forked from sb-ai-lab/LightAutoML
-
Notifications
You must be signed in to change notification settings - Fork 0
/
pyproject.toml
160 lines (145 loc) · 3.51 KB
/
pyproject.toml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
[tool.poetry]
name = "LightAutoML"
version = "0.3.8-b1"
description = "Fast and customizable framework for automatic ML model creation (AutoML)"
authors = [
"Alexander Ryzhkov <alexmryzhkov@gmail.com>",
"Anton Vakhrushev <btbpanda@gmail.com>",
"Dmitrii Simakov <dmitryevsimakov@gmail.com>",
"Rinchin Damdinov <damdinovr@gmail.com>",
"Alexander Kirilin <adkirilin@gmail.com>",
"Vasilii Bunakov <va.bunakov@gmail.com>",
]
readme = "README.md"
license = "Apache-2.0"
homepage = "https://lightautoml.readthedocs.io/en/latest/"
repository = "https://github.com/AILab-MLTools/LightAutoML"
classifiers = [
"Programming Language :: Python :: 3.6",
"Programming Language :: Python :: 3.7",
"Programming Language :: Python :: 3.8",
"Programming Language :: Python :: 3.9",
"Programming Language :: Python :: 3.10",
"Operating System :: OS Independent",
"Intended Audience :: Science/Research",
"Development Status :: 3 - Alpha",
"Environment :: Console",
"Natural Language :: English",
"Topic :: Scientific/Engineering :: Artificial Intelligence",
"Typing :: Typed"
]
[tool.poetry.dependencies]
python = ">=3.6.1, <3.11"
poetry-core = [
{version = ">=1.0.0", python = "<3.7"},
{version = "^1.0.0", python = "^3.7"}
]
pandas = "<2.0.0"
numpy = [
{version = "<=1.24.0", python = "<3.10"},
{version = ">=1.22", python = ">=3.10"}
]
scikit-learn = ">=0.22"
lightgbm = ">=2.3, <=3.2.1"
catboost = ">=0.26.1"
optuna = "*"
torch = [
{platform = "win32", python = "3.6.1", version = "1.7.0"},
{version = ">=1.0.0"}
]
dataclasses = {version = "0.6", python = "<3.7"}
holidays = "*"
statsmodels = "<=0.14.0"
networkx = "*"
cmaes = "*"
pyyaml = "*"
tqdm = "*"
joblib = "<1.3.0"
importlib-metadata = {version = ">=1.0", python = "<3.8"}
autowoe = ">=1.2"
jinja2 = "*"
json2html = "*"
seaborn = "*"
# NLP
gensim = {version = ">=4", optional = true}
nltk = {version = "*", optional = true}
transformers = {version = ">=4", optional = true}
# CV
albumentations = {version = "<=1.0.3", optional = true}
efficientnet-pytorch = {version = "*", optional = true}
opencv-python = {version = "<=4.8.0.74", optional = true}
PyWavelets = {version = "*", optional = true}
torchvision = [
{platform = "win32", python = "3.6.1", version = "0.8.0", optional = true},
{platform = "*", version = "*", optional = true}
]
# AFG
featuretools = {version = ">=1.11.1", python = ">=3.7", optional = true}
# Report (pdf)
weasyprint = {version = "52.5", optional = true}
cffi = {version = "1.14.5", optional = true}
[tool.poetry.extras]
cv = [
"albumentations",
"efficientnet-pytorch",
"opencv-python",
"PyWavelets",
"scikit-image",
"torchvision"
]
nlp = [
"gensim",
"nltk",
"transformers"
]
report = [
"cffi",
"weasyprint"
]
afg = [
"featuretools"
]
all = [
"albumentations",
"efficientnet-pytorch",
"opencv-python",
"PyWavelets",
"scikit-image",
"torchvision",
"gensim",
"nltk",
"transformers",
"cffi",
"weasyprint",
"featuretools"
]
[build-system]
requires = ["poetry-core>=1.0.0"]
build-backend = "poetry.core.masonry.api"
[tool.black]
line-length = 120
include = '\.pyi?$'
exclude = '''
/(
\.eggs
| \.git
| \.hg
| \.mypy_cache
| \.tox
| \.venv
| _build
| buck-out
| build
| dist
| tests/.*/setup.py
)/
'''
[tool.isort]
profile = "black"
force_single_line = true
atomic = true
include_trailing_comma = true
lines_after_imports = 2
lines_between_types = 1
use_parentheses = true
filter_files = true