forked from danisotelo/monza_simulator
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
77 lines (64 loc) · 2.68 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
"""
Monza Game - Utility Functions
Description: Contains helper and utility functions used across the game.
Author(s): Daniel Sotelo, Jiajun Xu, Vladyslav Korenyak
Date: 09/10/2023
Version: 2.0
"""
# Import libraries
import pygame
import math
import matplotlib.pyplot as plt
from settings import *
import numpy as np
def draw_mit_license_and_authors(screen, color):
# Select font for the text
font = pygame.font.Font(None, 15)
# Draw the MIT License text
license_text = "This software is released under the MIT License"
authors_text = "Created by Daniel Sotelo, Jiajun Xu, and Vladyslav Korenyak"
license_surf = font.render(license_text, True, color)
authors_surf = font.render(authors_text, True, color)
license_rect = license_surf.get_rect(centerx = SCREEN_WIDTH // 2, bottom = SCREEN_HEIGHT - 10)
authors_rect = authors_surf.get_rect(centerx = SCREEN_WIDTH // 2, bottom = SCREEN_HEIGHT - 20)
screen.blit(license_surf, license_rect)
screen.blit(authors_surf, authors_rect)
# Convert local coordinates to global coordinates
def local_to_global(x1, y1, theta):
x = x1*math.cos(theta) + y1*math.sin(theta)
y = y1*math.cos(theta) - x1*math.sin(theta)
return x, y
# Convert global coordinates to pygame coordinates
def world_to_screen(x, y):
return int(x + x_offset), int(y_offset - y)
# Plot the path of the ball in a game
def plot_graphs(positions):
x = [pos[0] for pos in positions]
y = [pos[1] for pos in positions]
thetas = [-angle[2] * 180 / math.pi for angle in positions]
t = [time[3] for time in positions]
# Compute angular velocity (omega)
thetas_rad = [-angle[2] for angle in positions] # θ in radians
omega = np.diff(thetas_rad) / np.diff(t) # ω = Δθ / Δt
# Plot for position
plt.plot(x, y, color = (0.486, 0.278, 0), linestyle="-", linewidth=2)
plt.title("Path of the coin", fontsize=14)
plt.xlabel(r"$x$ $(mm)$", fontsize=12)
plt.ylabel(r"$y$ $(mm)$", fontsize=12)
plt.grid(True)
plt.show()
# Plot for angle
plt.plot(t, thetas, color = (0.486, 0.278, 0), linestyle="-", linewidth=2)
plt.title("Evolution of the angle of inclination", fontsize=14)
plt.xlabel(r"$t$ $(s)$", fontsize=12)
plt.ylabel(r"$\theta$ ($^\circ$)", fontsize=12)
plt.grid(True)
plt.show()
# Plot for angular velocity
t_mid = t[:-1] + np.diff(t) / 2 # Compute midpoints of time intervals for plotting
plt.plot(t_mid, omega, color = (0.486, 0.278, 0), linestyle="-", linewidth=2)
plt.title("Angular Velocity Over Time", fontsize=14)
plt.xlabel("Time (s)", fontsize=12)
plt.ylabel("Angular Velocity (rad/s)", fontsize=12)
plt.grid(True)
plt.show()