-
Notifications
You must be signed in to change notification settings - Fork 48
/
references.bib
2249 lines (1972 loc) · 71.4 KB
/
references.bib
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
@string{aistats8 = {8th International Conference on Artificial Intelligence and Statistics}}
@string{aistats9 = {9th International Conference on Artificial Intelligence and Statistics}}
@string{aistats10 = {10th International Conference on Artificial Intelligence and Statistics}}
@string{aistats11 = {11th International Conference on Artificial Intelligence and Statistics}}
@string{aistats12 = {12th International Conference on Artificial Intelligence and Statistics}}
@string{aistats13 = {13th International Conference on Artificial Intelligence and Statistics}}
@string{aistats14 = {14th International Conference on Artificial Intelligence and Statistics}}
@string{aistats15 = {15th International Conference on Artificial Intelligence and Statistics}}
@string{aistats16 = {16th International Conference on Artificial Intelligence and Statistics}}
@string{aistats17 = {17th International Conference on Artificial Intelligence and Statistics}}
@string{icml20 = {20th International Conference on Machine Learning}}
@string{icml21 = {21st International Conference on Machine Learning}}
@string{icml22 = {22nd International Conference on Machine Learning}}
@string{icml23 = {23rd International Conference on Machine Learning}}
@string{icml24 = {24th International Conference on Machine Learning}}
@string{icml25 = {25th International Conference on Machine Learning}}
@string{icml26 = {26th International Conference on Machine Learning}}
@string{icml27 = {27th International Conference on Machine Learning}}
@string{icml28 = {28th International Conference on Machine Learning}}
@string{icml29 = {29th International Conference on Machine Learning}}
@string{icml30 = {30th International Conference on Machine Learning}}
@string{nips8 = {Advances in Neural Information Processing Systems 8}}
@string{nips9 = {Advances in Neural Information Processing Systems 9}}
@string{nips10 = {Advances in Neural Information Processing Systems 10}}
@string{nips11 = {Advances in Neural Information Processing Systems 11}}
@string{nips12 = {Advances in Neural Information Processing Systems 12}}
@string{nips13 = {Advances in Neural Information Processing Systems 13}}
@string{nips14 = {Advances in Neural Information Processing Systems 14}}
@string{nips15 = {Advances in Neural Information Processing Systems 15}}
@string{nips16 = {Advances in Neural Information Processing Systems 16}}
@string{nips17 = {Advances in Neural Information Processing Systems 17}}
@string{nips18 = {Advances in Neural Information Processing Systems 18}}
@string{nips19 = {Advances in Neural Information Processing Systems 19}}
@string{nips20 = {Advances in Neural Information Processing Systems 20}}
@string{nips21 = {Advances in Neural Information Processing Systems 21}}
@string{nips22 = {Advances in Neural Information Processing Systems 22}}
@string{nips23 = {Advances in Neural Information Processing Systems 23}}
@string{nips24 = {Advances in Neural Information Processing Systems 24}}
@string{nips25 = {Advances in Neural Information Processing Systems 25}}
@string{nips26 = {Advances in Neural Information Processing Systems 26}}
@string{nips27 = {Advances in Neural Information Processing Systems 27}}
@string{cogsci32 = {The Proceedings of the 32nd Annual Meeting of the Cognitive Science Society}}
@String{uai22 = {22nd Conference on Uncertainty in Artificial Intelligence}}
@String{uai27 = {27th Conference on Uncertainty in Artificial Intelligence}}
@String{uai28 = {28th Conference on Uncertainty in Artificial Intelligence}}
@String{uai29 = {29th Conference on Uncertainty in Artificial Intelligence}}
@string{cup = {{C}ambridge {U}niversity Press}}
