-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain_separable_cnn_model.py
162 lines (151 loc) · 5.44 KB
/
train_separable_cnn_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
## References:
# [1] Chollet, F. (2017). Xception: Deep learning with depthwise separable convolutions. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 1251-1258).
# [2] [Text Classification Workflow](https://developers.google.com/machine-learning/guides/text-classification).
# [3] [End-to-end Text Classification Tutorial](https://github.com/google/eng-edu/tree/master/ml/guides/text_classification).
from pandas import read_csv, DataFrame, concat
from sklearn.preprocessing import LabelEncoder
from sklearn import metrics
from keras.utils import np_utils
from keras.preprocessing.text import Tokenizer
from keras.preprocessing import sequence
from keras.models import Sequential
from keras.layers import Dense, Dropout
from keras.layers import Embedding
from keras.layers import SeparableConv1D, MaxPooling1D, GlobalAveragePooling1D
from keras.utils.vis_utils import plot_model
from datetime import datetime
from joblib import dump
import settings
import logging
## Set parameters
vocab_size = 32768
batch_size = 128
embedding_dims = 64 # size of word vectors
kernel_size = 4 # size of word groups in convolution (like window size in W2V and GloVe)
filters = 64
pool_size = 4
blocks = 2
hidden_dims = 256
dropout_prob = 0.25
epochs = 2
## Import data
logging.info("Importing data...")
data_train = read_csv("data/data_train.csv")
data_test = read_csv("data/data_test.csv")
## Encode output
logging.info("Encoding output...")
le = LabelEncoder()
le.fit(data_train.category.unique())
y_train = le.transform(data_train.category)
y_test = le.transform(data_test.category)
Y_train = np_utils.to_categorical(y_train)
Y_test = np_utils.to_categorical(y_test)
## Tokenize text
logging.info("Tokenizing text...")
tokenizer = Tokenizer(num_words = vocab_size, oov_token = "UNK")
tokenizer.fit_on_texts(data_train.text)
dump(tokenizer, "output/tokenizer.joblib", compress=1)
x_train = tokenizer.texts_to_sequences(data_train.text)
x_test = tokenizer.texts_to_sequences(data_test.text)
## Pad sequences
logging.info("Transforming tokens into sequences...")
max_input_size = len(max(x_train, key = len)) # Max. document length
X_train = sequence.pad_sequences(x_train, maxlen = max_input_size)
X_test = sequence.pad_sequences(x_test, maxlen = max_input_size)
print('x_train shape:', X_train.shape)
print('x_test shape:', X_test.shape)
## Build model
model = Sequential()
# 1. Embedding layer to learn word representations
model.add(Embedding(
input_dim = vocab_size + 1,
output_dim = embedding_dims,
input_length = max_input_size,
))
# 2. Convolutional blocks
for _ in range(blocks-1):
model.add(Dropout(rate=dropout_prob))
model.add(SeparableConv1D(
filters = filters,
kernel_size = kernel_size,
activation = 'relu',
bias_initializer = 'random_uniform',
depthwise_initializer = 'random_uniform',
padding = 'same'
))
model.add(SeparableConv1D(
filters = filters,
kernel_size = kernel_size,
activation = 'relu',
bias_initializer = 'random_uniform',
depthwise_initializer = 'random_uniform',
padding = 'same'
))
model.add(MaxPooling1D(pool_size=pool_size))
model.add(SeparableConv1D(
filters = filters * 2,
kernel_size = kernel_size,
activation = 'relu',
bias_initializer = 'random_uniform',
depthwise_initializer = 'random_uniform',
padding = 'same'
))
model.add(SeparableConv1D(
filters = filters * 2,
kernel_size = kernel_size,
activation = 'relu',
bias_initializer = 'random_uniform',
depthwise_initializer = 'random_uniform',
padding = 'same'))
model.add(GlobalAveragePooling1D())
model.add(Dropout(rate=dropout_prob))
# 3. Softmax output layer
model.add(Dense(len(le.classes_), activation = 'softmax'))
## Compile
model.compile(
loss = 'categorical_crossentropy',
optimizer = 'adam',
metrics = ['accuracy']
)
model.summary()
plot_model(model, show_shapes = True, to_file = 'output/sep_cnn_model.png')
## Train network
logging.info("Training network...")
model.fit(
x = X_train,
y = Y_train,
batch_size = batch_size,
epochs = epochs,
validation_data = (X_test, Y_test)
)
model.save("output/sep_cnn_model")
## Predict test data
logging.info("Predicting test set...")
y_prob = model.predict(X_test)
y_pred = y_prob.argmax(axis=-1)
logging.info("Overall Accuracy: {:.2f}%".format(
100 * metrics.accuracy_score(y_test, y_pred)
))
logging.info("Balanced Accuracy: {:.2f}%".format(
100 * metrics.balanced_accuracy_score(y_test, y_pred)
))
logging.info("Micro F1-score: {:.2f}%".format(
100 * metrics.f1_score(y_test, y_pred, average = "micro")
))
logging.info("Macro F1-score: {:.2f}%".format(
100 * metrics.f1_score(y_test, y_pred, average = "macro")
))
logging.info("Log-loss: {:.5f}".format(
metrics.log_loss(y_test, y_prob)
))
## Save predictions
logging.info("Persisting predictions on disk...")
col_names = ["prob_{}".format(label) for label in le.classes_]
data_pred = DataFrame(
data = y_prob,
index = range(y_prob.shape[0]),
columns = col_names
)
data_pred["target"] = le.inverse_transform(y_test)
data_pred["pred"] = le.inverse_transform(y_pred)
data_pred.to_csv("output/sep_cnn_prediction.csv")