-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhill5_multicomponent.c
171 lines (145 loc) · 3.56 KB
/
hill5_multicomponent.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
#include "hill5_multicomponent.h"
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <float.h>
#define H 6.6260755e-27
#define K 1.380658e-16
#define TBG 2.73
#define NSIG 2.0
static double *velocity_array;
static double *temperature_array;
static double *hill_array;
static double frequency;
static int nchan;
static double vrange[2];
static double lsrrange[2];
static int n_components; /* Number of hyperfine components */
static double *comp_voff_array; /* hyperfine component velocity */
static double *comp_relint_array; /* relative component intensity */
static double jfunc(double t, double nu) {
double to;
if(nu<1.0e-6) return t;
to = H*nu/K;
return to/(exp(to/t)-1.0);
}
double get_min_lsr() {
return lsrrange[0];
}
double get_max_lsr() {
return lsrrange[1];
}
void hill5_multicomponent_init(int channels, double *varray, double *tarray, double nu, double vmin, double vmax, int ncomp, double *comp_voff, double *comp_relint) {
int i;
double vcompmin;
double vcompmax;
double vcompint;
hill_array = malloc(channels*sizeof(double));
if(hill_array==NULL) {
fprintf(stderr, "hill5_init: Out of memory.\n");
exit(1);
}
velocity_array=varray;
temperature_array=tarray;
nchan = channels;
frequency = nu;
vrange[0]=vmin;
vrange[1]=vmax;
vcompmin=comp_voff[0];
vcompmax=comp_voff[0];
for(i=1;i<ncomp;i++) {
if(comp_voff[i]<vcompmin) {
vcompmin=comp_voff[i];
}
else if(comp_voff[i]>vcompmax) {
vcompmax=comp_voff[i];
}
}
vcompint = vcompmax-vcompmin;
/* CHANGE THESE VALUES */
lsrrange[0]=vmin-vcompmin+2.0*(vmax-vmin-vcompint)/6.0;
lsrrange[1]=vmax-vcompmax-2.0*(vmax-vmin-vcompint)/6.0;
n_components = ncomp;
comp_voff_array = comp_voff;
comp_relint_array = comp_relint;
}
void hill5_free() {
free(hill_array);
}
double *hill5_getfit() {
return hill_array;
}
double hill5_model(double tau,double v_lsr, double v_in, double sigma, double tpeak) {
double tauf;
double taur;
int i, j;
double vr;
double vf;
double resrms;
double resid;
double subf;
double subr;
vf = v_lsr+v_in;
vr = v_lsr-v_in;
resrms=0.0;
for(i=0;i<nchan;i++) {
tauf = 0.0;
taur = 0.0;
for(j=0;j<n_components;j++) {
tauf += tau*comp_relint_array[j]*exp(-pow((velocity_array[i]-vf-comp_voff_array[j])/sigma,2.0)/2.0);
taur += tau*comp_relint_array[j]*exp(-pow((velocity_array[i]-vr-comp_voff_array[j])/sigma,2.0)/2.0);
}
if(tauf>1.0e-4) {
subf = (1.0-exp(-tauf))/tauf;
}
else {
subf = 1.0;
}
if(taur>1.0e-4) {
subr = (1.0-exp(-taur))/taur;
}
else {
subr = 1.0;
}
hill_array[i]=(jfunc(tpeak,frequency)-jfunc(TBG,frequency))*(subf-exp(-tauf)*subr);
resid=temperature_array[i]-hill_array[i];
if(velocity_array[i]>vrange[0] && velocity_array[i]<vrange[1]) {
resrms+=resid*resid;
}
}
return resrms;
}
/* Solvable 5 parameter hill model, calculates fit and returns rms
residual.
parameters:
0: tau_0
1: v_lsr
2: v_in
3: sigma
4: Tpeak
*/
double hill5_evaluate(double *params) {
double tau = params[0];
double v_lsr = params[1];
double v_in = params[2];
double sigma = params[3];
double tpeak = params[4];
double resrms;
if(sigma<0.0) {
return DBL_MAX;
}
if(v_in<-NSIG*sigma) { /* used to be v_in<0.0 */
return DBL_MAX;
}
if(v_lsr<lsrrange[0] || v_lsr>lsrrange[1]) {
return DBL_MAX;
}
if(v_in>NSIG*sigma) {
return DBL_MAX;
}
if(tau<0.0) {
return DBL_MAX;
}
resrms = hill5_model(tau,v_lsr,v_in,sigma,tpeak);
return resrms;
}