@string{curran = {Curran Associates, Inc.}}
@string{AAAI = {AAAI Press}}
@string{mit = {The {MIT} Press}}
@string{oup = {{O}xford {U}niversity Press}}
@string{WILEY = {John Wiley \& Sons}}
@String{rss9 = {9th International Conference on Robotics: Science \& Systems}}
@string{IECY = {IEEE Transactions on System Science and Cybernetics}}
@string{IENN = {IEEE Transactions on Neural Networks}}
@string{IETAC = {IEEE Transactions on Automatic Control}}
@string{PAMI = {IEEE Transactions on Pattern Analysis and Machine Intelligence}}
@string{tcbb = {IEEE/ACM Transactions on Computational Biology and Bioinformatics}}
@string{jasa = {Journal of the Americal Statistical Association}}
@string{jmlr = {Journal of Machine Learning Research}}
@string{jrssB = {Journal of the Royal Statistical Society, Series B}}
@string{jcst = {Journal of Computer Science and Technology}}
@string{nc = {Neural Computation}}
@string{PCPS = {Proceedings of the Cambridge Philosophical Society}}
@string{tams = {The Annals of Mathematical Statistics}}
@string{lncs = {Lecture Notes in Computer Science (LNCS)}}
\% Very deep references
@Misc{ eamcblogWilk10,
author = "Darren Wilkinson",
title = "The pseudo-marginal approach to exact-approximate {MCMC} algorithms",
type = "Blog",
number = "September 20",
year = "2010",
howpublished = "http://darrenjw.wordpress.com/2010/09/20/the-pseudo-marginal-approach-to-exact-approximate-mcmc-algorithms/"
}
@inproceedings{IwaDuvGha12,
author = {Tomoharu Iwata and David Duvenaud and Zoubin Ghahramani},
title = {Warped Mixtures for Nonparametric Cluster Shapes},
booktitle = uai29,
address = {Bellevue, Washington},
month = {July},
year = 2013
}
@inproceedings{DuvRipAdaGha14,
title = {Avoiding pathologies in very deep networks},
author = {David Duvenaud and Oren Rippel and Ryan P. Adams and Zoubin Ghahramani},
booktitle = aistats17,
year = 2014,
month = {April},
address = {Reykjavik, Iceland}
}
@InProceedings{ adams2010learning,
title = "Learning the Structure of Deep Sparse Graphical Models",
author = "Ryan P. Adams and Hanna M. Wallach and Zoubin Ghahramani",
booktitle = "Proceedings of the International Conference on Artificial Intelligence and Statistics",
year = "2010"
}
@PhDThesis{ cho2012kernel,
title = "Kernel methods for deep learning",
author = "Youngmin Cho",
year = "2012",
school = "University of California, San Diego"
}
@PhDThesis{ neal1995bayesian,
title = "{B}ayesian learning for neural networks",
author = "Radford M. Neal",
year = "1995",
school = "University of Toronto"
}
@Article{ montavon2010layer,
title = "Layer-wise analysis of deep networks with {G}aussian kernels",
author = {Gr{\'e}goire Montavon and Mikio L. Braun and Klaus-Robert M{\"u}ller},
journal = "Advances in Neural Information Processing Systems",
volume = "23",
pages = "1678--1686",
year = "2010"
}
@InProceedings{ damianou2012deep,
author = "Andreas Damianou and Neil D. Lawrence",
title = "Deep {G}aussian Processes",
booktitle = "Artificial Intelligence and Statistics",
year = "2013",
location = "Arizona, USA",
pages = "207--215"
}
@InProceedings{ hensman2014deep,
author = "James Hensman and Andreas Damianou and Neil D. Lawrence",
title = "Deep {G}aussian Processes for Large Datasets",
booktitle = "Artificial Intelligence and Statistics Late-breaking Posters",
year = "2014",
location = "Reykjavik, Iceland"
}
@InProceedings{ Solak03derivativeobservations,
author = "Ercan Solak and Roderick Murray-Smith and William E. Leithead and Douglas J. Leith and Carl E. Rasmussen",
title = "Derivative observations in {G}aussian Process models of dynamic systems",
booktitle = "Advances in Neural Information Processing Systems",
year = {2003}
}
@InCollection{ rifai2011higher,
title = "Higher order contractive auto-encoder",
