forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
AbstractInterpret.v
557 lines (469 loc) · 15.7 KB
/
AbstractInterpret.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 8: Abstract Interpretation and Dataflow Analysis
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap Imp.
Export Imp.
Set Implicit Arguments.
(* Reduced version of code from AbstractInterpretation.v *)
Record absint := {
Domain :> Set;
Top : Domain;
Constant : nat -> Domain;
Add : Domain -> Domain -> Domain;
Subtract : Domain -> Domain -> Domain;
Multiply : Domain -> Domain -> Domain;
Join : Domain -> Domain -> Domain;
Represents : nat -> Domain -> Prop
}.
Record absint_sound (a : absint) : Prop := {
TopSound : forall n, a.(Represents) n a.(Top);
ConstSound : forall n, a.(Represents) n (a.(Constant) n);
AddSound : forall n na m ma, a.(Represents) n na
-> a.(Represents) m ma
-> a.(Represents) (n + m) (a.(Add) na ma);
SubtractSound: forall n na m ma, a.(Represents) n na
-> a.(Represents) m ma
-> a.(Represents) (n - m) (a.(Subtract) na ma);
MultiplySound : forall n na m ma, a.(Represents) n na
-> a.(Represents) m ma
-> a.(Represents) (n * m) (a.(Multiply) na ma);
AddMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
-> (forall n, a.(Represents) n (a.(Add) na ma)
-> a.(Represents) n (a.(Add) na' ma'));
SubtractMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
-> (forall n, a.(Represents) n (a.(Subtract) na ma)
-> a.(Represents) n (a.(Subtract) na' ma'));
MultiplyMonotone : forall na na' ma ma', (forall n, a.(Represents) n na -> a.(Represents) n na')
-> (forall n, a.(Represents) n ma -> a.(Represents) n ma')
-> (forall n, a.(Represents) n (a.(Multiply) na ma)
-> a.(Represents) n (a.(Multiply) na' ma'));
JoinSoundLeft : forall x y n, a.(Represents) n x
-> a.(Represents) n (a.(Join) x y);
JoinSoundRight : forall x y n, a.(Represents) n y
-> a.(Represents) n (a.(Join) x y)
}.
Global Hint Resolve TopSound ConstSound AddSound SubtractSound MultiplySound
AddMonotone SubtractMonotone MultiplyMonotone
JoinSoundLeft JoinSoundRight : core.
Definition astate (a : absint) := fmap var a.
Fixpoint absint_interp (e : arith) a (s : astate a) : a :=
match e with
| Const n => a.(Constant) n
| Var x => match s $? x with
| None => a.(Top)
| Some xa => xa
end
| Plus e1 e2 => a.(Add) (absint_interp e1 s) (absint_interp e2 s)
| Minus e1 e2 => a.(Subtract) (absint_interp e1 s) (absint_interp e2 s)
| Times e1 e2 => a.(Multiply) (absint_interp e1 s) (absint_interp e2 s)
end.
Definition merge_astate a : astate a -> astate a -> astate a :=
merge (fun x y =>
match x with
| None => None
| Some x' =>
match y with
| None => None
| Some y' => Some (a.(Join) x' y')
end
end).
Definition subsumed a (s1 s2 : astate a) :=
forall x, match s1 $? x with
| None => s2 $? x = None
| Some xa1 =>
forall xa2, s2 $? x = Some xa2
-> forall n, a.(Represents) n xa1
-> a.(Represents) n xa2
end.
Theorem subsumed_refl : forall a (s : astate a),
subsumed s s.
Proof.
unfold subsumed; simplify.
cases (s $? x); equality.
Qed.
Global Hint Resolve subsumed_refl : core.
Lemma subsumed_use : forall a (s s' : astate a) x n t0 t,
s $? x = Some t0
-> subsumed s s'
-> s' $? x = Some t
-> Represents a n t0
-> Represents a n t.
Proof.
unfold subsumed; simplify.
specialize (H0 x).
rewrite H in H0.
eauto.
Qed.
Lemma subsumed_use_empty : forall a (s s' : astate a) x n t0 t,
s $? x = None
-> subsumed s s'
-> s' $? x = Some t
-> Represents a n t0
-> Represents a n t.
Proof.
unfold subsumed; simplify.
specialize (H0 x).
rewrite H in H0.
equality.
Qed.
