forked from achlipala/frap
-
Notifications
You must be signed in to change notification settings - Fork 0
/
OperationalSemantics_template.v
757 lines (552 loc) · 16.6 KB
/
OperationalSemantics_template.v
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
(** Formal Reasoning About Programs <http://adam.chlipala.net/frap/>
* Chapter 8: Operational Semantics
* Author: Adam Chlipala
* License: https://creativecommons.org/licenses/by-nc-nd/4.0/ *)
Require Import Frap.
Set Implicit Arguments.
(* OK, enough with defining transition relations manually. Let's return to our
* syntax of imperative programs from Chapter 3. *)
Inductive arith : Set :=
| Const (n : nat)
| Var (x : var)
| Plus (e1 e2 : arith)
| Minus (e1 e2 : arith)
| Times (e1 e2 : arith).
Inductive cmd :=
| Skip
| Assign (x : var) (e : arith)
| Sequence (c1 c2 : cmd)
| If (e : arith) (then_ else_ : cmd)
| While (e : arith) (body : cmd).
(* Important differences: we added [If] and switched [Repeat] to general
* [While]. *)
(* Here are some notations for the language, which again we won't really
* explain. *)
Coercion Const : nat >-> arith.
Coercion Var : var >-> arith.
Infix "+" := Plus : arith_scope.
Infix "-" := Minus : arith_scope.
Infix "*" := Times : arith_scope.
Delimit Scope arith_scope with arith.
Notation "x <- e" := (Assign x e%arith) (at level 75).
Infix ";;" := Sequence (at level 76). (* This one changed slightly, to avoid parsing clashes. *)
Notation "'when' e 'then' then_ 'else' else_ 'done'" := (If e%arith then_ else_) (at level 75, e at level 0).
Notation "'while' e 'loop' body 'done'" := (While e%arith body) (at level 75).
(* Here's an adaptation of our factorial example from Chapter 3. *)
Example factorial :=
"output" <- 1;;
while "input" loop
"output" <- "output" * "input";;
"input" <- "input" - 1
done.
(* Recall our use of a recursive function to interpret expressions. *)
Definition valuation := fmap var nat.
Fixpoint interp (e : arith) (v : valuation) : nat :=
match e with
| Const n => n
| Var x =>
match v $? x with
| None => 0
| Some n => n
end
| Plus e1 e2 => interp e1 v + interp e2 v
| Minus e1 e2 => interp e1 v - interp e2 v
| Times e1 e2 => interp e1 v * interp e2 v
end.
(* Our old trick of interpreters won't work for this new language, because of
* the general "while" loops. No such interpreter could terminate for all
* programs. Instead, we will use inductive predicates to explain program
* meanings. First, let's apply the most intuitive method, called
* *big-step operational semantics*. *)
Inductive eval : valuation -> cmd -> valuation -> Prop :=
| EvalSkip : forall v,
eval v Skip v
| EvalAssign : forall v x e,
eval v (Assign x e) (v $+ (x, interp e v))
| EvalSeq : forall v c1 v1 c2 v2,
eval v c1 v1
-> eval v1 c2 v2
-> eval v (Sequence c1 c2) v2
| EvalIfTrue : forall v e then_ else_ v',
interp e v <> 0
-> eval v then_ v'
-> eval v (If e then_ else_) v'
| EvalIfFalse : forall v e then_ else_ v',
interp e v = 0
-> eval v else_ v'
-> eval v (If e then_ else_) v'
| EvalWhileTrue : forall v e body v' v'',
interp e v <> 0
-> eval v body v'
-> eval v' (While e body) v''
-> eval v (While e body) v''
| EvalWhileFalse : forall v e body,
interp e v = 0
-> eval v (While e body) v.
(* Let's run the factorial program on a few inputs. *)
Theorem factorial_2 : exists v, eval ($0 $+ ("input", 2)) factorial v
/\ v $? "output" = Some 2.
Proof.
eexists; propositional.
(* [eexists]: to prove [exists x, P(x)], switch to proving [P(?y)], for a new
* existential variable [?y]. *)
econstructor.
econstructor.
econstructor.
simplify.
equality.
econstructor.
econstructor.
econstructor.
econstructor.
simplify.
equality.
econstructor.
econstructor.
econstructor.
apply EvalWhileFalse.
(* Note that, for this step, we had to specify which rule to use, since
* otherwise [econstructor] incorrectly guesses [EvalWhileTrue]. *)
simplify.
equality.
simplify.
equality.
Qed.