author = "Salah Rifai and Gr{\'e}goire Mesnil and Pascal Vincent and Xavier Muller and Yoshua Bengio and Yann Dauphin and Xavier Glorot",
booktitle = "Machine Learning and Knowledge Discovery in Databases",
pages = "645--660",
year = "2011",
publisher = "Springer"
}
@InProceedings{ rifai2011contractive,
title = "Contractive auto-encoders: Explicit invariance during feature extraction",
author = "Salah Rifai and Pascal Vincent and Xavier Muller and Xavier Glorot and Yoshua Bengio",
booktitle = "Proceedings of the 28th International Conference on Machine Learning",
pages = "833--840",
year = "2011"
}
@InProceedings{ martens2010deep,
title = "Deep learning via {H}essian-free optimization",
author = "James Martens",
booktitle = "Proceedings of the 27th International Conference on Machine Learning",
pages = "735--742",
year = "2010"
}
@Article{ rippel2013high,
title = "High-Dimensional Probability Estimation with Deep Density Models",
author = "Oren Rippel and Ryan P. Adams",
journal = "arXiv preprint arXiv:1302.5125",
year = "2013"
}
@Article{ pascanu2012understanding,
title = "Understanding the exploding gradient problem",
author = "Razvan Pascanu and Tomas Mikolov and Yoshua Bengio",
journal = "arXiv preprint arXiv:1211.5063",
year = "2012"
}
@InProceedings{ glorot2011deep,
title = "Deep Sparse Rectifier Networks",
author = "Xavier Glorot and Antoine Bordes and Yoshua Bengio",
booktitle = "Proceedings of the 14th International Conference on Artificial Intelligence and Statistics. JMLR W\&CP Volume",
volume = "15",
pages = "315--323",
year = "2011"
}
@InProceedings{ lee2007sparse,
title = "Sparse deep belief net model for visual area V2",
author = "Honglak Lee and Chaitanya Ekanadham and Andrew Ng",
booktitle = "Advances in Neural Information Processing Systems",
pages = "873--880",
year = "2007"
}
@InProceedings{ lawrence2007hierarchical,
title = "Hierarchical {G}aussian process latent variable models",
author = "Neil D. Lawrence and Andrew J. Moore",
booktitle = "Proceedings of the 24th International Conference on Machine learning",
pages = "481--488",
year = "2007"
}
@Article{ bengio1994learning,
title = "Learning long-term dependencies with gradient descent is difficult",
author = "Yoshua Bengio and Patrice Simard and Paolo Frasconi",
journal = "Neural Networks, IEEE Transactions on",
volume = "5",
number = "2",
pages = "157--166",
year = "1994",
publisher = "IEEE"
}
@InProceedings{ gens2013learning,
title = "Learning the Structure of Sum-Product Networks",
author = "Robert Gens and Pedro Domingos",
booktitle = "Proceedings of the 30th International Conference on Machine learning",
year = "2013"
}
@InProceedings{ saxe2011random,
title = "On random weights and unsupervised feature learning",
author = "Andrew Saxe and Pang W. Koh and Zhenghao Chen and Maneesh Bhand and Bipin Suresh and Andrew Y. Ng",
booktitle = "Proceedings of the 28th International Conference on Machine Learning",
pages = "1089--1096",
year = "2011"
}
@InProceedings{ saxedynamics,
title = "Dynamics of learning in deep linear neural networks",
author = "Andrew M. Saxe and James L. McClelland and Surya Ganguli",
year = "2013",
booktitle = "NIPS Workshop on Deep Learning"
}
@Article{ hermans2012recurrent,
title = "Recurrent kernel machines: Computing with infinite echo state networks",
author = "Michiel Hermans and Benjamin Schrauwen",
journal = "Neural Computation",
volume = "24",
number = "1",
pages = "104--133",
year = "2012",
publisher = "MIT Press"
}
@Article{ maunsell1983connections,
title = "The connections of the middle temporal visual area ({MT}) and their relationship to a cortical hierarchy in the macaque monkey",
author = "John H. R. Maunsell and David C. van Essen",
journal = "Journal of neuroscience",
volume = "3",
number = "12",
pages = "2563--2586",
year = "1983",
publisher = "Soc Neuroscience"
