-
Notifications
You must be signed in to change notification settings - Fork 0
/
main.cu
52 lines (41 loc) · 1.2 KB
/
main.cu
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
#include <stdio.h>
#include <cuda.h>
#include "./common/book.h"
#include <iostream>
#include <math.h>
// Kernel function to add the elements of two arrays
__global__
void add(int n, float *x, float *y)
{
for (int i = 0; i < n; i++)
y[i] = x[i] + y[i];
}
int main(void)
{
int N = 20;
float *x, *y;
// Allocate Unified Memory – accessible from CPU or GPU
cudaMallocManaged(&x, N*sizeof(float));
cudaMallocManaged(&y, N*sizeof(float));
// initialize x and y arrays on the host
for (int i = 0; i < N; i++) {
x[i] = (float)i;
y[i] = (float)i + (float)i ;
}
// Run kernel on 1M elements on the GPU
add<<<1, 1>>>(N, x, y);
cudaError_t err = cudaGetLastError();
if (err != cudaSuccess)
printf("Error running data: %s\n", cudaGetErrorString(err));
// Wait for GPU to finish before accessing on host
cudaDeviceSynchronize();
// Check for errors (all values should be 3.0f)
float maxError = 0.0f;
for (int i = 0; i < N; i++)
// maxError = fmax(maxError, fabs(y[i]-3.0f));
std::cout << "data " << i << ": val: " << y[i] << std::endl;
// Free memory
cudaFree(x);
cudaFree(y);
return 0;
}