(* That was rather repetitive. It's easy to automate. *)
Ltac eval1 :=
apply EvalSkip || apply EvalAssign || eapply EvalSeq
|| (apply EvalIfTrue; [ simplify; equality | ])
|| (apply EvalIfFalse; [ simplify; equality | ])
|| (eapply EvalWhileTrue; [ simplify; equality | | ])
|| (apply EvalWhileFalse; [ simplify; equality ]).
Ltac evaluate := simplify; try equality; repeat eval1.
Theorem factorial_2_snazzy : exists v, eval ($0 $+ ("input", 2)) factorial v
/\ v $? "output" = Some 2.
Proof.
eexists; propositional.
evaluate.
evaluate.
Qed.
Theorem factorial_3 : exists v, eval ($0 $+ ("input", 3)) factorial v
/\ v $? "output" = Some 6.
Proof.
eexists; propositional.
evaluate.
evaluate.
Qed.
(* Instead of chugging through these relatively slow individual executions,
* let's prove once and for all that [factorial] is correct. *)
Fixpoint fact (n : nat) : nat :=
match n with
| O => 1
| S n' => n * fact n'
end.
Example factorial_loop :=
while "input" loop
"output" <- "output" * "input";;
"input" <- "input" - 1
done.
Lemma factorial_loop_correct : forall n v out, v $? "input" = Some n
-> v $? "output" = Some out
-> exists v', eval v factorial_loop v'
/\ v' $? "output" = Some (fact n * out).
Proof.
induct n; simplify.
exists v; propositional.
apply EvalWhileFalse.
simplify.
rewrite H.
equality.
rewrite H0.
f_equal.
ring.
assert (exists v', eval (v $+ ("output", out * S n) $+ ("input", n)) factorial_loop v'
/\ v' $? "output" = Some (fact n * (out * S n))).
apply IHn.
simplify; equality.
simplify; equality.
first_order.
eexists; propositional.
econstructor.
simplify.
rewrite H.
equality.
econstructor.
econstructor.
econstructor.
simplify.
rewrite H, H0.
replace (S n - 1) with n by linear_arithmetic.
(* [replace e1 with e2 by tac]: replace occurrences of [e1] with [e2], proving
* [e2 = e1] with tactic [tac]. *)
apply H1.
rewrite H2.
f_equal.
ring.
Qed.
Theorem factorial_correct : forall n v, v $? "input" = Some n
-> exists v', eval v factorial v'
/\ v' $? "output" = Some (fact n).
Proof.
simplify.
assert (exists v', eval (v $+ ("output", 1)) factorial_loop v'
/\ v' $? "output" = Some (fact n * 1)).
apply factorial_loop_correct.
simplify; equality.
simplify; equality.
first_order.
eexists; propositional.
econstructor.
econstructor.
simplify.
apply H0.
rewrite H1.
f_equal.
ring.
Qed.
(** * Small-step semantics *)
(* Big-step semantics only tells us something about the behavior of terminating
* programs. Our imperative language clearly supports nontermination, thanks to
* the inclusion of general "while" loops. A switch to *small-step* semantics
* lets us also explain what happens with nonterminating executions, and this
* style will also come in handy for more advanced features like concurrency. *)
Inductive step : valuation * cmd -> valuation * cmd -> Prop :=
| StepAssign : forall v x e,
step (v, Assign x e) (v $+ (x, interp e v), Skip)
| StepSeq1 : forall v c1 c2 v' c1',
step (v, c1) (v', c1')
-> step (v, Sequence c1 c2) (v', Sequence c1' c2)
| StepSeq2 : forall v c2,
step (v, Sequence Skip c2) (v, c2)
| StepIfTrue : forall v e then_ else_,
interp e v <> 0
-> step (v, If e then_ else_) (v, then_)
| StepIfFalse : forall v e then_ else_,
interp e v = 0
-> step (v, If e then_ else_) (v, else_)
| StepWhileTrue : forall v e body,
interp e v <> 0
-> step (v, While e body) (v, Sequence body (While e body))
| StepWhileFalse : forall v e body,
interp e v = 0
-> step (v, While e body) (v, Skip).
(* Here's a small-step factorial execution. *)
Theorem factorial_2_small : exists v, step^* ($0 $+ ("input", 2), factorial) (v, Skip)
/\ v $? "output" = Some 2.
Proof.
eexists; propositional.
econstructor.
econstructor.
econstructor.
econstructor.
apply StepSeq2.
econstructor.
econstructor.
simplify.
equality.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
apply StepSeq2.
econstructor.
econstructor.
econstructor.
econstructor.
apply StepSeq2.
econstructor.
econstructor.
simplify.
equality.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
econstructor.
apply StepSeq2.
econstructor.
econstructor.
econstructor.
econstructor.
apply StepSeq2.
econstructor.
apply StepWhileFalse.
simplify.
equality.
econstructor.
simplify.
equality.
