forked from sears/bLSM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
mergeManager.cpp
647 lines (570 loc) · 24.5 KB
/
mergeManager.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
/*
* mergeManager.cpp
*
* Copyright 2010-2012 Yahoo! Inc.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
* Created on: May 19, 2010
* Author: sears
*/
#include "mergeManager.h"
#include "mergeStats.h"
#include "bLSM.h"
#include "math.h"
#include "time.h"
#include <stasis/transactional.h>
#define LEGACY_BACKPRESSURE
mergeStats* mergeManager:: get_merge_stats(int mergeLevel) {
if (mergeLevel == 0) {
return c0;
} else if (mergeLevel == 1) {
return c1;
} else if(mergeLevel == 2) {
return c2;
} else {
abort();
}
}
mergeManager::~mergeManager() {
still_running = false;
pthread_cond_signal(&pp_cond);
pthread_join(pp_thread, 0);
pthread_join(update_progress_pthread, 0);
pthread_cond_destroy(&pp_cond);
delete c0;
delete c1;
delete c2;
}
void mergeManager::new_merge(int mergeLevel) {
mergeStats * s = get_merge_stats(mergeLevel);
if(s->merge_level == 0) {
// target_size was set during startup
} else if(s->merge_level == 1) {
assert(c0->target_size);
c1->target_size = (pageid_t)(*ltable->R() * (double)ltable->mean_c0_run_length);
assert(c1->target_size);
s->new_merge2();
} else if(s->merge_level == 2) {
// target_size is infinity...
s->new_merge2();
} else { abort(); }
#ifdef EXTENDED_STATS
gettimeofday(&s->stats_start,0);
double elapsed = (tv_to_double(&s->stats_start) - tv_to_double(&s->stats_sleep));
s->stats_lifetime_elapsed += elapsed;
(s->stats_elapsed) = elapsed;
(s->stats_active) = 0;
#endif
}
void mergeManager::set_c0_size(int64_t size) {
assert(size);
c0->target_size = size;
}
void mergeManager::update_progress(mergeStats * s, int delta) {
s->delta += delta;
if((!delta) || s->delta > UPDATE_PROGRESS_DELTA) {
rwlc_writelock(ltable->header_mut);
if(delta) {
s->delta = 0;
if(!s->need_tick) { s->need_tick = 1; }
}
if(s->merge_level == 2) {
if(s->active) {
s->in_progress = ((double)(s->bytes_in_large + s->bytes_in_small)) / (double)(get_merge_stats(s->merge_level-1)->mergeable_size + s->base_size);
} else {
s->in_progress = 0;
}
} else if(s->merge_level == 1) { // C0-C1 merge (c0 is continuously growing...)
if(s->active) {
// s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+fmax(ltable->mean_c0_run_length,(double)s->bytes_in_small));
s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (double)(s->base_size+fmax(c0->target_size,(double)s->bytes_in_small));
//s->in_progress = ((double)(s->bytes_in_large+s->bytes_in_small)) / (((double)s->base_size)+(double)s->bytes_in_small);
} else {
s->in_progress = 0;
}
}
if(s->target_size) {
if(s->merge_level == 0) {
s->out_progress = ((double)s->get_current_size()) / (double)ltable->mean_c0_run_length;
} else {
// To see what's going on in the following code, consider a
// system with R = 3 and |C0| = 1. (R is the number of rounds that a
// C1-C2 merge takes during a bulk load, and also the ratios |C1|/|C0|
// and |C2|/|C1|).
// |Cn| is the size of a given tree component, normalized to the amount
// of data that can be inserted into C0 (because of red-black tree
// overheads, the effective capacity of C0 is a function of the average
// tuple size and the physical memory allotted to C0).
// Here is a trace of the costs of each round of merges during
// a bulk load (where no data is overwritten):
// Round | App writes | I/O performed by C0-C1 | I/O performed by C1-C2
// 0 | 1 | 1 |
// 1 | 1 | 3 = 2 * 1 + 1 | 0 (idle)
// 2 | 1 | 7 = 2 * 3 + 1 |
// 3 | 1 | 1 |
// 4 | 1 | 3 | R (just a copy)
// 5 | 1 | 7 |
// 6 | 1 | 1 |
// 7 | 1 | 3 | 3 * R = 2 * R + R
// 8 | 1 | 7 |
// 9 | 1 | 1 |
// 10 | 1 | 3 | 2 ( 3 * R ) + R
// 11 | 1 | 7 |
// i | 1 | t(0) = 1 | u0 = u1 =...= uR = 0
// | | i < R: t(i) = 1+2*t(i-1)| u(i) = 2 * u(i-R) + R
// | | i >=R: t(i) = t(i%R) |
// Note that, at runtime, we can directly compute u(i) for the current
// C1-C2 merge:
// u_j <= (1 + \alpha) * (|c2| + |c1_mergeable|) [eq 1]
// Where, \alpha is a constant between 0 and 1 that depends on the
// number of and deletes in c1_mergeable. For now, we assume it is 1.
