-
Notifications
You must be signed in to change notification settings - Fork 127
/
edmonds-karp-algorithm.cpp
87 lines (72 loc) · 1.93 KB
/
edmonds-karp-algorithm.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
//Given a graph representing a flow network where every edge has a capacity.
//Given source 's' and sink 't' in graph, find maximum flow from s to t
#include<bits/stdc++.h>
using namespace std;
#define V 6
bool bfs(int rgraph[V][V], int src, int t, int parent[])
{
vector<bool>visited(V, false);
queue<int>q;
q.push(src);
visited[src] = true;
parent[src] = -1;
while(!q.empty()) {
int u = q.front();
q.pop();
for(int v=0; v<V; v++)
{
if(visited[v]==false && rgraph[u][v] >0)
{
if(v==t)
{
parent[v] = u;
return true;
}
q.push(v);
parent[v] = u;
visited[v] = true;
}
}
}
return false;
}
int ford_fulk(int graph[V][V], int src, int t)
{
int u,v;
int rgraph[V][V];
for(u=0; u<V; u++)
{
for(v=0; v<V; v++)
rgraph[u][v] = graph[u][v];
}
int parent[V];
int max_flow = 0; // intially 0 flow
//augment flow till there is a path from source to sink
while(bfs(rgraph, src, t, parent))
{
//find residual capacity of the edges along the path filled by BFS
int path_flow = INT_MAX;
for(v=t; v!=src; v = parent[v])
{
u = parent[v];
path_flow = min(path_flow, rgraph[u][v]);
}
for(v=t; v!=src; v=parent[v])
{
u = parent[v];
rgraph[u][v] -= path_flow;
rgraph[v][u] += path_flow;
}
max_flow += path_flow;
}
return max_flow;
}
int main()
{
int v = 6;
int graph[V][V] = { { 0, 16, 13, 0, 0, 0 }, { 0, 0, 10, 12, 0, 0 },
{ 0, 4, 0, 0, 14, 0 }, { 0, 0, 9, 0, 0, 20 },
{ 0, 0, 0, 7, 0, 4 }, { 0, 0, 0, 0, 0, 0 } };
cout<<"The max possible flow of graph is: "<<ford_fulk(graph, 0, 5);
return 0;
}