-
Notifications
You must be signed in to change notification settings - Fork 26
/
IndexIVF_HNSW.cpp
375 lines (316 loc) · 13.9 KB
/
IndexIVF_HNSW.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
#include "IndexIVF_HNSW.h"
namespace ivfhnsw {
//=========================
// IVF_HNSW implementation
//=========================
IndexIVF_HNSW::IndexIVF_HNSW(size_t dim, size_t ncentroids, size_t bytes_per_code,
size_t nbits_per_idx, size_t max_group_size):
d(dim), nc(ncentroids), quantizer(nullptr), pq(nullptr), norm_pq(nullptr),
opq_matrix(nullptr)
{
pq = new faiss::ProductQuantizer(d, bytes_per_code, nbits_per_idx);
norm_pq = new faiss::ProductQuantizer(1, 1, nbits_per_idx);
code_size = pq->code_size;
norms.resize(max_group_size); // buffer for reconstructed base point norms. It is used at search time.
precomputed_table.resize(pq->ksub * pq->M);
codes.resize(nc);
norm_codes.resize(nc);
ids.resize(nc);
centroid_norms.resize(nc);
}
IndexIVF_HNSW::~IndexIVF_HNSW()
{
if (quantizer) delete quantizer;
if (pq) delete pq;
if (norm_pq) delete norm_pq;
if (opq_matrix) delete opq_matrix;
}
/**
* There has been removed parallel HNSW construction in order to make internal centroid ids equal to external ones.
* Construction time is still acceptable: ~5 minutes for 1 million 96-d vectors on Intel Xeon E5-2650 V2 2.60GHz.
*/
void IndexIVF_HNSW::build_quantizer(const char *path_data, const char *path_info,
const char *path_edges, size_t M, size_t efConstruction)
{
if (exists(path_info) && exists(path_edges)) {
quantizer = new hnswlib::HierarchicalNSW(path_info, path_data, path_edges);
quantizer->efSearch = efConstruction;
return;
}
quantizer = new hnswlib::HierarchicalNSW(d, nc, M, 2 * M, efConstruction);
std::cout << "Constructing quantizer\n";
std::ifstream input(path_data, std::ios::binary);
size_t report_every = 100000;
for (size_t i = 0; i < nc; i++) {
float mass[d];
readXvec<float>(input, mass, d);
if (i % report_every == 0)
std::cout << i / (0.01 * nc) << " %\n";
quantizer->addPoint(mass);
}
quantizer->SaveInfo(path_info);
quantizer->SaveEdges(path_edges);
}
void IndexIVF_HNSW::assign(size_t n, const float *x, idx_t *labels, size_t k) {
#pragma omp parallel for
for (size_t i = 0; i < n; i++)
labels[i] = quantizer->searchKnn(const_cast<float *>(x + i * d), k).top().second;
}
void IndexIVF_HNSW::add_batch(size_t n, const float *x, const idx_t *xids, const idx_t *precomputed_idx)
{
const idx_t *idx;
// Check whether idxs are precomputed. If not, assign x
if (precomputed_idx)
idx = precomputed_idx;
else {
idx = new idx_t[n];
assign(n, x, const_cast<idx_t *>(idx));
}
// Compute residuals for original vectors
std::vector<float> residuals(n * d);
compute_residuals(n, x, residuals.data(), idx);
// If do_opq, rotate residuals
if (do_opq){
std::vector<float> copy_residuals(n * d);
memcpy(copy_residuals.data(), residuals.data(), n * d * sizeof(float));
opq_matrix->apply_noalloc(n, copy_residuals.data(), residuals.data());
}
// Encode residuals
std::vector <uint8_t> xcodes(n * code_size);
pq->compute_codes(residuals.data(), xcodes.data(), n);
// Decode residuals
std::vector<float> decoded_residuals(n * d);
pq->decode(xcodes.data(), decoded_residuals.data(), n);
// Reverse rotation
if (do_opq){
std::vector<float> copy_decoded_residuals(n * d);
memcpy(copy_decoded_residuals.data(), decoded_residuals.data(), n * d * sizeof(float));
opq_matrix->transform_transpose(n, copy_decoded_residuals.data(), decoded_residuals.data());
}
// Reconstruct original vectors
std::vector<float> reconstructed_x(n * d);
reconstruct(n, reconstructed_x.data(), decoded_residuals.data(), idx);
// Compute l2 square norms of reconstructed vectors
std::vector<float> norms(n);
faiss::fvec_norms_L2sqr(norms.data(), reconstructed_x.data(), d, n);
// Encode norms
std::vector <uint8_t> xnorm_codes(n);
norm_pq->compute_codes(norms.data(), xnorm_codes.data(), n);