}
@MastersThesis{ srivastava2013improving,
title = "Improving neural networks with dropout",
author = "Nitish Srivastava",
year = "2013",
school = "University of Toronto"
}
@InProceedings{ baldi2013understanding,
title = "Understanding dropout",
author = "Pierre Baldi and Peter J. Sadowski",
booktitle = "Advances in Neural Information Processing Systems",
pages = "2814--2822",
year = "2013"
}
@InProceedings{ wang2013fast,
title = "Fast dropout training",
author = "Sida Wang and Christopher Manning",
booktitle = "Proceedings of the 30th International Conference on Machine Learning",
pages = "118--126",
year = "2013"
}
@Article{ hinton2012improving,
title = "Improving neural networks by preventing co-adaptation of feature detectors",
author = "Geoffrey Hinton and Nitish Srivastava and Alex Krizhevsky and Ilya Sutskever and Ruslan Salakhutdinov",
journal = "arXiv preprint arXiv:1207.0580",
year = "2012"
}
\% GPSS-research references
@Article{ dyke1997avoid,
title = "How to avoid bad statistics",
author = "George Dyke",
journal = "Field crops research",
volume = "51",
number = "3",
pages = "165--187",
year = "1997",
publisher = "Elsevier"
}
@Article{ kronberger2013evolution,
title = "Evolution of Covariance Functions for {G}aussian Process Regression using Genetic Programming",
author = "Gabriel Kronberger and Michael Kommenda",
journal = "arXiv preprint arXiv:1305.3794",
year = "2013"
}
@Article{ lazaro2010sparse,
title = "Sparse spectrum {G}aussian process regression",
author = "Miguel L{\'a}zaro-Gredilla and Joaquin Qui{\~n}onero-Candela and Carl E. Rasmussen and An{\'i}bal R. Figueiras-Vidal",
journal = "Journal of Machine Learning Research",
volume = "99",
pages = "1865--1881",
year = "2010",
publisher = "MIT Press"
}
@Article{ garnett2010sequential,
title = "Sequential {B}ayesian prediction in the presence of changepoints and faults",
author = "Roman Garnett and Michael A. Osborne and Steven Reece and Alex Rogers and Stephen J. Roberts",
journal = "The Computer Journal",
volume = "53",
number = "9",
pages = "1430--1446",
year = "2010",
publisher = "Br Computer Soc"
}
@InProceedings{ FoxDunson:NIPS2012,
author = "Emily B. Fox and David B. Dunson",
title = "Multiresolution {G}aussian Processes",
booktitle = "Advances in Neural Information Processing Systems 25",
year = "2013",
publisher = "MIT Press"
}
@Book{ lind2006basic,
title = "Basic statistics for business and economics",
author = "Douglas A. Lind and William G. Marchal and Samuel Adam Wathen",
year = "2006",
publisher = "McGraw-Hill/Irwin Boston"
}
@Article{ buja1989linear,
title = "Linear smoothers and additive models",
author = "Andreas Buja and Trevor J. Hastie and Robert J. Tibshirani",
journal = "The Annals of Statistics",
pages = "453--510",
year = "1989",
publisher = "JSTOR"
}
@Article{ Gelman1996,
author = "Andrew Gelman and Xiao-li Meng and Hal Stern",
journal = "Statistica Sinica",
pages = "733--807",
title = "Posterior predictive assessment of model fitness via realized discrepancies",
volume = "6",
year = "1996"
}
@Electronic{Eureqa,
author = "Michael Schmidt and Hod Lipson",
title = "Eureqa [Software]",
year = "accessed February 2013",
url = "http://www.eureqa.com"
}
@Book{ box2013time,
title = "Time series analysis: forecasting and control",
author = "George E.P. Box and Gwilym M. Jenkins and Gregory C. Reinsel",
year = "1970",
publisher = {John Wiley \& Sons}
}
@Book{ bochner1959lectures,
title = "Lectures on Fourier integrals",
author = "Salomon Bochner",
volume = "42",
year = "1959",
publisher = "Princeton University Press"
}
@Electronic{ TSDL,
author = "Rob J. Hyndman",
title = "Time Series Data Library",
year = "accessed July 2013",
url = "http://data.is/TSDLdemo"
}
@InCollection{ VikashScene13,
title = "Approximate {B}ayesian Image Interpretation using Generative Probabilistic Graphics Programs",