Qed.
Ltac step1 :=
apply TrcRefl || eapply TrcFront
|| apply StepAssign || apply StepSeq2 || eapply StepSeq1
|| (apply StepIfTrue; [ simplify; equality ])
|| (apply StepIfFalse; [ simplify; equality ])
|| (eapply StepWhileTrue; [ simplify; equality ])
|| (apply StepWhileFalse; [ simplify; equality ]).
Ltac stepper := simplify; try equality; repeat step1.
Theorem factorial_2_small_snazzy : exists v, step^* ($0 $+ ("input", 2), factorial) (v, Skip)
/\ v $? "output" = Some 2.
Proof.
eexists; propositional.
stepper.
stepper.
Qed.
(* It turns out that these two semantics styles are equivalent. Let's prove
* it. *)
(* Automated proofs used here, if only to save time in class.
* See book code for more manual proofs, too. *)
Local Hint Constructors trc step eval : core.
Theorem big_small : forall v c v', eval v c v'
-> step^* (v, c) (v', Skip).
Proof.
Admitted.
Theorem small_big : forall v c v', step^* (v, c) (v', Skip)
-> eval v c v'.
Proof.
Admitted.
(** * Small-step semantics gives rise to transition systems. *)
Definition trsys_of (v : valuation) (c : cmd) : trsys (valuation * cmd) := {|
Initial := {(v, c)};
Step := step
|}.
Theorem simple_invariant :
invariantFor (trsys_of ($0 $+ ("a", 1)) ("b" <- "a" + 1;; "c" <- "b" + "b"))
(fun s => snd s = Skip -> fst s $? "c" = Some 4).
Proof.
model_check.
Qed.
Inductive isEven : nat -> Prop :=
| EvenO : isEven 0
| EvenSS : forall n, isEven n -> isEven (S (S n)).
Lemma isEven_minus2 : forall n, isEven n -> isEven (n - 2).
Proof.
induct 1; simplify.
constructor.
replace (n - 0) with n by linear_arithmetic.
assumption.
Qed.
Lemma isEven_plus : forall n m,
isEven n
-> isEven m
-> isEven (n + m).
Proof.
induct 1; simplify.
assumption.
constructor.
apply IHisEven.
assumption.
Qed.
Local Hint Constructors isEven : core.
Local Hint Resolve isEven_minus2 isEven_plus : core.
Definition my_loop :=
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done.
Theorem manually_proved_invariant : forall n,
isEven n
-> invariantFor (trsys_of ($0 $+ ("n", n) $+ ("a", 0)) (while "n" loop "a" <- "a" + "n";; "n" <- "n" - 2 done))
(fun s => exists a, fst s $? "a" = Some a /\ isEven a).
Proof.
Admitted.
Definition all_programs := {
(while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done),
("a" <- "a" + "n";;
"n" <- "n" - 2),
(Skip;;
"n" <- "n" - 2),
("n" <- "n" - 2),
(("a" <- "a" + "n";;
"n" <- "n" - 2);;
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done),
((Skip;;
"n" <- "n" - 2);;
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done),
("n" <- "n" - 2;;
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done),
(Skip;;
while "n" loop
"a" <- "a" + "n";;
"n" <- "n" - 2
done),
Skip
}.
Lemma manually_proved_invariant' : forall n,
isEven n
-> invariantFor (trsys_of ($0 $+ ("n", n) $+ ("a", 0)) (while "n" loop "a" <- "a" + "n";; "n" <- "n" - 2 done))
(fun s => all_programs (snd s)
/\ exists n a, fst s $? "n" = Some n
/\ fst s $? "a" = Some a
/\ isEven n
/\ isEven a).
Proof.
simplify; apply invariant_induction; simplify; unfold all_programs in *; first_order; subst; simplify;
try match goal with
| [ H : step _ _ |- _ ] => invert H; simplify
end;
repeat (match goal with
| [ H : _ = Some _ |- _ ] => rewrite H
| [ H : @eq cmd (_ _ _) _ |- _ ] => invert H
| [ H : @eq cmd (_ _ _ _) _ |- _ ] => invert H
| [ H : step _ _ |- _ ] => invert2 H
end; simplify); equality || eauto 7.
Qed.
(* We'll return to these systems and their abstractions in the next few
* chapters. *)
(** * Contextual small-step semantics *)
(* There is a common way to factor a small-step semantics into different parts,
* to make the semantics easier to understand and extend. First, we define a
* notion of *evaluation contexts*, which are commands with *holes* in them. *)
Inductive context :=
| Hole
| CSeq (C : context) (c : cmd).