Global Hint Resolve subsumed_use subsumed_use_empty : core.
Lemma subsumed_trans : forall a (s1 s2 s3 : astate a),
subsumed s1 s2
-> subsumed s2 s3
-> subsumed s1 s3.
Proof.
unfold subsumed; simplify.
specialize (H x); specialize (H0 x).
cases (s1 $? x); simplify.
cases (s2 $? x); eauto.
cases (s2 $? x); eauto.
equality.
Qed.
Lemma subsumed_merge_left : forall a, absint_sound a
-> forall s1 s2 : astate a,
subsumed s1 (merge_astate s1 s2).
Proof.
unfold subsumed, merge_astate; simplify.
cases (s1 $? x); trivial.
cases (s2 $? x); simplify; try equality.
invert H0; eauto.
Qed.
Global Hint Resolve subsumed_merge_left : core.
Lemma subsumed_add : forall a, absint_sound a
-> forall (s1 s2 : astate a) x v1 v2,
subsumed s1 s2
-> (forall n, a.(Represents) n v1 -> a.(Represents) n v2)
-> subsumed (s1 $+ (x, v1)) (s2 $+ (x, v2)).
Proof.
unfold subsumed; simplify.
cases (x ==v x0); subst; simplify; eauto.
invert H2; eauto.
specialize (H0 x0); eauto.
Qed.
Global Hint Resolve subsumed_add : core.
(** * Flow-sensitive analysis *)
Definition compatible a (s : astate a) (v : valuation) : Prop :=
forall x xa, s $? x = Some xa
-> exists n, v $? x = Some n
/\ a.(Represents) n xa.
Lemma compatible_add : forall a (s : astate a) v x na n,
compatible s v
-> a.(Represents) n na
-> compatible (s $+ (x, na)) (v $+ (x, n)).
Proof.
unfold compatible; simplify.
cases (x ==v x0); simplify; eauto.
invert H1; eauto.
Qed.
Global Hint Resolve compatible_add : core.
(* A similar result follows about soundness of expression interpretation. *)
Theorem absint_interp_ok : forall a, absint_sound a
-> forall (s : astate a) v e,
compatible s v
-> a.(Represents) (interp e v) (absint_interp e s).
Proof.
induct e; simplify; eauto.
cases (s $? x); auto.
unfold compatible in H0.
apply H0 in Heq.
invert Heq.
propositional.
rewrite H2.
assumption.
Qed.
Global Hint Resolve absint_interp_ok : core.
Definition astates (a : absint) := fmap cmd (astate a).
Fixpoint absint_step a (s : astate a) (c : cmd) (wrap : cmd -> cmd) : option (astates a) :=
match c with
| Skip => None
| Assign x e => Some ($0 $+ (wrap Skip, s $+ (x, absint_interp e s)))
| Sequence c1 c2 =>
match absint_step s c1 (fun c => wrap (Sequence c c2)) with
| None => Some ($0 $+ (wrap c2, s))
| v => v
end
| If _ then_ else_ => Some ($0 $+ (wrap then_, s) $+ (wrap else_, s))
| While e body => Some ($0 $+ (wrap Skip, s) $+ (wrap (Sequence body (While e body)), s))
end.
Lemma command_equal : forall c1 c2 : cmd, sumbool (c1 = c2) (c1 <> c2).
Proof.
repeat decide equality.
Qed.
Theorem absint_step_ok : forall a, absint_sound a
-> forall (s : astate a) v, compatible s v
-> forall c v' c', step (v, c) (v', c')
-> forall wrap, exists ss s', absint_step s c wrap = Some ss
/\ ss $? wrap c' = Some s'
/\ compatible s' v'.
Proof.
induct 2; simplify.
do 2 eexists; propositional.
simplify; equality.
eauto.
eapply IHstep in H0; auto.
invert H0.
invert H2.
propositional.
rewrite H2.
eauto.
do 2 eexists; propositional.
simplify; equality.
assumption.
do 2 eexists; propositional.
cases (command_equal (wrap c') (wrap else_)).
simplify; equality.
simplify; equality.
assumption.
do 2 eexists; propositional.
simplify; equality.
assumption.
do 2 eexists; propositional.
simplify; equality.
assumption.
do 2 eexists; propositional.
cases (command_equal (wrap Skip) (wrap (body;; while e loop body done))).
simplify; equality.
simplify; equality.
assumption.
