-
Notifications
You must be signed in to change notification settings - Fork 0
/
simplex.go
491 lines (448 loc) · 12.7 KB
/
simplex.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
// Package simplex implements simplex noise
package simplex
/*
* Based on the Java implementation of SimplexNoise
* by Stefan Gustavson
*
* obtained from
* http://webstaff.itn.liu.se/~stegu/simplexnoise/SimplexNoise.java
* on 2014-02-16
*
* and described in
* http://staffwww.itn.liu.se/~stegu/simplexnoise/simplexnoise.pdf
*/
// this is the original comment from the Java code:
/*
* A speed-improved simplex noise algorithm for 2D, 3D and 4D in Java.
*
* Based on example code by Stefan Gustavson (stegu@itn.liu.se).
* Optimisations by Peter Eastman (peastman@drizzle.stanford.edu).
* Better rank ordering method by Stefan Gustavson in 2012.
*
* This could be speeded up even further, but it's useful as it is.
*
* Version 2012-03-09
*
* This code was placed in the public domain by its original author,
* Stefan Gustavson. You may use it as you see fit, but
* attribution is appreciated.
*
*/
import (
"math"
"math/rand"
)
type Simplex struct {
// this is a permutation of the numbers 0-255
mix [256]uint8
}
func New(r *rand.Rand) *Simplex {
s := &Simplex{}
// initialize it
for i := 0; i < 256; i++ {
s.mix[i] = uint8(i)
}
// now randomize the permutation
for i := 0; i < 255; i++ {
j := r.Int31() & 0xFF
if int(j) > i {
s.mix[i], s.mix[j] = s.mix[j], s.mix[i]
}
}
return s
}
type grad2 struct {
dx, dy float64
}
type grad3 struct {
dx, dy, dz float64
}
type grad4 struct {
dx, dy, dz, dw float64
}
func (g grad3) dot(x, y float64) float64 {
return g.dx*x + g.dy*y
}
func (g grad3) dot3(x, y, z float64) float64 {
return g.dx*x + g.dy*y + g.dz*z
}
func (g grad4) dot(x, y, z, w float64) float64 {
return g.dx*x + g.dy*y + g.dz*z + g.dw*w
}
var g3 = [...]grad3{
grad3{1, 1, 0},
grad3{-1, 1, 0},
grad3{1, -1, 0},
grad3{-1, -1, 0},
grad3{1, 0, 1},
grad3{-1, 0, 1},
grad3{1, 0, -1},
grad3{-1, 0, -1},
grad3{0, 1, 1},
grad3{0, -1, 1},
grad3{0, 1, -1},
grad3{0, -1, -1},
}
var g4 = [...]grad4{
grad4{0, 1, 1, 1}, grad4{0, 1, 1, -1}, grad4{0, 1, -1, 1}, grad4{0, 1, -1, -1},
grad4{0, -1, 1, 1}, grad4{0, -1, 1, -1}, grad4{0, -1, -1, 1}, grad4{0, -1, -1, -1},
grad4{1, 0, 1, 1}, grad4{1, 0, 1, -1}, grad4{1, 0, -1, 1}, grad4{1, 0, -1, -1},
grad4{-1, 0, 1, 1}, grad4{-1, 0, 1, -1}, grad4{-1, 0, -1, 1}, grad4{-1, 0, -1, -1},
grad4{1, 1, 0, 1}, grad4{1, 1, 0, -1}, grad4{1, -1, 0, 1}, grad4{1, -1, 0, -1},
grad4{-1, 1, 0, 1}, grad4{-1, 1, 0, -1}, grad4{-1, -1, 0, 1}, grad4{-1, -1, 0, -1},
grad4{1, 1, 1, 0}, grad4{1, 1, -1, 0}, grad4{1, -1, 1, 0}, grad4{1, -1, -1, 0},
grad4{-1, 1, 1, 0}, grad4{-1, 1, -1, 0}, grad4{-1, -1, 1, 0}, grad4{-1, -1, -1, 0},
}
func (s *Simplex) getPerm(k int) int {
return int(s.mix[k&0xff])
}
func (s *Simplex) getPermMod12(k int) int {
return s.getPerm(k) % 12
}
func fastfloor(x float64) int {
return int(math.Floor(x))
}
var F2 = 0.5 * (math.Sqrt(3.0) - 1.0)
var G2 = (3.0 - math.Sqrt(3.0)) / 6.0
const F3 = 1.0 / 3.0
const G3 = 1.0 / 6.0
var F4 = (math.Sqrt(5.0) - 1.0) / 4.0
var G4 = (5.0 - math.Sqrt(5.0)) / 20.0
func (s *Simplex) Noise2(x, y float64) float64 {
//double n0, n1, n2; // Noise contributions from the three corners
// Skew the input space to determine which simplex cell we're in
h := (x + y) * F2 // Hairy factor for 2D
i := fastfloor(x + h)
j := fastfloor(y + h)
t := float64(i+j) * G2
X0 := float64(i) - t // Unskew the cell origin back to (x,y) space
Y0 := float64(j) - t
x0 := x - float64(X0) // The x,y distances from the cell origin
y0 := y - float64(Y0)
//log.Printf("X (%d,%d) x (%g,%g)", X0, Y0, x0, y0)
// For the 2D case, the simplex shape is an equilateral triangle.