// Now, for each C1-C2 round, we want to split the total disk
// work evenly amongst the C0-C1 rounds. Thus, the amount
// consumed by C1-C2 + C0-C1 should be equal (if possible) for
// each pass over C0:
// t(Rj) + u(Rj) = t(Rj+1) + u(Rj+1) = ... = t(Rj+R-1) + u(Rj+R-1)
// Work for set of C0 passes during j'th C1-C2 merge:
// work(j) = \sum_{k=0..R-1}{t(Rj+k)}+u_j [eq 2]
// Ideally, we would like the amount of work performed during each
// application visible round, i, to be the same throughout a given C1-C2
// merger. Unfortunately, there's no way to ensure that this will be the
// case in general, as nothing prevents:
// f(i) = (R * t[i] > u_j)
// from being true. Therefore, we partition the i according to f(i).
// t(i) is monotonically increasing, so this creates two contiguous sets.
// Let R' be the first i where f(i) is true, or R if no such i exists.
// [eq 3]
// Then:
// work'(j) = work(j) - \sum{k=R'...R-1} t(Rj+k) [eq 4]
// We now define u_j(i); the amount of progress we would like the C1-C2
// merger to make in each application visible round.
// The later rounds (where f(i) is true) already perform more work than
// we'd like, so we set:
// u_j(i) = 0 if f(i) [eq 5a]
// We evenly divide the remaining work:
// t(i) + u_j(i) = work'(j) / R' if not f(i)
// The t(i) are fixed, giving us R' equations in R' unknowns; solving
// for u_j(i):
// u_j(i) = work'(j)/R' - t(i) if not f(i) [eq 5b]
// Note 1:
// If the tree is big enough, we compute R in a way that guarantees f(i)
// is false. We do not do this for small trees because it leads to R<3,
// which negatively impacts throughput. Therefore, we set R=3 and deal
// with periodic transient increases in application-visible throughput.
// Note 2:
// If the working set is small, then C1 will not get bigger from one
// merge to the next. To cope with this, we compute delta_c1_c2 by
// figuring out what the percent complete for c2 should be once C1 is
// full, assuming we're performing a bulk load. We set delta to the
// difference between the current progress and the desired progress. If
// delta is negative, then the C1-C2 merge will still be ahead of the
// C0-C1 merge at the end of this round, so we set delta to zero, which
// effectively puts the C2 merger to sleep.
// eq 2: Compute t[i] (from table) and initial value of work(j)
int merge_count = (int)ceil(*ltable->R()-0.1);
// next, estimate merge_number (i) based on the size of c1.
// ( i = R * j + merge_number)
int merge_number = (int)floor(((double)c1->base_size)/(double)ltable->mean_c0_run_length);
s->out_progress = ((double)merge_number + s->in_progress) / (double) merge_count;
// eq 1: Compute u_j
if(c2->active && c1->mergeable_size) {
#ifdef LEGACY_BACKPRESSURE
c1_c2_delta = c1->out_progress - c2->in_progress;
#else
pageid_t u__j = (pageid_t)(2.0 * (double)(c2->base_size + c1->mergeable_size));
double* t = (double*)malloc(sizeof(double) * merge_count);
t[0] = ltable->mean_c0_run_length;
double t__j = t[0];
for(int i = 1; i < merge_count; i++) {
t[i] = t[i-1] * 2.0 + ltable->mean_c0_run_length;
t__j += t[i];
}
double work_j = t__j + u__j;
// eq 3: Compute R'
int R_prime;
{
double frac_work = work_j / (double)merge_count;
for(R_prime = 0; R_prime < merge_count; R_prime++) {
if(t[R_prime] > frac_work) break;
}
}
// eq 4: Compute work'
double work_prime_j = work_j;
for(int i = R_prime; i < merge_count; i++) {
work_prime_j -= t[i]; // u_j[i] will be set to zero, so no need to subtract it off.