// Add vector indices and PQ codes for residuals and norms to Index
for (size_t i = 0; i < n; i++) {
const idx_t key = idx[i];
const idx_t id = xids[i];
ids[key].push_back(id);
const uint8_t *code = xcodes.data() + i * code_size;
for (size_t j = 0; j < code_size; j++)
codes[key].push_back(code[j]);
norm_codes[key].push_back(xnorm_codes[i]);
}
// Free memory, if it is allocated
if (idx != precomputed_idx)
delete idx;
}
/** Search procedure
*
* During IVF-HNSW-PQ search we compute
*
* d = || x - y_C - y_R ||^2
*
* where x is the query vector, y_C the coarse centroid, y_R the
* refined PQ centroid. The expression can be decomposed as:
*
* d = || x - y_C ||^2 - || y_C ||^2 + || y_C + y_R ||^2 - 2 * (x|y_R)
* ----------------------------- ----------------- -----------
* term 1 term 2 term 3
*
* We use the following decomposition:
* - term 1 is the distance to the coarse centroid, that is computed
* during the 1st stage search in the HNSW graph, minus the norm of the coarse centroid
* - term 2 is the L2 norm of the reconstructed base point, that is computed at construction time, quantized
* using separately trained product quantizer for such norms and stored along with the residual PQ codes.
* - term 3 is the classical non-residual distance table.
*
* Norms of centroids are precomputed and saved without compression, as their memory consumption is negligible.
* If it is necessary, the norms can be added to the term 3 and compressed to byte together. We do not think that
* it will lead to considerable decrease in accuracy.
*
* Since y_R defined by a product quantizer, it is split across
* sub-vectors and stored separately for each subvector.
*
*/
void IndexIVF_HNSW::search(size_t k, const float *x, float *distances, long *labels)
{
float query_centroid_dists[nprobe]; // Distances to the coarse centroids.
idx_t centroid_idxs[nprobe]; // Indices of the nearest coarse centroids
// For correct search using OPQ rotate a query
const float *query = (do_opq) ? opq_matrix->apply(1, x) : x;
// Find the nearest coarse centroids to the query
auto coarse = quantizer->searchKnn(query, nprobe);
for (int_fast32_t i = nprobe - 1; i >= 0; i--) {
query_centroid_dists[i] = coarse.top().first;
centroid_idxs[i] = coarse.top().second;
coarse.pop();
}
// Precompute table
pq->compute_inner_prod_table(query, precomputed_table.data());
// Prepare max heap with k answers
faiss::maxheap_heapify(k, distances, labels);
size_t ncode = 0;
for (size_t i = 0; i < nprobe; i++) {
const idx_t centroid_idx = centroid_idxs[i];
const size_t group_size = norm_codes[centroid_idx].size();
if (group_size == 0)
continue;
const uint8_t *code = codes[centroid_idx].data();
const uint8_t *norm_code = norm_codes[centroid_idx].data();
const idx_t *id = ids[centroid_idx].data();
const float term1 = query_centroid_dists[i] - centroid_norms[centroid_idx];
// Decode the norms of each vector in the list
norm_pq->decode(norm_code, norms.data(), group_size);
for (size_t j = 0; j < group_size; j++) {
const float term3 = 2 * pq_L2sqr(code + j * code_size);
const float dist = term1 + norms[j] - term3; //term2 = norms[j]
if (dist < distances[0]) {
faiss::maxheap_pop(k, distances, labels);
faiss::maxheap_push(k, distances, labels, dist, id[j]);
}
}
ncode += group_size;
if (ncode >= max_codes)
break;
}
if (do_opq)
delete const_cast<float *>(query);
}
void IndexIVF_HNSW::train_pq(size_t n, const float *x)
{
// Assign train vectors
std::vector <idx_t> assigned(n);
assign(n, x, assigned.data());
// Compute residuals for original vectors
std::vector<float> residuals(n * d);
compute_residuals(n, x, residuals.data(), assigned.data());
// Train OPQ rotation matrix and rotate residuals
if (do_opq){
faiss::OPQMatrix *matrix = new faiss::OPQMatrix(d, pq->M);
std::cout << "Training OPQ Matrix" << std::endl;
matrix->verbose = true;
matrix->max_train_points = n;
matrix->niter = 70;
