-
Notifications
You must be signed in to change notification settings - Fork 19
/
train_baseline.py
472 lines (377 loc) · 17.2 KB
/
train_baseline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
### By Yiqun Duan Jully30 2019
from __future__ import print_function, division
import os
import torch
import torch.nn as nn
import numpy as np
from torch.autograd import Variable
version = torch.__version__
import time
import utils.distributed as dist
## visualization
from tensorboardX import SummaryWriter
import yaml
import argparse
from utils.configurations import visualize_configurations, transfer_txt
from utils import loggers
from data import base_dataset
from models import baseline_cls, optimizers, losses
import utils.metrics as metrics
try:
from apex.fp16_utils import *
from apex import amp, optimizers
#fp16 = True
except:
print('\nNo apex supports, using default setting in pytorch {} \n'.format(version))
######## solve multi-thread crash in IDEs #########
import multiprocessing
multiprocessing.set_start_method('spawn', True)
parser = argparse.ArgumentParser(description='Re-Implementation of Darts Based Partial Aware People Re-ID')
parser.add_argument('--config', default='configs/baseline_classification_PCB.yaml')
parser.add_argument("--verbose", default=False, help='whether verbose each stage')
parser.add_argument('--port', default=10530, type=int, help='port of server')
parser.add_argument('--distributed', default=False, help='switch to distributed training on slurm')
#parser.add_argument('--world-size', default=1, type=int)
#parser.add_argument('--rank', default=0, type=int)
parser.add_argument('--model_dir', type=str)
parser.add_argument('--resume', default=False, help='resume')
#parser.add_argument('--test', dest='evaluate', action='store_true',help='evaluate model on validation set')
parser.add_argument('--fix_gpu_id', default=False, help='for extreme condition, some are not working')
parser.add_argument('--fp16', default= False, help='whether use apex quantization')
args = parser.parse_args()
if args.fix_gpu_id == False and torch.cuda.is_available():
device = torch.device("cuda")
use_gpu = True
try:
if len(args.fix_gpu_id)>0:
torch.cuda.set_device(args.fix_gpu_id[0])
except:
print('Not fixing GPU ids...')
else:
device = torch.device("cpu")
#####################################################################
### history for draw graph
y_loss = {} # loss history
y_loss['train'] = []
y_loss['val'] = []
y_err = {}
y_err['train'] = []
y_err['val'] = []
best_top1 = 0
######################################################################
# Save model
#---------------------------
def save_network(args, network, epoch_label, top1, isbest= False):
if isbest:
save_filename = 'best.pth'
else:
save_filename = 'net_%s.pth'% epoch_label
save_path = os.path.join(args.checkpoint, args.task_name,save_filename)
if not os.path.isdir(os.path.join(args.checkpoint, args.task_name)):
os.makedirs(os.path.join(args.checkpoint, args.task_name))
checkpoint = {}
checkpoint['network'] = network.cpu().state_dict()
checkpoint['epoch'] = epoch_label
checkpoint['top1'] = top1
torch.save(checkpoint, save_path)
def train(args, train_loader, valid_loader, model, woptimizer, lr_scheduler, epoch=0, criterion= False):
print('-------------------training_start at epoch {}---------------------'.format(epoch))
top1 = metrics.AverageMeter()
top5 = metrics.AverageMeter()
top10 = metrics.AverageMeter()
losses = metrics.AverageMeter()
cur_step = epoch*len(train_loader)
lr_scheduler.step()
lr = lr_scheduler.get_lr()[0]
if args.distributed:
if rank == 0:
writer.add_scalar('train/lr', lr, cur_step)
else:
writer.add_scalar('train/lr', lr, cur_step)
model.train()
running_loss = 0.0
running_corrects = 0.0
step = 0
for samples, labels in train_loader:
step = step+1
now_batch_size,c,h,w = samples.shape
if now_batch_size<args.batch_size: # skip the last batch
continue
if use_gpu:
#samples = Variable(samples.cuda().detach())
#labels = Variable(labels.cuda().detach())
samples, labels = samples.to(device) , labels.to(device)
else:
samples, labels = Variable(samples), Variable(labels)
model.to(device)
woptimizer.zero_grad()
logits = model(samples)
if not args.PCB:
_, preds = torch.max(logits.data, 1)
loss = criterion(logits, labels)
else:
part = {}
sm = nn.Softmax(dim=1)
num_part = 6
for i in range(num_part):
part[i] = logits[i]
score = sm(part[0]) + sm(part[1]) +sm(part[2]) + sm(part[3]) +sm(part[4]) +sm(part[5])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], labels)
for i in range(num_part-1):
loss += criterion(part[i+1], labels)
