forked from mattmacy/vnet.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
/
train.py
384 lines (327 loc) · 13.4 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
#!/usr/bin/env python3
from local import *
import time
import argparse
import torch
import numpy as np
import torch.nn as nn
import torch.nn.init as init
import torch.optim as optim
import torch.nn.functional as F
from torch.autograd import Variable
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
import torchbiomed.datasets as dset
import torchbiomed.transforms as biotransforms
import torchbiomed.loss as bioloss
import torchbiomed.utils as utils
import os
import sys
import math
import shutil
import setproctitle
import vnet
import make_graph
from functools import reduce
import operator
#nodule_masks = "normalized_mask_5_0"
#lung_masks = "normalized_seg_lungs_5_0"
#ct_images = "normalized_CT_5_0"
#target_split = [1, 1, 1]
#ct_targets = nodule_masks
nodule_masks = "normalized_brightened_CT_2_5"
lung_masks = "inferred_seg_lungs_2_5"
ct_images = "luna16_ct_normalized"
ct_targets = nodule_masks
target_split = [2, 2, 2]
def weights_init(m):
classname = m.__class__.__name__
if classname.find('Conv3d') != -1:
nn.init.kaiming_normal(m.weight)
m.bias.data.zero_()
def datestr():
now = time.gmtime()
return '{}{:02}{:02}_{:02}{:02}'.format(now.tm_year, now.tm_mon, now.tm_mday, now.tm_hour, now.tm_min)
def save_checkpoint(state, is_best, path, prefix, filename='checkpoint.pth.tar'):
prefix_save = os.path.join(path, prefix)
name = prefix_save + '_' + filename
torch.save(state, name)
if is_best:
shutil.copyfile(name, prefix_save + '_model_best.pth.tar')
def inference(args, loader, model, transforms):
src = args.inference
dst = args.save
model.eval()
nvols = reduce(operator.mul, target_split, 1)
# assume single GPU / batch size 1
for data in loader:
data, series, origin, spacing = data[0]
shape = data.size()
# convert names to batch tensor
if args.cuda:
data.pin_memory()
data = data.cuda()
data = Variable(data, volatile=True)
output = model(data)
_, output = output.max(1)
output = output.view(shape)
output = output.cpu()
# merge subvolumes and save
results = output.chunk(nvols)
results = map(lambda var : torch.squeeze(var.data).numpy().astype(np.int16), results)
volume = utils.merge_image([*results], target_split)
print("save {}".format(series))
utils.save_updated_image(volume, os.path.join(dst, series + ".mhd"), origin, spacing)
# performing post-train inference:
# train.py --resume <model checkpoint> --i <input directory (*.mhd)> --save <output directory>
def noop(x):
return x
def main():
parser = argparse.ArgumentParser()
parser.add_argument('--batchSz', type=int, default=10)
parser.add_argument('--dice', action='store_true')
parser.add_argument('--ngpu', type=int, default=1)
parser.add_argument('--nEpochs', type=int, default=300)
parser.add_argument('--start-epoch', default=0, type=int, metavar='N',
help='manual epoch number (useful on restarts)')
parser.add_argument('--resume', default='', type=str, metavar='PATH',
help='path to latest checkpoint (default: none)')
parser.add_argument('-e', '--evaluate', dest='evaluate', action='store_true',
help='evaluate model on validation set')
parser.add_argument('-i', '--inference', default='', type=str, metavar='PATH',
help='run inference on data set and save results')
# 1e-8 works well for lung masks but seems to prevent
# rapid learning for nodule masks
parser.add_argument('--weight-decay', '--wd', default=1e-8, type=float,
metavar='W', help='weight decay (default: 1e-8)')
parser.add_argument('--no-cuda', action='store_true')
parser.add_argument('--save')
parser.add_argument('--seed', type=int, default=1)
parser.add_argument('--opt', type=str, default='adam',
choices=('sgd', 'adam', 'rmsprop'))
args = parser.parse_args()
best_prec1 = 100.
