Methods for solving transportation problem in python. Reference:
- Assigning Shortes Minimax:
- B. Satheesh Kumara,*, R. Nandhinib and T. Nanthinic: "A comparative study of ASM and NWCR method in transportation problem", Malaya J. Mat. 5(2)(2017) 321–327.
- Abdul Quddoos, Shakeel Javaid* and M. M. Khalid: "A Revised Version of ASM-Method for Solving Transportation Problem", Int. J. Agricult. Stat. Sci. Vol. 12, Supplement 1, pp. 267-272, 2016.
- Average Total Opportunity Cost:
- S.M. Abul Kalam Azad, Md. Bellel Hossain, and Md. Mizanur Rahman, "An Algorithmic Approach to Solve Transportation Problems with The ", International Journal of Scientific and Research Publications, Volume 7, Issue 2, February 2017.
- Column Minima:
- Global Minimum Method:
- Y. Harrath dan J. Kaabi, "New Heuristic to generate an initial basic feasible solution for the balanced transportation problem", International Journal of Industrial and System Engineering vol. 30, no. 2, pp. 193-204, 2018.
- Harmonic Mean Approach:
- Heuristic Method 1:
- Heuristic Method 2:
- Improved Exponential Approach:
- Dimas Alfan Hidayat, Siti Khabibah, dan Suryoto, "Metode Improved Exponential Approach dalam Menentukan Solusi Optimum pada Masalah Transportasi", Universitas Diponegoro.
- Karagul-Sahin Approximation:
- K. Karagul and Y. Sahin, "A novel approximation method to obtain initial basic feasible solution of transportation problem", J. King Saud Univ. 2019.
- Least Cost:
- Maximum Devide Minimum Allotment:
- A. Amaravathy, K. Thiagarajan and S. Vimala, "MDMA Method- An Optimal Solution for Transportation Problem", Middle-East Journal of Scientific Research 24 (12): 3706-3710, 2016.
- Maximum Supply Minimum Cost:
- North West Corner:
- Row Minima:
- Russel's Approximation:
- The Advanced Method:
- Vogel's Approximation: