-
Notifications
You must be signed in to change notification settings - Fork 15
/
utils.py
234 lines (182 loc) · 6.31 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
import math
import os
import random
from collections import deque, defaultdict
import pickle as pkl
import gym
import pathlib
import numpy as np
import re
from omegaconf import OmegaConf
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch import distributions as pyd
class eval_mode(object):
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(tau * param.data +
(1 - tau) * target_param.data)
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def make_dir(*path_parts):
dir_path = os.path.join(*path_parts)
try:
os.mkdir(dir_path)
except OSError:
pass
return dir_path
def tie_weights(src, trg):
assert type(src) == type(trg)
trg.weight = src.weight
trg.bias = src.bias
def chain(*iterables):
for it in iterables:
yield from it
def save(obj, file_path):
with open(file_path, 'wb') as f:
torch.save(obj, f)
def load(file_path):
if isinstance(file_path, str):
file_path = pathlib.Path(file_path).expanduser()
with file_path.open('rb') as f:
return torch.load(f)
def weight_init(m):
"""Custom weight init for Conv2D and Linear layers."""
if isinstance(m, nn.Linear):
nn.init.orthogonal_(m.weight.data)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
elif isinstance(m, nn.Conv2d) or isinstance(m, nn.ConvTranspose2d):
gain = nn.init.calculate_gain('relu')
nn.init.orthogonal_(m.weight.data, gain)
if hasattr(m.bias, 'data'):
m.bias.data.fill_(0.0)
def mlp(input_dim,
hidden_dim,
output_dim,
hidden_depth,
output_mod=None,
use_ln=False):
if hidden_depth == 0:
mods = [nn.Linear(input_dim, output_dim)]
else:
mods = [nn.Linear(input_dim, hidden_dim)]
if use_ln:
mods += [nn.LayerNorm(hidden_dim), nn.Tanh()]
else:
mods += [nn.ReLU(inplace=True)]
for i in range(hidden_depth - 1):
mods += [nn.Linear(hidden_dim, hidden_dim), nn.ReLU(inplace=True)]
mods.append(nn.Linear(hidden_dim, output_dim))
if output_mod is not None:
mods.append(output_mod)
trunk = nn.Sequential(*mods)
return trunk
def to_np(t):
if t is None:
return None
elif t.nelement() == 0:
return np.array([])
else:
return t.cpu().detach().numpy()
def parse_run_overrides(exp_dirs):
exp_dirs = exp_dirs.split(':')
def parse_cfg(cfg_list):
cfg = {}
for item in cfg_list:
parts = item.split('=')
cfg[parts[0]] = parts[1]
return cfg
runs = {}
for exp_dir in exp_dirs:
exp_dir = pathlib.Path(exp_dir).expanduser()
for override in exp_dir.glob('**/overrides.yaml'):
with override.open('rb') as f:
cfg = parse_cfg(OmegaConf.load(f))
path = override.parents[1]
runs[path] = cfg
return runs
def find_available_seeds(runs, env):
avail_seeds = {}
for path, cfg in runs.items():
if cfg['env'] == env:
snapshots = {}
model_dir = path / 'model'
for snap in model_dir.glob('expl_agent_*.pt'):
snap_id = int(
re.match(r'expl_agent_(\d+).pt', snap.name).group(1))
snapshots[snap_id] = snap
avail_seeds[int(cfg['seed'])] = snapshots
return avail_seeds
def find_pretrained_agent(exp_dirs, env, seed, step):
runs = parse_run_overrides(exp_dirs)
avail_seeds = find_available_seeds(runs, env)
if len(avail_seeds) == 0:
raise f'cannot find a pretrained agent for {env} {seed}'
if seed in avail_seeds and step in avail_seeds[seed]:
return avail_seeds[seed][step]
for snapshots in avail_seeds.values():
if step in snapshots:
return snapshots[step]
raise f'cannot find a pretrained agent for {env} {seed}'
return None
class TanhTransform(pyd.transforms.Transform):
domain = pyd.constraints.real
codomain = pyd.constraints.interval(-1.0, 1.0)
bijective = True
sign = +1
def __init__(self, cache_size=1):
super().__init__(cache_size=cache_size)
@staticmethod
def atanh(x):
return 0.5 * (x.log1p() - (-x).log1p())
def __eq__(self, other):
return isinstance(other, TanhTransform)
def _call(self, x):
return x.tanh()
def _inverse(self, y):
# We do not clamp to the boundary here as it may degrade the performance of certain algorithms.
# one should use `cache_size=1` instead
return self.atanh(y)
def log_abs_det_jacobian(self, x, y):
# We use a formula that is more numerically stable, see details in the following link
# https://github.com/tensorflow/probability/commit/ef6bb176e0ebd1cf6e25c6b5cecdd2428c22963f#diff-e120f70e92e6741bca649f04fcd907b7
return 2. * (math.log(2.) - x - F.softplus(-2. * x))
class SquashedNormal(pyd.transformed_distribution.TransformedDistribution):
def __init__(self, loc, scale):
self.loc = loc
self.scale = scale
self.base_dist = pyd.Normal(loc, scale)
transforms = [TanhTransform()]
super().__init__(self.base_dist, transforms)
@property
def mean(self):
mu = self.loc
for tr in self.transforms:
mu = tr(mu)
return mu
class ClippedNormal(pyd.Normal):
def __init__(self, loc, scale):
super().__init__(loc, scale)
def sample(self, sample_shape=torch.Size()):
x = super().sample(sample_shape)
return torch.clamp(x, -1.0, 1.0)
def rsample(self, sample_shape=torch.Size()):
x = super().rsample(sample_shape)
return torch.clamp(x, -1.0, 1.0)