx6MR71in&z~VHpw@M7)ka*J~6M z#1rDU8sH0hUC6o>;X7}E=lgm^0vA^ftTA+5XP?R6T5vz@qjDYSaJyk0(lmb?fT9z? z4hhDp13pFMwXF+Y(n(f_Fs%a)f%h>fkp;<%OC~r$ZeW zB0D%PN*hKUf&+W;^vuW^l%}6D3InJiHZEl`9qx>&7XcA}kaEDoJWKuhLn{E#UU~d94*~DpDYsA8IAkS+ zmFzvSpDp#`+V87qPnfK9T6}79pCR-MaaVFCnxsA?DH*A>cwRuSOnG2C9_41=Oh);- z;_I!Mz}wnt9ZI5Q$p z+D89uq%Sg+m5FI0o{uk;QMSH5UU@<|Rd(AT=+nWs9TG7{sBO_8r&Q_-=^RNrk2@r3 zB;-S7Sc3hH#q14jrwgZWB*Zw9x6>`Ky$A8!^Ro^noO)zq-2$&hrzL=u=QFbM^2(a9 zsSn`fWgoL#6KC~^l9t)9Z-C{9vdH>CC7G!e#c{cwOP~9(rK;z)J2Jny6iRqq>G3w82y4X(gKR`&ly> z2_o)I6&_;DWB#p$SL8$5);3h(0X&}4%xSifSiU=*nsL-Of}rg})&~BMwRp=l5tQhU ziT;{jeQ4CM6*J2*aQl1?by`W>myvF~^aHx%eHYYQ$jTI7IVGoiiylsqZ!er$&=etI zy=hGN%IKy>xu5P=dvb-Xk@@Nmm@e(QAr!mPvdv`0}Mb7AtZk zUGCdbz05sK29@uzyjz$C#LM=OQ|~Q7x0{>Va0HoBUw3@MXFjnWq^%MI>;1|rGr(q6 zqJ}nTM8u$F_t3;IP{W*IDmeaO>57{^yy;Vl48HDH5j9dwk1keV3YZdUoo94#W_-7 zl4CfsZ;_wm4O05!kHvxs%z>W8uoyTP@RCbnI#LLX8YSQ2gR4New7D#k1Zj_s=1dxi zK_wSxQ5~2k^Xx5!PT;uc<_KGlP~2wDMT4>^W8t1nprE@XFH>Uo1Tp3bOWN}oaE483 zCUQTei{oUY&F$^^sa0=bo>i>Gz+pNTMx0Zz`ULs&z$MT_IC9BGfO{{FU6uuiN|v+{ zESA0_D-**KSpcLjMT1^)wwT<4xnfGP%voj42wq>cr0eJLmELL!KFT8`zibD2RnruuQh zNAn#|k0U6)?{=W)Yx2Rs$3!vxz$wvM&9}t3;q9pWicDA2;c&hZW7tNyDPxn=%lboo zZGu}T4N#6Js@L`xkAhZ;f8`?Qk54L1R=Xb#>uEC^lNoZb{=G&m&k@Itt4CHu)GW@% zyw{n85e{<3f|ps=pnYGyAbR`g9*zn^_bq#-pr}GY#AiHZ-4FwLVCevi9&rK%U7rnI z403S-dEFobabW5F5(9gPZc4C(0q(1B3|g`@zPZzkr{b$RPjqFG!G}{4V|EEOQ2OGC zL*E53o<%=&IR?2~o|K3_ z)sz)$!w12yF)CM4buNi1#1L8nGgS$O123BOr3iCSBBrBHs2iSLwR)`J0IM+#w*$R& zG>K3_aD3J z(3s!Ty_AXQty>=#cX~?Zhx6`<=f)q{Aj?S^|K2UZ<%*%rZGwuEk`LRPYt$7C+QYYk z5ek6Id?U~m^dZY5>d~EcxMTM4EetUO?^KC@a!UEhC_Y+F^+T0rx=4Po9T(XbgG>n$ znnptaHTVqntT1mS2i{Co8!ns50qB5&hNzK zbEr~#1bT}%%DW#%()59&}fQv9Sor$3kw zpa@uvwppkuD^SdN;J{SoZIdw-%O8h|(Nl@ul$w7s1#)AV%{-fN3uExDC0bG(qa3W% z#%KOociAh|>zZ=J$;`EdXQ&t*l$AvD4yMMHiatzm#JJ6uN&HsMo;bOZn7pSb51DY@ zh~L)(qx@SlP9mfHjq`()DZj1RD?-gr-sWW@h8j!5rzs_Y?wft?6EM;-5gvVkdj5zzM121awjMp+7;ezy)rYsv=o z_Dfjsh}HAXs10gE!TKwE>0XhY1~^^ETY<9I$F1M^~a61bgH`Sm*9dkBOxKL9VkJr<4FDb0_lhSd%tLQMqzK5lZ0;K4XJ z@II$qUs)CN405k>v*l2JoC~>SqS#*@XI)fnjC;)0A(FOwTFb zSb@|I&|Cx-2{hZDleYm)FhfQljq;O`_FJ=!>5p3U2Mo+lP5%u8^XCoxyIJ}J1q0-m z{(sK;rb?s%q>40{8CbN4Seb}4SXnr^MD>-w}uhO*z0z4Rjx6EpV&*_U#a+cg^VwwX+AbdX`MW_DJY2DwKQ zW6Q1U*fQ`4*XUW!>fSN&8yUXJO@uMr2WE)Gr?zBf~V!oniVwQF*C7XNqe z;PLy56qIMbpKPSuTpH_Cc72Ne<}1;MH;l^biS6E3qS@+#Y~TO;;Q(O#f!z9aH2jbx z?RSjCpLdzROi8djciP`k5SLDV0s)Y!VG?@6}gmjD5u%RipTc#QH{^hCl2Oe`!DqV1-fg$e+G%=KWNqDlZSdqe`MKE8Li9|Wfa7u6?Md@Ux}SN4SA~PG<(b57~oA*oE(MN zz-8bDsuvR8`H7%%8Zys@62V@U2HN|DjtrY{5Q)+ms=`%54YmoDOJ$0SLce`qZZAS;zH=j%Qh))wOZ-a4qZoK1jg?wV(HURCVXQqgyw7d1g|_V zz=HjtX1$D?T-jEjIRbdxP@UuL?1ucN#~P9CQincpqdQDQq=_l*_mbd+_<8o8-}LUV z*Da1Dk2}mAU+jN-T2!5D<#t05in$#3?jIKzEc(D^U(lhPA_Si`3#&$NK+OTq`Q%eW z4v=-^)c3AY3PtNgHXn0o<1*8(=cpb;dMptcmgY3;E!#=eJVkceyZ%~4>o?~L>6W5J z48oDYcinafW<>2J@x~iUcTc;*KMCmc%33s+V#+d zJ9n<->E&td>DGG;c!odhhCi&O{8=~TVEGL*Z>S<3w!x0jbcb>81$)%*Rse_>8hk1R z|5lL_*g{ES7=!@ntH&Z5Lk9^K>+_iwQH@;y=kWy9lqi&{d+lU7vOBNf8=*;dR-*_w zQxtp*TNSh@He~YJ&WRm^sa{TEJC3adf)2STk|TQpWZ}Y$*DRQ15QfZ9Vre~OF)h9f zK*Z=gRmvkf!A%67!60T8WPyP^w z{$%7vANuY{Bw7ac5VK&;ln-1B_?L^%3$G85TE*;iF>E>$B1gncCJC&K$W$;GY>3=G zb*d*5)1v1|+yQL9o?|$V5MiFU(X49E zIiq->UWq-5eh&N|H06IpiA3(xv9~YfAf;=_;Ku3C@xn!NC{sm65ywea4&B!wOJ%g- z9V$(>iFNVAqDcmuoshE*eSRtpfm+W3%GtX_zpTU@Pp!G&M?6YKszyCNXVLW7dA&(A z%4D!0hyZwiU@i^8stM58Q|Sph+yKQWM=;J1u0--KFnkMGvl`pflKjr;vGsQ3{##Pu zWwS>nGi$xoF|Oy~E<9nlIh;Rvz1g09k>NLGX0qztiUm_&E$QaO4S}mXjWhA*1jG55wHD* z?VwP|4$?&H$Yh1_Ji&B+dtv5;l9^JRwp5v6-_1HW9CHy;>Hz2DVo2a{DcoC;BjQby zK);IWP_*L`*i@#m{gqi`B9Cf@8C|Pn_N?gfz?2%|Yp~ogrW>JS)vuI$cQHg0vf$Zm z!