forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ConcurrentSeparationLogic.v
1657 lines (1391 loc) · 41.7 KB
/
ConcurrentSeparationLogic.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 20: Concurrent Separation Logic
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap Setoid Classes.Morphisms SepCancel.
Set Implicit Arguments.
Set Asymmetric Patterns.
(* Let's combine the subjects of SeparationLogic and SharedMemory, to let us
* prove correctness of concurrent programs that do dynamic management of shared
* memory. *)
(** * Shared notations and definitions; main material starts afterward. *)
Notation heap := (fmap nat nat).
Notation locks := (set nat).
Local Hint Extern 1 (_ <= _) => linear_arithmetic : core.
Local Hint Extern 1 (@eq nat _ _) => linear_arithmetic : core.
Ltac simp := repeat (simplify; subst; propositional;
try match goal with
| [ H : ex _ |- _ ] => invert H
end); try linear_arithmetic.
(** * A shared-memory concurrent language with loops *)
(* Let's work with a variant of the shared-memory concurrent language from last
* time. We add back in result types, loops, and dynamic memory allocation. *)
Inductive loop_outcome acc :=
| Done (a : acc)
| Again (a : acc).
Definition valueOf {A} (o : loop_outcome A) :=
match o with
| Done v => v
| Again v => v
end.
Inductive cmd : Set -> Type :=
| Return {result : Set} (r : result) : cmd result
| Fail {result} : cmd result
| Bind {result result'} (c1 : cmd result') (c2 : result' -> cmd result) : cmd result
| Loop {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) : cmd acc
| Read (a : nat) : cmd nat
| Write (a v : nat) : cmd unit
| Lock (a : nat) : cmd unit
| Unlock (a : nat) : cmd unit
| Alloc (numWords : nat) : cmd nat
| Free (base numWords : nat) : cmd unit
| Par (c1 c2 : cmd unit) : cmd unit.
(* The next span of definitions is copied from SeparationLogic.v. Skip ahead to
* the word "Finally" to see what's new. *)
Notation "x <- c1 ; c2" := (Bind c1 (fun x => c2)) (right associativity, at level 80).
Notation "'for' x := i 'loop' c1 'done'" := (Loop i (fun x => c1)) (right associativity, at level 80).
Infix "||" := Par.
Fixpoint initialize (h : heap) (base numWords : nat) : heap :=
match numWords with
| O => h
| S numWords' => initialize h base numWords' $+ (base + numWords', 0)
end.
Fixpoint deallocate (h : heap) (base numWords : nat) : heap :=
match numWords with
| O => h
| S numWords' => deallocate (h $- base) (base+1) numWords'
end.
Inductive step : forall A, heap * locks * cmd A -> heap * locks * cmd A -> Prop :=
| StepBindRecur : forall result result' (c1 c1' : cmd result') (c2 : result' -> cmd result) h l h' l',
step (h, l, c1) (h', l', c1')
-> step (h, l, Bind c1 c2) (h', l', Bind c1' c2)
| StepBindProceed : forall (result result' : Set) (v : result') (c2 : result' -> cmd result) h l,
step (h, l, Bind (Return v) c2) (h, l, c2 v)
| StepLoop : forall (acc : Set) (init : acc) (body : acc -> cmd (loop_outcome acc)) h l,
step (h, l, Loop init body) (h, l, o <- body init; match o with
| Done a => Return a
| Again a => Loop a body
end)
| StepRead : forall h l a v,
h $? a = Some v
-> step (h, l, Read a) (h, l, Return v)
| StepWrite : forall h l a v v',
h $? a = Some v
-> step (h, l, Write a v') (h $+ (a, v'), l, Return tt)
| StepAlloc : forall h l numWords a,
a <> 0
-> (forall i, i < numWords -> h $? (a + i) = None)
-> step (h, l, Alloc numWords) (initialize h a numWords, l, Return a)
| StepFree : forall h l a numWords,
step (h, l, Free a numWords) (deallocate h a numWords, l, Return tt)
| StepLock : forall h l a,
~a \in l
-> step (h, l, Lock a) (h, l \cup {a}, Return tt)
| StepUnlock : forall h l a,
a \in l
-> step (h, l, Unlock a) (h, l \setminus {a}, Return tt)
| StepPar1 : forall h l c1 c2 h' l' c1',
step (h, l, c1) (h', l', c1')
-> step (h, l, Par c1 c2) (h', l', Par c1' c2)
| StepPar2 : forall h l c1 c2 h' l' c2',
step (h, l, c2) (h', l', c2')
-> step (h, l, Par c1 c2) (h', l', Par c1 c2').