if epoch<args.warm_epoch and args.warm_up:
warm_iteration = round(len(train_loader)/args.batch_size)*args.warm_epoch # first 5 epoch
warm_up = min(1.0, warm_up + 0.9 / warm_iteration)
loss *= warm_up
if args.fp16: # we use optimier to backward loss
with amp.scale_loss(loss, woptimizer) as scaled_loss:
scaled_loss.backward()
else:
loss.backward()
if args.w_grad_clip != False:
nn.utils.clip_grad_norm_(model.weights(), args.w_grad_clip)
if args.distributed:
dist.simple_sync.sync_grad_sum(model)
woptimizer.step()
if args.distributed:
dist.simple_sync.sync_bn_stat(model)
if args.PCB:
prec1, prec5, prec10 = metrics.accuracy(score, labels, topk=(1, 5, 10))
else:
prec1, prec5, prec10 = metrics.accuracy(logits, labels, topk=(1, 5, 10))
if args.distributed:
dist.simple_sync.allreducemean_list([loss, prec1, prec5, prec10])
losses.update(loss.item(), samples.size(0))
top1.update(prec1.item(), samples.size(0))
top5.update(prec5.item(), samples.size(0))
top10.update(prec10.item(), samples.size(0))
running_loss += loss.item() * now_batch_size
#y_loss['train'].append(losses)
#y_err['train'].append(1.0-top1)
if args.distributed:
if rank == 0:
if step % args.print_freq == 0 or step == len(train_loader)-1:
logger.info(
"Train: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, args.epochs, step, len(train_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
else:
if step % args.print_freq == 0 or step == len(train_loader)-1:
logger.info(
"Train: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, args.epochs, step, len(train_loader)-1, losses=losses,
top1=top1, top5=top5))
writer.add_scalar('train/loss', loss.item(), cur_step)
writer.add_scalar('train/top1', prec1.item(), cur_step)
writer.add_scalar('train/top5', prec5.item(), cur_step)
writer.add_scalar('train/top10', prec10.item(), cur_step)
cur_step += 1
if args.distributed:
if rank == 0:
logger.info("Train: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, args.epochs, top1.avg))
else:
logger.info("Train: [{:2d}/{}] Final Prec@1 {:.4%}".format(epoch+1, args.epochs, top1.avg))
if args.distributed:
if rank ==0:
if epoch % args.forcesave ==0:
save_network(args,model,epoch,top1)
else:
if epoch % args.forcesave ==0:
save_network(args,model,epoch,top1)
def validate(args, valid_loader, model, epoch=0, criterion= False, cur_step = 0):
print('-------------------validation_start at epoch {}---------------------'.format(epoch))
top1 = metrics.AverageMeter()
top5 = metrics.AverageMeter()
top10 = metrics.AverageMeter()
losses = metrics.AverageMeter()
model.eval()
model.to(device)
with torch.no_grad():
for step, (X, y) in enumerate(valid_loader):
X, y = X.to(device, non_blocking=True), y.to(device, non_blocking=True)
N = X.size(0)
if args.distributed:
if N< int(args.batch_size // world_size):
continue
else:
if N<args.batch_size: # skip the last batch
continue
logits = model(X)
if not args.PCB:
_, preds = torch.max(logits.data, 1)
loss = criterion(logits, y)
else:
part = {}
sm = nn.Softmax(dim=1)
num_part = 6
for i in range(num_part):
part[i] = logits[i]
score = sm(part[0]) + sm(part[1]) +sm(part[2]) + sm(part[3]) +sm(part[4]) +sm(part[5])
_, preds = torch.max(score.data, 1)
loss = criterion(part[0], y)
for i in range(num_part-1):
loss += criterion(part[i+1], y)
if args.PCB:
prec1, prec5, prec10 = metrics.accuracy(score, y, topk=(1, 5, 10))
else:
prec1, prec5, prec10 = metrics.accuracy(logits, y, topk=(1, 5, 10))
if args.distributed:
dist.simple_sync.allreducemean_list([loss, prec1, prec5, prec10])
losses.update(loss.item(), N)
top1.update(prec1.item(), N)
top5.update(prec5.item(), N)
top10.update(prec10.item(), N)
if args.distributed:
if rank == 0:
if step % args.print_freq == 0 or step == len(valid_loader)-1:
logger.info(
"Valid: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, args.epochs, step, len(valid_loader)-1, losses=losses,
top1=top1, top5=top5))
else:
if step % args.print_freq == 0 or step == len(valid_loader)-1:
logger.info(
"Valid: [{:2d}/{}] Step {:03d}/{:03d} Loss {losses.avg:.3f} "
"Prec@(1,5) ({top1.avg:.1%}, {top5.avg:.1%})".format(
epoch+1, args.epochs, step, len(valid_loader)-1, losses=losses,
top1=top1, top5=top5))
if args.distributed:
if rank == 0:
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
writer.add_scalar('val/top10', top10.avg, cur_step)
logger.info("Valid: [{:2d}/{}] Final Prec@1 {:.4%}, Prec@5 {:.4%}, Prec@10 {:.4%}".format(epoch+1, args.epochs, top1.avg, top5.avg, top10.avg))
else:
writer.add_scalar('val/loss', losses.avg, cur_step)
writer.add_scalar('val/top1', top1.avg, cur_step)
writer.add_scalar('val/top5', top5.avg, cur_step)
