$$
\begin{gather}
a + b = b + a + c + d \\
a \times b = b \times a
\end{gather}
$$
\begin{gather}
a + b = b + a + c + d \\
a \times b = b \times a
\end{gather}
$$
\begin{align} % 自动编号(按顺序)
x &= t + \cos t + 1 \\
y &= 2 \sin 5
\end{align}
$$
\begin{align}
x &= t + \cos t + 1\\
y &= 2 \sin 5
\end{align}
align还允许排列多列对齐的公式,列于列之间仍使用&分隔
$$
\begin{align}
x &=t & x &= \cos t & x &= t\
y &=25 & y &= \sin(t+1) & y &= \sin t
\end{align}
$$
\begin{align}
x &=t & x &= \cos t & x &= t\\
y &=25 & y &= \sin(t+1) & y &= \sin t
\end{align}
$$
\begin{align}
& (a+b)(a^2 -ab + b^2) \\
={} & a^3 -a^2b + ab^2 + a^2b - ab^2 + b^2 \\
={} & a^3 + b^3
\end{align}
$$
\begin{align}
& (a+b)(a^2 -ab + b^2) \\
={} & a^3 -a^2b + ab^2 + a^2b - ab^2 + b^2 \\
={} & a^3 + b^3
\end{align}
$$
D(x)=\begin{cases} % 不自动编号
1, & \text{if} \quad x \in \mathbb{Q} \\
0, & \text{if} \quad x \in \mathbb{R} \setminus \mathbb{Q}
\end{cases}
$$
\begin{equation}
D(x)=\begin{cases}
1, & \text{if} \quad x \in \mathbb{Q} \\
0, & \text{if} \quad x \in \mathbb{R} \setminus \mathbb{Q}
\end{cases}
\end{equation}
$$
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$
\begin{array}{lcl}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$
\begin{array}{rcl}
z & = & a & = & x+b \\
f(x,y,z) & = & x + y + z & = & x^5+3x-b+y
\end{array}
$$
\begin{array}{rcl} % 第一列右对齐r,第二列居中对齐c,第三列左对齐l
z & = & a & = & x+b \\
f(x,y,z) & = & x + y + z & = & x^5+3x-b+y
\end{array}
$$
\begin{array}{rcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$
\begin{array}{rcr}
z & = & a \\
f(x,y,z) & = & x + y + z
\end{array}
$$
\begin{array}{ccc}
\frac{\partial f_l(\mathbf{a}^l) }{\partial \mathbf{a}^l} &=&
\begin{bmatrix}
\frac{ \partial f_l(a^l_{1})}{\partial a^l_1} & \frac{ \partial f_l(a^l_{2})}{\partial a^l_1} & \cdots & \frac{ \partial f_l(a^l_{N_l -1})}{\partial a^l_1} & \frac{ \partial f_l(1)}{\partial a^l_1} \\
\frac{ \partial f_l(a^l_{1})}{\partial a^l_2} & \frac{ \partial f_l(a^l_{2})}{\partial a^l_2} & \cdots & \frac{ \partial f_l(a^l_{N_l -1})}{\partial a^l_2} & \frac{ \partial f_l(1)}{\partial a^l_2} \\
\vdots& \vdots & \ddots & \vdots & \vdots \\
\frac{ \partial f_l(a^l_{1})}{\partial a^l_{N_l -1}} & \frac{ \partial f_l(a^l_{2})}{\partial a^l_{N_l -1}} & \cdots & \frac{ \partial f_l(a^l_{N_l -1})}{\partial a^l_{N_l -1}} & \frac{ \partial f_l(1)}{\partial a^l_{N_l -1}} \\
\frac{ \partial f_l(a^l_{1})}{\partial 1} & \frac{ \partial f_l(a^l_{2})}{\partial 1} & \cdots & \frac{ \partial f_l(a^l_{N_l -1})}{\partial 1} & \frac{ \partial f_l(1)}{\partial 1}
\end{bmatrix} \\
&=&
\begin{bmatrix}
\frac{ \partial f_l(a^l_{1})}{\partial a^l_1} & 0 & \cdots & 0 & 0 \\
0 & \frac{ \partial f_l(a^l_{2})}{\partial a^l_2} & \cdots & 0 & 0\\
\vdots& \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \frac{ \partial f_l(a^l_{N_l -1})}{\partial a^l_{N_l -1}} & 0 \\
0 & 0 & \cdots & 0 & 0
\end{bmatrix} \\
&=& A^l
\end{array}
$$