-
Notifications
You must be signed in to change notification settings - Fork 11
/
Copy pathmain_epoch.py
329 lines (264 loc) · 12.5 KB
/
main_epoch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
# -*- coding: utf-8 -*-
"""
@Time : 2019/1/30 16:59
@Author : Wang Xin
@Email : wangxin_buaa@163.com
"""
import os
import shutil
import socket
import time
from datetime import datetime
import numpy as np
from tensorboardX import SummaryWriter
import torch
from torch import nn
from torch.optim import lr_scheduler
from torch.utils.data import DataLoader
import torch.nn.functional as F
from torchvision.transforms import transforms
from tqdm import tqdm
import dataloaders.transforms as tr
from libs import utils, criteria
from dataloaders.voc_aug import VOCAug
from libs.metrics import Result, AverageMeter
from network.get_models import get_models
from validation import validate
def parse_command():
import argparse
parser = argparse.ArgumentParser(description='DORN')
parser.add_argument('--resume', default=None, type=str, metavar='PATH',
help='path to latest checkpoint (default: ./run/run_1/checkpoint-5.pth.tar)')
parser.add_argument('--model', default='deeplabv2', type=str, help='train which network')
parser.add_argument('--crf', default=False, type=bool, help='if true, use crf as post process.')
parser.add_argument('--msc', default=False, type=bool, help='if true, use multi-scale input.')
parser.add_argument('--freeze', default=True, type=bool)
parser.add_argument('--iter_size', default=2, type=int, help='when iter_size, opt step forward')
parser.add_argument('-b', '--batch_size', default=4, type=int, help='mini-batch size (default: 4)')
parser.add_argument('--epochs', default=40, type=int, metavar='N',
help='number of total epochs to run (default: 15)')
parser.add_argument('--lr', '--learning-rate', default=0.01, type=float,
metavar='LR', help='initial learning rate (default 0.0001)')
parser.add_argument('--lr_patience', default=2, type=int,
help='Patience of LR scheduler. See documentation of ReduceLROnPlateau.')
parser.add_argument('--momentum', default=0.9, type=float, metavar='M',
help='momentum')
parser.add_argument('--weight_decay', '--wd', default=0.0005, type=float,
metavar='W', help='weight decay (default: 1e-4)')
parser.add_argument('-j', '--workers', default=10, type=int, metavar='N',
help='number of data loading workers (default: 10)')
parser.add_argument('--dataset', default='vocaug', type=str,
help='dataset used for training, kitti and nyu is available')
parser.add_argument('--manual_seed', default=1, type=int, help='Manually set random seed')
parser.add_argument('--gpu', default=None, type=str, help='if not none, use Single GPU')
parser.add_argument('--print-freq', '-p', default=10, type=int,
metavar='N', help='print frequency (default: 10)')
args = parser.parse_args()
return args
def create_loader(args):
if args.dataset == 'vocaug':
composed_transforms_tr = transforms.Compose([
tr.RandomSized(512),
tr.RandomRotate(15),
tr.RandomHorizontalFlip(),
tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
tr.ToTensor()])
composed_transforms_ts = transforms.Compose([
tr.FixedResize(size=(512, 512)),
tr.Normalize(mean=(0.485, 0.456, 0.406), std=(0.229, 0.224, 0.225)),
tr.ToTensor()])
train_set = VOCAug(split='train', transform=composed_transforms_tr)
val_set = VOCAug(split='val', transform=composed_transforms_ts)
else:
print('Database {} not available.'.format(args.dataset))
raise NotImplementedError
train_loader = DataLoader(train_set, batch_size=args.batch_size, shuffle=True,
num_workers=args.workers, pin_memory=True)
val_loader = DataLoader(val_set, batch_size=16, shuffle=False, num_workers=args.workers, pin_memory=True)
return train_loader, val_loader
def main():
args = parse_command()
print(args)
# if setting gpu id, the using single GPU
if args.gpu:
print('Single GPU Mode.')
os.environ["CUDA_VISIBLE_DEVICES"] = args.gpu
best_result = Result()
best_result.set_to_worst()
# set random seed
torch.manual_seed(args.manual_seed)
torch.cuda.manual_seed(args.manual_seed)
np.random.seed(args.manual_seed)
if torch.cuda.device_count() > 1:
print("Let's use", torch.cuda.device_count(), "GPUs!")
args.batch_size = args.batch_size * torch.cuda.device_count()
else:
print("Let's use GPU ", torch.cuda.current_device())
train_loader, val_loader = create_loader(args)
if args.resume:
assert os.path.isfile(args.resume), \
"=> no checkpoint found at '{}'".format(args.resume)
print("=> loading checkpoint '{}'".format(args.resume))
checkpoint = torch.load(args.resume)
start_epoch = checkpoint['epoch'] + 1
best_result = checkpoint['best_result']
optimizer = checkpoint['optimizer']
# solve 'out of memory'
model = checkpoint['model']
print("=> loaded checkpoint (epoch {})".format(checkpoint['epoch']))
# clear memory
del checkpoint
# del model_dict
torch.cuda.empty_cache()
else:
print("=> creating Model")
model = get_models(args)
print("=> model created.")