Definition trsys_of (h : heap) (l : locks) {result} (c : cmd result) := {|
Initial := {(h, l, c)};
Step := step (A := result)
|}.
(* Next, we define our notion of assertion and instantiate the generic
* separation-logic cancelation automation, in exactly the same way as
* before. *)
Module Import S <: SEP.
Definition hprop := heap -> Prop.
(* We add the locks to the mix. *)
Definition himp (p q : hprop) := forall h, p h -> q h.
Definition heq (p q : hprop) := forall h, p h <-> q h.
(* Lifting a pure proposition: it must hold, and the heap must be empty. *)
Definition lift (P : Prop) : hprop :=
fun h => P /\ h = $0.
(* Separating conjunction, one of the two big ideas of separation logic.
* When does [star p q] apply to [h]? When [h] can be partitioned into two
* subheaps [h1] and [h2], respectively compatible with [p] and [q]. See book
* module [Map] for definitions of [split] and [disjoint]. *)
Definition star (p q : hprop) : hprop :=
fun h => exists h1 h2, split h h1 h2 /\ disjoint h1 h2 /\ p h1 /\ q h2.
(* Existential quantification *)
Definition exis A (p : A -> hprop) : hprop :=
fun h => exists x, p x h.
(* Convenient notations *)
Notation "[| P |]" := (lift P) : sep_scope.
Infix "*" := star : sep_scope.
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope.
Delimit Scope sep_scope with sep.
Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70).
Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70).
Local Open Scope sep_scope.
(* And now we prove some key algebraic properties, whose details aren't so
* important. The library automation uses these properties. *)
Lemma iff_two : forall A (P Q : A -> Prop),
(forall x, P x <-> Q x)
-> (forall x, P x -> Q x) /\ (forall x, Q x -> P x).
Proof.
firstorder.
Qed.
Local Ltac t := (unfold himp, heq, lift, star, exis; propositional; subst);
repeat (match goal with
| [ H : forall x, _ <-> _ |- _ ] =>
apply iff_two in H
| [ H : ex _ |- _ ] => destruct H
| [ H : split _ _ $0 |- _ ] => apply split_empty_fwd in H
end; propositional; subst); eauto 15.
Theorem himp_heq : forall p q, p === q
<-> (p ===> q /\ q ===> p).
Proof.
t.
Qed.
Theorem himp_refl : forall p, p ===> p.
Proof.
t.
Qed.
Theorem himp_trans : forall p q r, p ===> q -> q ===> r -> p ===> r.
Proof.
t.
Qed.
Theorem lift_left : forall p (Q : Prop) r,
(Q -> p ===> r)
-> p * [| Q |] ===> r.
Proof.
t.
Qed.
Theorem lift_right : forall p q (R : Prop),
p ===> q
-> R
-> p ===> q * [| R |].
Proof.
t.
Qed.
Local Hint Resolve split_empty_bwd' : core.
Theorem extra_lift : forall (P : Prop) p,
P
-> p === [| P |] * p.
Proof.
t.
apply split_empty_fwd' in H1; subst; auto.
Qed.
Theorem star_comm : forall p q, p * q === q * p.
Proof.
t.
Qed.
Theorem star_assoc : forall p q r, p * (q * r) === (p * q) * r.
Proof.
t.
Qed.