(* This relation explains how to plug the hole in a context with a specific
* term. Note that we use an inductive relation instead of a recursive
* definition, because Coq's proof automation is better at working with
* relations. *)
Inductive plug : context -> cmd -> cmd -> Prop :=
| PlugHole : forall c, plug Hole c c
| PlugSeq : forall c C c' c2,
plug C c c'
-> plug (CSeq C c2) c (Sequence c' c2).
(* Now we define almost the same step relation as before, with one omission:
* only the more trivial of the [Sequence] rules remains. *)
Inductive step0 : valuation * cmd -> valuation * cmd -> Prop :=
| Step0Assign : forall v x e,
step0 (v, Assign x e) (v $+ (x, interp e v), Skip)
| Step0Seq : forall v c2,
step0 (v, Sequence Skip c2) (v, c2)
| Step0IfTrue : forall v e then_ else_,
interp e v <> 0
-> step0 (v, If e then_ else_) (v, then_)
| Step0IfFalse : forall v e then_ else_,
interp e v = 0
-> step0 (v, If e then_ else_) (v, else_)
| Step0WhileTrue : forall v e body,
interp e v <> 0
-> step0 (v, While e body) (v, Sequence body (While e body))
| Step0WhileFalse : forall v e body,
interp e v = 0
-> step0 (v, While e body) (v, Skip).
(* We recover the meaning of the original with one top-level rule, combining
* plugging of contexts with basic steps. *)
Inductive cstep : valuation * cmd -> valuation * cmd -> Prop :=
| CStep : forall C v c v' c' c1 c2,
plug C c c1
-> step0 (v, c) (v', c')
-> plug C c' c2
-> cstep (v, c1) (v', c2).
(* We can prove equivalence between the two formulations. *)
Local Hint Constructors plug step0 cstep : core.
Theorem step_cstep : forall v c v' c',
step (v, c) (v', c')
-> cstep (v, c) (v', c').
Proof.
Admitted.
Theorem cstep_step : forall v c v' c',
cstep (v, c) (v', c')
-> step (v, c) (v', c').
Proof.
Admitted.
(** * Determinism *)
(* Each of the relations we have defined turns out to be deterministic. Let's
* prove it. *)
Theorem eval_det : forall v c v1,
eval v c v1
-> forall v2, eval v c v2
-> v1 = v2.
Proof.
induct 1; invert 1; try first_order.
apply IHeval2.
apply IHeval1 in H5.
subst.
assumption.
apply IHeval2.
apply IHeval1 in H7.
subst.
assumption.
Qed.
Theorem step_det : forall s out1,
step s out1
-> forall out2, step s out2
-> out1 = out2.
Proof.
induct 1; invert 1; try first_order.
apply IHstep in H5.
equality.
invert H.
invert H4.
Qed.
Theorem cstep_det : forall s out1,
cstep s out1
-> forall out2, cstep s out2
-> out1 = out2.
Proof.
simplify.
cases s; cases out1; cases out2.
eapply step_det.
apply cstep_step.
eassumption.
apply cstep_step.
eassumption.
Qed.
(** * Example of how easy it is to add concurrency to a contextual semantics *)
(** At this point, we add concurrency to the code we already wrote above. *)
(*
(* Here's the classic cautionary-tale program about remembering to lock your
* concurrent threads. *)
Definition prog :=
("a" <- "n";;
"n" <- "a" + 1)
|| ("b" <- "n";;
"n" <- "b" + 1).
Local Hint Constructors plug step0 cstep : core.
(* The naive "expected" answer is attainable. *)
Theorem correctAnswer : forall n, exists v, cstep^* ($0 $+ ("n", n), prog) (v, Skip)
/\ v $? "n" = Some (n + 2).
Proof.
eexists; propositional.
unfold prog.
econstructor.
eapply CStep with (C := CPar1 (CSeq Hole _) _); eauto.
econstructor.
eapply CStep with (C := CPar1 Hole _); eauto.
econstructor.
eapply CStep with (C := CPar1 Hole _); eauto.
econstructor.
eapply CStep with (C := Hole); eauto.
econstructor.
eapply CStep with (C := CSeq Hole _); eauto.
econstructor.
eapply CStep with (C := Hole); eauto.
econstructor.
eapply CStep with (C := Hole); eauto.
econstructor.
simplify.
f_equal.
ring.
Qed.
(* But so is the "wrong" answer! *)
Theorem wrongAnswer : forall n, exists v, cstep^* ($0 $+ ("n", n), prog) (v, Skip)
/\ v $? "n" = Some (n + 1).
Proof.
eexists; propositional.
unfold prog.
Admitted.
*)