-
Notifications
You must be signed in to change notification settings - Fork 42
/
perturbc.m
executable file
·210 lines (168 loc) · 6.72 KB
/
perturbc.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
% PERTURBC - Perturbs the current solution to the solution valid for the
% given regularization parameters.
%
% Syntax: [a,b,g,ind,X_mer,y_mer,Rs,Q] = perturbc(C)
%
% a: alpha coefficients
% b: bias
% g: partial derivatives of cost function w.r.t. alpha coefficients
% ind: cell array containing indices of margin, error and reserve vectors
% ind{1}: indices of margin vectors
% ind{2}: indices of error vectors
% ind{3}: indices of reserve vectors
% X_mer: matrix of margin, error and reserve vectors stored columnwise
% y_mer: column vector of class labels (-1/+1) for margin, error and reserve vectors
% Rs: inverse of extended kernel matrix for margin vectors
% Q: extended kernel matrix for all vectors
% C: soft-margin regularization parameter(s)
% dimensionality of C assumption
% 1-dimensional vector universal regularization parameter
% 2-dimensional vector class-conditional regularization parameters (-1/+1)
% n-dimensional vector regularization parameter per example
% (where n = # of examples)
%
% Version 3.22e -- Comments to diehl@alumni.cmu.edu
%
function [a,b,g,ind,X,y,Rs,Q] = perturbc(C_new)
% flags for example state
MARGIN = 1;
ERROR = 2;
RESERVE = 3;
UNLEARNED = 4;
% define global variables
global a; % alpha coefficients
global b; % bias
global C; % regularization parameters
global deps; % jitter factor in kernel matrix
global g; % partial derivatives of cost function w.r.t. alpha coefficients
global ind; % cell array containing indices of margin, error, reserve and unlearned vectors
global perturbations; % number of perturbations
global Q; % extended kernel matrix for all vectors
global Rs; % inverse of extended kernel matrix for margin vectors
global scale; % kernel scale
global type; % kernel type
global X; % matrix of margin, error, reserve and unlearned vectors stored columnwise
global y; % column vector of class labels (-1/+1) for margin, error, reserve and unlearned vectors
kernel_evals_begin = kevals;
% create a vector containing the regularization parameter
% for each example if necessary
if (length(C_new) == 1) % same regularization parameter for all examples
C_new = C_new*ones(size(y));
elseif (length(C_new) == 2) % class-conditional regularization parameters
flags = (y == -1);
C_new = C_new(1)*flags + C_new(2)*(~flags);
end;
% compute the regularization sensitivities
lambda = C_new-C;
% if there are no error vectors initially...
if (length(ind{ERROR}) == 0)
% find all the examples that have changing regularization parameters
inde = find(lambda ~= 0);
% find the subset of the above examples that could become error vectors
delta_p = (a(inde)-C(inde))./lambda(inde);
i = find(delta_p > 0);
% determine the minimum acceptable change in p and adjust the regularization parameters
p = min([delta_p(i) ; 1]);
C = C + lambda*p;
% if one example becomes an error vector, perform the necessary bookkeeping
if (p < 1)
i = find(delta_p == p);
indco = bookkeeping(inde(i),MARGIN,ERROR);
updateRQ(indco);
end;
else
p = 0;
end;
% if there are error vectors to adjust...
if (p < 1)
% compute sum{k in E} Qik lambda k and sum{k in E} yk lambda k
SQl = ((y*y(ind{ERROR})').*kernel(X,X(:,ind{ERROR}),type,scale))*lambda(ind{ERROR});
SQl(ind{ERROR}) = SQl(ind{ERROR}) + deps*lambda(ind{ERROR});
Syl = y(ind{ERROR})'*lambda(ind{ERROR});
end;
s = sprintf('p = %.2f',p);
disp(s);
% change the regularization parameters incrementally
disp_p_delta = 0.2;
disp_p_count = 1;
num_MVs = length(ind{MARGIN});
perturbations = 0;
while (p < 1)
perturbations = perturbations + 1;
% compute beta and gamma
if (num_MVs > 0)
v = zeros(num_MVs+1,1);
if (p < 1-eps)
v(1) = -Syl - sum(y.*a)/(1-p);
else
v(1) = -Syl;
end;
v(2:num_MVs+1) = -SQl(ind{MARGIN});
beta = Rs*v;
gamma = zeros(size(Q,2),1);
ind_temp = [ind{ERROR} ind{RESERVE} ind{UNLEARNED}];
if (length(ind_temp) > 0)
gamma(ind_temp) = Q(:,ind_temp)'*beta + SQl(ind_temp);
end;
else
beta = 0;
gamma = SQl;
end;
% minimum acceptable parameter change
[min_delta_p,indss,cstatus,nstatus] = min_delta_p_c(p,gamma,beta,lambda);
% update a, b, g and p
if (length(ind{ERROR}) > 0)
a(ind{ERROR}) = a(ind{ERROR}) + lambda(ind{ERROR})*min_delta_p;
end;
if (num_MVs > 0)
a(ind{MARGIN}) = a(ind{MARGIN}) + beta(2:num_MVs+1)*min_delta_p;
end;
b = b + beta(1)*min_delta_p;
g = g + gamma*min_delta_p;
p = p + min_delta_p;
C = C + lambda*min_delta_p;
% perform bookkeeping
indco = bookkeeping(indss,cstatus,nstatus);
% update SQl and Syl when the status of indss changes from MARGIN to ERROR
if ((cstatus == MARGIN) & (nstatus == ERROR))
SQl = SQl + Q(indco,:)'*lambda(indss);
Syl = Syl + y(indss)*lambda(indss);
end;
% set g(ind{MARGIN}) to zero
g(ind{MARGIN}) = 0;
% update Rs and Q if necessary
if (nstatus == MARGIN)
num_MVs = num_MVs + 1;
if (num_MVs > 1)
% compute beta and gamma for indss
beta = -Rs*Q(:,indss);
gamma = kernel(X(:,indss),X(:,indss),type,scale) + deps + Q(:,indss)'*beta;
end;
% expand Rs and Q
updateRQ(beta,gamma,indss);
elseif (cstatus == MARGIN)
% compress Rs and Q
num_MVs = num_MVs - 1;
updateRQ(indco);
end;
% update SQl and Syl when the status of indss changes from ERROR to MARGIN
if ((cstatus == ERROR) & (nstatus == MARGIN))
SQl = SQl - Q(num_MVs+1,:)'*lambda(indss);
Syl = Syl - y(indss)*lambda(indss);
end;
if (p >= disp_p_delta*disp_p_count)
disp_p_count = disp_p_count + 1;
s = sprintf('p = %.2f',p);
disp(s);
end;
end;
disp('Perturbation complete!');
% summary statistics
s = sprintf('\nMargin vectors:\t\t%d',length(ind{MARGIN}));
disp(s);
s = sprintf('Error vectors:\t\t%d',length(ind{ERROR}));
disp(s);
s = sprintf('Reserve vectors:\t%d',length(ind{RESERVE}));
disp(s);
s = sprintf('Kernel evaluations:\t%d\n',-kernel_evals_begin+kevals);
disp(s);