-
Notifications
You must be signed in to change notification settings - Fork 1
/
check_butcher.m
356 lines (328 loc) · 7.63 KB
/
check_butcher.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
function [q,p,Bs,As,Ls,BsE,AsE,LsE] = check_butcher(B)
% Usage: [q,p,Bs,As,Ls,BsE,AsE,LsE] = check_butcher(B)
%
% Checks the Butcher table B to determine the analytical order of
% accuracy for the method (q) and its embedding (p), whether the
% method and embedding are B stable, and estimates of whether the
% method and embedding are A and/or L stable. It is assumed that B
% has block structure
% B = [c, A; 0, b]
% for a standard Runge-Kutta method, or
% B = [c, A; 0, b; 0, b2]
% if the method has an embedded error indicator.
%
% If the method has no embedding, then we set p=0.
%
% This function uses Butcher's "simplifying assumptions"
% (i.e. sufficient order condition equations) to check the order of
% accuracy for the method, from the article
%
% J.C. Butcher, "Implicit Runge-Kutta processes", Math Comp
% 18 (1964), pp 50-64.
%
% For B-stability, we check for positive semi-definiteness of
% M(i,j) = [b(i)*A(i,j) + b(j)*A(j,i) - b(i)*b(j)]
% as outlined in
% K. Burrage and J.C. Butcher, "Stability criteria for implicit
% Runge-Kutta methods", SIAM J. Numer. Anal. 16 (1979), pp
% 46-57.
%
% For A-stability we perform stability tests on the stability
% function R(z) for 1000 random values in the left half-plane.
%
% For L-stability we check that R(z) decreases monotonically in the
% left half-plane as z increases in magnitude from -1 to -1e8.
%
%------------------------------------------------------------
% Programmer(s): Daniel R. Reynolds @ SMU
%------------------------------------------------------------
% Copyright (c) 2013, Southern Methodist University.
% All rights reserved.
% For details, see the LICENSE file.
%------------------------------------------------------------
% set tolerance on 'equality'
tol = 1e-8;
% extract components of Butcher table
[m,n] = size(B);
if (m == n) % no embedding
d = 0;
elseif (m == n+1) % has an embedding
d = B(m,2:n)';
else % illegal input
error('illegal Butcher table input')
end
s = n-1;
c = B(1:s,1);
b = B(s+1,2:n)';
A = B(1:s,2:n);
% determine P, Q and R for the Butcher simplifying assumptions
% B(P):
P = 0;
for i=1:1000
LHS = b'*(c.^(i-1));
RHS = 1/i;
if (abs(RHS-LHS)>tol)
break;
end
P = P+1;
end
% C(Q):
Q = 0;
for k=1:1000
alltrue = 1;
for i=1:s
LHS = A(i,:)*(c.^(k-1));
RHS = c(i)^k/k;
if (abs(RHS-LHS)>tol)
alltrue=0;
break;
end
end
if (alltrue == 1)
Q = Q+1;
else
break;
end
end
% D(R):
R = 0;
for k=1:1000
alltrue = 1;
for j=1:s
LHS = 0;
for i=1:s
LHS = LHS + A(i,j)*b(i)*c(i)^(k-1);
end
RHS = b(j)/k*(1-c(j)^k);
if (abs(RHS-LHS)>tol)
alltrue = 0;
break;
end
end
if (alltrue == 1)
R = R+1;
else
break;
end
end
% determine q
q = 0;
for i=1:P
if ((q > Q+R+1) || (q > 2*Q+2)),
break;
end
q = q+1;
end
% if there's an embedding, determine the order
if (length(d) > 1)
P = 0;
for i=1:1000
LHS = d'*(c.^(i-1));
RHS = 1/i;
if (abs(RHS-LHS)>tol), break; end
P = P+1;
end
R = 0;
for k=1:1000
alltrue = 1;
for j=1:s
LHS = 0;
for i=1:s
LHS = LHS + A(i,j)*d(i)*c(i)^(k-1);
end
RHS = d(j)/k*(1-c(j)^k);
if (abs(RHS-LHS)>tol)
alltrue = 0;
break;
end
end
if (alltrue == 1)
R = R+1;
else
break;
end
end
p = 0;
for i=1:P
if ((p > Q+R+1) || (p > 2*Q+2)), break; end
p = p+1;
end
else
p = 0;
end
% determine B stability
M = zeros(s,s);
for j=1:s
for i=1:s
M(i,j) = b(i)*A(i,j) + b(j)*A(j,i) - b(i)*b(j);