^Dpb*pm-CazkdYxmS7_V4|GciIlN6t(@1l(|5j;S3KVzjBYs|c^)|)p{ppz2L4b7 z{II0*XF7oWH}j@pzW|&U1A_3V2QYDf2_R59=PGh7bIFrBGuWqb*mrq%axr8komM^* ztx9;7#5&JpeO!GpFHF+paNmFX+h~?3Rp8ALpIWct$Ay{Empp$|G1ecD)t^-iz`^?C z9H}fXX$c8{ncqg&)R8L__d0JX*vq+ER!Mj>D5av~&1WD=Ay2MFBS@$8b%&hcrb0Al zs7y*AZn+2VeY0~dQbC+p(7qUT3=liyhnhEoSp%?<%uv1$gOu)ilXMK zHA_n`Nru&^PL-u!XVy`epQ9wqGJA%k94ck|3ctxiW=CNnib+PwTVJ}_s#F4ptAJ}w za4>qF`I6D46};%4yoFD~N-+>Nt&%=N_em*iqI^5_7=b!$u$cuzQZH=sB?ocEyDlmw zYb*4{Dz%U3Ix7*3=b>6iYSl4^wz&DmBtv!-Y|7jtk86?A$e{@tse6&hv^~xLP>_Gg zdKJ~RFg14}qM%b0C6ZC3{Mi&#w6`_1*Eb=em$9<7&^7=0pz6;~0jvx_ll0ljl+m>? zB%*)&i{pW!sEp#@Qk-i$8Q7a>TUpz=YKtid2x~h5oe3CO*n#=Ee{aqHYU=`+nVJ4( z1~ak(jYqX#+zabL@p)iMh>RuW&#-5Ip{bzSlNgGOw54i!|czp`_KCT>rKbR#K`#H zk<34DH7gt2vuvK9Bc1^lz-qze@`LuKTjEvHb^0n?-<83#dEkpVgY2t(CqV5wK?idoGYqc-9a=#RKd< z9M8MY^uo`(g3r4@d2#)8R_J;67tbu?=hg#vfASW2J}dA{IQ|4=fP~|(N*Z|V2QB?) z^Z9=|EyMZ)v-pd<3*!$QA`3G!aHavy6F+EO0|49~PTbGe{NnfbXA)!L_>HZq6(t$A z00gR6ypZ%dg57+>;{p*P+mG{J6^l%t@zqg0FCfIqs1{668F&2>P|dyhTdj$LF&}so z+NdD2MUJyN_|#Qxa}q}>yNycZIttccGz5$}3SG@c_dyC~7c-5c%HB9r2)ttVN+s9R zEPe$cVwWFYP|z4GjV8Uh$VfliyVXYqp`wIIFMvqZc zi#LVGtmkGa;#SZy+n1};ZHB|`ls@Y_a()8>u^YRyVuMSBdFl{_rQ|#w&DeKR`D7*g zoxG$CG1){KSgqDCVsXrNY~EGVKvI@Ou8Ph?Q^-~t8F3EN;kqAH(FAUGiZ4dA(AUByFlr-|? zN#Ik)y{8C+JSl6Mp@z|<%7BR+0~q`w{+AbBqPnE$xpfzMENKhQqZLLvFq4PNflHF` zMnjW?N!4>a{FC%`d?*~dcca9OnmHt|75}iFf03>OF#d)_^#E2B8~_91*6M>iqt~o+ z;+d%!1PtHTm%Br%9SMgWtF>|z3ZbBcLX2TVt|R5$B!^;lPAQ5Jb6((J#QL&xlZLkp zJV(Mmrv|kzx)NlmRG%TU{Pi`SDh<8q6<^=N{K=^5Q1WH}0s~5IvM(E3b*|0ERB7DO zCWUqzIE(Ecw&X7|K8(z4KN?k9a{WN2AEoJ7^#H&DK^gW{9OgwX6ya^UB`<&MR7rZQ z9}VICRk!V%i~ud8nG{_|^~r^o#%LAcI}VbtZu?SSz7ETyIWnt3_kx8^?zY=bXTh}< zY)#PteIIO^p@~suUn4q7*t9QpUx!_`EoEhxEP6G%O&)ny+rjWLM@jYxNH9-;7rs+= zRwNgeus73x5FYzipjIZ)|Ah?(;-G(@Mf9(b>i^a< z1O@&Hfd2_$KO=UgX9)h&y6E$c==0v+us!fFaPM!>UQpn9@0a&8egoG3B1H;d`VI7y z9)4b1gz;ZpQY`Z#BhpFo$lM9)f3z^LLunwq@$knn1ogqOXCwnIp#uEbSOg&e-c}@^ z9nLNdwo*Q2-`{ZZFpRV@q)_IN4L4>zCcZqdZzE>X0lwI4pFy^WA8jq~HP_<8P`>f{ z;Y|s1)byqNHDG%An53C9C;u?3&|?lcfm!_I_mdb4E8DY5{R>c<^|w%3SxK^DgW)G; zm5A~jFtfdzpReBJ^mK@h&GlWz1_4GKHf%Nnw4yCE6Tu{iAMtU8Y++@J_{8mNS3tr; zETMfQw6a4-u^q2(0_rWcY`{Er8d92M!dbV)Hy17Ct5p+y!l5mHAr?49*>mxz=}`0| zj+;?uwD6gbhYxz*X2U5Y51*aQW(m19Lw5rM(Y7%3!B zG9hm@i%2+4QyKPDX>n4HgxAejhgb%qh~I98S6qulmIf@?o%(Br4Oas?hdWArsynIe zWM);+UzBRKf3IeaoyqC_Xhj+XLXd=(H+*50ZN~g@Iaq9d`rgaG=8JEQY{*bQY0pTR z7DFHss<&GhYIPj}(<@vzVay(0g`F|@KvG$Kyj#n(!V`g>ge{D*z7Er-tYI?NWjNg( z6RRef0J;a4T>JGGY8xoiw;vM`PCYNv<#XJLWis>7htBKmiP6$yD}2mm4Uz%XK#wfdPiB8)sT2_${mQN zJFI9AhG_A=#mtQ`bLFlWTF#U^H(Nq(TjbFz9elXzRsu67waE9O9V4&f`^YX(^YGLZ z>HO3c(cOyInJiov3}gJ*6)|tk_<&)bEJqq92NAneTbHdN%WkJPT~-pIFtOMwr)p|i zLlO>smVe^ZydF3)pD~YsJB@Bp(@n=6eG+WJotqulIo4))H&$#CjTRo|uNu=hf~*>* zf3&>3&)4e{FaC%9|F4qijQ>EU{|tinsW0R4e9(oEA$2L>K=E(W-#>%ku=IDZ>b%#- z!AhS6ksBErnGObQv*{BBK_4TtnACI-Hkjya29b2zC{ehaR(z?s-Y*Wa0!qGjn@hH< zk7Fl91D#!R%c7gwSG#*b!$Vq)!#PGE0+JZTdIl56*oNLfLhQSpurrptvv93s0<)_4 zeEEhf`p{l+EBv&Y%&%niyc8FUhwdxqKrFd|!Y6`_i#aCJC#zcOkE4qgMrZYm{yV8J zozhg4r7z3Yr;;Njf|qF~*1b4CvQP-a4fEWFDgdB50d(yz`M-M{{p$7I2_!S zX(HX+omJ8;hWH{6c{uFb2n>{gl~-tBjI26n&T_AWb@Z=E8K+Q}ooMixB(rb9KlQq+ zYLmck`NRa#3`31O%9qw-UR;28#mu`Zud64_@yFK656>B@KlRL{DHJDmX7k=<%uv+I z6nxkfxEzXB7-gjH$Bih2oOj-M^!waZZFrm=+PVyMePb1H>cUGb{Vt`=mSmX!dmRlF z!(Zf**_eLA>3Bo~y?EXLUHn`j`A{IPHhDO(2Z-;Ura^@wm8tBrO3B-OgSphR%ex?9 z7!WEiT^1Hk;Ebn0Kbi_}Yo-D{4 z?Jg?-yp6(Xfb3Ml!)(+^Gz2i@>pFy%?N;W}bUVqo26Kp}JFL z+Nda{Mp<{{4j5_GFh1@%1G4x{sjSCVO@mq;AIF*aEiE2 z_DgaXP6IuceQvCm@q?qXJ9@?(rTfrRzRR-aG!