comments | edit_url |
---|---|
true |
给定两个整数 a
和 b
,求它们的除法的商 a/b
,要求不得使用乘号 '*'
、除号 '/'
以及求余符号 '%'
。
注意:
- 整数除法的结果应当截去(
truncate
)其小数部分,例如:truncate(8.345) = 8
以及truncate(-2.7335) = -2
- 假设我们的环境只能存储 32 位有符号整数,其数值范围是
[−231, 231−1]
。本题中,如果除法结果溢出,则返回231 − 1
示例 1:
输入:a = 15, b = 2
输出:7
解释:15/2 = truncate(7.5) = 7
示例 2:
输入:a = 7, b = -3 输出:-2 解释:7/-3 = truncate(-2.33333..) = -2
示例 3:
输入:a = 0, b = 1
输出:0
示例 4:
输入:a = 1, b = 1
输出:1
提示:
-231 <= a, b <= 231 - 1
b != 0
注意:本题与主站 29 题相同:https://leetcode.cn/problems/divide-two-integers/
除法本质上就是减法,题目要求我们计算出两个数相除之后的取整结果,其实就是计算被除数是多少个除数加上一个小于除数的数构成的。但是一次循环只能做一次减法,效率太低会导致超时,可借助快速幂的思想进行优化。
需要注意的是,由于题目明确要求最大只能使用 32 位有符号整数,所以需要将除数和被除数同时转换为负数进行计算。因为转换正数可能会导致溢出,如当被除数为 INT32_MIN
时,转换为正数时会大于 INT32_MAX
。
假设被除数为
class Solution:
def divide(self, a: int, b: int) -> int:
if b == 1:
return a
if a == -(2**31) and b == -1:
return 2**31 - 1
sign = (a > 0 and b > 0) or (a < 0 and b < 0)
a = -a if a > 0 else a
b = -b if b > 0 else b
ans = 0
while a <= b:
x = b
cnt = 1
while x >= (-(2**30)) and a <= (x << 1):
x <<= 1
cnt <<= 1
a -= x
ans += cnt
return ans if sign else -ans
class Solution {
public int divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == Integer.MIN_VALUE && b == -1) {
return Integer.MAX_VALUE;
}
boolean sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (Integer.MIN_VALUE >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
}
class Solution {
public:
int divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == INT_MIN && b == -1) {
return INT_MAX;
}
bool sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (INT_MIN >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
};
func divide(a int, b int) int {
if b == 1 {
return a
}
if a == math.MinInt32 && b == -1 {
return math.MaxInt32
}
sign := (a > 0 && b > 0) || (a < 0 && b < 0)
if a > 0 {
a = -a
}
if b > 0 {
b = -b
}
ans := 0
for a <= b {
x := b
cnt := 1
for x >= (math.MinInt32>>1) && a <= (x<<1) {
x <<= 1
cnt <<= 1
}
ans += cnt
a -= x
}
if sign {
return ans
}
return -ans
}
function divide(a: number, b: number): number {
if (b === 1) {
return a;
}
if (a === -(2 ** 31) && b === -1) {
return 2 ** 31 - 1;
}
const sign: boolean = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
let ans: number = 0;
while (a <= b) {
let x: number = b;
let cnt: number = 1;
while (x >= -(2 ** 30) && a <= x << 1) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
public class Solution {
public int Divide(int a, int b) {
if (b == 1) {
return a;
}
if (a == int.MinValue && b == -1) {
return int.MaxValue;
}
bool sign = (a > 0 && b > 0) || (a < 0 && b < 0);
a = a > 0 ? -a : a;
b = b > 0 ? -b : b;
int ans = 0;
while (a <= b) {
int x = b;
int cnt = 1;
while (x >= (int.MinValue >> 1) && a <= (x << 1)) {
x <<= 1;
cnt <<= 1;
}
ans += cnt;
a -= x;
}
return sign ? ans : -ans;
}
}
class Solution {
func divide(_ a: Int, _ b: Int) -> Int {
if b == 1 {
return a
}
if a == Int32.min && b == -1 {
return Int(Int32.max)
}
let sign = (a > 0 && b > 0) || (a < 0 && b < 0)
var a = a > 0 ? -a : a
let b = b > 0 ? -b : b
var ans = 0
while a <= b {
var x = b
var cnt = 1
while x >= (Int32.min >> 1) && a <= (x << 1) {
x <<= 1
cnt <<= 1
}
ans += cnt
a -= x
}
return sign ? ans : -ans
}
}