-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
322 lines (259 loc) · 11 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
#!/usr/bin/env python3
import argparse
import cv2
import h5py
import joblib
import matplotlib.pyplot as plt
import numpy as np
import os
import random
import sys
from random import randrange
from sklearn.model_selection import train_test_split
from sklearn.ensemble import RandomForestClassifier
from sklearn import svm, metrics, preprocessing
from common import *
#
# RF Tuning (optional)
#
class random_forest_params:
treeCount = 0
maxDepth = None
seed = 42
accuracy = 0
modelSize = None
def __init__(self, treeCount, maxDepth, seed, accuracy, modelSize):
self.treeCount = treeCount
self.maxDepth = maxDepth
self.seed = seed
self.accuracy = accuracy
self.modelSize = modelSize
class random_forest_params_iterator:
paramsTable = []
current = 0
def __init__(self, paramsTable):
self.paramsTable = paramsTable
def __iter__(self):
return self
def __next__(self):
if self.current >= len(self.paramsTable):
raise StopIteration
params = self.paramsTable[self.current]
self.current += 1
result = []
result.append(params.treeCount)
result.append(params.maxDepth)
result.append(params.accuracy)
if params.modelSize:
result.append(params.modelSize)
result.append(params.seed)
return result
class tune_range:
def __init__(self, Min, Max):
self.Min = Min
self.Max = Max
def TuneRangeException():
return argparse.ArgumentTypeError("Provide an integer range like so '1,3'")
def GetTuneRange(value):
try:
values = value.split(',')
if len(values) == 2:
Min = int(values[0])
Max = int(values[1])
if Min < Max:
return tune_range(Min, Max)
raise TuneRangeException()
except ValueError:
raise TuneRangeException()
def TuneRandomForest(args, trainX, testX, trainY, testY):
if args.show_model_size:
import emlearn
from emlearn.evaluate import trees
minTrees = 5
maxTrees = 15
if args.tune_trees is not None:
minTrees = args.tune_trees.Min
maxTrees = args.tune_trees.Max
minDepth = 6
maxDepth = 10
if args.tune_depth is not None:
minDepth = args.tune_depth.Min
maxDepth = args.tune_depth.Max
iterations = 0
totalIterations = float((maxTrees - minTrees + 1)*(maxDepth - minDepth + 1))
paramsTable = []
for treeCount in range(minTrees, maxTrees+1):
for maxDepth in range(minDepth, maxDepth+1):
clf = RandomForestClassifier(n_estimators=treeCount,
max_depth = maxDepth,
random_state=args.seed)
clf.fit(trainX, trainY)
predY = clf.predict(testX)
accuracy = metrics.accuracy_score(predY, testY)
modelSize = None
if args.show_model_size:
SaveModel(clf, ".tuning_model")
model = joblib.load(".tuning_model")
modelSize = emlearn.evaluate.trees.model_size_bytes(model)
params = random_forest_params(treeCount, maxDepth, args.seed, accuracy, modelSize)
paramsTable.append(params)
iterations += 1
print("Tuning RF {:.2f}%".format((float(iterations) / totalIterations)*100), end='\r')
# Remove tuning_model
if args.show_model_size:
os.remove(".tuning_model")
paramsTable.sort(key = lambda x: x.accuracy, reverse = True)
try:
from tabulate import tabulate
headers = ["Trees", "Max depth", "Accuracy"]
if args.show_model_size:
headers.append("Size")
headers.append("Seed")
print(tabulate(random_forest_params_iterator(paramsTable), headers))
if args.output is not None:
with open(args.output, 'w') as f:
f.write(tabulate(random_forest_params_iterator(paramsTable), headers))
f.write("\n")
print("Wrote tuning report to {}".format(args.output))
except ImportError:
for params in paramsTable:
print("trees: {}, max-depth: {}, accuracy: {:.4f}, seed: {}"
.format(params.treeCount, params.maxDepth, params.accuracy, params.seed))
#
# Random Image Testing (optional)
#
def TestRandomImages(args, datasetPath):
labels = GetLabels(args.class_count)
flags = ReadFeatureFlags(datasetPath)
lbp = None
if flags & FEATURE_FLAG_LBP:
lbp = lbp_extractor()
randomCount = args.test_random
errorCount = 0
filenamesMap = {}
while randomCount > 0:
randomLabel = labels[randrange(len(labels))]
categoryPath = os.path.join(args.input, randomLabel)
if randomLabel in filenamesMap:
filenames = filenamesMap[randomLabel]
else:
filenames = os.listdir(categoryPath)
filenamesMap[randomLabel] = filenames
randomFilename = None
while True:
randomFilename = filenames[randrange(len(filenames))]
if IsJPEG(randomFilename):
break
assert randomFilename is not None
randomImagePath = os.path.join(categoryPath, randomFilename)
image = cv2.imread(randomImagePath)
features = ExtractFeatures(image, flags, lbp)
prediction = clf.predict(features)[0]
color = (0, 255, 0) # Green
if labels[prediction] != randomLabel:
errorCount += 1
color = (0, 0, 255) # Red
print("Incorrect prediction for {}: {} instead of {}".format(randomImagePath, labels[prediction], randomLabel))