#nTM*KIMg0VXdR3OSwr+7}t3T9}z zn{8lYBhD;DiDfNOk^*tMFKI=>tYYA)x6Yjx&ZBbufMyZ0R) zoLn%r)P(@C(oC&%(_P~;Y&9xs3t<_gI+o5)#7w9ShbDM+lU=Y(zIatHLY-B}r1M@4 zrlVftM0pT6YrU^+Xd6pCNMy^qwF#;xeC@#$CoDfN^I?qh`@@&!QvQ%p%h#|)FrvBQ zp`v;Q%c$e)o735o^E#l^o#j>BZFR>iom6lJsnq&Q6jByt5{Jy!4MqEvnQ-k}yKRFE zvVyH+n6NcP|I^Gx}I-sSQhJXw$gg0B6<1L^UEglVD_f?pWd7G_odiYub!^*iyVn zYS1SS>v=g>nf+*oMrrAhjU_48v=Ixlo0bloGn|8XYoFnWHL=H<{e=F3h+5*X@?eM# z2ww|`mcggqbSa<5=0|9eWTmM;94SB0cYmfF7#V*vQvSw%{tWyMHb#O`(EYuTJmgpi zi6qTb@P$VK){tv4=0@M$5_WaL`f0yMBwVrrsWKZjVTTiT&G9qB*QfczAYFTH zR;E!tag;?7tv^G4kMNeTzn2vw;0L1ke*pP0{z97m>_x!F`d{)QVEe_&|3{*enf(_N z|G(@-001t4)3GzMF#d1CLd*cBf5LtIGzmU)AHYkV=gH>@;vW_u+5X~k+J6kE@fVkp znAzBWocEPK1A~z=z=&+CL*iN+JeH*@DMOdurKzCc9{JcB$FVdppeCv6-Hl>UM!H)63S5Qi%eUe(xpP(~MPI36{1+d$I|fy#$@dMw z>LztzZF=X6Vyd&WEl!x`$}C|P+Xt$V8b=3SSnIbQNH{GH9veW4_L6+Lo+#^ZYK=d6 zyL_rFpm40a_4Kk9`d+i=%#MpYLfR8!jALpaQqh<-b%d23zW0z zM%iUwUUuQ+^1DKl!@S4}4q4r-e`Mx_S6?~KW>=6hK7rpX6f^1UaGvj^`)rAN#_Z2A z%rh2m*OQ6TkKH}1dBB^o;h(!fU4T2xQqeOv7J)o<8rtn+L=z%iDqE^{GI8vZrx%_Y z1q0*YT-R2bvU^%!_PG~qogWb!^CgtCPT%DX&V zsmm)_wH5FziW`pyaGTNv{NHOe;86IBD|!EK26%pX>hCP!|M(2R!S-L90e)g{fA2^3 z-#7h%OS^3UA z9{uAtW@jF11BnM##$3>h9nB3ohCXM#AZsw)4Fuoz%+F55sOMGau-JmUF$FyNGQJu1 z^GhKPlOjmRR#iJ;VwsiTzKkeOLsQ>Mk*LBiL{DDLmC1mxBm@+fw``zFD{qDVGvVT@MC(@KO9W-b*gQGE1 z)0C#@QCSB@1PLiwQkIdL5GWKPNI@8kCc)^5%z;EPIhlwSsMTZL{=4_<`5~epI%wbb z$-VCD`drt0UF%x^*Sh}Q-~6w={;S{lFaC$W@3;S^U-{$z;~)Mff8EdjDL?Y7|MXA! z;TKl*(?_U(Vy_x;qr_lN(B|N39i3h>|j(LeO#f6agS zOMcNm@h#u^joOyV}JU`e)eztQ@{V` z{nFq4Fa1+L^lSgqzvEB+iPzusxBP)${wM#?_x#<{Ug8afB7Rn z<3IZ||Lcc;;~T&5ul|R=^LziN-|{Q}`fvZQ{+b{7Re#m5`6IvnKlT~Rf z4}adk_f8Ufi zDY^Q4zWEnnABm&;`{wukIoRh9FJB~wzk~UYPlwz4`wQa^_WXYC$LF`VmkZE-ZQRGt z5<5;+`8rIE`emWNgS~zH^i@*l*T=m*eR#PL$Jbzf?d9ci%-_LYp5LAsQSV@{&mUjk z@A>J&>)VI79ryO~#GZXO_v438uO9+?dA`f?^))_zczt=EH9pGG&$y>AZ(rWy;C|-Q z>-*n3*yl6+?(b`Oe);nLd+&e0UFQA${iSgqKVBB>*I}PO_>A{+^)geK@O}-jFMDoJ zAD=(Ty?^(6PY!c&WjV>R@6YI9N)_JCJ=oh@U@srfDR6&(={sINT^;||VZP&ezD)yx z4=*{RFHbU)-pzfoz^ALl{@U+xo;Ztl~km(TOPPfq-0*Ht?5 zWxn_6>C5L&PrHUAqD{YF!{_e3{J_UCbSg8~6?{MUU|*gGe_*dqGY(GQp5LFF3I#Wg z?EE^e6l1(zTHV)R)_8p$Tpgx9UF(K-<8&d)P-rG-vKRzASIT4qjgO4t{$6^fKS}^y%~K$KeNG%^hBB zjhBzlgL^w6Y-fMZpPk6UoJYoe!Fu11vj*aQ54!}+>+<<^S|bF%e0+ar6qS8>eIA

    WI=iT3zr$ zQXf8kc~x8X{yVJkmT@mw?BW3IZE&TY<~jI#{qp>2@l5sExgTF&UPiw8-nX}mdwVi_ z_WT6R`@L^U=LSZfj69+yF8+?$Tjc#3*y;1r`*XW-UtZti{sV#jyfTmKvpU0vr%%|y z;{J(lyT6Bb?%nr$Z=dEaJkfHxE@3vfKYb%~N-?=I&9Bq*)91G@AF@BF8W_DKy2TT< zZh0)&=dMdQ?(ga9^l5N_OX3}~KjL?JtZ|{gr#E_W&h7K-m5ILl-Zx@@V4v~Mm)Q%Q zfgSOFu5n-XzI`Ig!t3}dS3mu9v^(DhqtB}!xTv2-o__$t#NO`(?B&6_Z+kBt5bpkd z?&l|H8C)S#lHvV0u;@czFIT1db)5P=4C_6NTzDD%1x{S*{SKOF^e~RvwIx5je0&{! z++AZJ4LyH)d3lQ*JbPyM_xkxQbpPqY%kmdI)-k>RHp)E?_#XDG{CZ`Xai3R~J)dzp zdoj-CpWnOE=D9PJ5<$!z_eS);hn)qn`o^=1e#tiP&h1n0*0Z_0#%D_5;_sP&8=dt7 zm}7sx2AFEf_b|Ula=n9*WwgS<^E3TmWS%qkCG)*!39Vc;uDJiq44pNMW4-KNnA7j+ z%KqNI3a5M>f6rg;626;jf2i{P8c%3L;Q9TyXB1v~)-3A%UOqf?Wt6U{+53C1_)yN5 zo-;5#0=}w||N3`){`B%8zxReU4W5mAj!gdWj8NZyn{g7A0(0X6ds{g}D103J!Ragg zXXn0t3V%UstBaZ&-vijo+6!Q>;m?$=wWlef)w99ouF`eCJYCMh*YJ$KUteNFkP1U< zzW42EC=BjPLi-4kArywe7bzh5JyvXCd>8wBwZ%U_e`e`roXrIGRjJYY^JR;74PNA( z%jC@d^cm>5=kdp)p)dM==J#C8z%aIjz0`hl10#EI_SIQGLvwgGfwXp>abH$H0E>_8 z^D||B`PK6)Psr~1HFlo4BwWUQl^FH@JSc1{d$?&L_o)_Z3w`E}D8Ir_vp;^!_xg)7 zBFb{UOoOFeno9gWf+8!YIW1@=^S$PV-+%t_IkMt2Rcvv<$c`R%uIr^g!JYM?*vnTh z7rnzXjWBivhgi;tTGwy8sK|bssKe4OCq?eUIkkcp4z|uk(7Og+yk~S~UViVC+su6m zpTtVKE_H8d!>G^(qp9D?l(bIgr> z{+U{my^!cRbNXq{O&_k{Pi(AnVZS9K3O?%=f;C02fw$R~A6{0kIIh4oc%g#yNB5FCSi_7mJ|f&RocA zY5Ya_eCbcbHFUt=nR9!Qik6V}978Iw_02i72fEq0(U)Gh&AKk*K5I~_vlp@1;F%GY?