-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathgfp2.pxd
127 lines (112 loc) · 4.14 KB
/
gfp2.pxd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# Copyright (c) 2011-2016 Luca De Feo.
# This program is free software: you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation, either version 3 of the License, or
# (at your option) any later version.
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
# You should have received a copy of the GNU General Public License
# along with this program. If not, see <http://www.gnu.org/licenses/>.
cdef extern from "gfp2.c":
ctypedef struct __mpz_struct:
pass
ctypedef struct GF:
pass
ctypedef struct GF_params:
pass
# Memory management
void init_GF(GF *x, GF_params* parent)
void clear_GF(GF *x)
# Initialization of GF(p,2)
bint setup_GF(GF_params* field, char* characteristic)
void free_GF(GF_params*)
# I/O
void set_GF(GF* x, char* a, char* b)
void get_GF(char *a, char *b, GF x)
# Arithmetic modulo X^2 + 1
void copy_GF(GF* res, GF x)
void add_GF(GF *res, GF x, GF y)
void sub_GF(GF *res, GF x, GF y)
void neg_GF(GF *res, GF x)
void scalar_si_GF(GF *res, GF x, long int s)
void sqr_GF(GF *res, GF x)
void mul_GF(GF *res, GF x, GF y)
bint inv_GF(GF *res, GF x)
bint div_GF(GF *res, GF x, GF y)
# Miscellaneaous
int cmp_GF(GF x, GF y)
bint is_one_GF(GF x)
bint is_zero_GF(GF x)
void random_GF(GF *res)
void print_GF(GF x)
# Elliptic curve addition
void mont_ladder(GF *res1x, GF *res1z,
GF *res2x, GF *res2z,
GF x1, GF z1,
GF x2, GF z2,
GF dx, GF dz,
GF A24)
# Montgomery point doubling
void mont_double(GF *resx, GF *resz,
GF x, GF z,
GF A24)
# Montgomery point tripling
void mont_triple(GF *resx, GF *resz,
GF x, GF z,
GF A24)
# 3-point ladder to compute P + [t]Q
# Inputs: t, P, Q, Q - P
void mont_3ladder(GF* Rx, GF* Rz, __mpz_struct* t,
GF Px, GF Pz, GF Qx, GF Pz,
GF QPx, GF QPz, GF A24)
# Computes [m]P + [n]Q, with P and Q points on the Montgomery curve
# with parameters A,B. Uses Edwards' coordinates for
# calculations.
void shamir(GF *Rx, GF *Ry, GF *Rz,
GF A, GF B,
GF Px, GF Py, GF Pz,
GF Qx, GF Qy, GF Qz,
__mpz_struct* m, __mpz_struct* n)
ctypedef struct iso:
GF u, r
ctypedef struct iso2:
pass
ctypedef struct iso3:
GF p, X1, Y2, Y1, Y0, coB
ctypedef struct iso4:
GF Ap2, iAm2
# Utility routine to compute (A+2)/4
void a24(GF* A24, GF A)
# Compute an isomorphism of the montgomery curve
# sending (x,z) to (0,0).
void isom_comp(iso* iso, GF* iA, GF* iB, GF* iA24,
GF A, GF B, GF A24, GF x, GF z)
# Apply an isomorphism of Montgomery curves
void isom_apply(GF* X, GF* Y, iso iso, GF x, GF y, GF z)
# Compute a 2-isogeny of the montgomery curve
# sending (x,z) to (1,...).
void iso2_comp(iso2* iso, GF* iA, GF* iB, GF* iA24,
GF A, GF B, GF x, GF z)
# Apply a 2-isogeny of Montgomery curves
void iso2_apply(GF* X, GF* Y, GF* Z,
iso2 iso, GF x, GF y, GF z)
# Compute a 3-isogeny of the montgomery curve
void iso3_comp(iso3* iso, GF* iA, GF* iB, GF* iA24,
GF A, GF B, GF x, GF z)
# Apply a 3-isogeny of Montgomery curves
void iso3_apply(GF* X, GF* Y, GF* Z,
iso3 iso, GF x, GF y, GF z)
# Compute a 4-isogeny of the montgomery curve
# sending (1,...) to infinity.
void iso4_comp(iso4* iso, GF* iA, GF* iB, GF A, GF B)
# Apply a 4-isogeny of Montgomery curves
void iso4_apply(GF* X, GF* Y, GF* Z, iso4 iso,
GF x, GF y, GF z)
# And finally, the composite isogeny!
void push_through_iso(GF *A, GF *B, GF *A24,
GF Rx, GF Rz,
int ell, int *strategy, int h,
GF *Px, GF *Py, GF *Pz,
GF *Qx, GF *Qy, GF *Qz)