elif args.verbose:
print("Correct prediction for {}".format(randomImagePath))
if args.show_random_images:
cv2.putText(image, labels[prediction], (20,30), cv2.FONT_HERSHEY_SIMPLEX, 1.0, color, 3)
plt.imshow(cv2.cvtColor(image, cv2.COLOR_BGR2RGB))
plt.show()
randomCount -= 1
# np.ndarray.tofile(features.astype("float32"), "features")
# print("Wrote features of '{}' to features".format(testImagePath))
successCount = args.test_random - errorCount
print("Outcome {}/{} {}%"
.format(successCount, args.test_random, (float(successCount)/float(args.test_random))*100.0))
#
#
#
def LoadDataset(path, testSize=0.15, seed=42):
dataFile = h5py.File(os.path.join(path, "data.h5"), 'r')
labelsFile = h5py.File(os.path.join(path, "labels.h5"), 'r')
features = np.array(dataFile['dataset_1'])
labels = np.array(labelsFile['dataset_1'])
dataFile.close()
labelsFile.close()
return train_test_split(np.array(features), np.array(labels), test_size=testSize, random_state=seed)
def SaveModel(clf, path):
# Using 'compress=3' may reduce the model size up to 5 times
joblib.dump(clf, path, compress=3)
if __name__ == '__main__':
prs = argparse.ArgumentParser()
# Global options
prs.add_argument("-i", "--input", type=str, default="DeepWeed1009", help="Path to the reduced dataset")
prs.add_argument("-o", "--output", type=str, default="model", help="Specify model output path")
prs.add_argument("-s", "--seed", type=int, default=9, help="Specify the random seed")
prs.add_argument("-c", "--class-count", type=int, default=len(LABELS), help="Specify the number of classes for classification")
prs.add_argument("-v", "--verbose", action="store_true", help="Print more info")
# Training options
prs.add_argument("-m", "--model-kind", type=str, choices=["rf", "svm"], default="rf", help="Specify the classifier to use")
# NOTE: action='store_false' doesn't work
prs.add_argument("--show-confusion-matrix", action="store_true", help="Show the confusion matrix")
prs.add_argument("--show-training-accuracy", action="store_true", help="Show training accuracy")
prs.add_argument("--show-balanced-accuracy", action="store_true", help="Show balanced accuracy")
#
prs.add_argument("--test-random", type=int, default=1, help="Test random images")
prs.add_argument("--show-random-images", action="store_true", help="Show tested images")
## RF options
prs.add_argument("--trees", type=int, default=15, help="Specify the number of trees for RF")
prs.add_argument("--max-depth", type=int, default=10, help="Specify trees' max depth for RF")
# Tuning options
prs.add_argument("-t", "--tune", action="store_true", help ="Tune RF")
prs.add_argument("--show-model-size", action="store_true",help="Show estimated model size during RF tuning")
prs.add_argument("--tune-trees", type=GetTuneRange, help="Specify the number of trees as a range for RF tuning")
prs.add_argument("--tune-depth", type=GetTuneRange, help="Specify the range of max depths for RF tuning")
##
args = prs.parse_args()
featuresDirPath = os.path.join(args.input, "output" + str(args.class_count))
trainX, testX, trainY, testY = LoadDataset(featuresDirPath, seed=args.seed)
if args.tune:
TuneRandomForest(args, trainX, testX, trainY, testY)
else:
clfKind = args.model_kind.lower()
if clfKind == 'rf':
numTrees = args.trees
maxDepth = args.max_depth
clf = RandomForestClassifier(n_estimators=numTrees, max_depth=maxDepth, random_state=args.seed)
print("RF trees: {}, max-depth: {}, seed: {}".format(numTrees, maxDepth, args.seed))
elif clfKind == 'svm':
# decisionFun = "ovo"
# clf = svm.SVC(decision_function_shape=decisionFun, gamma=0.1)
#print("SVM {}".format(decisionFun))
#clf = svm.LinearSVC(max_iter=10000)
clf = None
else:
assert False
clf.fit(trainX, trainY)
predY = clf.predict(testX)
accuracy = metrics.accuracy_score(predY, testY)
print("Accuracy: {}".format(accuracy))
if args.show_balanced_accuracy:
balancedAcc = metrics.balanced_accuracy_score(predY, testY)
print("Accuracy (balanced): {}".format(balancedAcc))
if args.show_training_accuracy:
trainPredY = clf.predict(trainX)
trainAcc = metrics.accuracy_score(trainPredY, trainY)
print("Training accuracy: {}".format(trainAcc))
balancedTrainAcc = metrics.balanced_accuracy_score(trainPredY, trainY)
print("Training accuracy (balanced): {}".format(balacnedTrainAcc))
if args.show_confusion_matrix:
from sklearn.metrics import ConfusionMatrixDisplay
disp = ConfusionMatrixDisplay.from_estimator(
clf,
testX,
testY,
display_labels=GetLabels(args.class_count),
cmap=plt.cm.Blues,
normalize=None,
)
disp.ax_.set_title("Confusion matrix, without normalization")
#print(disp.confusion_matrix)
plt.show()
# Save the model
SaveModel(clf, args.output)
print("Wrote model to {}".format(args.output))
if args.test_random > 0:
TestRandomImages(args, featuresDirPath)