_fv;SNKa|&2e~< z&yaOLGsYJO)Qzlr!O9)?g~6~edf4)3UWVw7qC(M6MUP4ccv#lJc!PTkD|F9&m2Y#A zvcDHDj{OdV8k}-ph1Ooalt+loX3sA&zjh71Q^QN7C}l6~(0tniUnJAHG)_$C%(?lq z7tYu0nY|i1;I7O5q*fG0`JV5+P;buTt@2!V+t3Rx{s6{Vl{GdW?!!_2gK=MS9^AmO z8(*n<`)#rma&G2EU%SS*i+fhygK@kW`yF`kp3!S#!px5kxeM|DVqbD+M?ZL#a+WjV zBHJ?(*$!Qy$lN#Hk_Y3eH!)o{<|S&HJOHrfHwpK|&XZ~oJyC@I0Sv=hJc|~EhB)Sf zdnR_y5~&rIyq3?e4|L4Cs>@%fG|{=_9z`FLwiMqm6EVIF(aYq0y-HWf`JQFAcwzYD z+uWqksbGHaCq^Iqi5~^`6t>`?IUP*c&+*an1Vu-G<#){fq%me)?!@5Wg1w6atSS3@ z5f#a}m-xAOMI&obRrECyYGdy{R&LdS0U~urjKl%DvozSrOb9kCd zr{ea(DZgm=%NxUNzfD-9u;!eIp2uFe&|=O_ZqMT7?L%_GXeu8jCjEY!| zOlF1VZV8o#x6_cKN0^!1fJ;8#GbgzptWn?p+f(BjvVuaBqT-=l?x6=TY;4XAw~yZR z=4y4EB+Z>Ge`wEKI!Nv+4`cL~H-Yx7ArQOtCv&>rAt<+Z`b_{cd%;eZc4hO2N4!0d z0aU5T4=(-aSC`wpJeK>u^e4-3`2o{3_f7Ppv?0YS-wUO|)dL@>Qwy(iRf}hhu9v^? z){i;*=*JCG6x4uZxy!B-mmmD-OPSE$?an!Q>>Whrl z^&=S<+a4@=1z@D!t|3H_b)_E7d001jkzk2+fW54KPa#Zhk8$zAb2TTY94vYS7^8i^ zBYEq13zy)~0T|)9bL-!*XBqt&C*>!w=#%CqFOm~PR%++2{%l-w47uA=t63&>TQ?zH1w7{H{+5k1Qz}bCe3E|f>CCFjlByCQ9Ng^N`=fgYzY8W9y>o4O`IZ-aVxOr)kTF2<1aCer#fq>;#e5*Q5Y)9I8N2T;{UT35&n!zj=FL2!wJUA(Al{- ze)fk&WPeQE(4VkNVFW|gh>d7380wA_#K>GaYwme-lV$iP4sjKGk!2s1xps}%wFvFQ z>ip+b>G?`y44u9bA^U9{PQg7VMfSo?lk<4$d=lKLRYa3s~wV zz<4QkFAsFvC#0J_D}35>lSQ$y4jW0F2@HeTb$wcXPugqFNUA~3L!$KFBk8QgGyiVq z#wYm2%+WdPZ@a0>3dZxY%NyW2HXm~?+!C^-*eI(UBh6uHlgivCBViT*6q8~azv zPW)kNx?-2nI{R(%$QGySb~=tO8eFy3?Tc`7zgGZh*SHeJoQL4V!mdqB@Fxyd*!H5K zi(}(ULsu+V7-M|s#kCBdRC*J+#d3~5Zsz7~O3_RXDT++qCRp_xoFr#S^T}P{Rmt7D zdaK|R?_B(;ttt+#^UUIfa#om3ydB4|9- z0@rZYOYj zJES2+_i-(wb4go@e_X?*+|TT__g-Gj+0rhvJ3b>($@spom-rp2Yq8^{ zZbjy)%Zj}qBPMb|BZ7_fiV9U%5h;q!AOkYIPBVe%Lp)VIBd*fWf%LH8ih>ZBkj?Uq zuL_y>JP4${Z`TTG`S{g?W!zP-@9!P)F08$6v8_mE`v$3@Y-F!^^b z_jvGfUf+zPjW{zokdZxWymA9C~K^Kcbn=UpHtd$}%jvuEzV@Y4%$ zWiEAX&x7+iyz`vv8AmNCtU4j5V8_whGxr)j?RQYa_B`D3@Le8-$aoI6*w~yI@r#-p zUl7U-&k@RsY`pN+>K51jDtl(YEv=o=neSyZ6_%V?Nf~a#;)*M`bDtAuqSQQCqxbDD zO@7Z2E#GA|#x5f;BP+fV0=s8dA>Yv)W<@rQ0eulJ+qt~JJ@YI2*>!1CI~P(n_tLsg z$pJc%^5FNv6S-vKmuDJ0*h~7|m@3M=dzK;>n7#}74tjfdojmEx>29Av!(Im{*pa=&(#G+_TUiV zFHE}7Bo|)pjF5GF&FT>&KX{BHKd2V*<*E|t?@3}=9rIkYg;j1{jpE{&r4}EBH2vJ8 zt5Mvuybw@+k0WVukJ7@|R56EkN#EEXEb;JS=~rEsDv_#cVk?|sYv30SH*m+ta^!KiL>fBYX;mC86 zJG=>(ES_cl2ltu+W(`VB=!)PkEPXT?@w$BMo~12yjq+GpcGpnblDUX2dy(r`SaUy= zURS;`HL?bkYkAnQ@xpi>^S#YCQ_Wt!p)etPmg11TT!Xk>gBsDf5SVez-BQgIyMpzR zc$7{I(Seod#IMIIn)sFs+{gtkt>p2Dw8j2V@0WXYHH!OfL~ZVj?8%&w6s4RIvn=;W z7&~_8l^QMX%?(XT7mY5j%r&_mBx7QR+Dz%07zktkt)@S&cOVQPN;Kq^uMbM%>MA_dCim-vunBlY(v2+PN{ zwGWS#s!=+?+B-LW2koW4Ic&1@as|7K`v&`e$|Jk4*Yob>O6&K0)c}T< zkf4!AvWIfM>ixQBTMn*V^Xx_P(Vo%O6b9Db9U@P%dxox*GsUMbavUAljR}oQ4NYD+ zF&!I626$u{(umAsmL=w;+92{ns5~(sk~=y-vWg#*7p{B0fcN6%0&9Vl4_#SSaQ~pT zMIB#ct@PON7vZCRudws#@;VYlhkNjjiSA|;iTw^K{`uYqIo8@e^voH+p&|8tfj!8b zzVhGDxO|Y%_=7xYUby%yh2$cCrM@NilBH4Fpm5}TU9Ieea15@v6gszh-J4c$!M!Wf zHR`{|>iWIvVlr1qvuiY;RYqlGyxPO1ac+jz?c5UzqYD_9zJ6fwOM!)k!0r{WE9Lo% z?=DHSO8%sAf)hLLLuz!)O|L7k&?%Up*Z$rm>IW9Po2$hSW}Ki%V98zO;z_?;zvpk~ z(v^po7?*scbNj6C1}yoz)=k_BOy>HotAwqv)cR_Q7~8<_C2j?lxRtrF7p_hD+B0B@ zm7n`+ePqUcS(yx$Ts3pk?*=SA_Q5#t7ccw~!HXK0&;c=>bK{T5?@|8(qh@EWU_xQZ zA?3o0zYZ)uH!zyce%m?21M|Yc!Z`MVgS+V&rwK`5(PK#kum5CR-Z3#Q{%5en3@M3` zpH7i3k+gf33K3j!=?Bk3a^ann*32bB3#0t(y8Oz8rLPMwQhE-6 zC0~!SkscLbILxdoJh*zSajAs|i>?Be+(9s&m8_9k1x{OzhKx&m(74D;u=J_}>)pCK z$dxnKx}>Q|}&#Os@F3!q?USQ+%`Ep_pQPTE?ZWoMDhYa>nH?HP&kKi_NW^W`3-W zWL)|ygO%>@@vfy)Vs(8%_5#!Uy$|Gv6rkctsY39=wHZ2~nyn0_!L46FSR?v97{|)) z&yi=(^znSJWS86ze7tiX+_%0>i819(Brr~`-5;|o-+NpvwB<(*Jfs2DQ#;T7#ClQAYysDw!a$>AQaLU5iC7EE?gEFkHfA% z$GG?juWMs?wpK$MV=*`R7Up6)ivtCY!3(~&bbsk3OOw*|BBQvjql0MOQ9KL3Egfi^ zw>Bb6H@Tr;QtS6SzGKaEgja`?bJ?z#KJ*RpQ= zYM{0B!2nAfTi7%{Zi7;rVO-w8yO8Vp6gcG{+&Ai9_Kg26A0o-Z6O}@RhaFjkuB1=q z+~h71xx5Zx69!72{Ux?1nT^D;sI3;== zFJb6KZD05rYkz$xf;iPd9@Oy}mma?g>}dUi1CQWEMqSO`;ze|DeM^2XwapwJ9K5>* z2D7-ARlo5(b7jtDZu*z-XqD$&Jzdu223~rR8W5eIc^+Hx(u?zZQpU1BWf;plne5?z zYTd#&l$gZ!q3kk+oFJ^`DBSaGEckAK1jY=9OM#J?