args.cuda = not args.no_cuda and torch.cuda.is_available()
args.save = args.save or 'work/vnet.base.{}'.format(datestr())
nll = True
if args.dice:
nll = False
weight_decay = args.weight_decay
setproctitle.setproctitle(args.save)
torch.manual_seed(args.seed)
if args.cuda:
torch.cuda.manual_seed(args.seed)
print("build vnet")
model = vnet.VNet(elu=False, nll=nll)
batch_size = args.ngpu*args.batchSz
gpu_ids = range(args.ngpu)
model = nn.parallel.DataParallel(model, device_ids=gpu_ids)
if args.resume:
if os.path.isfile(args.resume):
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
args.start_epoch = checkpoint['epoch']
best_prec1 = checkpoint['best_prec1']
model.load_state_dict(checkpoint['state_dict'])
print("=> loaded checkpoint '{}' (epoch {})"
.format(args.evaluate, checkpoint['epoch']))
else:
print("=> no checkpoint found at '{}'".format(args.resume))
else:
model.apply(weights_init)
if nll:
train = train_nll
test = test_nll
class_balance = True
else:
train = train_dice
test = test_dice
class_balance = False
print(' + Number of params: {}'.format(
sum([p.data.nelement() for p in model.parameters()])))
if args.cuda:
model = model.cuda()
if os.path.exists(args.save):
shutil.rmtree(args.save)
os.makedirs(args.save, exist_ok=True)
# LUNA16 dataset isotropically scaled to 2.5mm^3
# and then truncated or zero-padded to 160x128x160
normMu = [-642.794]
normSigma = [459.512]
normTransform = transforms.Normalize(normMu, normSigma)
trainTransform = transforms.Compose([
transforms.ToTensor(),
normTransform
])
testTransform = transforms.Compose([
transforms.ToTensor(),
normTransform
])
if ct_targets == nodule_masks:
masks = lung_masks
else:
masks = None
if args.inference != '':
if not args.resume:
print("args.resume must be set to do inference")
exit(1)
kwargs = {'num_workers': 1} if args.cuda else {}
src = args.inference
dst = args.save
inference_batch_size = args.ngpu
root = os.path.dirname(src)
images = os.path.basename(src)
dataset = dset.LUNA16(root=root, images=images, transform=testTransform, split=target_split, mode="infer")
loader = DataLoader(dataset, batch_size=inference_batch_size, shuffle=False, collate_fn=noop, **kwargs)
inference(args, loader, model, trainTransform)
return
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {}
print("loading training set")
trainSet = dset.LUNA16(root='luna16', images=ct_images, targets=ct_targets,
mode="train", transform=trainTransform,
class_balance=class_balance, split=target_split, seed=args.seed, masks=masks)
trainLoader = DataLoader(trainSet, batch_size=batch_size, shuffle=True, **kwargs)
print("loading test set")
testLoader = DataLoader(
dset.LUNA16(root='luna16', images=ct_images, targets=ct_targets,
mode="test", transform=testTransform, seed=args.seed, masks=masks, split=target_split),
batch_size=batch_size, shuffle=False, **kwargs)
target_mean = trainSet.target_mean()
bg_weight = target_mean / (1. + target_mean)
fg_weight = 1. - bg_weight
print(bg_weight)
class_weights = torch.FloatTensor([bg_weight, fg_weight])
if args.cuda:
class_weights = class_weights.cuda()
if args.opt == 'sgd':
optimizer = optim.SGD(model.parameters(), lr=1e-1,
momentum=0.99, weight_decay=weight_decay)
elif args.opt == 'adam':
optimizer = optim.Adam(model.parameters(), weight_decay=weight_decay)
elif args.opt == 'rmsprop':
optimizer = optim.RMSprop(model.parameters(), weight_decay=weight_decay)
trainF = open(os.path.join(args.save, 'train.csv'), 'w')
testF = open(os.path.join(args.save, 'test.csv'), 'w')
err_best = 100.