}
// eq 5a,b: Compute the u_j(i)'s for this C1-C2 round:
double* u_j = (double*)malloc(sizeof(double) * merge_count);
for(int i = 0; i < R_prime; i++) {
u_j[i] = work_prime_j / R_prime - t[i]; // [5b]
}
for(int i = R_prime; i < merge_count; i++) {
u_j[i] = 0; // [5a]
}
// we now have everything we need to know how far along we should expect
// c1 and c2 to be at the beginning and end of this pass.
double expected_c1_start_progress = ((double)merge_number) / (double)merge_count;
double expected_c2_start_progress = 0.0;
double expected_c1_end_progress = ((double)(merge_number+1)) / (double)merge_count;
double expected_c2_end_progress = 0.0;
for(int i = 0; i <= merge_number; i++) {
if(i < merge_number) {
expected_c2_start_progress += u_j[i];
}
expected_c2_end_progress += u_j[i];
}
expected_c2_start_progress /= u__j;
expected_c2_end_progress /= u__j;
assert(expected_c1_start_progress > -0.01 && expected_c1_start_progress < 1.01 &&
expected_c2_start_progress > -0.01 && expected_c2_start_progress < 1.01 &&
expected_c1_end_progress > -0.01 && expected_c1_end_progress < 1.01 &&
expected_c2_end_progress > -0.01 && expected_c2_end_progress < 1.01 &&
expected_c1_start_progress <= expected_c1_end_progress &&
expected_c2_start_progress <= expected_c2_end_progress);
double c1_scale_progress = (c1->out_progress - expected_c1_start_progress) / (expected_c1_end_progress - expected_c1_start_progress);
double c2_scale_progress = (c2->in_progress - expected_c2_start_progress) / (expected_c2_end_progress - expected_c2_start_progress);
c1_c2_delta = c1_scale_progress - c2_scale_progress;
#endif
} else {
c1_c2_delta = -0.02; // Elsewhere, we try to keep this number between -0.05 and -0.01.
}
// Appendix to analysis: Computation of t(i) and u(i) for bulk-loads
// This is not used above (since both can be computed at runtime), but
// may be of use for future analysis.
// t(i) is easily computable, but u(i) is less straightforward:
// u(i) = 2 * u(i-R) + R
// u(i+R) = 2 * u(i) + R
// Subtracting:
// u(i+R) - u(i) = 2u(i-R) - 2u(i)
// u(i+R) = u(i) + 2u(u-R)
// u(0) = 0; u(R) = R
// Characteristic polynomial:
// r^n = r^(n-1) + 2r^(n-2)
// divide by r^(n-2):
// r^2 = r + 2 ; r^2 - r - 2 = 0
// characteristic roots:
// r = (1 +/- sqrt(1 + 8)) / 2 = 2 or -1
// 2^n*C - D = a_n
// 2^0 * C - D = 0; C = D.
// 2 * C - D = R ; C = D = R.
// So, u(n) = 2^n*R - R
// or:
// sum{u(i..i+R-1)} = 2*floor(i/3)^R - R.
}
}
#if EXTENDED_STATS
struct timeval now;
gettimeofday(&now, 0);
double stats_elapsed_delta = tv_to_double(&now) - ts_to_double(&s->stats_last_tick);
if(stats_elapsed_delta < 0.0000001) { stats_elapsed_delta = 0.0000001; }
s->stats_lifetime_active += stats_elapsed_delta;
s->stats_lifetime_elapsed += stats_elapsed_delta;
s->stats_active += stats_elapsed_delta;
s->stats_elapsed += stats_elapsed_delta;
s->stats_lifetime_consumed += s->stats_bytes_in_small_delta;
double stats_tau = 60.0; // number of seconds to look back for window computation. (this is the expected mean residence time in an exponential decay model, so the units are not so intuitive...)
double stats_decay = exp((0.0-stats_elapsed_delta)/stats_tau);
double_to_ts(&s->stats_last_tick, tv_to_double(&now));
double stats_window_bps = ((double)s->stats_bytes_in_small_delta) / (double)stats_elapsed_delta;
s->stats_bps = (1.0-stats_decay) * stats_window_bps + stats_decay * s->stats_bps;
s->stats_bytes_in_small_delta = 0;
#endif
rwlc_unlock(ltable->header_mut);
}
}
/**
* This function is invoked periodically by the merge threads. It updates mergeManager's statistics, and applies
* backpressure as necessary.
*
* Here is the backpressure algorithm.