Qed.
Inductive abs_step a : astate a * cmd -> astate a * cmd -> Prop :=
| AbsStep : forall s c ss s' c',
absint_step s c (fun x => x) = Some ss
-> ss $? c' = Some s'
-> abs_step (s, c) (s', c').
Global Hint Constructors abs_step : core.
Definition absint_trsys a (c : cmd) := {|
Initial := {($0, c)};
Step := abs_step (a := a)
|}.
Inductive Rabsint a : valuation * cmd -> astate a * cmd -> Prop :=
| RAbsint : forall v s c,
compatible s v
-> Rabsint (v, c) (s, c).
Global Hint Constructors abs_step Rabsint : core.
Theorem absint_simulates : forall a v c,
absint_sound a
-> simulates (Rabsint (a := a)) (trsys_of v c) (absint_trsys a c).
Proof.
simplify.
constructor; simplify.
exists ($0, c); propositional.
subst.
constructor.
unfold compatible.
simplify.
equality.
invert H0.
cases st1'.
eapply absint_step_ok in H1; eauto.
invert H1.
invert H0.
propositional.
eauto.
Qed.
Definition merge_astates a : astates a -> astates a -> astates a :=
merge (fun x y =>
match x with
| None => y
| Some x' =>
match y with
| None => Some x'
| Some y' => Some (merge_astate x' y')
end
end).
Inductive oneStepClosure a : astates a -> astates a -> Prop :=
| OscNil :
oneStepClosure $0 $0
| OscCons : forall ss c s ss' ss'',
oneStepClosure ss ss'
-> match absint_step s c (fun x => x) with
| None => ss'
| Some ss'' => merge_astates ss'' ss'
end = ss''
-> oneStepClosure (ss $+ (c, s)) ss''.
Definition subsumeds a (ss1 ss2 : astates a) :=
forall c s1, ss1 $? c = Some s1
-> exists s2, ss2 $? c = Some s2
/\ subsumed s1 s2.
Theorem subsumeds_refl : forall a (ss : astates a),
subsumeds ss ss.
Proof.
unfold subsumeds; simplify; eauto.
Qed.
Global Hint Resolve subsumeds_refl : core.
Lemma subsumeds_add : forall a (ss1 ss2 : astates a) c s1 s2,
subsumeds ss1 ss2
-> subsumed s1 s2
-> subsumeds (ss1 $+ (c, s1)) (ss2 $+ (c, s2)).
Proof.
unfold subsumeds; simplify.
cases (command_equal c c0); subst; simplify; eauto.
invert H1; eauto.
Qed.
Global Hint Resolve subsumeds_add : core.
Lemma subsumeds_empty : forall a (ss : astates a),
subsumeds $0 ss.
Proof.
unfold subsumeds; simplify.
equality.
Qed.
Lemma subsumeds_add_left : forall a (ss1 ss2 : astates a) c s,
ss2 $? c = Some s
-> subsumeds ss1 ss2
-> subsumeds (ss1 $+ (c, s)) ss2.
Proof.
unfold subsumeds; simplify.
cases (command_equal c c0); subst; simplify; eauto.
invert H1; eauto.
Qed.
Inductive interpret a : astates a -> astates a -> astates a -> Prop :=
| InterpretDone : forall ss1 any ss2,
oneStepClosure ss1 ss2
-> subsumeds ss2 ss1
-> interpret ss1 any ss1
| InterpretStep : forall ss worklist ss' ss'',
oneStepClosure worklist ss'
-> interpret (merge_astates ss ss') ss' ss''
-> interpret ss worklist ss''.
Lemma oneStepClosure_sound : forall a, absint_sound a
-> forall ss ss' : astates a, oneStepClosure ss ss'
-> forall c s s' c', ss $? c = Some s
-> abs_step (s, c) (s', c')
-> exists s'', ss' $? c' = Some s''
/\ subsumed s' s''.