start_epoch = 0
# different modules have different learning rate
train_params = [{'params': model.get_1x_lr_params(), 'lr': args.lr},
{'params': model.get_10x_lr_params(), 'lr': args.lr * 10}]
optimizer = torch.optim.SGD(train_params, lr=args.lr, momentum=args.momentum, weight_decay=args.weight_decay)
# You can use DataParallel() whether you use Multi-GPUs or not
model = nn.DataParallel(model).cuda()
# when training, use reduceLROnPlateau to reduce learning rate
scheduler = lr_scheduler.ReduceLROnPlateau(
optimizer, 'min', patience=args.lr_patience)
# loss function
criterion = criteria._CrossEntropyLoss2d(size_average=True, batch_average=True)
# create directory path
output_directory = utils.get_output_directory(args)
if not os.path.exists(output_directory):
os.makedirs(output_directory)
best_txt = os.path.join(output_directory, 'best.txt')
config_txt = os.path.join(output_directory, 'config.txt')
# write training parameters to config file
if not os.path.exists(config_txt):
with open(config_txt, 'w') as txtfile:
args_ = vars(args)
args_str = ''
for k, v in args_.items():
args_str = args_str + str(k) + ':' + str(v) + ',\t\n'
txtfile.write(args_str)
# create log
log_path = os.path.join(output_directory, 'logs',
datetime.now().strftime('%b%d_%H-%M-%S') + '_' + socket.gethostname())
if os.path.isdir(log_path):
shutil.rmtree(log_path)
os.makedirs(log_path)
logger = SummaryWriter(log_path)
start_iter = len(train_loader) * start_epoch + 1
max_iter = len(train_loader) * (args.epochs - start_epoch + 1) + 1
iter_save = len(train_loader)
# iter_save = 1
# train
model.train()
if args.freeze:
model.module.freeze_backbone_bn()
output_directory = utils.get_output_directory(args, check=True)
average_meter = AverageMeter()
train_meter = AverageMeter()
for it in tqdm(range(start_iter, max_iter + 1), total=max_iter, leave=False, dynamic_ncols=True):
optimizer.zero_grad()
loss = 0
data_time = 0
gpu_time = 0
for _ in range(args.iter_size):
end = time.time()
try:
samples = next(loader_iter)
except:
loader_iter = iter(train_loader)
samples = next(loader_iter)
input = samples['image'].cuda()
target = samples['label'].cuda()
torch.cuda.synchronize()
data_time_ = time.time()
data_time += data_time_ - end
with torch.autograd.detect_anomaly():
preds = model(input) # @wx 注意输出
# print('#train preds size:', len(preds))
# print('#train preds[0] size:', preds[0].size())
iter_loss = 0
if args.msc:
for pred in preds:
# Resize labels for {100%, 75%, 50%, Max} logits
target_ = utils.resize_labels(target, shape=(pred.size()[-2], pred.size()[-1]))
# print('#train pred size:', pred.size())
iter_loss += criterion(pred, target_)
else:
pred = preds
target_ = utils.resize_labels(target, shape=(pred.size()[-2], pred.size()[-1]))
# print('#train pred size:', pred.size())
# print('#train target size:', target.size())
iter_loss += criterion(pred, target_)
# Backpropagate (just compute gradients wrt the loss)
iter_loss /= args.iter_size
iter_loss.backward()
loss += float(iter_loss)
gpu_time += time.time() - data_time_
torch.cuda.synchronize()
# Update weights with accumulated gradients
optimizer.step()
# measure accuracy and record loss
result = Result()
pred = F.softmax(pred, dim=1)
result.evaluate(pred.data.cpu().numpy(), target.data.cpu().numpy(), n_class=21)
average_meter.update(result, gpu_time, data_time, input.size(0))
train_meter.update(result, gpu_time, data_time, input.size(0))
if it % args.print_freq == 0:
print('=> output: {}'.format(output_directory))
print('Train Iter: [{0}/{1}]\t'
't_Data={data_time:.3f}({average.data_time:.3f}) '
't_GPU={gpu_time:.3f}({average.gpu_time:.3f})\n\t'
'Loss={Loss:.5f} '
'MeanAcc={result.mean_acc:.3f}({average.mean_acc:.3f}) '
'MIOU={result.mean_iou:.3f}({average.mean_iou:.3f}) '
.format(it, max_iter, data_time=data_time, gpu_time=gpu_time,
Loss=loss, result=result, average=average_meter.average()))
logger.add_scalar('Train/Loss', loss, it)
logger.add_scalar('Train/mean_acc', result.mean_iou, it)
logger.add_scalar('Train/mean_iou', result.mean_acc, it)
if it % iter_save == 0:
epoch = it // iter_save
resu1t, img_merge = validate(args, val_loader, model, epoch=epoch, logger=logger)
# when rml doesn't fall, reduce learning rate
scheduler.step(result.mean_iou)
# save the change of learning_rate
for i, param_group in enumerate(optimizer.param_groups):
old_lr = float(param_group['lr'])
logger.add_scalar('Lr/lr_' + str(i), old_lr, it)
# vis the change between train and test
train_avg = train_meter.average()
logger.add_scalars('TrainVal/mean_acc',
{'train_mean_acc':train_avg.mean_acc, 'test_mean_acc':result.mean_acc}, epoch)
logger.add_scalars('TrainVal/mean_iou',
{'train_mean_iou':train_avg.mean_iou, 'test_mean_iou':result.mean_iou}, epoch)
train_meter.reset()
# remember best rmse and save checkpoint
is_best = result.mean_iou < best_result.mean_iou
if is_best:
best_result = result
with open(best_txt, 'w') as txtfile:
txtfile.write(
"epoch={}, mean_iou={:.3f}, mean_acc={:.3f}"
"t_gpu={:.4f}".
format(epoch, result.mean_iou, result.mean_acc, result.gpu_time))
if img_merge is not None:
img_filename = output_directory + '/comparison_best.png'
utils.save_image(img_merge, img_filename)
# save checkpoint for each epoch
utils.save_checkpoint({
'args': args,
'epoch': epoch,
'model': model,
'best_result': best_result,
'optimizer': optimizer,
}, is_best, it, output_directory)
# change to train mode
model.train()
if args.freeze:
model.module.freeze_backbone_bn()
logger.close()
if __name__ == '__main__':
main()