writer.add_scalar('val/top10', top10.avg, cur_step)
logger.info("Valid: [{:2d}/{}] Final Prec@1 {:.4%}, Prec@5 {:.4%}, Prec@10 {:.4%}".format(epoch+1, args.epochs, top1.avg, top5.avg, top10.avg))
return top1.avg
#optimizer, scheduler
def main():
global args, use_gpu, writer, rank, logger, best_top1, world_size, rank
args = parser.parse_args()
with open(args.config) as f:
config = yaml.load(f)
####### visualize configs ######
visualize_configurations(config)
####### set args ######
for key in config:
for k, v in config[key].items():
setattr(args, k, v)
if args.verbose:
print('Config parsing complete')
####### world initial ######
if args.distributed:
rank, world_size = dist.dist_init(args.port, 'nccl')
if rank == 0:
tbpath = os.path.join(args.logpath, 'tb', args.task_name)
if os.path.isdir(tbpath):
writer = SummaryWriter(log_dir=tbpath)
else:
os.makedirs(tbpath)
writer = SummaryWriter(log_dir=tbpath)
writer.add_text('config_infomation', transfer_txt(args))
logger = loggers.get_logger(os.path.join(args.logpath, '{}.distlog'.format(args.task_name)))
logger.info("Logger is set ")
logger.info("Logger with distribution")
else:
tbpath = os.path.join(args.logpath, 'tb', args.task_name)
if os.path.isdir(tbpath):
writer = SummaryWriter(log_dir=tbpath)
else:
os.makedirs(tbpath)
writer = SummaryWriter(log_dir=tbpath)
writer.add_text('config_infomation', transfer_txt(args))
logger = loggers.get_logger(os.path.join(args.logpath, '{}.log'.format(args.task_name)))
logger.info("Logger is set ")
logger.info("Logger without distribution")
######## initial random setting #######
np.random.seed(args.seed)
torch.manual_seed(args.seed)
torch.cuda.manual_seed_all(args.seed)
torch.backends.cudnn.benchmark = True
######## test data reading ########
since = time.time()
dataset_train_val = base_dataset.baseline_dataset(args)
train_loader , val_loader = dataset_train_val.get_loader()
logger.info("Initializing dataset used {} basic time unit".format(time.time()-since))
logger.info("The training classes labels length : {}".format(len(dataset_train_val.train_classnames)))
since = time.time()
inputs, classes = next(iter(train_loader))
logger.info('batch loading time example is {}'.format(time.time()-since))
######### Init model ############
if args.model_name == 'resnet50_middle':
model = baseline_cls.resnet50_middle(len(dataset_train_val.train_classnames), droprate=args.dropoutrate,
pretrain=args.pretrain, return_f=args.reture_bottleneck_feature, return_mid= args.return_middle_level_feature)
else:
model = baseline_cls.PCB(len(dataset_train_val.train_classnames))
#logger.info(model)
if args.PCB:
model = baseline_cls.PCB(len(dataset_train_val.train_classnames))
########## lauch training ###########
woptimizer = optimizers.get_optimizer(args, model)
lr_schedular = optimizers.get_lr_scheduler(args, woptimizer)
criterion = losses.get_loss(args)
if args.resume != '' and os.path.isfile(args.resume):
if args.distributed:
if rank == 0:
print('resuem from [%s]' % config.resume)
checkpoint = torch.load(
args.resume,
map_location = 'cuda:%d' % torch.cuda.current_device()
)
else:
print('resuem from [%s]' % config.resume)
checkpoint = torch.load(config.resume,map_location = "cpu")
model.load_state_dict(checkpoint['network'])
#woptimizer.load_state_dict(checkpoint['optimizer'])
#lr_scheduler.load_state_dict(checkpoint['lr_scheduler'])
epoch_offset = checkpoint['epoch']
else:
epoch_offset = 0
model.to(device)
if args.distributed:
dist.sync_state(model)
if args.fp16:
model, woptimizer = amp.initialize(model, woptimizer, opt_level = "O1")
for epoch in range(epoch_offset, args.epochs):
# train
train(args,train_loader,val_loader,model, woptimizer, lr_schedular, epoch=epoch, criterion=criterion)
# validation
cur_step = (epoch+1) * len(train_loader)
top1 = validate(args, val_loader, model, epoch= epoch, cur_step = cur_step, criterion= criterion)
if args.distributed:
if rank ==0:
if best_top1 < top1:
best_top1 = top1
save_network(args,model,epoch,top1, isbest=True)
else:
if epoch % args.forcesave ==0:
save_network(args,model,epoch,top1)
writer.add_scalar('val/best_top1', best_top1, cur_step)
else:
if best_top1 < top1:
best_top1 = top1
save_network(args,model,epoch,top1, isbest=True)
else:
if epoch % args.forcesave ==0:
save_network(args,model,epoch,top1)
writer.add_scalar('val/best_top1', best_top1, cur_step)
if args.distributed:
if rank == 0:
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
#logger.info("Best Genotype = {}".format(best_genotype))
else:
logger.info("Final best Prec@1 = {:.4%}".format(best_top1))
if __name__ == '__main__':
main()