comments | edit_url |
---|---|
true |
给定三个字符串 s1
、s2
、s3
,请判断 s3
能不能由 s1
和 s2
交织(交错) 组成。
两个字符串 s
和 t
交织 的定义与过程如下,其中每个字符串都会被分割成若干 非空 子字符串:
s = s1 + s2 + ... + sn
t = t1 + t2 + ... + tm
|n - m| <= 1
- 交织 是
s1 + t1 + s2 + t2 + s3 + t3 + ...
或者t1 + s1 + t2 + s2 + t3 + s3 + ...
提示:a + b
意味着字符串 a
和 b
连接。
示例 1:
输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbcbcac" 输出:true
示例 2:
输入:s1 = "aabcc", s2 = "dbbca", s3 = "aadbbbaccc" 输出:false
示例 3:
输入:s1 = "", s2 = "", s3 = "" 输出:true
提示:
0 <= s1.length, s2.length <= 100
0 <= s3.length <= 200
s1
、s2
、和s3
都由小写英文字母组成
注意:本题与主站 97 题相同: https://leetcode.cn/problems/interleaving-string/
我们记字符串 false
。
接下来,我们设计一个函数
函数
如果 true
。
如果 true
。
同理,如果 true
。
否则,返回 false
。
为了避免重复计算,我们可以使用记忆化搜索。
时间复杂度
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
@cache
def dfs(i: int, j: int) -> bool:
if i >= m and j >= n:
return True
k = i + j
if i < m and s1[i] == s3[k] and dfs(i + 1, j):
return True
if j < n and s2[j] == s3[k] and dfs(i, j + 1):
return True
return False
m, n = len(s1), len(s2)
if m + n != len(s3):
return False
return dfs(0, 0)
class Solution {
private Map<List<Integer>, Boolean> f = new HashMap<>();
private String s1;
private String s2;
private String s3;
private int m;
private int n;
public boolean isInterleave(String s1, String s2, String s3) {
m = s1.length();
n = s2.length();
if (m + n != s3.length()) {
return false;
}
this.s1 = s1;
this.s2 = s2;
this.s3 = s3;
return dfs(0, 0);
}
private boolean dfs(int i, int j) {
if (i >= m && j >= n) {
return true;
}
var key = List.of(i, j);
if (f.containsKey(key)) {
return f.get(key);
}
int k = i + j;
boolean ans = false;
if (i < m && s1.charAt(i) == s3.charAt(k) && dfs(i + 1, j)) {
ans = true;
}
if (!ans && j < n && s2.charAt(j) == s3.charAt(k) && dfs(i, j + 1)) {
ans = true;
}
f.put(key, ans);
return ans;
}
}
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
int m = s1.size(), n = s2.size();
if (m + n != s3.size()) {
return false;
}
vector<vector<int>> f(m + 1, vector<int>(n + 1, -1));
function<bool(int, int)> dfs = [&](int i, int j) {
if (i >= m && j >= n) {
return true;
}
if (f[i][j] != -1) {
return f[i][j] == 1;
}
f[i][j] = 0;
int k = i + j;
if (i < m && s1[i] == s3[k] && dfs(i + 1, j)) {
f[i][j] = 1;
}
if (!f[i][j] && j < n && s2[j] == s3[k] && dfs(i, j + 1)) {
f[i][j] = 1;
}
return f[i][j] == 1;
};
return dfs(0, 0);
}
};
func isInterleave(s1 string, s2 string, s3 string) bool {
m, n := len(s1), len(s2)
if m+n != len(s3) {
return false
}
f := map[int]bool{}
var dfs func(int, int) bool
dfs = func(i, j int) bool {
if i >= m && j >= n {
return true
}
if v, ok := f[i*200+j]; ok {
return v
}
k := i + j
f[i*200+j] = (i < m && s1[i] == s3[k] && dfs(i+1, j)) || (j < n && s2[j] == s3[k] && dfs(i, j+1))
return f[i*200+j]
}
return dfs(0, 0)
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
const m = s1.length;
const n = s2.length;
if (m + n !== s3.length) {
return false;
}
const f: number[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(0));
const dfs = (i: number, j: number): boolean => {
if (i >= m && j >= n) {
return true;
}
if (f[i][j]) {
return f[i][j] === 1;
}
f[i][j] = -1;
if (i < m && s1[i] === s3[i + j] && dfs(i + 1, j)) {
f[i][j] = 1;
}
if (f[i][j] === -1 && j < n && s2[j] === s3[i + j] && dfs(i, j + 1)) {
f[i][j] = 1;
}
return f[i][j] === 1;
};
return dfs(0, 0);