*
* We want to maintain these two invariants:
* - for each byte consumed by the app->c0 threads, a byte is consumed by the c0->c1 merge thread.
* - for each byte consumed by the c0->c1 thread, the c1->c2 thread consumes a byte
*
* More concretely (and taking into account varying values of R):
* capacity(C_i) - current_size(C_i) >= size(C_i_mergeable) - bytes_consumed_by_next_merger
*
* where:
* capacity c0 = c0_queue_size
* capacity c1 = c1_queue_size
*
* current_size(c_i) = sum(bytes_out_delta) - sum(bytes_in_large_delta)
*
* bytes_consumed_by_merger = sum(stats_bytes_in_small_delta)
*/
void mergeManager::tick(mergeStats * s) {
if(s && s->merge_level == 1) { // apply backpressure based on merge progress.
if(s->need_tick) {
s->need_tick = 0;
// Only apply back pressure if next thread is not waiting on us.
rwlc_readlock(ltable->header_mut);
if(c1->mergeable_size && c2->active) {
if(c1_c2_delta > -0.01) {
DEBUG("Input is too far ahead. Delta is %f\n", c1_c2_delta);
double delta = c1_c2_delta;
rwlc_unlock(ltable->header_mut);
delta += 0.01; // delta > 0;
double slp = 0.001 + delta;
struct timespec sleeptime;
DEBUG("\ndisk sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0));
double_to_ts(&sleeptime,slp);
nanosleep(&sleeptime, 0);
update_progress(s, 0);
s->need_tick = 1;
} else {
rwlc_unlock(ltable->header_mut);
}
} else {
rwlc_unlock(ltable->header_mut);
}
}
} else if((!s) || s->merge_level == 0) {
// Simple backpressure algorithm based on how full C0 is.
pageid_t cur_c0_sz;
if(s) {
// Is C0 bigger than is allowed?
while((cur_c0_sz = s->get_current_size()) > ltable->max_c0_size) { // can't use s->current_size, since this is the thread that maintains that number...
printf("\nMEMORY OVERRUN!!!! SLEEP!!!!\n");
struct timespec ts;
double_to_ts(&ts, 0.1);
nanosleep(&ts, 0);
}
// Linear backpressure model
s->out_progress = ((double)cur_c0_sz)/((double)ltable->max_c0_size);
} else {
cur_c0_sz = c0->get_current_size();
}
double delta = ((double)cur_c0_sz)/(0.95*(double)ltable->max_c0_size); // 0 <= delta <= 1.111...
delta -= 1.0;
if(delta > 0.00005) {
double slp = 0.001 + 5.0 * delta; //0.0015 < slp < 1.112111..
if(!s) {
// printf("sleeping!\n");
}
DEBUG("\nmem sleeping %0.6f tree_megabytes %0.3f\n", slp, ((double)ltable->tree_bytes)/(1024.0*1024.0));
struct timespec sleeptime;
double_to_ts(&sleeptime, slp);
DEBUG("%d Sleep C %f\n", s->merge_level, slp);
nanosleep(&sleeptime, 0);
}
}
}
void mergeManager::read_tuple_from_small_component(int merge_level, dataTuple * tup) {
if(tup) {
mergeStats * s = get_merge_stats(merge_level);
__sync_fetch_and_add(&s->num_tuples_in_small, 1);
// (s->num_tuples_in_small)++;
#if EXTENDED_STATS
// (s->stats_bytes_in_small_delta) += tup->byte_length();
__sync_fetch_and_add(&s->stats_bytes_in_small_delta, tup->byte_length());
#endif
// (s->bytes_in_small) += tup->byte_length();
__sync_fetch_and_add(&s->bytes_in_small, tup->byte_length());
if(merge_level != 0) {
update_progress(s, tup->byte_length());
}
tick(s);
}
}
void mergeManager::read_tuple_from_large_component(int merge_level, int tuple_count, pageid_t byte_len) {
if(tuple_count) {
mergeStats * s = get_merge_stats(merge_level);
s->num_tuples_in_large += tuple_count;
s->bytes_in_large += byte_len;
if(merge_level != 0) {
update_progress(s, byte_len);
}
}
}
void mergeManager::wrote_tuple(int merge_level, dataTuple * tup) {