Theorem star_cancel : forall p1 p2 q1 q2, p1 ===> p2
-> q1 ===> q2
-> p1 * q1 ===> p2 * q2.
Proof.
t.
Qed.
Theorem exis_gulp : forall A p (q : A -> _),
p * exis q === exis (fun x => p * q x).
Proof.
t.
Qed.
Theorem exis_left : forall A (p : A -> _) q,
(forall x, p x ===> q)
-> exis p ===> q.
Proof.
t.
Qed.
Theorem exis_right : forall A p (q : A -> _) x,
p ===> q x
-> p ===> exis q.
Proof.
t.
Qed.
End S.
Export S.
(* Instantiate our big automation engine to these definitions. *)
Module Import Se := SepCancel.Make(S).
(* ** Some extra predicates outside the set that the engine knows about *)
(* Capturing single-mapping heaps *)
Definition heap1 (a v : nat) : heap := $0 $+ (a, v).
Definition ptsto (a v : nat) : hprop :=
fun h => h = heap1 a v.
(* Helpful notations, some the same as above *)
Notation "[| P |]" := (lift P) : sep_scope.
Notation emp := (lift True).
Infix "*" := star : sep_scope.
Notation "'exists' x .. y , p" := (exis (fun x => .. (exis (fun y => p)) ..)) : sep_scope.
Delimit Scope sep_scope with sep.
Notation "p === q" := (heq p%sep q%sep) (no associativity, at level 70).
Notation "p ===> q" := (himp p%sep q%sep) (no associativity, at level 70).
Infix "|->" := ptsto (at level 30) : sep_scope.
Fixpoint multi_ptsto (a : nat) (vs : list nat) : hprop :=
match vs with
| nil => emp
| v :: vs' => a |-> v * multi_ptsto (a + 1) vs'
end%sep.
Infix "|-->" := multi_ptsto (at level 30) : sep_scope.
Fixpoint zeroes (n : nat) : list nat :=
match n with
| O => nil
| S n' => zeroes n' ++ 0 :: nil
end.
Fixpoint allocated (a n : nat) : hprop :=
match n with
| O => emp
| S n' => (exists v, a |-> v) * allocated (a+1) n'
end%sep.
Infix "|->?" := allocated (at level 30) : sep_scope.
(** * Finally, the Hoare logic *)
(* The whole thing is parameterized on a map from locks to invariants on their
* owned state. The map is a list, with lock [i] getting the [i]th invariant in
* the list. Lock numbers at or beyond the list length are forbidden. Beyond
* this new wrinkle, the type signature of the predicate is the same. *)
Inductive hoare_triple (linvs : list hprop) : forall {result}, hprop -> cmd result -> (result -> hprop) -> Prop :=
(* First, we have the basic separation-logic rules from before. The only change
* is in the threading-through of parameter [linvs]. *)
| HtReturn : forall P {result : Set} (v : result),
hoare_triple linvs P (Return v) (fun r => P * [| r = v |])%sep
| HtBind : forall P {result' result} (c1 : cmd result') (c2 : result' -> cmd result) Q R,
hoare_triple linvs P c1 Q
-> (forall r, hoare_triple linvs (Q r) (c2 r) R)
-> hoare_triple linvs P (Bind c1 c2) R
| HtLoop : forall {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) I,
(forall acc, hoare_triple linvs (I (Again acc)) (body acc) I)
-> hoare_triple linvs (I (Again init)) (Loop init body) (fun r => I (Done r))
| HtFail : forall {result},
hoare_triple linvs [| False |]%sep (Fail (result := result)) (fun _ => [| False |])%sep
| HtRead : forall a R,
hoare_triple linvs (exists v, a |-> v * R v)%sep (Read a) (fun r => a |-> r * R r)%sep
| HtWrite : forall a v',
hoare_triple linvs (exists v, a |-> v)%sep (Write a v') (fun _ => a |-> v')%sep
| HtAlloc : forall numWords,
hoare_triple linvs emp%sep (Alloc numWords) (fun r => r |--> zeroes numWords * [| r <> 0 |])%sep
| HtFree : forall a numWords,
hoare_triple linvs (a |->? numWords)%sep (Free a numWords) (fun _ => emp)%sep
(* Next, how to handle locking: the thread takes ownership of a memory chunk
* satisfying the lock's invariant. *)
| HtLock : forall a I,
nth_error linvs a = Some I
-> hoare_triple linvs emp%sep (Lock a) (fun _ => I)
(* When unlocking, the thread relinquishes ownership of a memory chunk
* satisfying the lock's invariant. *)
| HtUnlock : forall a I,
nth_error linvs a = Some I
-> hoare_triple linvs I (Unlock a) (fun _ => emp)%sep
(* When forking into two threads, divide the (local) heap among them.