%Z`-B_Qr zHR`AF5MX%IxuipDO#6J>Jr1~g#)dLi7%|@_fZ1{7Lo#r~ukP{I{GOmg_fp@Dx~I)4 z()BXEy}(j$4_2R`YUjvW=_=6=kZI((thva2p3=xh(d6ha(tS3T??u+s6N9C<&Ar?j z{D}&M-%F{?8S#|nzPWDk73fkFKdZO4x-JH@{6M%Oel96H;l(H|yqHJ{9SA#z5Al$N zPOlZs(zteqkuypaB4@6h!qT(4tm5wy`sdED%EIgJxy9hcBPh$)aL(?9DVe=Ao-7?n z#&Y&jotor{jK4DB?1gQ${F!7dJxg55x2b*I`>XXt^cNH!U#`$o=|Jc``)gi3M|l0& zYN1L8?H7J8+{9mU&-^SeMlP}6w0+Axx;mxZv#OZzcG+RMt3q<&#asZ<57aY-pUUXn zd}PNi>bu7+{-V-nN3AF5Nr zccl)-XUWst{ZaOoPI-ZIk7Of-=U|DE3-`e3$}*7XLs9~B_dP_pF?E`}g0;ofG2Xx! zT!E>?2rPXT34q#p+OvkAUOVobo3w}E4-&G!_Jpynkj3ur0Z;VkP;7P&3`Os}6#DE> zTixIfOAKD{zl>`?Rh&*&gx#~-mG9O1uH(`VMf0`tziU&T{b4UF1EeEGCSL>c&V9g} z8k;?huy-2EUc9LJiLUJS#)o$)u6q|qp?_s1v$D=%^LH^+uSoH_!q%UXD! zyTJ2Mn!EzIjH_Ov3L|=xsB>hzRGi2UbwItp#6sv)zGG-y1SB;1Ko@0A#}DFV-o%e2 z!pC-Dc5fZ7dU%lY!dWzP;Ici|$yi>pK6!qge&_vDx4+l0mQ zd&0jtOGOenBVndpS0u1^;gZj@zX!BN7Y*&=P5T{JmcPGusWXdHX_gP>mj7Y*k$E^` z_z<*2zHwW0jrK&<(5|}j)wV32JtY|)CKR1JeXYWlClW`|+Z|i{SJx6@=}L`BzZYu{ zo&_gyuR#@s+av~G?D%31(N;I^@3-HK+X-z$r_h!wcmTn#lp1h>D<(9E1gS? zF5j1voBz8{CxH9t(9L)N(Zk6nYOIW#T`n|uKj9=?GU$484>MOJ7z^llMl|>I}Mom;T-wcUH|=`lDJbUsGA%-|Ks`5Sn-9 zB@Nfta&E%VGk53mwR_(x=Ozs_b7h}rF0PZg?SE>2jZLU`iJwMoOYddhn}vh=hfe*= zp05yhX_8WtJ*zX!ogr2`7x&!X!#uMtCYHHU4YDr6&$@_h)_~=_|8}bF+FM|;g}|cQ zf{7-){|?E@uPgVBi!N%Mh8dZg`(a%Clc#zwk2Nkl%((Qc0!zFHEWMt=;#&tx&Nf)| z1F*z@0m2i(;)4Qa+H{%=|=&Ud|)PaYFdrU`{!Vk;QclwdpQqE zTbj;(u|{Ms{M80vi6g?sipL~J%5Wp4a% zU@ZClJ$1}k!yu^3z2xV-aYT>7(u zrS}*ZqiOM{8A!g3DVe)OIPYi!Y6qT`W zrSz);iw$uesI~XGZSz(DSbDL7<-K08yo&}|WJ2yF0ibG{; zW!=OjX(}pRGcNg8#(7b0$4MK`+}5?3i=pmZZr1FN=+5s6-tGM*8aL*ONYis3EOmxp zsT~2!+tn0{4)1r!Gs=13FWK{DG-Pgk9$f#)nZ0np=6Hc6rx%RlcGqx}!RZ5i zk~XwHEzCJ@ih_A`GHXyd0*k*>s3Wlizn2=5%jQ~NJy?7NVC8>QnvD;7@F00}=Jw3p z%JpBFo1TwgvPkE9ujFEJAjLZLa&J`a8S%hJSH8EMGS27jS>n3UEj)J@olDh3bRU`G z;U&E7;a4|o`H+@6v7NEW;>Dvm!Hc4cm8(}09GptG$Xx!(&Q0ASsh>A)RDPw`pK-~% z22202s~TG$GFW;ugJ}S>w4sJK-zJ%9d7{jK2Wv=_-rs}1;6S2G$JN(zwJ4!0;v;kM zwXDJJ&Ro3{3QHdhj6HsDu*(5y=%1clB+8BT#CrXcC5jnGc+XADsol5%f^36p2R+d zg!3+*LiohO2J~(Ii@lV$t54ZDv4n}_@qi_63YM5Kn4s|D{()~!g-Lw5BGDV$ zQM8jcjKI?KQ2{hU-F3M;3oD;weZ=?0vl;%ZjwQOqrPeO3sYQt%!8H;)MSaS~Vx(3i zehG#X&9^Dl%DK@x!<)FSLkCVGd+vH*+R@@MUHN{#_a0B$HJZOGc|(Qcj+58Cx(ZO&z2btM z%M93iuG`n2;GGLzh{o*2 zP0zRSxdqSaVRJ@uXR-#HE^Ax@!s4ZUQbj9L%LrB+xT)cZ=Ee@-NefTB@cGh#H)Nvc zoVuHFeDHgJ)t%%{^ZJBGC_hTPLaJ4K%@@k=x+=H^e@Hj9p_5tSN8Xx=?Q)^9JvX8@ zI2Cz{?s#bm*$abpX-Kpu{8^33=Aa4sH$k2PFD)e^`NG)wJHTJG@%f}YFnu~m| zB96{|K+h8ObLM30M*9dZHLl$Ug=-Om0PTlClSct8z z;W+ktFMYhfm;QAqL)yfgn{=e;VQM78i?88Qz73xYOi!Zhueopc+D_Mapi60V5_?tX zDZVsS`H{aD-p{$6!LT@J-Gp>j&7?A}zID;i$PXMMI^3o6FTc9FiJTkWlyL-R$E6p8 zjQsQn1*@)d?JPs%eRsr$84-(vV`71&Uf0~}FT#0=gHf+~x2|G**FXr%6SY^4j-*>b z_y$jIbS}yJ;gi(5@Mlz-7!X%g;#(4+dw(T1hlcovLVxtDj;lZ75}|?vr5QW-lFN3S zB%qunRXI8#i!M5Yq?70ym&mhc1f}7pelPySQ;V0zd4Y2tw2hqGy-$+4`Xeo!nwj{~ z1!99M%PzmVfKTwpOwL^Gc!Gm#b~UssFx2lAoLD*_;iLO77y5frr-Os`oaY!;@wa<< zpmP!3@#k;~hF@{^Mdu>9iz^PN;FQxSIK4(4yFbQr@Nx!!#%Z1qm}0Km|B>mwyt_7ZVF2c{c z((1D=uUqDF>vb+EkTud91DC7}5EYM{zOdxp!Ao;n7?U`~vcp?+OynroGo6gk=O~C1pN2wVu|V7Xq;{bJ5D zll6CkCEmmNk{+Qaj@EAmmb^$XT{#vn!U4mZtRd5U#|fMc{at3`>Y`xj#cc zPl1@u+k3`|Q14#kf(_3xPN7o9y{_GTs=($0gSiYl_a1W&EP2R;hel&Nj=h>a<7=TI z>Otq`y$)-ncNTRcdYEx}``ftWZk?*qyXw<&=3)-Hzch~QSy_3$S3zgK*X_?