mergeStats * s = get_merge_stats(merge_level);
(s->num_tuples_out)++;
(s->bytes_out) += tup->byte_length();
}
void mergeManager::finished_merge(int merge_level) {
mergeStats *s = get_merge_stats(merge_level);
update_progress(s, 0);
s->active = false;
if(merge_level != 0) {
get_merge_stats(merge_level - 1)->mergeable_size = 0;
update_progress(get_merge_stats(merge_level-1), 0);
}
#if EXTENDED_STATS
gettimeofday(&s->stats_done, 0);
double elapsed = tv_to_double(&s->stats_done) - ts_to_double(&s->stats_last_tick);
(s->stats_lifetime_active) += elapsed;
(s->stats_lifetime_elapsed) += elapsed;
(s->stats_elapsed) += elapsed;
(s->stats_active) += elapsed;
memcpy(&s->stats_sleep, &s->stats_done, sizeof(s->stats_sleep));
#define VERBOSE
#ifdef VERBOSE
fprintf(stdout, "\n");
s->pretty_print(stdout);
#endif
#endif
update_progress(get_merge_stats(merge_level), 0);
}
void * mergeManager::update_progress_thread() {
pthread_mutex_t dummy_mut;
pthread_mutex_init(&dummy_mut, 0);
while(still_running) {
struct timeval tv;
gettimeofday(&tv, 0);
struct timespec ts;
double_to_ts(&ts, tv_to_double(&tv)+0.1);
pthread_cond_timedwait(&update_progress_cond, &dummy_mut, &ts);
// printf("Calling update progress\n");
update_progress(c0,0);
}
return 0;
}
void * mergeManager::pretty_print_thread() {
pthread_mutex_t dummy_mut;
pthread_mutex_init(&dummy_mut, 0);
while(still_running) {
struct timeval tv;
gettimeofday(&tv, 0);
struct timespec ts;
double_to_ts(&ts, tv_to_double(&tv)+1.01);
pthread_cond_timedwait(&pp_cond, &dummy_mut, &ts);
if(ltable) {
rwlc_readlock(ltable->header_mut);
pretty_print(stdout);
rwlc_unlock(ltable->header_mut);
}
}
printf("\n");
return 0;
}
void * merge_manager_pretty_print_thread(void * arg) {
mergeManager * m = (mergeManager*)arg;
return m->pretty_print_thread();
}
void * merge_manager_update_progress_thread(void * arg) {
mergeManager * m = (mergeManager*)arg;
return m->update_progress_thread();
}
double mergeManager::c1_c2_progress_delta() {
return c1_c2_delta;
}
void mergeManager::init_helper(void) {
struct timeval tv;
c1_c2_delta = -0.02; // XXX move this magic number somewhere. It's also in update_progress.
gettimeofday(&tv, 0);
#if EXTENDED_STATS
double_to_ts(&c0->stats_last_tick, tv_to_double(&tv));
double_to_ts(&c1->stats_last_tick, tv_to_double(&tv));
double_to_ts(&c2->stats_last_tick, tv_to_double(&tv));
#endif
still_running = true;
pthread_cond_init(&pp_cond, 0);
pthread_create(&pp_thread, 0, merge_manager_pretty_print_thread, (void*)this);
pthread_create(&update_progress_pthread, 0, merge_manager_update_progress_thread, (void*)this);
}
mergeManager::mergeManager(bLSM *ltable):
UPDATE_PROGRESS_PERIOD(0.005),
ltable(ltable) {
c0 = new mergeStats(0, ltable ? ltable->max_c0_size : 10000000);
c1 = new mergeStats(1, (int64_t)(ltable ? ((double)(ltable->max_c0_size) * *ltable->R()) : 100000000.0) );
c2 = new mergeStats(2, 0);
init_helper();
}
mergeManager::mergeManager(bLSM *ltable, int xid, recordid rid):
UPDATE_PROGRESS_PERIOD(0.005),
ltable(ltable) {
marshalled_header h;
Tread(xid, rid, &h);
c0 = new mergeStats(xid, h.c0);
c1 = new mergeStats(xid, h.c1);
c2 = new mergeStats(xid, h.c2);
init_helper();
}
recordid mergeManager::talloc(int xid) {
marshalled_header h;
recordid ret = Talloc(xid, sizeof(h));
h.c0 = c0->talloc(xid);
