-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathREADME.Rmd
84 lines (52 loc) · 2.73 KB
/
README.Rmd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
---
title: "Machine Learning Animations"
output: github_document
---
```{r setup, include=FALSE}
knitr::opts_chunk$set(echo = TRUE, fig.align = 'center')
```
> Understanding Machine Learning through Animated Visualizations
This repository contains the source code for **animated visualizations** of some famous **machine learning** algorithms. They were created using the `R` package `animation`, and ilustrate algorithm convergence and the effect of hyper-parameter tuning. The animations available so far are:
- **XGBoost** decision boundary as **iterations** proceed:
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/xgb-iterations.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#gradient-boosting-machine-iterations" target="_blank">+ View Animation</a>
----
- **KNN** decision boundary varying the number of nearest neighbors $k$.
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/knn-decision.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#k-nearest-neighbors-classifier" target="_blank">+ View Animation</a>
----
- Multivariate **Gaussian Mixture Models** (GMMs) fitting by **EM algorithm**.
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/em-algorithm.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#expectation-maximization-algorithm" target="_blank">+ View Animation</a>
----
- Multimodal **Density Estimation** using GMMs.
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/gmm-density.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#gaussian-mixture-density" target="_blank">+ View Animation</a>
----
- **Tikhonov Regularization** effect in **Extreme Learning Machines** (ELMs).
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/elm-regularization.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#regularized-extreme-learning-machine" target="_blank">+ View Animation</a>
----
- **Image Segmentation** using **K-means**.
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/kmeans-segmentation.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#image-segmentation-with-k-means" target="_blank">+ View Animation</a>
----
- Image **Reconstruction** using **Principal Components Analysis** (PCA).
```{r, out.width="75%", fig.align='center', echo=FALSE}
knitr::include_graphics("./img/pca-reconstruction.jpg")
```
<a href="https://davpinto.github.io/ml-simulations/#image-reconstruction-with-principal-components-analysis" target="_blank">+ View Animation</a>
----
Take a look at the **[website](https://davpinto.github.io/ml-simulations)** and have fun!