* For simplicity, we never let parallel compositions terminate,
* so it is appropriate to assign a contradictory overall postcondition. *)
| HtPar : forall P1 c1 Q1 P2 c2 Q2,
hoare_triple linvs P1 c1 Q1
-> hoare_triple linvs P2 c2 Q2
-> hoare_triple linvs (P1 * P2)%sep (Par c1 c2) (fun _ => [| False |])%sep
(* Now we repeat these two structural rules from before. *)
| HtConsequence : forall {result} (c : cmd result) P Q (P' : hprop) (Q' : _ -> hprop),
hoare_triple linvs P c Q
-> P' ===> P
-> (forall r, Q r ===> Q' r)
-> hoare_triple linvs P' c Q'
| HtFrame : forall {result} (c : cmd result) P Q R,
hoare_triple linvs P c Q
-> hoare_triple linvs (P * R)%sep c (fun r => Q r * R)%sep.
Notation "linvs ||- {{ P }} c {{ r ~> Q }}" :=
(hoare_triple linvs P%sep c (fun r => Q%sep)) (at level 90, c at next level).
Lemma HtStrengthen : forall linvs {result} (c : cmd result) P Q (Q' : _ -> hprop),
hoare_triple linvs P c Q
-> (forall r, Q r ===> Q' r)
-> hoare_triple linvs P c Q'.
Proof.
simplify.
eapply HtConsequence; eauto.
reflexivity.
Qed.
Lemma HtStrengthenFalse : forall linvs {result} (c : cmd result) P (Q' : _ -> hprop),
hoare_triple linvs P c (fun _ => [| False |])%sep
-> hoare_triple linvs P c Q'.
Proof.
simplify.
eapply HtStrengthen; eauto.
simplify.
unfold himp; simplify.
cases H0.
tauto.
Qed.
Lemma HtWeaken : forall linvs {result} (c : cmd result) P Q (P' : hprop),
hoare_triple linvs P c Q
-> P' ===> P
-> hoare_triple linvs P' c Q.
Proof.
simplify.
eapply HtConsequence; eauto.
reflexivity.
Qed.
(** * Examples *)
Opaque heq himp lift star exis ptsto.
(* Here comes some automation that we won't explain in detail, instead opting to
* use examples. Search for "nonzero" to skip ahead to the first one. *)
Theorem use_lemma : forall linvs result P' (c : cmd result) (Q : result -> hprop) P R,
hoare_triple linvs P' c Q
-> P ===> P' * R
-> hoare_triple linvs P c (fun r => Q r * R)%sep.
Proof.
simp.
eapply HtWeaken.
eapply HtFrame.
eassumption.
eauto.
Qed.
Theorem HtRead' : forall linvs a v,
hoare_triple linvs (a |-> v)%sep (Read a) (fun r => a |-> v * [| r = v |])%sep.
Proof.
simp.
apply HtWeaken with (exists r, a |-> r * [| r = v |])%sep.
eapply HtStrengthen.
apply HtRead.
simp.
cancel; auto.
subst; cancel.
Qed.
Theorem HtRead'' : forall linvs p P R,
P ===> (exists v, p |-> v * R v)
-> hoare_triple linvs P (Read p) (fun r => p |-> r * R r)%sep.
