-
Notifications
You must be signed in to change notification settings - Fork 19
/
Copy pathWrenGA.cpp
175 lines (149 loc) · 5.62 KB
/
WrenGA.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
/****************************************************************************
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
******************************************************************************/
/****************************************************************************
*
* WrenGA.h
*
* Purpose: Implementation of the running Gaussian average background
* subtraction algorithm described in:
* "Pfinder: real-time tracking of the human body"
* by C. Wren et al (1997)
*
* Author: Donovan Parks, September 2007
*
* Please note that this is not an implementation of Pfinder. It implements
* a simple background subtraction algorithm where each pixel is represented
* by a single Gaussian and update using a simple weighting function.
******************************************************************************/
#include "WrenGA.hpp"
using namespace Algorithms::BackgroundSubtraction;
WrenGA::WrenGA()
{
m_gaussian = NULL;
}
WrenGA::~WrenGA()
{
if(m_gaussian != NULL)
delete[] m_gaussian;
}
void WrenGA::Initalize(const BgsParams& param)
{
m_params = (WrenParams&)param;
m_variance = 36.0f;
// GMM for each pixel
m_gaussian = new GAUSSIAN[m_params.Size()];
for(unsigned int i = 0; i < m_params.Size(); ++i)
{
for(int ch = 0; ch < NUM_CHANNELS; ++ch)
{
m_gaussian[i].mu[ch] = 0;
m_gaussian[i].var[ch] = 0;
}
}
m_background = cvCreateImage(cvSize(m_params.Width(), m_params.Height()), IPL_DEPTH_8U, 3);
}
void WrenGA::InitModel(const RgbImage& data)
{
int pos = 0;
for(unsigned int r = 0; r < m_params.Height(); ++r)
{
for(unsigned int c = 0; c < m_params.Width(); ++c)
{
for(int ch = 0; ch < NUM_CHANNELS; ++ch)
{
m_gaussian[pos].mu[ch] = data(r,c,ch);
m_gaussian[pos].var[ch] = m_variance;
}
pos++;
}
}
}
void WrenGA::Update(int frame_num, const RgbImage& data, const BwImage& update_mask)
{
int pos = 0;
for(unsigned int r = 0; r < m_params.Height(); ++r)
{
for(unsigned int c = 0; c < m_params.Width(); ++c)
{
// perform conditional updating only if we are passed the learning phase
if(update_mask(r,c) == BACKGROUND || frame_num < m_params.LearningFrames())
{
float dR = m_gaussian[pos].mu[0] - data(r,c,0);
float dG = m_gaussian[pos].mu[1] - data(r,c,1);
float dB = m_gaussian[pos].mu[2] - data(r,c,2);
float dist = (dR*dR + dG*dG + dB*dB);
m_gaussian[pos].mu[0] -= m_params.Alpha()*(dR);
m_gaussian[pos].mu[1] -= m_params.Alpha()*(dG);
m_gaussian[pos].mu[2] -= m_params.Alpha()*(dB);
float sigmanew = m_gaussian[pos].var[0] + m_params.Alpha()*(dist-m_gaussian[pos].var[0]);
m_gaussian[pos].var[0] = sigmanew < 4 ? 4 : sigmanew > 5*m_variance ? 5*m_variance : sigmanew;
m_background(r, c, 0) = (unsigned char)(m_gaussian[pos].mu[0] + 0.5);
m_background(r, c, 1) = (unsigned char)(m_gaussian[pos].mu[1] + 0.5);
m_background(r, c, 2) = (unsigned char)(m_gaussian[pos].mu[2] + 0.5);
}
pos++;
}
}
}
void WrenGA::SubtractPixel(int r, int c, const RgbPixel& pixel,
unsigned char& low_threshold,
unsigned char& high_threshold)
{
unsigned int pos = r*m_params.Width()+c;
// calculate distance between model and pixel
float mu[NUM_CHANNELS];
float var[1];
float delta[NUM_CHANNELS];
float dist = 0;
for(int ch = 0; ch < NUM_CHANNELS; ++ch)
{
mu[ch] = m_gaussian[pos].mu[ch];
var[0] = m_gaussian[pos].var[0];
delta[ch] = mu[ch] - pixel(ch);
dist += delta[ch]*delta[ch];
}
// calculate the squared distance and see if pixel fits the B/G model
low_threshold = BACKGROUND;
high_threshold = BACKGROUND;
if(dist > m_params.LowThreshold()*var[0])
low_threshold = FOREGROUND;
if(dist > m_params.HighThreshold()*var[0])
high_threshold = FOREGROUND;
}
///////////////////////////////////////////////////////////////////////////////
//Input:
// data - a pointer to the data of a RGB image of the same size
//Output:
// output - a pointer to the data of a gray value image of the same size
// (the memory should already be reserved)
// values: 255-foreground, 125-shadow, 0-background
///////////////////////////////////////////////////////////////////////////////
void WrenGA::Subtract(int frame_num, const RgbImage& data,
BwImage& low_threshold_mask, BwImage& high_threshold_mask)
{
unsigned char low_threshold, high_threshold;
// update each pixel of the image
for(unsigned int r = 0; r < m_params.Height(); ++r)
{
for(unsigned int c = 0; c < m_params.Width(); ++c)
{
SubtractPixel(r, c, data(r,c), low_threshold, high_threshold);
low_threshold_mask(r,c) = low_threshold;
high_threshold_mask(r,c) = high_threshold;
}
}
}