forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Interpreters_template.v
322 lines (222 loc) · 8.08 KB
/
Interpreters_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
Require Import Frap.
(* We begin with a return to our arithmetic language from the last chapter,
* adding subtraction*, which will come in handy later.
* *: good pun, right? *)
Inductive arith : Set :=
| Const (n : nat)
| Var (x : var)
| Plus (e1 e2 : arith)
| Minus (e1 e2 : arith)
| Times (e1 e2 : arith).
Example ex1 := Const 42.
Example ex2 := Plus (Var "y") (Times (Var "x") (Const 3)).
Definition valuation := fmap var nat.
(* A valuation is a finite map from [var] to [nat]. *)
(* The interpreter is a fairly innocuous-looking recursive function. *)
Fixpoint interp (e : arith) (v : valuation) : nat :=
match e with
| Const n => n
| Var x =>
(* Note use of infix operator to look up a key in a finite map. *)
match v $? x with
| None => 0 (* goofy default value! *)
| Some n => n
end
| Plus e1 e2 => interp e1 v + interp e2 v
| Minus e1 e2 => interp e1 v - interp e2 v
(* For anyone who's wondering: this [-] sticks at 0,
* if we would otherwise underflow. *)
| Times e1 e2 => interp e1 v * interp e2 v
end.
(* Here's an example valuation, using an infix operator for map extension. *)
Definition valuation0 : valuation :=
$0 $+ ("x", 17) $+ ("y", 3).
Theorem interp_ex1 : interp ex1 valuation0 = 42.
Proof.
simplify.
equality.
Qed.
Theorem interp_ex2 : interp ex2 valuation0 = 54.
Proof.
unfold valuation0.
simplify.
equality.
Qed.
(* Here's the silly transformation we defined last time. *)
Fixpoint commuter (e : arith) : arith :=
match e with
| Const _ => e
| Var _ => e
| Plus e1 e2 => Plus (commuter e2) (commuter e1)
| Minus e1 e2 => Minus (commuter e1) (commuter e2)
(* ^-- NB: didn't change the operand order here! *)
| Times e1 e2 => Times (commuter e2) (commuter e1)
end.
(* Instead of proving various odds-and-ends properties about it,
* let's show what we *really* care about: it preserves the
* *meanings* of expressions! *)
Theorem commuter_ok : forall v e, interp (commuter e) v = interp e v.
Proof.
Admitted.
(* Let's also revisit substitution. *)
Fixpoint substitute (inThis : arith) (replaceThis : var) (withThis : arith) : arith :=
match inThis with
| Const _ => inThis
| Var x => if x ==v replaceThis then withThis else inThis
| Plus e1 e2 => Plus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
| Minus e1 e2 => Minus (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
| Times e1 e2 => Times (substitute e1 replaceThis withThis) (substitute e2 replaceThis withThis)
end.
(* How should we state a correctness property for [substitute]?
Theorem substitute_ok : forall v replaceThis withThis inThis,
...
Proof.
Qed.*)
(* Let's also defined a pared-down version of the expression-simplificaton
* functions from last chapter. *)
Fixpoint doSomeArithmetic (e : arith) : arith :=
match e with
| Const _ => e
| Var _ => e
| Plus (Const n1) (Const n2) => Const (n1 + n2)
| Plus e1 e2 => Plus (doSomeArithmetic e1) (doSomeArithmetic e2)
| Minus e1 e2 => Minus (doSomeArithmetic e1) (doSomeArithmetic e2)
| Times (Const n1) (Const n2) => Const (n1 * n2)
| Times e1 e2 => Times (doSomeArithmetic e1) (doSomeArithmetic e2)
end.
Theorem doSomeArithmetic_ok : forall e v, interp (doSomeArithmetic e) v = interp e v.
Proof.
Admitted.
(* Of course, we're going to get bored if we confine ourselves to arithmetic
* expressions for the rest of our journey. Let's get a bit fancier and define
* a *stack machine*, related to postfix calculators that some of you may have
* experienced. *)
Inductive instruction :=
| PushConst (n : nat)
| PushVar (x : var)
| Add
| Subtract
| Multiply.