Proof.
simp.
eapply HtWeaken.
apply HtRead.
assumption.
Qed.
Lemma HtReturn' : forall linvs P {result : Set} (v : result) Q,
P ===> Q v
-> hoare_triple linvs P (Return v) Q.
Proof.
simp.
eapply HtStrengthen.
constructor.
simp.
cancel.
subst.
assumption.
Qed.
Ltac basic := apply HtReturn' || eapply HtWrite || eapply HtAlloc || eapply HtFree
|| (eapply HtLock; simplify; solve [ eauto ])
|| (eapply HtUnlock; simplify; solve [ eauto ]).
Ltac step0 := basic || eapply HtBind || (eapply use_lemma; [ basic | cancel; auto ])
|| (eapply use_lemma; [ eapply HtRead' | solve [ cancel; auto ] ])
|| (eapply HtRead''; solve [ cancel ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ basic | cancel; auto ] | ])
|| (eapply HtConsequence; [ apply HtFail | .. ]).
Ltac step := step0; simp.
Ltac ht := simp; repeat step.
Ltac conseq := simplify; eapply HtConsequence.
Ltac use_IH H := conseq; [ apply H | .. ]; ht.
Ltac loop_inv0 Inv := (eapply HtWeaken; [ apply HtLoop with (I := Inv) | .. ])
|| (eapply HtConsequence; [ apply HtLoop with (I := Inv) | .. ]).
Ltac loop_inv Inv := loop_inv0 Inv; ht.
Ltac fork0 P1 P2 := apply HtWeaken with (P := (P1 * P2)%sep); [ eapply HtPar | ].
Ltac fork P1 P2 := fork0 P1 P2 || (eapply HtStrengthenFalse; fork0 P1 P2).
Ltac use H := (eapply use_lemma; [ eapply H | cancel; auto ])
|| (eapply HtStrengthen; [ eapply use_lemma; [ eapply H | cancel; auto ] | ]).
Ltac heq := intros; apply himp_heq; split.
(* Fancy theorem to help us rewrite within preconditions and postconditions *)
Local Instance hoare_triple_morphism : forall linvs A,
Proper (heq ==> eq ==> (eq ==> heq) ==> iff) (@hoare_triple linvs A).
Proof.
Transparent himp.
repeat (hnf; intros).
unfold pointwise_relation in *; intuition subst.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
eapply HtConsequence; eauto.
rewrite H; reflexivity.
intros.
hnf in H1.
specialize (H1 r _ eq_refl).
rewrite H1; reflexivity.
Opaque himp.
Qed.
Theorem try_ptsto_first : forall a v, try_me_first (ptsto a v).
Proof.
simplify.
apply try_me_first_easy.
Qed.
Local Hint Resolve try_ptsto_first : core.
(** ** The nonzero shared counter *)
(* This program has two threads sharing a numeric counter, which starts out as
* nonzero and remains that way, since each thread only increments the counter,
* with the lock held to avoid race conditions. (Actually, the lock isn't
* needed to maintain the property in this case, but it's a pleasant starting
* example, and reasoning about racey code is more involved.) *)
Example incrementer :=
for i := tt loop
_ <- Lock 0;
n <- Read 0;
_ <- Write 0 (n + 1);
_ <- Unlock 0;
if n ==n 0 then
Fail
else
Return (Again tt)
done.
(* Recall that each lock has an associated invariant. This program only uses
* lock 0, and here's its invariant: memory cell 0 holds a positive number. *)
Definition incrementer_inv :=
(exists n, 0 |-> n * [| n > 0 |])%sep.
Theorem incrementers_ok :
[incrementer_inv] ||- {{emp}} (incrementer || incrementer) {{_ ~> emp}}.
Proof.
unfold incrementer, incrementer_inv.
(* When we must prove a parallel composition, we manually explain how to split
* the precondition into two, one for each new thread. In this case, there is
* no local state to share, so both sides are empty. *)
fork (emp%sep) (emp%sep).