}
public class Solution {
private int m;
private int n;
private string s1;
private string s2;
private string s3;
private int[,] f;
public bool IsInterleave(string s1, string s2, string s3) {
m = s1.Length;
n = s2.Length;
if (m + n != s3.Length) {
return false;
}
this.s1 = s1;
this.s2 = s2;
this.s3 = s3;
f = new int[m + 1, n + 1];
return dfs(0, 0);
}
private bool dfs(int i, int j) {
if (i >= m && j >= n) {
return true;
}
if (f[i, j] != 0) {
return f[i, j] == 1;
}
f[i, j] = -1;
if (i < m && s1[i] == s3[i + j] && dfs(i + 1, j)) {
f[i, j] = 1;
}
if (f[i, j] == -1 && j < n && s2[j] == s3[i + j] && dfs(i, j + 1)) {
f[i, j] = 1;
}
return f[i, j] == 1;
}
}
class Solution {
private var memo = [String: Bool]()
private var s1: [Character] = []
private var s2: [Character] = []
private var s3: [Character] = []
private var m = 0
private var n = 0
func isInterleave(_ s1: String, _ s2: String, _ s3: String) -> Bool {
m = s1.count
n = s2.count
if m + n != s3.count {
return false
}
self.s1 = Array(s1)
self.s2 = Array(s2)
self.s3 = Array(s3)
return dfs(0, 0)
}
private func dfs(_ i: Int, _ j: Int) -> Bool {
if i >= m && j >= n {
return true
}
let key = "\(i),\(j)"
if let cached = memo[key] {
return cached
}
let k = i + j
var ans = false
if i < m && s1[i] == s3[k] && dfs(i + 1, j) {
ans = true
}
if !ans && j < n && s2[j] == s3[k] && dfs(i, j + 1) {
ans = true
}
memo[key] = ans
return ans
}
}
我们可以将方法一中的记忆化搜索转化为动态规划。
定义
其中
答案即为
时间复杂度
我们注意到,状态
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
m, n = len(s1), len(s2)
if m + n != len(s3):
return False
f = [[False] * (n + 1) for _ in range(m + 1)]
f[0][0] = True
for i in range(m + 1):
for j in range(n + 1):
k = i + j - 1
if i and s1[i - 1] == s3[k]:
f[i][j] = f[i - 1][j]
if j and s2[j - 1] == s3[k]:
f[i][j] |= f[i][j - 1]
return f[m][n]
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int m = s1.length(), n = s2.length();
if (m + n != s3.length()) {
return false;
}
boolean[][] f = new boolean[m + 1][n + 1];
f[0][0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i > 0 && s1.charAt(i - 1) == s3.charAt(k)) {
f[i][j] = f[i - 1][j];
}
if (j > 0 && s2.charAt(j - 1) == s3.charAt(k)) {
f[i][j] |= f[i][j - 1];
}
}
}
return f[m][n];
}
}
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
int m = s1.size(), n = s2.size();
if (m + n != s3.size()) {
return false;
}
bool f[m + 1][n + 1];
memset(f, false, sizeof(f));
f[0][0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i > 0 && s1[i - 1] == s3[k]) {
f[i][j] = f[i - 1][j];
}
if (j > 0 && s2[j - 1] == s3[k]) {
f[i][j] |= f[i][j - 1];
}
}
}
return f[m][n];
}
};
func isInterleave(s1 string, s2 string, s3 string) bool {
m, n := len(s1), len(s2)
if m+n != len(s3) {
return false
}
f := make([][]bool, m+1)
for i := range f {
f[i] = make([]bool, n+1)
}
f[0][0] = true
for i := 0; i <= m; i++ {
for j := 0; j <= n; j++ {
k := i + j - 1
if i > 0 && s1[i-1] == s3[k] {
f[i][j] = f[i-1][j]
}
if j > 0 && s2[j-1] == s3[k] {
f[i][j] = (f[i][j] || f[i][j-1])
}
}
}
return f[m][n]
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
const m = s1.length;
const n = s2.length;
if (m + n !== s3.length) {
return false;
}
const f: boolean[][] = new Array(m + 1).fill(0).map(() => new Array(n + 1).fill(false));
f[0][0] = true;
for (let i = 0; i <= m; ++i) {
for (let j = 0; j <= n; ++j) {
const k = i + j - 1;