-!YpeL z6-$$90hVXuu*m@e%ljl?!n1Qm7lK@R!PYkBb)AYgRtW)-GsaP%vj#&Tu)Ljgs$OuV z0(Esl<3z^y_lSkXDa|o=)teFPk8nbXcV8Lq`USvZ+k+){0W3W;MVTa$?VcNRxM)=5 zjPUQq4U9`~Qn2_6z_fMRb(NguJczu}bExR4djd;tH<*FDhOkg!FKhpv+P?DqN~KqS z28&$_rgQDCOMMA#NCU_?!K}cfM`W)2*xZ@cO>hdNwg4=4H&|?Ju+-QwQ)2&uNvhoM z#dmX-QfGqu#(Mo82Drb+-Jaj$aO&?RhlREl-TO?i@Ys*|c%TbkHnO&e1H8B#wAY`Ed9RBbz65`c{jnIR<=t+xM_5Y3zGy_cx>kOE%r0T zBP;HWht5sT`@NRBHX>O3&tQ_b_Io8q6_y-QbJHJ0VoH4aV6jcX;#1`@dhi_*ra~{5 zXtaA)_q2SC2P!gNZNd5ut(zKcu++YC$;7XGZkpZ?s&{BtN?^`SK(FJlto=5q3QYCq2Ql{n zk2uR>fA5-O1eU&K4EDSy0*1_IE>0I)h$lS!RQNLd@ACfpd+F6AXb|5uSbWl&C#IGW zEcNkV={XOU-bG+NBWhi27gm++BuILw|A zz7ZOtI~G!Rm>Qt}Aiqz&jj~@!rUYOyP11O=_7G-H{2~Z&OQgCebFcehU6`=rrE?*jTE{rKjj6+?YLcZnN;5>oT}|xhCujyVvIf;~@&HI;Pa_*gaRq zlHcP=T0Y4$T)LO|m38IL18>#657I?`;hSCk@J9yl_h`ZK&Z0FJ>_%HcNwxkLS|r_bf#S;xCrH8(AhR zWAmE?=<}|J^Q|w#Ezcd43KqJ$c8p7tu2#>S(HWe!cZdC@Uj{?G{xy{&(SemEL>F~q z!iRY8qYrVnhi6ka!Y7q9^xO!{d|Ue-k?^&r?@^@X2RL2)leB}#Wae*VGIkZ2tV3CN zB9B{Q@7e>0C!TthJ1um#Jcmgf9~tReJX4!;XI$yv;37VIw>)3bxp`acDlTG|QBRAP z2mU%{d}OH4&7QILo|~1kXFPG`>NR{_9&u$cg{23(V2^a{!OOWtmq(ns8<=F5J-2HJ zx_fq%xxW{V&s@1Ug(a7rbW5M!lX$_OmVmi$>O{heuOZpeq*f8#3q3J7eR4wtopOe)$nJX6CxKhFA6V_9+vwnt1A5YYC>`z@&tn`=-IOm-f@yPYHD;xi(qyFcdd$~>v7;V;}O4`Ai7Bywb}EWF$!Vn6l_$3^M6HFg>)SLT@; zU5ddKJ5SbEzxP2N9>qPeHbzP5S&!en)0ENDhWN+I3KepZG`4oFL3u z^23E*q#A_Q+DiqVAMlO4ti%7*gd|?!W+isV(>(T!*c%n3zgHcJsux+y`WU~|{oeYn z54QC^2ish*gKd2Un3%}>{oS~ITl-*c+&jG7+?D4C+x{;H+j_8rZH>;sw&wd_TPFD*}@e|(fZ7^Y=YJxHYzS%)wT#JD5woYfv|Wdv<*A!V#SBpeGi#eR{3SX_R%9ckkR& zUo!5B=6BE7+RnYS+~5?y&t2dM$+vMJWL=@6z!LBFZ4|bgo34e~3&SjXX4_{kI-L|| zk->qL17og^+`9cyBxbHEs1h$oLz_ zxjuX5MH=6xaauSpuA~@_U+?z3KDUFdpYULU7`rZYGPtMebzEfyFWmU`ZqMsi22-{Z zoT^318tn7nkE~ca^+Hwdj2k$9(OdVyUg%uGy)>xc;F72oS8{f89&&cFzr;=LMe;&^ zkN-5kM}5xz636y?a<)58kYM*LFdm$Gsy1`6jqC+K%^5x5#j^BA@4W9_Umuu2PSzCz zTKOhDZ0x+7OIg`(Q}UQ|^Xy1|PrxF0;p)p?=!uytO(ExYPTJjzhDO;-dKUT)eul2W z*v;>)zth}%MR3P)BxQfpjeHw-cE_!M==Qg^8W;mJxMyVVcL>*(Z=45k_pAmc=b^QK z_D84Q@5TNiw>&{nSu32pI8ZAyJ}q3_b;}y*xojK-aQA%f$->G@>@M^yjdARrTVwsP zx4-q<9*p5LIF*@Pyx=9vo2bv@Kk$1N4z7^U@&oBjq0=Y*xmFh-wxYk#R6?iRw$WA8 zu}n`(qd@Fxz|ak8xz&-}5OD|C`^(iHN0m;AQBr$t`& zEM6A6qUP*9;tKCve%t(>)~WeDra|_cH$~xIyS}We_9nF9C_`(~6tWlY_RifteAbn2 zmNTc1=R5dbvp*_&zKwcSSnU)l$oS#xg)cXI;Tp;BF;fbAK)d4h+4FTFUfSU1&$?VK z!Si)M*tycygJ;geohu_Xwh+y>XT-UbvlJ!R-{Z2(U3D$TuXokm`@Yb@YJ*8njQyq_ zXJUajS0Hw9AQTfG1_QBYyc04p7Qe^kyJw_sC$x6%*uCf1QfKeEs;90Y#dXizn;?;^ zyu01A+|bV5T3_G6gvfXBd1TLuYO-gD$+&yqVDT*HX=zPneEd?h&hgROAG3C8+*YDf zOEt~iSMw8{n)@aC8Z)4H_H%n@RF>wRqsYktvNwD(-zy<5xY80jIK2kTi@z@$_p`<| z9L~7%0~u72-4|ZSwsurtDifl(l>r2 zSwWFyyc_YgsPqUw!093z)fz<~S8Ehs5UfO}W?|=UsWl4SUyH`2=WFk?cSc=N=pL(! z{=zjJ8WNFd@-24`&W~+eB)Hxj7v=tI?yhB@0-ff+y&97{@x`R4&&N`K&cnRnyZ2dfX|OpW}WoYc@R(U>!r_?5HN3nb(26~;YtIcWK|yp?Cq`uS#m zO0YV2^RCUM)@2-ZyuVj}yZWfC%Y_%&sIn^h-?f<8GiM3qULxJxK^bG=_g6Eu^dhq{ zx*07ja++lj{ZB1a=u{>|^e}2u?jTJ*G|3E&jpHk#OYt0bFM0;=9aLKtpShBnoTVsO zWTlgucHPF`cu!-`s9lB)Q)ClH_g0q`8&-F{(2&+>kpWb$*lJqx_B-TO zEd4RN!*{tSbAPF3@fBRFjnHZ8vd~6y+Q1y;@-W#$iJhp%iBAjri!Q}05L-hTRq5IL zrmKf(4-(%E4|n7ni4y*NYHWXR->>k!kPzIbFUgIo{Xv@dJCZkN?gQP{OT-WMT-{dn zN8*SV!d=<;#nlgwkTTnGTL)=>(u{IHm ziDg~=R?b(MS9mPmzB2FL2nvnAdAenItTdU)slhi(SD( z8@?vZGI>j~Rifuy3&gCU4b`5nZX>Y=d1E63WHQAjX5qw+y7bPhdyU@~SLuBRSL)<~ zdycL>H&;3``D)4b{xU-&_pfd&I1nnzo^5&eBIPOeueOr$eNn^0JFnGH*5Hr`jWfoV zcGaAP*IlW3#xX#GXR;!6%BK*V@+kx_SVYEQfEjnn#h&jeSPP>JWY2_S&W-TNxYTr^ z7sa5#sqF;^S|n%B2(@c8_eeEP^p|@NC^+Q<$am0zgO__CXYnFGB73112lw{^*UY^Z zrrC?agwU0cfA*rdAbYuPVY3F*_l&NJXvQ%i;y+O56<;556#k-%aC|M-5^%rm#8F^E zK)Yx4V7l`Vqtq1s21V7_Y6$OZI4yI_aHA#R5$nIQaST` za&Y%K>d%1q;1^dg~d)+hRIKvmFh$#5W+h_L7-p@G2RXJa5t>c={szqMU zgRZxHQuc22ah}o#LZ>{IxtAhE z(MzP9L`Ge6*S)JWn(j{>M!r`HePJqR_uTFw?ZBG*#&grNR64x0tA;K14C^xX%$Y)= zQ>yabX;-GW;#A1oYetjrX#7$Gr})?Isnx8j^FJDmX|yH&v_^j$hzB4i#^9>KKKJm{?