(* This loop invariant is also trivial, since neither thread has persistent
* local state. *)
loop_inv (fun _ : loop_outcome unit => emp%sep).
cases (r0 ==n 0); ht.
cancel.
linear_arithmetic.
cancel.
cancel.
cancel.
loop_inv (fun _ : loop_outcome unit => emp%sep).
cases (r0 ==n 0); ht.
cancel.
linear_arithmetic.
cancel.
cancel.
cancel.
cancel.
Qed.
(* Hm, we used exactly the same proof code for each thread, which makes sense,
* since they share the same code. Let's take advantage of this symmetry to
* prove that any 2^n-way composition of this code remains correct. *)
Fixpoint incrementers (n : nat) :=
match n with
| O => incrementer
| S n' => incrementers n' || incrementers n'
end.
Theorem any_incrementers_ok : forall n,
[incrementer_inv] ||- {{emp}} incrementers n {{_ ~> emp}}.
Proof.
induct n; simp.
unfold incrementer, incrementer_inv.
loop_inv (fun _ : loop_outcome unit => emp%sep).
cases (r0 ==n 0); ht.
cancel.
linear_arithmetic.
cancel.
cancel.
cancel.
fork (emp%sep) (emp%sep); eauto.
cancel.
Qed.
(** ** Producer-consumer with a linked list *)
(* First, here's a literal repetition of the definition of linked lists from
* SeparationLogic.v. *)
Fixpoint linkedList (p : nat) (ls : list nat) :=
match ls with
| nil => [| p = 0 |]
| x :: ls' => [| p <> 0 |]
* exists p', p |--> [x; p'] * linkedList p' ls'
end%sep.
Theorem linkedList_null : forall ls,
linkedList 0 ls === [| ls = nil |].
Proof.
heq; cases ls; cancel.
Qed.
Theorem linkedList_nonnull : forall p ls,
p <> 0
-> linkedList p ls === exists x ls' p', [| ls = x :: ls' |] * p |--> [x; p'] * linkedList p' ls'.
Proof.
heq; cases ls; cancel; match goal with
| [ H : _ = _ :: _ |- _ ] => invert H
end; cancel.
Qed.
(* Now let's use linked lists as shared stacks for communication between
* threads, with a lock protecting each stack. To start out with, here's a
* producer-consumer example with just one stack. The producer is looping
* pushing the consecutive even numbers to the stack, and the consumer is
* looping popping numbers and failing if they're odd. *)
Example producer :=
_ <- for i := 0 loop
cell <- Alloc 2;
_ <- Write cell i;
_ <- Lock 0;
head <- Read 0;
_ <- Write (cell+1) head;
_ <- Write 0 cell;
_ <- Unlock 0;
Return (Again (2 + i))
done;
Return tt.
Fixpoint isEven (n : nat) : bool :=
match n with
| O => true
| S (S n) => isEven n
| _ => false
end.
Example consumer :=
for i := tt loop
_ <- Lock 0;
head <- Read 0;
if head ==n 0 then
_ <- Unlock 0;
Return (Again tt)
else
tail <- Read (head+1);
_ <- Write 0 tail;
_ <- Unlock 0;
data <- Read head;
_ <- Free head 2;
if isEven data then
Return (Again tt)
else
Fail
done.
(* Invariant of the only lock: cell 0 points to a linked list, whose elements
* are all even. *)
Definition producer_consumer_inv :=
(exists ls p, 0 |-> p * linkedList p ls * [| forallb isEven ls = true |])%sep.
(* Let's prove that the program is correct (can never [Fail]). *)
Theorem producer_consumer_ok :
[producer_consumer_inv] ||- {{emp}} producer || consumer {{_ ~> emp}}.