end
end
lam = eig(M);
Bs = 1;
for i=1:s
if (lam(i) < -tol)
Bs = 0;
break;
end
end
% estimate A stability:
% Hairer & Wanner, Solving ODEs II: an RK method is A-stable iff
% (i) |R(iy)| < 1 for all y in R
% (ii) R(z) is analytic in the left half-plane
% generate stability function coefficients (reverse ordering)
[alpha,beta] = stab_function(A,b);
alpha_dbl = double(alpha);
beta_dbl = double(beta);
% remove zero coefficients for highest-order terms
for i=1:length(alpha_dbl)-1
if (abs(alpha_dbl(end)) < eps)
alpha_dbl = alpha_dbl(1:end-1);
else
break;
end
end
for i=1:length(beta_dbl)-1
if (abs(beta_dbl(end)) < eps)
beta_dbl = beta_dbl(1:end-1);
else
break;
end
end
% check analytic in left half-plane
beta2 = fliplr(beta_dbl);
alpha2 = fliplr(alpha_dbl);
rt = roots(beta2);
As = 1;
for i=1:length(rt)
if (real(rt(i)) < -tol)
As=0;
break
end
end
% check along imaginary axis
ztests = [0, sqrt(-1)*logspace(-5,4,10000)];
for j = 1:length(ztests)
z = ztests(j);
if (abs(polyval(alpha2,z)/polyval(beta2,z))>1+tol)
As = 0;
break;
end
end
% verify that z = -0.01 is in the stability region; if not, report
% A-stability as "-1"
z = -0.01;
if (abs(polyval(alpha2,z)/polyval(beta2,z))>1)
As = -1;
end
% check L stability:
% if degree of denominator is greater than degree of numerator in
% ational stability polynomial, then it will be L-stable
numdeg = length(alpha)-1;
for i=0:length(alpha)-1
if (abs(alpha(end-i)) < tol^2)
numdeg = numdeg-1;
end
end
dendeg = length(beta)-1;
for i=0:length(beta)-1
if (abs(beta(end-i)) < tol^2)
dendeg = dendeg-1;
end
end
if (dendeg > numdeg)
Ls = 1;
else
Ls = 0;
end
% determine B stability of embedding
BsE = 0;
if (length(d) > 1)
M = zeros(s,s);
for j=1:s
for i=1:s
M(i,j) = d(i)*A(i,j) + d(j)*A(j,i) - d(i)*d(j);
end
end
lam = eig(M);
BsE = 1;
for i=1:s
if (lam(i) < -tol)
BsE = 0;
break;
end
end
end
% estimate A stability of embedding:
% Hairer & Wanner, Solving ODEs II: an RK method is A-stable iff
% (i) |R(iy)| < 1 for all y in R
% (ii) R(z) is analytic in the left half-plane
% generate stability function coefficients (reverse ordering)
AsE = 0;
if (length(d) > 1)
[alpha,beta] = stab_function(A,d);
alpha_dbl = double(alpha);
beta_dbl = double(beta);
% remove zero coefficients for highest-order terms
for i=1:length(alpha_dbl)-1
if (abs(alpha_dbl(end)) < eps)
alpha_dbl = alpha_dbl(1:end-1);
else
break;
end
end
for i=1:length(beta_dbl)-1
if (abs(beta_dbl(end)) < eps)
beta_dbl = beta_dbl(1:end-1);
else
break;
end
end
% check analytic in left half-plane
beta2 = fliplr(beta_dbl);
alpha2 = fliplr(alpha_dbl);
rt = roots(beta2);
AsE = 1;
for i=1:length(rt)
if (real(rt(i)) < -tol)
AsE=0;
break
end
end
% check along imaginary axis
ztests = [0, sqrt(-1)*logspace(-5,4,10000)];
for j = 1:length(ztests)
z = ztests(j);
if (abs(polyval(alpha2,z)/polyval(beta2,z))>1+tol)
AsE = 0;
break;
end
end
% verify that z = -0.01 is in the stability region; if not, report
% A-stability as "-1"
z = -0.01;
if (abs(polyval(alpha2,z)/polyval(beta2,z))>1)
AsE = -1;
end
end
% check L stability of embedding:
% if degree of denominator is greater than degree of numerator in
% ational stability polynomial, then it will be L-stable
LsE = 0;
if (length(d) > 1)
numdeg = length(alpha)-1;
for i=0:length(alpha)-1
if (abs(alpha(end-i)) < tol^2)
numdeg = numdeg-1;
end
end
dendeg = length(beta)-1;
for i=0:length(beta)-1
if (abs(beta(end-i)) < tol^2)
dendeg = dendeg-1;
end
end
if (dendeg > numdeg)
LsE = 1;
end
end
% end of function