comments | edit_url |
---|---|
true |
符合下列属性的数组 arr
称为 山峰数组(山脉数组) :
arr.length >= 3
- 存在
i
(0 < i < arr.length - 1
)使得:arr[0] < arr[1] < ... arr[i-1] < arr[i]
arr[i] > arr[i+1] > ... > arr[arr.length - 1]
给定由整数组成的山峰数组 arr
,返回任何满足 arr[0] < arr[1] < ... arr[i - 1] < arr[i] > arr[i + 1] > ... > arr[arr.length - 1]
的下标 i
,即山峰顶部。
示例 1:
输入:arr = [0,1,0] 输出:1
示例 2:
输入:arr = [1,3,5,4,2] 输出:2
示例 3:
输入:arr = [0,10,5,2] 输出:1
示例 4:
输入:arr = [3,4,5,1] 输出:2
示例 5:
输入:arr = [24,69,100,99,79,78,67,36,26,19] 输出:2
提示:
3 <= arr.length <= 104
0 <= arr[i] <= 106
- 题目数据保证
arr
是一个山脉数组
进阶:很容易想到时间复杂度 O(n)
的解决方案,你可以设计一个 O(log(n))
的解决方案吗?
注意:本题与主站 852 题相同:https://leetcode.cn/problems/peak-index-in-a-mountain-array/
class Solution:
def peakIndexInMountainArray(self, arr: List[int]) -> int:
left, right = 1, len(arr) - 2
while left < right:
mid = (left + right) >> 1
if arr[mid] > arr[mid + 1]:
right = mid
else:
left = mid + 1
return left
class Solution {
public int peakIndexInMountainArray(int[] arr) {
int left = 1, right = arr.length - 2;
while (left < right) {
int mid = (left + right) >> 1;
if (arr[mid] > arr[mid + 1]) {
right = mid;
} else {
left = mid + 1;
}
}
return left;
}
}
class Solution {
public:
int peakIndexInMountainArray(vector<int>& arr) {
int left = 1, right = arr.size() - 2;
while (left < right) {
int mid = (left + right) >> 1;
if (arr[mid] > arr[mid + 1])
right = mid;
else
left = mid + 1;
}
return left;
}
};
func peakIndexInMountainArray(arr []int) int {
left, right := 1, len(arr)-2
for left < right {
mid := (left + right) >> 1
if arr[mid] > arr[mid+1] {
right = mid
} else {
left = mid + 1
}
}
return left
}
/**
* @param {number[]} arr
* @return {number}
*/
var peakIndexInMountainArray = function (arr) {
let left = 1;
let right = arr.length - 2;
while (left < right) {
const mid = (left + right) >> 1;
if (arr[mid] < arr[mid + 1]) {
left = mid + 1;
} else {
right = mid;
}
}
return left;
};
class Solution {
func peakIndexInMountainArray(_ arr: [Int]) -> Int {
var left = 1
var right = arr.count - 2
while left < right {
let mid = (left + right) / 2
if arr[mid] > arr[mid + 1] {
right = mid
} else {
left = mid + 1
}
}
return left
}
}