#QD zZ>-$7eP7q_o$F`U<$A~(Tu?&?=0^9Cu(!3>x5mD;047g$=oCyN(%p+t<=i9VG$zTo z?FoHrY<(>l7g=!6)X29W*p~S#%X+%^X07S+~kaXW$@?RyjGSybC+aYZP2oA-q(O< zpOL*#(u1qk;a&+=*A+I%p07*to(JKWJri6xH*Tq&>oTm**N5yoUG{biVb(pQ?ivVn zbsuw+Pk34X%i9lu;gh%U@(nj@Wq{v{4hI%rxMlZEWyAO^^Bs75aK&etaaVA#c%gR| zR-P#89J=BfUVFiwW9NN^zU3u{f~8X^$bIvSd+zEz6%agM65oE?C94INcqr7zXYPnn zk7!)-kin8eU@mQH*H!DAGy0tPjJaF;e@DLk`oQ#c4o;b-dw*Hj>vKC2S|0$|zDIED zCO7`(=1!B+YjcXO(gqd>obY@1ammf2FgO064)YrhV?dT&9ep4i!d%WY61U z3tspXa<{H2%+8gATiCwKeZQC7L9o=Iihd+^0>;U`>s~{Yz~c8YH@yVFblb?>?XQfh ziKpzkJpb$C(ZQfP>#?TJ-CnHLz_WKR%A>+}t+4)x^9qFTUdhzrMH*D@>ZzT3ZdY%$ zcS{H;yoq|6^YAi4?j>y~`YuTk-PY95DfdBa5*F;*-B;qiaR@NM=s91JyRIv4zxPOe zS>&qLUb*Me6mpNG1FzqQGdq13z_wQ`IuIfV?j`YMe^L!XFVv0YIXL3_P^=MOA6W8a zSVGC!HtxY0VdJ53v7+Ff$O}zM!pQfM0r_71er1YE#`Pzj^;TNDCa_Bfblc#H3u@)6 zRFd#)wOZ>hR#mxuYn`PYI9bxH8zWaQEi&t-k3SWO%CO(29&G(cm!XtBtF4MoErlR5;Oe9HdxdAB*Xg_yJxr!h zd=%=pa<{HlYw;(8pljIRo}0P3zbx$BRdrdRg9{byJ#rJmb7Ywp2SRAU{S_7sy)gIJ zFG@v^UsS6D3@~%|T^aanZq#|W!w+Q575B~Ex^B6p16Ltu?m>d=j~QAR2itzfB^U>m zxd(Q-cX@%=$8B7Exo1|y9yE93zs6z5yFbZv`8IuA^KI8?J9E=xhDlPNAd{rD zAs2S}xXhXGVp@CjL>|WIC7-T2?(R=b*YcMmt9+Xjg5`eu60>bGfAzWS-I5aD6cv^GY{O_Le~ zu=)?UxJ%;_JVOUe;(Xf!pQ?yM@giiM^Uz>E-zI@AXD*p;`3v`W_#e&`9atH2>6Gs^ z-_e-TbwrJweCAQ;l)I_0eVhE;P1}R>Tvf@%0oym%Zd~#}&wUlVs9g#V(}FH?l{YbG zB;*>}N*-4b#L?OuJ<>TANfk(X|Md=K~b)Y1VpCuivj=KgAb8XEUp zZ+zj*!RW=*q3~=j!G3RZ@^uD(G&jAANTb?9JVuEn-1|{WYu;zdU6t})7&f{5Ped;F zNZL~5mRCUwa~1X;UCmVXrywHhKHyDmLeJz=FM z)6nC;_qvAJ4t*)B=z94MqGIXK>BgQ`b`oBEVS~L}%&5XRF0w8=dFcR&$4-CrJ~7|nfrEUn$5KKETB+pBnKPLyp)2cN!sya7 zUQ$@?C{fAqY_%=1nUo|&FTsiSDr6bmWLnpGPn@wkzH5U=Hp*zxHc6UvY!I=iK+vBh;)E&j>YV*<5VF)zpN5 zJ)i?2s_cah5}YE_;MDscp%?m9zE?_7?osRggs0PgO?5?W7gammv&7-uAD3WcqsV*Y zk-C`to-oPQ#3`1nZ%&<8aHT_h><{Uf@!wN1BL~%@grDjf71=F(9$i2=XLzhGkckmU zc?#`1%E&yf&G0pqJh=-OK3Y1U7DsN$YL0JMZA;|Lspu?^f#&zvWqY@X{qQDU(ePbeAfvP1Gdlgf`pB3c(WOMUVo%Ek z>9;XS_Wr6_iEeSVD0`==C8ag0RPH4qT3GqUxp?xu7+Yw=dmYOYMJ9TGrC?-S-cpk` z0@3+4#~YZUhTtmiut^8Ohq`X#oR)~cM9O0B0#90WOsyPpLI)%PoIVq-=_MM?oXLbaCHsDMjukw5nESXNACGOW}h>9 zz)Pe{#fCUnX>iX!zB)CkiXN*3KmLttCzx~7UL|X27O{8GvxlWCd3c#CXFF?f?`F?T z`;JSWR21G^h-Wjm?Rm@FK3F8dhb!Gg_85x(FZ?L=( zbgk7_FS(ZPD^tuRMR#4IacIrl#2dkqw*;0vD6qtKz;N#dn16!Qw*!dtTie zEO8Prm4;bYF=Jq|qXLU=f&L;tp43CE%rkD^Afp?|dkF1H;Tt|~TylxQ1if~Dt$mQ$ zn7l8r#QngMZwAIGoi!3yyY$Yr8&3+Zj_LQ}y9P_ml(`&4yDleB?uRn8j(dPpMrUwp zSbk3_a?ZT`+5RMc?fw`v{k`PJVnXRjew9`0Kj6`lq`qrVoCapggK7|!;)BAgJFtP@hVCavno9}QO9hW*5Y3s>xuoqOcdyx;Ey>Py+>|sJ| z+|Tc&FCv&`gjpl?6_TmlxgDngTjuih?LE3TeexYjt1=E+GR|Y&{a%RPy|_l1+n$P- zEx&e@r&3Z21y;S}TtRz3jwl1OMCjlxx$O2LZD+rOffStTvC!Y+>B`*nvgL5YbY|Q! zjy+3)E3$%+&s`uaLI)Ur^v+|@dmcy7g;nP|3};i{GQbl9T*1-PrMeo z%bTu7V(*rEgXqt!>9xUpTY7bZrSGcf?*rUl!phRAAkf+_I{cRYl(>gpn39FXZglYz ze>=-ybA`al*VHepU&Xk@V$cDpl5a~NCF3a2JC1X>c+r_D z$xJQ{sX+)%@vzXTkag$^{|gQ{74jYJ31iQBR|_ohBQS}FgBREf-w^VTt%lNKZ*j{< zcf?AfC*m4~QSA2HRA%J<-g_~ND^fLb^%FCG>EJ$N`N6S`tc%$dRy*`+5VDuX97J#{ z2en;|j8cOT8O1xkepc)+Id_W2IQ91|l~M#Id3tH`-iuk9RQnM5Ce+b!T9@w~#0_!> zshH~@lC)mi^pntMaLWi3Ntm;!n7?u<~{yCHf@w`2qgY ztB&YNi~y{%TOC1kAL{tVdT;K=fUcq@yhO)_(m3-i_d|dtI2E=JUA378@?83`LUrr zU)htTA%a80~68DTS{OmVmOq`Fer^&vYBydz#L|_wR}%kFDww;< zs)+uqLLxF=R#5b3H5`$(>LKzS<|e)%(=@v6xyKi$TuY&QmVI;qS!uaj*Q!0g_aOdZ z?&hZ8*yTC6cV52UUWWL-jLO`5QzbaCZ1zI8%^9gXS(v>{dzNQ$dMWwYpWMc!abBtDjv@q``+Kc{ zaxc}6#5b%GDlsZoq2K0xm+qx<+M6oVwZmIoPt8itSME{hh0z|I(v??