h.c1 = c1->talloc(xid);
h.c2 = c2->talloc(xid);
Tset(xid, ret, &h);
return ret;
}
void mergeManager::marshal(int xid, recordid rid) {
marshalled_header h;
Tread(xid, rid, &h);
c0->marshal(xid, h.c0);
c1->marshal(xid, h.c1);
c2->marshal(xid, h.c2);
}
void mergeManager::pretty_print(FILE * out) {
#if EXTENDED_STATS
bLSM * lt = ltable;
bool have_c0 = false;
bool have_c0m = false;
bool have_c1 = false;
bool have_c1m = false;
bool have_c2 = false;
if(lt) {
have_c0 = NULL != lt->get_tree_c0();
have_c0m = NULL != lt->get_tree_c0_mergeable();
have_c1 = NULL != lt->get_tree_c1();
have_c1m = NULL != lt->get_tree_c1_mergeable() ;
have_c2 = NULL != lt->get_tree_c2();
}
pageid_t mb = 1024 * 1024;
fprintf(out,"[merge progress MB/s window (lifetime)]: app [%s %6lldMB tot %6lldMB cur ~ %3.0f%%/%3.0f%% %6.1fsec %4.1f (%4.1f)] %s %s [%s %3.0f%% ~ %3.0f%% %4.1f (%4.1f)] %s %s [%s %3.0f%% %4.1f (%4.1f)] %s ",
c0->active ? "RUN" : "---", (long long)(c0->stats_lifetime_consumed / mb), (long long)(c0->get_current_size() / mb), 100.0 * c0->out_progress, 100.0 * ((double)c0->get_current_size())/(double)ltable->max_c0_size, c0->stats_lifetime_elapsed, c0->stats_bps/((double)mb), c0->stats_lifetime_consumed/(((double)mb)*c0->stats_lifetime_elapsed),
have_c0 ? "C0" : "..",
have_c0m ? "C0'" : "...",
c1->active ? "RUN" : "---", 100.0 * c1->in_progress, 100.0 * c1->out_progress, c1->stats_bps/((double)mb), c1->stats_lifetime_consumed/(((double)mb)*c1->stats_lifetime_elapsed),
have_c1 ? "C1" : "..",
have_c1m ? "C1'" : "...",
c2->active ? "RUN" : "---", 100.0 * c2->in_progress, c2->stats_bps/((double)mb), c2->stats_lifetime_consumed/(((double)mb)*c2->stats_lifetime_elapsed),
have_c2 ? "C2" : "..");
#endif
//#define PP_SIZES
#ifdef PP_SIZES
{
pageid_t mb = 1024 * 1024;
fprintf(out, "[target cur base in_small in_large, out, mergeable] C0 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c0->target_size/mb, c0->current_size/mb, c0->base_size/mb, c0->bytes_in_small/mb,
c0->bytes_in_large/mb, c0->bytes_out/mb, c0->mergeable_size/mb);
fprintf(out, "C1 %4lld %4lld %4lld %4lld %4lld %4lld %4lld ",
c1->target_size/mb, c1->current_size/mb, c1->base_size/mb, c1->bytes_in_small/mb,
c1->bytes_in_large/mb, c1->bytes_out/mb, c1->mergeable_size/mb);
fprintf(out, "C2 ---- %4lld %4lld %4lld %4lld %4lld %4lld ",
/*----*/ c2->current_size/mb, c2->base_size/mb, c2->bytes_in_small/mb,
c2->bytes_in_large/mb, c2->bytes_out/mb, c2->mergeable_size/mb);
}
#endif
// fprintf(out, "Throttle: %6.1f%% (cur) %6.1f%% (overall) ", 100.0*(last_throttle_seconds/(last_elapsed_seconds)), 100.0*(throttle_seconds/(elapsed_seconds)));
// fprintf(out, "C0 size %4lld resident %4lld ",
// 2*c0_queueSize/mb,
// (c0->bytes_out - c0->bytes_in_large)/mb);
// fprintf(out, "C1 size %4lld resident %4lld\r",
// 2*c1_queueSize/mb,
// (c1->bytes_out - c1->bytes_in_large)/mb);
// fprintf(out, "C2 size %4lld\r",
// 2*c2_queueSize/mb);
// fprintf(out, "C1 MB/s (eff; active) %6.1f C2 MB/s %6.1f\r",
// ((double)c1_totalConsumed)/((double)c1_totalWorktime),
// ((double)c2_totalConsumed)/((double)c2_totalWorktime));
fflush(out);
#if 0 // XXX would like to bring this back somehow...
assert((!c1->active) || (c1->in_progress >= -0.01 && c1->in_progress < 1.02));
assert((!c2->active) || (c2->in_progress >= -0.01 && c2->in_progress < 1.10));
#endif
fprintf(out, "\r");
}