Proof.
unfold producer_consumer_inv, producer, consumer.
fork (emp%sep) (emp%sep); ht.
loop_inv (fun o => [| isEven (valueOf o) = true |]%sep).
match goal with
| [ H : r = 0 -> False |- _ ] => erewrite (linkedList_nonnull _ H)
end.
cancel.
simp.
apply andb_true_iff; propositional.
cancel.
cancel.
cancel.
loop_inv (fun _ : loop_outcome unit => emp%sep).
cases (r0 ==n 0).
ht.
cancel.
setoid_rewrite (linkedList_nonnull _ n).
ht.
apply andb_true_iff in H.
simp.
cases (isEven r4); ht.
cancel.
cancel.
simp.
rewrite Heq in H0.
simp.
try equality.
cancel.
cancel.
cancel.
Qed.
(** ** A length-3 producer-consumer chain *)
(* Here's a variant on the last example. Now we have three stages.
* Stage 1: push consecutive even numbers to stack 1.
* Stage 2: pop from stack 1 and push to stack 2, reusing the memory for the
* list node.
* Stage 3: pop from stack 2 and fail if odd. *)
Example stage1 :=
_ <- for i := 0 loop
cell <- Alloc 2;
_ <- Write cell i;
_ <- Lock 0;
head <- Read 0;
_ <- Write (cell+1) head;
_ <- Write 0 cell;
_ <- Unlock 0;
Return (Again (2 + i))
done;
Return tt.
Example stage2 :=
for i := tt loop
_ <- Lock 0;
head <- Read 0;
if head ==n 0 then
_ <- Unlock 0;
Return (Again tt)
else
tail <- Read (head+1);
_ <- Write 0 tail;
_ <- Unlock 0;
_ <- Lock 1;
head' <- Read 1;
_ <- Write (head+1) head';
_ <- Write 1 head;
_ <- Unlock 1;
Return (Again tt)
done.
Example stage3 :=
for i := tt loop
_ <- Lock 1;
head <- Read 1;
if head ==n 0 then
_ <- Unlock 1;
Return (Again tt)
else
tail <- Read (head+1);
_ <- Write 1 tail;
_ <- Unlock 1;
data <- Read head;
_ <- Free head 2;
if isEven data then
Return (Again tt)
else
Fail
done.
(* Same invariant as before, for each of the two stacks. *)
Definition stages_inv root :=
(exists ls p, root |-> p * linkedList p ls * [| forallb isEven ls = true |])%sep.
Theorem stages_ok :
[stages_inv 0; stages_inv 1] ||- {{emp}} stage1 || stage2 || stage3 {{_ ~> emp}}.
Proof.
unfold stages_inv, stage1, stage2, stage3.
fork (emp%sep) (emp%sep); ht.
fork (emp%sep) (emp%sep); ht.
loop_inv (fun o => [| isEven (valueOf o) = true |]%sep).
match goal with
| [ H : r = 0 -> False |- _ ] => erewrite (linkedList_nonnull _ H)
end.
cancel.
simp.
apply andb_true_iff; propositional.
cancel.
cancel.
cancel.
loop_inv (fun _ : loop_outcome unit => emp%sep).
simp.
cases (r0 ==n 0).
ht.
cancel.
setoid_rewrite (linkedList_nonnull _ n).
ht.
apply andb_true_iff in H.
simp.
erewrite (linkedList_nonnull _ n).
cancel.
simp.
apply andb_true_iff in H1.
apply andb_true_iff.
simp.
cancel.
cancel.
cancel.
loop_inv (fun _ : loop_outcome unit => emp%sep).
simp.
cases (r0 ==n 0).
ht.
cancel.
setoid_rewrite (linkedList_nonnull _ n).
ht.
apply andb_true_iff in H.
simp.
simp.
cases (isEven r4); ht.
cancel.
cancel.
simp.
rewrite Heq in H0.
simp.
try equality.
cancel.
cancel.
cancel.
Qed.
(** * Soundness proof *)
(* We can still prove that the logic is sound. That is, any state compatible
* with a proved Hoare triple has the invariant that it never fails. See the
* book PDF for a sketch of the important technical devices and lemmas in this
* proof. *)
Local Hint Resolve himp_refl : core.