# zxe|`xl#!UdP-Jrl+b>+mrm1*A9-I;u!D(v+wcTorh4$S0d&NN`D@fJ&@JODn%Pi|&s_UKD%9%?qDU4dZdr@Rk zSp8hYTVh$tfO5B9TL z=}$Mtu1hh=@7*Io`)zEYr8N>Xelrp(K2X~D+P?%!dS~IBsXqrxPfA6uPs?|~k^^}m z$koHZVxJ2^#^w~cON}CJJbJq@Vsbwibg?UVq!Sx+x{*b1^vG+pS+LBH!Z)AWahATvxUL_=a-W~wUJyL*$A-B7Sq4U+zsK{nz*!yro(*3a4<>bF z=eGCQSFK~_jKGp#Cz&So8ep;g?itjTM_}psNWcTW-=B$*`=0qpjSg69tH6?APe4XiHf%Bjqr={a*o2IVb#u=FZMK&b`w)KPqlV9`ZU?#Adz6f){P-#FOnTnF2{ z8!*Mq?{Nwy=l%WNI@s2>fJtw9kE?@i|C~$b-#T!xOXPls`-83S19sUiJI-C${juN1 zUuQ0c|Nj0SOk?c*JudUbA4;3pgt_P{bEV5?FBZy~~sR!E?U%9#q;r`;49I zox+I`$TXE~zu%_1apIT8$?krC2M@-GoprC((0+&4P9`Q|E)6T=#F_Tncp@K++xU^+ zank1Zs8{dr^v&JA5MZ1rdu~jPoSRCm$%VMNyq1fXm$gZ5+~(hd(dBaui|--dC_d7Q_xdyah$DW>jRlUFVn zw|e#=bmMOaQ&2Z}AsNSBxN#c;2fJ#Rtf9iW)04TAP!~gay&#jU(qCIAA^)N|zHnTX@3bU}+@D~o9sV}>-u}3h; z8nXt6N%$WJNAAppT=y*b1%d+x`otIP#r55L&L|##lX3Bb9Bga44z@npgYi7>x5>fC z_X^l%FU<2jH=g>{ca{6Czf+M--VZp~)-!>j-lZ4eh0v)i?uliYi=21QD#XG|crn9= zF3mi1<6E+Zp#SnK`Gn)UzHu9`0OPD*UaY!1G|4kJej0P7|7Bfh$(~t%d%nWmYYQne z+;C$WRlV3M^*Am8rYj-b~=a#ud^72XfYq{q#Y{r*i4M<&DqlN`n*BWDK7nOE@ z&SUwDJf6_n<=Eug;Cau@N#=V+x1zuBVur4;$?&TyKid6WYSi*I+HT~QJdg3$VNB@< zaMG=O2&zK6q-FRx%V6!Tdo^Qxpw{5e-g6U=4_>bI?9z)kan2m3#t%miAoTW(#BkRR zH7@qnWk8OP(eDugOQ+ZWZ@+{35_(};t(|w(*sI^mcrV}3=Pq)APcXQbmKNRiLRrfv zWik~98ZKoV*T~W{lP%?PG}f$sigY z!2_^82aIFmjLZXztWd_h?-rOV{~&XrerWP52jG0K?C0%iM=3d{<$HPt+uS4L^o!ha zr`8n~yF#R6d#BRhqzjDvxct-LS)S_B$Q0Us9#8j7*YYN?@H(*VS8DDl!SfyX!SY?>dX}`I^*51>(lz$?w1yo0ib1zA zG<)G(&p7!Y`8_IE#t}4o=FIrD5oNt@tj)Rx&RvxUuy25hI%6BNF0Q-1?u|q(+Brh?B2_Jc5Zc64t*!G zb1zu5Fv?^0j5&?oez$yed3h9D-;J?rtG0Ulg}AaWYwW7~s8_8jGI+yE?bHSV14jd3O4o5ypo*bA4Z5V}9T zeeaQL9)3k{Up?Dn6C20=svLWD(W}%CPDOfG<_TgeB$&G;z7;$R`L8|01?91=oy(`c zbYRuobFw>hrM*wqy<~%3Llw)$CJ4<~b%fa-5MZfOI@sp89&GbQ!1$JetJM6cXTaCKhJzpcfnV^w|MYkNz&F0_ z+rIT5`QBgt-QT1PfBeR`e#iHJ{||oiG~RE1_~v(f<6D2u_kGXzf78K!^E-al&-%tc i_k+LS2Y&FE{lIsB&o}(obp`vzw|vV#@N@scZ~PzJ*k;lI literal 0 HcmV?d00001 diff --git a/releases/release.ipynb b/releases/release.ipynb new file mode 100644 index 00000000..6c75e8ff --- /dev/null +++ b/releases/release.ipynb @@ -0,0 +1,68 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 9, + "metadata": {}, + "outputs": [], + "source": [ + "import os\n", + "\n", + "# Define the directory where the Markdown files are located\n", + "DIR = \"../docs\" # Replace with the actual directory path\n", + "\n", + "# List of Markdown files to merge, in the desired order\n", + "FILES = [\n", + " \"catalog.md\",\n", + " \"notation.md\",\n", + " \"chapter1.md\",\n", + " \"chapter2.md\",\n", + " \"chapter3.md\",\n", + " \"chapter4.md\",\n", + " \"chapter5.md\",\n", + " \"chapter6.md\",\n", + " \"chapter7.md\",\n", + " \"chapter8.md\",\n", + " \"appendix.md\",\n", + " \"reference.md\"\n", + "]\n", + "\n", + "# Merge Markdown file content\n", + "merged_content = \"\"\n", + "for file in FILES:\n", + " file_path = os.path.join(DIR, file)\n", + " if os.path.isfile(file_path):\n", + " with open(file_path, \"r\", encoding=\"utf-8\") as f:\n", + " merged_content += f.read() + \"\\n\\n\" # Add an empty line as a separator\n", + " else:\n", + " print(f\"Warning: File {file_path} does not exist and will be skipped.\")\n", + "\n", + "# Write the merged content to a temporary file\n", + "merged_file = f\"{os.getcwd()}/preview.md\"\n", + "with open(merged_file, \"w\", encoding=\"utf-8\") as f:\n", + " f.write(merged_content)" + ] + } + ], + "metadata": { + "kernelspec": { + "display_name": ".venv", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.12.6" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +}