-
Notifications
You must be signed in to change notification settings - Fork 2
/
train.py
202 lines (132 loc) · 5.88 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
import dataset
import tensorflow as tf
import time
from datetime import timedelta
import math
import random
import numpy as np
# Adding seed so that random initialization is consistent
from numpy.random import seed
seed(1)
from tensorflow import set_random_seed
set_random_seed(2)
batch_size = 32
# Prepare input data
classes = ['healthy','deficiency','powdery','burn']
num_classes = len(classes)
# 20% of the data will be used for validation
validation_size = 0.2
img_size = 128
num_channels = 3
train_path='./data/train/'
check_point_name = './canapest-multi-model'
# Load training and validation images and labels
data = dataset.read_train_sets(train_path, img_size, classes, validation_size=validation_size)
print("Complete reading input data. Will Now print a snippet of it")
print("Number of files in Training-set:\t\t{}".format(len(data.train.labels)))
print("Number of files in Validation-set:\t{}".format(len(data.valid.labels)))
session = tf.Session()
x = tf.placeholder(tf.float32, shape=[None, img_size,img_size,num_channels], name='x')
# Labels
y_true = tf.placeholder(tf.float32, shape=[None, num_classes], name='y_true')
y_true_cls = tf.argmax(y_true, dimension=1)
# Network graph params
filter_size_conv1 = 3
num_filters_conv1 = 32
filter_size_conv2 = 3
num_filters_conv2 = 32
filter_size_conv3 = 3
num_filters_conv3 = 64
fc_layer_size = 128
def create_weights(shape):
return tf.Variable(tf.truncated_normal(shape, stddev=0.05))
def create_biases(size):
return tf.Variable(tf.constant(0.05, shape=[size]))
def create_convolutional_layer(input, num_input_channels, conv_filter_size, num_filters):
'''Create a convolutional layer + max pool + relu activation'''
# Trainable weights and biases
weights = create_weights(shape=[conv_filter_size, conv_filter_size, num_input_channels, num_filters])
biases = create_biases(num_filters)
# Create the convolutional layer
layer = tf.nn.conv2d(input=input, filter=weights, strides=[1, 1, 1, 1], padding='SAME')
layer += biases
# Max-pooling.
layer = tf.nn.max_pool(value=layer, ksize=[1, 2, 2, 1], strides=[1, 2, 2, 1], padding='SAME')
# Relu activation function
layer = tf.nn.relu(layer)
return layer
def create_flatten_layer(layer):
'''Flatten layer of dimension [batch_size img_size img_size num_channels] to single column tensor'''
layer_shape = layer.get_shape()
num_features = layer_shape[1:4].num_elements()
# Flatten layer reshaped to num_features
layer = tf.reshape(layer, [-1, num_features])
return layer
def create_fc_layer(input, num_inputs, num_outputs, use_relu=True):
'''Create fully connected layer'''
#Trainable weights and biases
weights = create_weights(shape=[num_inputs, num_outputs])
biases = create_biases(num_outputs)
# Fully connected layer takes input x and produces wx+b
layer = tf.matmul(input, weights) + biases
if use_relu:
layer = tf.nn.relu(layer)
return layer
# Netwok graph
layer_conv1 = create_convolutional_layer(input=x,
num_input_channels=num_channels,
conv_filter_size=filter_size_conv1,
num_filters=num_filters_conv1)
layer_conv2 = create_convolutional_layer(input=layer_conv1,
num_input_channels=num_filters_conv1,
conv_filter_size=filter_size_conv2,
num_filters=num_filters_conv2)
layer_conv3= create_convolutional_layer(input=layer_conv2,
num_input_channels=num_filters_conv2,
conv_filter_size=filter_size_conv3,
num_filters=num_filters_conv3)
layer_flat = create_flatten_layer(layer_conv3)
layer_fc1 = create_fc_layer(input=layer_flat,
num_inputs=layer_flat.get_shape()[1:4].num_elements(),
num_outputs=fc_layer_size,
use_relu=True)
layer_fc2 = create_fc_layer(input=layer_fc1,
num_inputs=fc_layer_size,
num_outputs=num_classes,
use_relu=False)
y_pred = tf.nn.softmax(layer_fc2,name='y_pred')
y_pred_cls = tf.argmax(y_pred, dimension=1)
session.run(tf.global_variables_initializer())
# Training functions
cross_entropy = tf.nn.softmax_cross_entropy_with_logits(logits=layer_fc2, labels=y_true)
cost = tf.reduce_mean(cross_entropy)
optimizer = tf.train.AdamOptimizer(learning_rate=1e-4).minimize(cost)
correct_prediction = tf.equal(y_pred_cls, y_true_cls)
accuracy = tf.reduce_mean(tf.cast(correct_prediction, tf.float32))
session.run(tf.global_variables_initializer())
def show_progress(epoch, feed_dict_train, feed_dict_validate, val_loss):
'''Show progress while training'''
acc = session.run(accuracy, feed_dict=feed_dict_train)
val_acc = session.run(accuracy, feed_dict=feed_dict_validate)
msg = "Training Epoch {0} --- Training Accuracy: {1:>6.1%}, Validation Accuracy: {2:>6.1%}, Validation Loss: {3:.3f}"
print(msg.format(epoch + 1, acc, val_acc, val_loss))
total_iterations = 0
saver = tf.train.Saver()
def train(num_iteration):
'''Training loop'''
global total_iterations
for i in range(total_iterations, total_iterations + num_iteration):
# Fecth batch
x_batch, y_true_batch, _, _ = data.train.next_batch(batch_size)
x_valid_batch, y_valid_batch, _, _ = data.valid.next_batch(batch_size)
feed_dict_tr = {x: x_batch, y_true: y_true_batch}
feed_dict_val = {x: x_valid_batch, y_true: y_valid_batch}
session.run(optimizer, feed_dict=feed_dict_tr)
# Show progress and save learnt parameters
if i % int(data.train.num_examples/batch_size) == 0:
val_loss = session.run(cost, feed_dict=feed_dict_val)
epoch = int(i / int(data.train.num_examples/batch_size))
show_progress(epoch, feed_dict_tr, feed_dict_val, val_loss)
saver.save(session, check_point_name)
total_iterations += num_iteration
train(num_iteration=3000)