if (i > 0 && s1[i - 1] === s3[k]) {
f[i][j] = f[i - 1][j];
}
if (j > 0 && s2[j - 1] === s3[k]) {
f[i][j] = f[i][j] || f[i][j - 1];
}
}
}
return f[m][n];
}
public class Solution {
public bool IsInterleave(string s1, string s2, string s3) {
int m = s1.Length, n = s2.Length;
if (m + n != s3.Length) {
return false;
}
bool[,] f = new bool[m + 1, n + 1];
f[0, 0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i > 0 && s1[i - 1] == s3[k]) {
f[i, j] = f[i - 1, j];
}
if (j > 0 && s2[j - 1] == s3[k]) {
f[i, j] |= f[i, j - 1];
}
}
}
return f[m, n];
}
}
class Solution:
def isInterleave(self, s1: str, s2: str, s3: str) -> bool:
m, n = len(s1), len(s2)
if m + n != len(s3):
return False
f = [True] + [False] * n
for i in range(m + 1):
for j in range(n + 1):
k = i + j - 1
if i:
f[j] &= s1[i - 1] == s3[k]
if j:
f[j] |= f[j - 1] and s2[j - 1] == s3[k]
return f[n]
class Solution {
public boolean isInterleave(String s1, String s2, String s3) {
int m = s1.length(), n = s2.length();
if (m + n != s3.length()) {
return false;
}
boolean[] f = new boolean[n + 1];
f[0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i > 0) {
f[j] &= s1.charAt(i - 1) == s3.charAt(k);
}
if (j > 0) {
f[j] |= (f[j - 1] & s2.charAt(j - 1) == s3.charAt(k));
}
}
}
return f[n];
}
}
class Solution {
public:
bool isInterleave(string s1, string s2, string s3) {
int m = s1.size(), n = s2.size();
if (m + n != s3.size()) {
return false;
}
bool f[n + 1];
memset(f, false, sizeof(f));
f[0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i) {
f[j] &= s1[i - 1] == s3[k];
}
if (j) {
f[j] |= (s2[j - 1] == s3[k] && f[j - 1]);
}
}
}
return f[n];
}
};
func isInterleave(s1 string, s2 string, s3 string) bool {
m, n := len(s1), len(s2)
if m+n != len(s3) {
return false
}
f := make([]bool, n+1)
f[0] = true
for i := 0; i <= m; i++ {
for j := 0; j <= n; j++ {
k := i + j - 1
if i > 0 {
f[j] = (f[j] && s1[i-1] == s3[k])
}
if j > 0 {
f[j] = (f[j] || (s2[j-1] == s3[k] && f[j-1]))
}
}
}
return f[n]
}
function isInterleave(s1: string, s2: string, s3: string): boolean {
const m = s1.length;
const n = s2.length;
if (m + n !== s3.length) {
return false;
}
const f: boolean[] = new Array(n + 1).fill(false);
f[0] = true;
for (let i = 0; i <= m; ++i) {
for (let j = 0; j <= n; ++j) {
const k = i + j - 1;
if (i) {
f[j] = f[j] && s1[i - 1] === s3[k];
}
if (j) {
f[j] = f[j] || (f[j - 1] && s2[j - 1] === s3[k]);
}
}
}
return f[n];
}
public class Solution {
public bool IsInterleave(string s1, string s2, string s3) {
int m = s1.Length, n = s2.Length;
if (m + n != s3.Length) {
return false;
}
bool[] f = new bool[n + 1];
f[0] = true;
for (int i = 0; i <= m; ++i) {
for (int j = 0; j <= n; ++j) {
int k = i + j - 1;
if (i > 0) {
f[j] &= s1[i - 1] == s3[k];
}
if (j > 0) {
f[j] |= (f[j - 1] & s2[j - 1] == s3[k]);
}
}
}
return f[n];
}
}
class Solution {
func isInterleave(_ s1: String, _ s2: String, _ s3: String) -> Bool {
let m = s1.count, n = s2.count
if m + n != s3.count {
return false
}
let s1 = Array(s1), s2 = Array(s2), s3 = Array(s3)
var dp = Array(repeating: Array(repeating: false, count: n + 1), count: m + 1)
dp[0][0] = true
for i in 0...m {
for j in 0...n {
let k = i + j - 1
if i > 0 && s1[i - 1] == s3[k] {
dp[i][j] = dp[i][j] || dp[i - 1][j]
}
if j > 0 && s2[j - 1] == s3[k] {
dp[i][j] = dp[i][j] || dp[i][j - 1]
}
}
}
return dp[m][n]
}
}