// Determine which simplex we are in.
var i1, j1 int // Offsets for second (middle) corner of simplex in (i,j) coords
if x0 > y0 {
// lower triangle, XY order: (0,0)->(1,0)->(1,1)
i1 = 1
j1 = 0
} else {
i1 = 0
j1 = 1
} // upper triangle, YX order: (0,0)->(0,1)->(1,1)
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
// c = (3-sqrt(3))/6
x1 := x0 - float64(i1) + G2 // Offsets for middle corner in (x,y) unskewed coords
y1 := y0 - float64(j1) + G2
x2 := x0 - 1.0 + 2.0*G2 // Offsets for last corner in (x,y) unskewed coords
y2 := y0 - 1.0 + 2.0*G2
// Work out the hashed gradient indices of the three simplex corners
ii := i & 255
jj := j & 255
gi0 := s.getPermMod12(ii + s.getPerm(jj))
gi1 := s.getPermMod12(ii + i1 + s.getPerm(jj+j1))
gi2 := s.getPermMod12(ii + 1 + s.getPerm(jj+1))
// Calculate the contribution from the three corners
t0 := 0.5 - x0*x0 - y0*y0
var n0 float64
if t0 < 0 {
n0 = 0.0
} else {
t0 *= t0
n0 = t0 * t0 * g3[gi0].dot(x0, y0) // (x,y) of grad3 used for 2D gradient
}
t1 := 0.5 - x1*x1 - y1*y1
var n1 float64
if t1 < 0 {
n1 = 0.0
} else {
t1 *= t1
n1 = t1 * t1 * g3[gi1].dot(x1, y1)
}
t2 := 0.5 - x2*x2 - y2*y2
var n2 float64
if t2 < 0 {
n2 = 0.0
} else {
t2 *= t2
n2 = t2 * t2 * g3[gi2].dot(x2, y2)
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2)
}
func (s *Simplex) Noise3(x, y, z float64) float64 {
//double n0, n1, n2, n3; // Noise contributions from the four corners
// Skew the input space to determine which simplex cell we're in
h := (x + y + z) * F3 // Very nice and simple skew factor for 3D
i := fastfloor(x + h)
j := fastfloor(y + h)
k := fastfloor(z + h)
t := float64(i+j+k) * G3
X0 := float64(i) - t // Unskew the cell origin back to (x,y,z) space
Y0 := float64(j) - t
Z0 := float64(k) - t
x0 := x - float64(X0) // The x,y,z distances from the cell origin
y0 := y - float64(Y0)
z0 := z - float64(Z0)
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
// Determine which simplex we are in.
var i1, j1, k1 int // Offsets for second corner of simplex in (i,j,k) coords
var i2, j2, k2 int // Offsets for third corner of simplex in (i,j,k) coords
if x0 >= y0 {
if y0 >= z0 {
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 1
k2 = 0 // X Y Z order
} else if x0 >= z0 {
i1 = 1
j1 = 0
k1 = 0
i2 = 1
j2 = 0
k2 = 1 // X Z Y order
} else {
i1 = 0
j1 = 0
k1 = 1
i2 = 1
j2 = 0
k2 = 1
} // Z X Y order
} else { // x0<y0
if y0 < z0 {
i1 = 0
j1 = 0
k1 = 1
i2 = 0
j2 = 1
k2 = 1 // Z Y X order
} else if x0 < z0 {
i1 = 0
j1 = 1
k1 = 0
i2 = 0
j2 = 1
k2 = 1 // Y Z X order
} else {
i1 = 0
j1 = 1
k1 = 0
i2 = 1
j2 = 1
k2 = 0
} // Y X Z order
}
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
// c = 1/6.
x1 := x0 - float64(i1) + G3 // Offsets for second corner in (x,y,z) coords
y1 := y0 - float64(j1) + G3
z1 := z0 - float64(k1) + G3
x2 := x0 - float64(i2) + 2.0*G3 // Offsets for third corner in (x,y,z) coords
y2 := y0 - float64(j2) + 2.0*G3
z2 := z0 - float64(k2) + 2.0*G3
x3 := x0 - 1.0 + 3.0*G3 // Offsets for last corner in (x,y,z) coords
y3 := y0 - 1.0 + 3.0*G3
z3 := z0 - 1.0 + 3.0*G3
// Work out the hashed gradient indices of the four simplex corners
//int ii = i & 255;
//int jj = j & 255;
//int kk = k & 255;
gi0 := s.getPermMod12(i + s.getPerm(j+s.getPerm(k)))
gi1 := s.getPermMod12(i + i1 + s.getPerm(j+j1+s.getPerm(k+k1)))
gi2 := s.getPermMod12(i + i2 + s.getPerm(j+j2+s.getPerm(k+k2)))
gi3 := s.getPermMod12(i + 1 + s.getPerm(j+1+s.getPerm(k+1)))
// Calculate the contribution from the four corners
t0 := 0.6 - x0*x0 - y0*y0 - z0*z0
var n0, n1, n2, n3 float64
if t0 < 0 {
n0 = 0.0
} else {
t0 *= t0
n0 = t0 * t0 * g3[gi0].dot3(x0, y0, z0)
}
t1 := 0.6 - x1*x1 - y1*y1 - z1*z1
if t1 < 0 {
n1 = 0.0
} else {
t1 *= t1
n1 = t1 * t1 * g3[gi1].dot3(x1, y1, z1)
}
t2 := 0.6 - x2*x2 - y2*y2 - z2*z2
if t2 < 0 {
n2 = 0.0
} else {
t2 *= t2
n2 = t2 * t2 * g3[gi2].dot3(x2, y2, z2)
}
t3 := 0.6 - x3*x3 - y3*y3 - z3*z3
if t3 < 0 {
n3 = 0.0
} else {
t3 *= t3
n3 = t3 * t3 * g3[gi3].dot3(x3, y3, z3)
}
// Add contributions from each corner to get the final noise value.
// The result is scaled to stay just inside [-1,1]
return 32.0 * (n0 + n1 + n2 + n3)
}
func ifexpr(cond bool, t, f int) int {
if cond {
return t
} else {
return f
}
}
func (s *Simplex) Noise4(x, y, z, w float64) float64 {
// Skew the (x,y,z,w) space to determine which cell of 24 simplices we're in
h := (x + y + z + w) * F4 // Factor for 4D skewing
i := fastfloor(x + h)
j := fastfloor(y + h)
k := fastfloor(z + h)
l := fastfloor(w + h)
t := float64(i+j+k+l) * G4 // Factor for 4D unskewing
X0 := float64(i) - t // Unskew the cell origin back to (x,y,z,w) space
Y0 := float64(j) - t
Z0 := float64(k) - t
W0 := float64(l) - t
x0 := x - float64(X0) // The x,y,z,w distances from the cell origin
y0 := y - float64(Y0)
z0 := z - float64(Z0)
w0 := w - float64(W0)
// For the 4D case, the simplex is a 4D shape I won't even try to describe.
// To find out which of the 24 possible simplices we're in, we need to
// determine the magnitude ordering of x0, y0, z0 and w0.
// Six pair-wise comparisons are performed between each possible pair
// of the four coordinates, and the results are used to rank the numbers.
rankx := 0
ranky := 0
rankz := 0
rankw := 0
if x0 > y0 {
rankx++
} else {
ranky++
}
if x0 > z0 {
rankx++
} else {
rankz++
}
if x0 > w0 {
rankx++
} else {
rankw++
}
if y0 > z0 {
ranky++
} else {
rankz++
}
if y0 > w0 {
ranky++
} else {
rankw++
}
if z0 > w0 {
rankz++
} else {
rankw++
}
var i1, j1, k1, l1 int // The integer offsets for the second simplex corner
var i2, j2, k2, l2 int // The integer offsets for the third simplex corner
var i3, j3, k3, l3 int // The integer offsets for the fourth simplex corner
// simplex[c] is a 4-vector with the numbers 0, 1, 2 and 3 in some order.
// Many values of c will never occur, since e.g. x>y>z>w makes x<z, y<w and x<w
// impossible. Only the 24 indices which have non-zero entries make any sense.
// We use a thresholding to set the coordinates in turn from the largest magnitude.
// Rank 3 denotes the largest coordinate.
i1 = ifexpr(rankx >= 3, 1, 0)
j1 = ifexpr(ranky >= 3, 1, 0)
k1 = ifexpr(rankz >= 3, 1, 0)
l1 = ifexpr(rankw >= 3, 1, 0)
// Rank 2 denotes the second largest coordinate.
i2 = ifexpr(rankx >= 2, 1, 0)
j2 = ifexpr(ranky >= 2, 1, 0)
k2 = ifexpr(rankz >= 2, 1, 0)
l2 = ifexpr(rankw >= 2, 1, 0)
// Rank 1 denotes the second smallest coordinate.
i3 = ifexpr(rankx >= 1, 1, 0)
j3 = ifexpr(ranky >= 1, 1, 0)
k3 = ifexpr(rankz >= 1, 1, 0)
l3 = ifexpr(rankw >= 1, 1, 0)
// The fifth corner has all coordinate offsets = 1, so no need to compute that.
x1 := x0 - float64(i1) + G4 // Offsets for second corner in (x,y,z,w) coords
y1 := y0 - float64(j1) + G4
z1 := z0 - float64(k1) + G4
w1 := w0 - float64(l1) + G4
x2 := x0 - float64(i2) + 2.0*G4 // Offsets for third corner in (x,y,z,w) coords
y2 := y0 - float64(j2) + 2.0*G4
z2 := z0 - float64(k2) + 2.0*G4
w2 := w0 - float64(l2) + 2.0*G4
x3 := x0 - float64(i3) + 3.0*G4 // Offsets for fourth corner in (x,y,z,float64(w)) coords
y3 := y0 - float64(j3) + 3.0*G4
z3 := z0 - float64(k3) + 3.0*G4
w3 := w0 - float64(l3) + 3.0*G4
x4 := x0 - 1.0 + 4.0*G4 // Offsets for last corner in (x,y,z,w) coords
y4 := y0 - 1.0 + 4.0*G4
z4 := z0 - 1.0 + 4.0*G4
w4 := w0 - 1.0 + 4.0*G4
// Work out the hashed gradient indices of the five simplex corners
ii := i // & 255;
jj := j // & 255;
kk := k // & 255;
ll := l // & 255;
p := func(n int) int { return s.getPerm(n) }
//#define p(n) get_perm(n)
gi0 := p(ii+p(jj+p(kk+p(ll)))) % 32
gi1 := p(ii+i1+p(jj+j1+p(kk+k1+p(ll+l1)))) % 32
gi2 := p(ii+i2+p(jj+j2+p(kk+k2+p(ll+l2)))) % 32
gi3 := p(ii+i3+p(jj+j3+p(kk+k3+p(ll+l3)))) % 32
gi4 := p(ii+1+p(jj+1+p(kk+1+p(ll+1)))) % 32
// Calculate the contribution from the five corners
var n0, n1, n2, n3, n4 float64 // Noise contributions from the five corners
t0 := 0.6 - x0*x0 - y0*y0 - z0*z0 - w0*w0
if t0 < 0 {
n0 = 0.0
} else {
t0 *= t0
n0 = t0 * t0 * g4[gi0].dot(x0, y0, z0, w0)
}
t1 := 0.6 - x1*x1 - y1*y1 - z1*z1 - w1*w1
if t1 < 0 {
n1 = 0.0
} else {
t1 *= t1
n1 = t1 * t1 * g4[gi1].dot(x1, y1, z1, w1)
}
t2 := 0.6 - x2*x2 - y2*y2 - z2*z2 - w2*w2
if t2 < 0 {
n2 = 0.0
} else {
t2 *= t2
n2 = t2 * t2 * g4[gi2].dot(x2, y2, z2, w2)
}
t3 := 0.6 - x3*x3 - y3*y3 - z3*z3 - w3*w3
if t3 < 0 {
n3 = 0.0
} else {
t3 *= t3
n3 = t3 * t3 * g4[gi3].dot(x3, y3, z3, w3)
}
t4 := 0.6 - x4*x4 - y4*y4 - z4*z4 - w4*w4
if t4 < 0 {
n4 = 0.0
} else {
t4 *= t4
n4 = t4 * t4 * g4[gi4].dot(x4, y4, z4, w4)
}
// Sum up and scale the result to cover the range [-1,1]
return 27.0 * (n0 + n1 + n2 + n3 + n4)
}