(* What does it all mean? An interpreter tells us unambiguously! *)
Definition run1 (i : instruction) (v : valuation) (stack : list nat) : list nat :=
match i with
| PushConst n => n :: stack
| PushVar x => (match v $? x with
| None => 0
| Some n => n
end) :: stack
| Add =>
match stack with
| arg2 :: arg1 :: stack' => arg1 + arg2 :: stack'
| _ => stack (* arbitrary behavior in erroneous case (stack underflow) *)
end
| Subtract =>
match stack with
| arg2 :: arg1 :: stack' => arg1 - arg2 :: stack'
| _ => stack (* arbitrary behavior in erroneous case *)
end
| Multiply =>
match stack with
| arg2 :: arg1 :: stack' => arg1 * arg2 :: stack'
| _ => stack (* arbitrary behavior in erroneous case *)
end
end.
(* That function explained how to run one instruction.
* Here's how to run several of them. *)
Fixpoint run (is : list instruction) (v : valuation) (stack : list nat) : list nat :=
match is with
| nil => stack
| i :: is' => run is' v (run1 i v stack)
end.
(* Instead of writing fiddly stack programs ourselves, let's *compile*
* arithmetic expressions into equivalent stack programs. *)
Fixpoint compile (e : arith) : list instruction :=
match e with
| Const n => PushConst n :: nil
| Var x => PushVar x :: nil
| Plus e1 e2 => compile e1 ++ compile e2 ++ Add :: nil
| Minus e1 e2 => compile e1 ++ compile e2 ++ Subtract :: nil
| Times e1 e2 => compile e1 ++ compile e2 ++ Multiply :: nil
end.
Theorem compile_ok : forall e v, run (compile e) v nil = interp e v :: nil.
Proof.
Admitted.
(* Let's get a bit fancier, moving toward the level of general-purpose
* imperative languages. Here's a language of commands, building on the
* language of expressions we have defined. *)
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| Repeat (e : arith) (body : cmd).
Fixpoint selfCompose {A} (f : A -> A) (n : nat) : A -> A :=
match n with
| O => fun x => x
| S n' => fun x => selfCompose f n' (f x)
end.
Fixpoint exec (c : cmd) (v : valuation) : valuation :=
match c with
| Skip => v
| Assign x e => v $+ (x, interp e v)
| Sequence c1 c2 => exec c2 (exec c1 v)
| Repeat e body => selfCompose (exec body) (interp e v) v
end.
(* Let's define some programs and prove that they operate in certain ways. *)
Example factorial_ugly :=
Sequence
(Assign "output" (Const 1))
(Repeat (Var "input")
(Sequence
(Assign "output" (Times (Var "output") (Var "input")))
(Assign "input" (Minus (Var "input") (Const 1))))).
(* Ouch; that code is hard to read. Let's introduce some notations to make the
* concrete syntax more palatable. We won't explain the general mechanisms on
* display here, but see the Coq manual for details, or try to reverse-engineer
* them from our examples. *)
Coercion Const : nat >-> arith.
Coercion Var : var >-> arith.
(*Declare Scope arith_scope.*)
Infix "+" := Plus : arith_scope.
Infix "-" := Minus : arith_scope.
Infix "*" := Times : arith_scope.
Delimit Scope arith_scope with arith.
Notation "x <- e" := (Assign x e%arith) (at level 75).
Infix ";" := Sequence (at level 76).
Notation "'repeat' e 'doing' body 'done'" := (Repeat e%arith body) (at level 75).
(* OK, let's try that program again. *)
Example factorial :=
"output" <- 1;
repeat "input" doing
"output" <- "output" * "input";
"input" <- "input" - 1
done.
(* Now we prove that it really computes factorial.
* First, a reference implementation as a functional program. *)
Fixpoint fact (n : nat) : nat :=
match n with
| O => 1
| S n' => n * fact n'
end.
Theorem factorial_ok : forall v input,
v $? "input" = Some input
-> exec factorial v $? "output" = Some (fact input).
Proof.
Admitted.
(* One last example: let's try to do loop unrolling, for constant iteration
* counts. That is, we can duplicate the loop body instead of using an explicit
* loop. *)
(* This obvious-sounding fact will come in handy: self-composition gives the
* same result, when passed two functions that map equal inputs to equal
* outputs. *)
Lemma selfCompose_extensional : forall {A} (f g : A -> A) n x,
(forall y, f y = g y)
-> selfCompose f n x = selfCompose g n x.
Proof.
induct n; simplify; try equality.
rewrite H.
apply IHn.
trivial.
Qed.
(*Theorem unroll_ok : forall c v, exec (unroll c) v = exec c v.
Proof.
Qed.*)