matrix->train(n, residuals.data());
opq_matrix = matrix;
std::vector<float> copy_residuals(n * d);
memcpy(copy_residuals.data(), residuals.data(), n * d * sizeof(float));
opq_matrix->apply_noalloc(n, copy_residuals.data(), residuals.data());
}
// Train residual PQ
printf("Training %zdx%zd product quantizer on %ld vectors in %dD\n", pq->M, pq->ksub, n, d);
pq->verbose = true;
pq->train(n, residuals.data());
// Encode residuals
std::vector <uint8_t> xcodes(n * code_size);
pq->compute_codes(residuals.data(), xcodes.data(), n);
// Decode residuals
std::vector<float> decoded_residuals(n * d);
pq->decode(xcodes.data(), decoded_residuals.data(), n);
// Reverse rotation
if (do_opq){
std::vector<float> copy_decoded_residuals(n * d);
memcpy(copy_decoded_residuals.data(), decoded_residuals.data(), n * d * sizeof(float));
opq_matrix->transform_transpose(n, copy_decoded_residuals.data(), decoded_residuals.data());
}
// Reconstruct original vectors
std::vector<float> reconstructed_x(n * d);
reconstruct(n, reconstructed_x.data(), decoded_residuals.data(), assigned.data());
// Compute l2 square norms of reconstructed vectors
std::vector<float> norms(n);
faiss::fvec_norms_L2sqr(norms.data(), reconstructed_x.data(), d, n);
// Train norm PQ
printf("Training %zdx%zd product quantizer on %ld vectors in %dD\n", norm_pq->M, norm_pq->ksub, n, d);
norm_pq->verbose = true;
norm_pq->train(n, norms.data());
}
// Write index
void IndexIVF_HNSW::write(const char *path_index)
{
std::ofstream output(path_index, std::ios::binary);
write_variable(output, d);
write_variable(output, nc);
// Save vector indices
for (size_t i = 0; i < nc; i++)
write_vector(output, ids[i]);
// Save PQ codes
for (size_t i = 0; i < nc; i++)
write_vector(output, codes[i]);
// Save norm PQ codes
for (size_t i = 0; i < nc; i++)
write_vector(output, norm_codes[i]);
// Save centroid norms
write_vector(output, centroid_norms);
}
// Read index
void IndexIVF_HNSW::read(const char *path_index)
{
std::ifstream input(path_index, std::ios::binary);
read_variable(input, d);
read_variable(input, nc);
// Read vector indices
for (size_t i = 0; i < nc; i++)
read_vector(input, ids[i]);
// Read PQ codes
for (size_t i = 0; i < nc; i++)
read_vector(input, codes[i]);
// Read norm PQ codes
for (size_t i = 0; i < nc; i++)
read_vector(input, norm_codes[i]);
// Read centroid norms
read_vector(input, centroid_norms);
}
void IndexIVF_HNSW::compute_centroid_norms()
{
for (size_t i = 0; i < nc; i++) {
const float *centroid = quantizer->getDataByInternalId(i);
centroid_norms[i] = faiss::fvec_norm_L2sqr(centroid, d);
}
}
void IndexIVF_HNSW::rotate_quantizer() {
if (!do_opq){
printf("OPQ encoding is turned off\n");
abort();
}
std::vector<float> copy_centroid(d);
for (size_t i = 0; i < nc; i++){
float *centroid = quantizer->getDataByInternalId(i);
memcpy(copy_centroid.data(), centroid, d * sizeof(float));
opq_matrix->apply_noalloc(1, copy_centroid.data(), centroid);
}
}
float IndexIVF_HNSW::pq_L2sqr(const uint8_t *code)
{
float result = 0.;
const size_t dim = code_size >> 2;
size_t m = 0;
for (size_t i = 0; i < dim; i++) {
result += precomputed_table[pq->ksub * m + code[m]]; m++;
result += precomputed_table[pq->ksub * m + code[m]]; m++;
result += precomputed_table[pq->ksub * m + code[m]]; m++;
result += precomputed_table[pq->ksub * m + code[m]]; m++;
}
return result;
}
// Private
void IndexIVF_HNSW::reconstruct(size_t n, float *x, const float *decoded_residuals, const idx_t *keys)
{
for (size_t i = 0; i < n; i++) {
const float *centroid = quantizer->getDataByInternalId(keys[i]);
faiss::fvec_madd(d, decoded_residuals + i*d, 1., centroid, x + i*d);
}
}
void IndexIVF_HNSW::compute_residuals(size_t n, const float *x, float *residuals, const idx_t *keys)
{
for (size_t i = 0; i < n; i++) {
const float *centroid = quantizer->getDataByInternalId(keys[i]);
faiss::fvec_madd(d, x + i*d, -1., centroid, residuals + i*d);
}
}
}