for epoch in range(1, args.nEpochs + 1):
adjust_opt(args.opt, optimizer, epoch)
train(args, epoch, model, trainLoader, optimizer, trainF, class_weights)
err = test(args, epoch, model, testLoader, optimizer, testF, class_weights)
is_best = False
if err < best_prec1:
is_best = True
best_prec1 = err
save_checkpoint({'epoch': epoch,
'state_dict': model.state_dict(),
'best_prec1': best_prec1},
is_best, args.save, "vnet")
os.system('./plot.py {} {} &'.format(len(trainLoader), args.save))
trainF.close()
testF.close()
def train_nll(args, epoch, model, trainLoader, optimizer, trainF, weights):
model.train()
nProcessed = 0
nTrain = len(trainLoader.dataset)
for batch_idx, (data, target) in enumerate(trainLoader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
target = target.view(target.numel())
loss = F.nll_loss(output, target, weight=weights)
dice_loss = bioloss.dice_error(output, target)
# make_graph.save('/tmp/t.dot', loss.creator); assert(False)
loss.backward()
optimizer.step()
nProcessed += len(data)
pred = output.data.max(1)[1] # get the index of the max log-probability
incorrect = pred.ne(target.data).cpu().sum()
err = 100.*incorrect/target.numel()
partialEpoch = epoch + batch_idx / len(trainLoader) - 1
print('Train Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.4f}\tError: {:.3f}\t Dice: {:.6f}'.format(
partialEpoch, nProcessed, nTrain, 100. * batch_idx / len(trainLoader),
loss.data[0], err, dice_loss))
trainF.write('{},{},{}\n'.format(partialEpoch, loss.data[0], err))
trainF.flush()
def test_nll(args, epoch, model, testLoader, optimizer, testF, weights):
model.eval()
test_loss = 0
dice_loss = 0
incorrect = 0
numel = 0
for data, target in testLoader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
target = target.view(target.numel())
numel += target.numel()
output = model(data)
test_loss += F.nll_loss(output, target, weight=weights).data[0]
dice_loss += bioloss.dice_error(output, target)
pred = output.data.max(1)[1] # get the index of the max log-probability
incorrect += pred.ne(target.data).cpu().sum()
test_loss /= len(testLoader) # loss function already averages over batch size
dice_loss /= len(testLoader)
err = 100.*incorrect/numel
print('\nTest set: Average loss: {:.4f}, Error: {}/{} ({:.3f}%) Dice: {:.6f}\n'.format(
test_loss, incorrect, numel, err, dice_loss))
testF.write('{},{},{}\n'.format(epoch, test_loss, err))
testF.flush()
return err
def train_dice(args, epoch, model, trainLoader, optimizer, trainF, weights):
model.train()
nProcessed = 0
nTrain = len(trainLoader.dataset)
for batch_idx, (data, target) in enumerate(trainLoader):
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data), Variable(target)
optimizer.zero_grad()
output = model(data)
loss = bioloss.dice_loss(output, target)
# make_graph.save('/tmp/t.dot', loss.creator); assert(False)
loss.backward()
optimizer.step()
nProcessed += len(data)
err = 100.*(1. - loss.data[0])
partialEpoch = epoch + batch_idx / len(trainLoader) - 1
print('Train Epoch: {:.2f} [{}/{} ({:.0f}%)]\tLoss: {:.8f}\tError: {:.8f}'.format(
partialEpoch, nProcessed, nTrain, 100. * batch_idx / len(trainLoader),
loss.data[0], err))
trainF.write('{},{},{}\n'.format(partialEpoch, loss.data[0], err))
trainF.flush()
def test_dice(args, epoch, model, testLoader, optimizer, testF, weights):
model.eval()
test_loss = 0
incorrect = 0
for data, target in testLoader:
if args.cuda:
data, target = data.cuda(), target.cuda()
data, target = Variable(data, volatile=True), Variable(target)
output = model(data)
loss = bioloss.dice_loss(output, target).data[0]
test_loss += loss
incorrect += (1. - loss)
test_loss /= len(testLoader) # loss function already averages over batch size
nTotal = len(testLoader)
err = 100.*incorrect/nTotal
print('\nTest set: Average Dice Coeff: {:.4f}, Error: {}/{} ({:.0f}%)\n'.format(
test_loss, incorrect, nTotal, err))
testF.write('{},{},{}\n'.format(epoch, test_loss, err))
testF.flush()
return err
def adjust_opt(optAlg, optimizer, epoch):
if optAlg == 'sgd':
if epoch < 150:
lr = 1e-1
elif epoch == 150:
lr = 1e-2
elif epoch == 225:
lr = 1e-3
else:
return
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
main()