-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpaq2py.py
127 lines (107 loc) · 3.67 KB
/
paq2py.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""
paq2py
Read PAQ file (from PackIO) into python
Lloyd Russell 2015
"""
import numpy as np
def paq_read(file_path=None, plot=False):
"""
Read PAQ file (from PackIO) into python
Lloyd Russell 2015
Parameters
==========
file_path : str, optional
full path to file to read in. if none is supplied a load file dialog
is opened, buggy on mac osx - Tk/matplotlib. Default: None.
plot : bool, optional
plot the data after reading? Default: False.
Returns
=======
data : ndarray
the data as a m-by-n array where m is the number of channels and n is
the number of datapoints
chan_names : list of str
the names of the channels provided in PackIO
hw_chans : list of str
the hardware lines corresponding to each channel
units : list of str
the units of measurement for each channel
rate : int
the acquisition sample rate, in Hz
"""
# file load gui
if file_path is None:
import Tkinter
import tkFileDialog
root = Tkinter.Tk()
root.withdraw()
file_path = tkFileDialog.askopenfilename()
root.destroy()
# open file
fid = open(file_path, 'rb')
# get sample rate
rate = int(np.fromfile(fid, dtype='>f', count=1))
# get number of channels
num_chans = int(np.fromfile(fid, dtype='>f', count=1))
# get channel names
chan_names = []
for i in range(num_chans):
num_chars = int(np.fromfile(fid, dtype='>f', count=1))
chan_name = ''
for j in range(num_chars):
chan_name = chan_name + chr(np.fromfile(fid, dtype='>f', count=1))
chan_names.append(chan_name)
# get channel hardware lines
hw_chans = []
for i in range(num_chans):
num_chars = int(np.fromfile(fid, dtype='>f', count=1))
hw_chan = ''
for j in range(num_chars):
hw_chan = hw_chan + chr(np.fromfile(fid, dtype='>f', count=1))
hw_chans.append(hw_chan)
# get acquisition units
units = []
for i in range(num_chans):
num_chars = int(np.fromfile(fid, dtype='>f', count=1))
unit = ''
for j in range(num_chars):
unit = unit + chr(np.fromfile(fid, dtype='>f', count=1))
units.append(unit)
# get data
temp_data = np.fromfile(fid, dtype='>f', count=-1)
num_datapoints = int(len(temp_data)/num_chans)
data = np.reshape(temp_data, [num_datapoints, num_chans]).transpose()
# close file
fid.close()
# plot
if plot:
import matplotlib
# matplotlib.use('QT4Agg')
import matplotlib.pylab as plt
f, axes = plt.subplots(num_chans, 1, sharex=True)
for idx, ax in enumerate(axes):
ax.plot(data[idx])
ax.set_xlim([0, num_datapoints-1])
ax.set_ylabel(units[idx])
ax.set_title(chan_names[idx])
plt.show()
return {"data": data,
"chan_names": chan_names,
"hw_chans": hw_chans,
"units": units,
"rate": rate}
def paq_data(paq, chan_name, threshold_ttl=False, plot=False):
'''returns the data in paq (from paq_read) from channel: chan_names
if threshold_tll: returns sample that trigger occured on
JR 2019
'''
chan_idx = paq['chan_names'].index(chan_name)
data = paq['data'][chan_idx, :]
if threshold_ttl:
data = threshold_detect(data, 1)
if plot:
if threshold_ttl:
plt.plot(data, np.ones(len(data)), '.')
else:
plt.plot(data)
return data