Proof.
induct 2; simplify.
equality.
cases (command_equal c c0); subst; simplify.
invert H2.
invert H3.
rewrite H5.
unfold merge_astates; simplify.
rewrite H7.
cases (ss' $? c').
eexists; propositional.
unfold subsumed; simplify.
unfold merge_astate; simplify.
cases (s' $? x); try equality.
cases (a0 $? x); simplify; try equality.
invert H1; eauto.
eauto.
apply IHoneStepClosure in H3; auto.
invert H3; propositional.
cases (absint_step s c (fun x => x)); eauto.
unfold merge_astates; simplify.
rewrite H3.
cases (a0 $? c'); eauto.
eexists; propositional.
unfold subsumed; simplify.
unfold merge_astate; simplify.
specialize (H4 x0).
cases (s' $? x0).
cases (a1 $? x0); try equality.
cases (x $? x0); try equality.
invert 1.
eauto.
rewrite H4.
cases (a1 $? x0); equality.
Qed.
Lemma absint_step_monotone_None : forall a (s : astate a) c wrap,
absint_step s c wrap = None
-> forall s' : astate a, absint_step s' c wrap = None.
Proof.
induct c; simplify; try equality.
cases (absint_step s c1 (fun c => wrap (c;; c2))); equality.
Qed.
Lemma absint_interp_monotone : forall a, absint_sound a
-> forall (s : astate a) e s' n,
a.(Represents) n (absint_interp e s)
-> subsumed s s'
-> a.(Represents) n (absint_interp e s').
Proof.
induct e; simplify; eauto.
cases (s' $? x); eauto.
cases (s $? x); eauto.
Qed.
Global Hint Resolve absint_interp_monotone : core.
Lemma absint_step_monotone : forall a, absint_sound a
-> forall (s : astate a) c wrap ss,
absint_step s c wrap = Some ss
-> forall s', subsumed s s'
-> exists ss', absint_step s' c wrap = Some ss'
/\ subsumeds ss ss'.
Proof.
induct c; simplify.
equality.
invert H0.
eexists; propositional.
eauto.
apply subsumeds_add; eauto.
cases (absint_step s c1 (fun c => wrap (c;; c2))).
invert H0.
eapply IHc1 in Heq; eauto.
invert Heq; propositional.
rewrite H2; eauto.
invert H0.
eapply absint_step_monotone_None in Heq; eauto.
rewrite Heq; eauto.
invert H0; eauto.
invert H0; eauto.
Qed.
Lemma abs_step_monotone : forall a, absint_sound a
-> forall (s : astate a) c s' c',
abs_step (s, c) (s', c')
-> forall s1, subsumed s s1
-> exists s1', abs_step (s1, c) (s1', c')
/\ subsumed s' s1'.
Proof.
invert 2; simplify.
eapply absint_step_monotone in H4; eauto.
invert H4; propositional.
apply H3 in H6.
invert H6; propositional; eauto.
Qed.
Lemma interpret_sound' : forall c a, absint_sound a
-> forall ss worklist ss' : astates a, interpret ss worklist ss'
-> ss $? c = Some $0
-> invariantFor (absint_trsys a c) (fun p => exists s, ss' $? snd p = Some s
/\ subsumed (fst p) s).
Proof.
induct 2; simplify; subst.
apply invariant_induction; simplify; propositional; subst; simplify; eauto.
invert H3; propositional.
cases s.
cases s'.
simplify.
eapply abs_step_monotone in H4; eauto.
invert H4; propositional.
eapply oneStepClosure_sound in H4; eauto.
invert H4; propositional.
eapply H1 in H4.
invert H4; propositional.
eauto using subsumed_trans.
apply IHinterpret.
unfold merge_astates; simplify.
rewrite H2.
cases (ss' $? c); trivial.
unfold merge_astate; simplify; equality.
Qed.
Theorem interpret_sound : forall c a (ss : astates a),
absint_sound a
-> interpret ($0 $+ (c, $0)) ($0 $+ (c, $0)) ss
-> invariantFor (absint_trsys a c) (fun p => exists s, ss $? snd p = Some s
/\ subsumed (fst p) s).
Proof.
simplify.
eapply interpret_sound'; eauto.
simplify; equality.
Qed.
Ltac interpret_simpl := unfold merge_astates, merge_astate;
simplify; repeat simplify_map.
Ltac oneStepClosure := apply OscNil
|| (eapply OscCons; [ oneStepClosure
| interpret_simpl; reflexivity ]).
Ltac interpret1 := eapply InterpretStep; [ oneStepClosure | interpret_simpl ].
Ltac interpret_done := eapply InterpretDone; [ oneStepClosure
| repeat (apply subsumeds_add_left || apply subsumeds_empty); (simplify; equality) ].