Lemma invert_Return : forall linvs {result : Set} (r : result) P Q,
hoare_triple linvs P (Return r) Q
-> P ===> Q r.
Proof.
induct 1; propositional; eauto.
cancel.
eauto using himp_trans.
rewrite IHhoare_triple; eauto.
Qed.
Local Hint Constructors hoare_triple : core.
Lemma invert_Bind : forall linvs {result' result} (c1 : cmd result') (c2 : result' -> cmd result) P Q,
hoare_triple linvs P (Bind c1 c2) Q
-> exists R, hoare_triple linvs P c1 R
/\ forall r, hoare_triple linvs (R r) (c2 r) Q.
Proof.
induct 1; propositional; eauto.
invert IHhoare_triple; propositional.
eexists; propositional.
eapply HtWeaken.
eassumption.
auto.
eapply HtStrengthen.
apply H4.
auto.
simp.
exists (fun r => x r * R)%sep.
propositional.
eapply HtFrame; eauto.
eapply HtFrame; eauto.
Qed.
Transparent heq himp lift star exis ptsto.
Lemma invert_Loop : forall linvs {acc : Set} (init : acc) (body : acc -> cmd (loop_outcome acc)) P Q,
hoare_triple linvs P (Loop init body) Q
-> exists I, (forall acc, hoare_triple linvs (I (Again acc)) (body acc) I)
/\ P ===> I (Again init)
/\ (forall r, I (Done r) ===> Q r).
Proof.
induct 1; propositional; eauto.
invert IHhoare_triple; propositional.
exists x; propositional; eauto.
unfold himp in *; eauto.
eauto using himp_trans.
simp.
exists (fun o => x o * R)%sep; propositional; eauto.
rewrite H0; eauto.
rewrite H3; eauto.
Qed.
(* Now that we proved enough basic facts, let's hide the definitions of all
* these predicates, so that we reason about them only through automation. *)
Opaque heq himp lift star exis ptsto.
Lemma unit_not_nat : unit = nat -> False.
Proof.
simplify.
assert (exists x : unit, forall y : unit, x = y).
exists tt; simplify.
cases y; reflexivity.
rewrite H in H0.
invert H0.
specialize (H1 (S x)).
linear_arithmetic.
Qed.
Lemma invert_Read : forall linvs a P Q,
hoare_triple linvs P (Read a) Q
-> exists R, (P ===> exists v, a |-> v * R v)%sep
/\ forall r, a |-> r * R r ===> Q r.
Proof.
induct 1; simp; eauto.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
eauto 7 using himp_trans.
exists (fun n => x n * R)%sep; simp.
rewrite H1.
cancel.
rewrite <- H2.
cancel.
Qed.
Lemma invert_Write : forall linvs a v' P Q,
hoare_triple linvs P (Write a v') Q
-> exists R, (P ===> (exists v, a |-> v) * R)%sep
/\ a |-> v' * R ===> Q tt.
Proof.
induct 1; simp; eauto.
symmetry in x0.
apply unit_not_nat in x0; simp.
exists emp; simp.
cancel; auto.
cancel; auto.
symmetry in x0.
apply unit_not_nat in x0; simp.
eauto 7 using himp_trans.
exists (x * R)%sep; simp.
rewrite H1.
cancel.
cancel.
rewrite <- H2.
cancel.
Qed.
Lemma invert_Alloc : forall linvs numWords P Q,
hoare_triple linvs P (Alloc numWords) Q
-> forall r, P * r |--> zeroes numWords * [| r <> 0 |] ===> Q r.
Proof.
induct 1; simp; eauto.
apply unit_not_nat in x0; simp.
cancel.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
apply unit_not_nat in x0; simp.
rewrite H0; eauto.
eauto 7 using himp_trans.
rewrite <- IHhoare_triple.
cancel.
Qed.
(* Temporarily transparent again! *)
Transparent heq himp lift star exis ptsto.