author = "Vikash K. Mansinghka and Tejas D. Kulkarni and Yura N. Perov and Joshua B. Tenenbaum",
booktitle = "Advances in Neural Information Processing Systems 26",
pages = "1520--1528",
year = "2013"
}
@article{ganesalingam2013fully,
title={A fully automatic problem solver with human-style output},
author={Ganesalingam, M. and Timonthy W. Gowers},
journal={arXiv preprint arXiv:1309.4501},
year={2013}
}
@Book{ zhu2007stochastic,
title = "A stochastic grammar of images",
author = "Song Chun Zhu and David Mumford",
volume = "2",
number = "4",
year = "2007",
publisher = "Now Publishers Inc"
}
@MastersThesis{ klenske2012nonparametric,
title = "Nonparametric System Identification and Control for Periodic Error Correction in Telescopes",
author = "Edgar Klenske",
school = "University of Stuttgart",
year = "2012"
}
@Article{ lloydgefcom2012,
author = "James Robert Lloyd",
title = "{GEFCom2012} Hierarchical Load Forecasting: Gradient boosting machines and {G}aussian processes",
journal = "International Journal of Forecasting",
year = "2013"
}
@InProceedings{ goodman2008church,
title = "Church: A language for generative models",
author = "Noah D. Goodman and Vikash K. Mansinghka and Daniel M. Roy and K. Bonawitz and Joshua B. Tenenbaum",
booktitle = "Proceedings of the 24th Conference on Uncertainty in Artificial Intelligence",
pages = "220--229",
year = "2008"
}
@InProceedings{ bach2004multiple,
title = "Multiple kernel learning, conic duality, and the {SMO} algorithm",
author = "Francis R. Bach and Gert R.G. Lanckriet and Michael I. Jordan",
booktitle = "Proceedings of the 21st International Conference on Machine learning",
year = "2004"
}
@Article{ gelman2012philosophy,
title = "Philosophy and the practice of {B}ayesian statistics",
author = "Andrew Gelman and Cosma R. Shalizi",
journal = "British Journal of Mathematical and Statistical Psychology",
year = "2012",
publisher = "Wiley Online Library"
}
@Electronic{ gelman2013philblogpost,
author = "Andrew Gelman",
title = "Why waste time philosophizing?",
type = "Blog post",
year = "2013",
url = "http://andrewgelman.com/2013/02/11/why-waste-time-philosophizing/"
}
@InProceedings{ barbu2012video,
author = "Barbu, Andrei and Bridge, Alexander and Burchill, Zachary and Coroian, Dan and Dickinson, Sven and Fidler, Sanja and Michaux, Aaron and Mussman, Sam and Narayanaswamy, Siddharth and Salvi, Dhaval and Lara Schmidt and Jiangnan Shangguan and Jeffrey M. Siskind and Jarrell Waggoner and Song Wang and Jinlian Wei and Yifan Yin and Zhiqi Zhang",
title = "Video in sentences out",
booktitle = "Conference on Uncertainty in Artificial Intelligence",
year = "2012"
}
@InProceedings{ saatcci2010gaussian,
title = "{G}aussian process change point models",
author = "Yunus Saat\c{c}i and Ryan D. Turner and Carl E. Rasmussen",
booktitle = "Proceedings of the 27th International Conference on Machine Learning",
pages = "927--934",
year = "2010"
}
\% BMC References
\% =========================================================
@Article{ seeger2008information,
title = "Information consistency of nonparametric {G}aussian process methods",
author = "M.W. Seeger and S.M. Kakade and D.P. Foster",
journal = "Information Theory, IEEE Transactions on",
volume = "54",
number = "5",
pages = "2376--2382",
year = "2008",
publisher = "IEEE"
}
@InCollection{ NIPS2008_0240,
title = "The {G}aussian Process Density Sampler",
author = "Ryan P. Adams and Iain Murray and David J. C. MacKay",
booktitle = "Advances in Neural Information Processing Systems 21",
pages = "9--16",
year = "2009"
}
@Article{ jones2006fixed,
title = "Fixed-width output analysis for {M}arkov chain {M}onte {C}arlo",
author = "G.L. Jones and M. Haran and B.S. Caffo and R. Neath",
journal = "Journal of the American Statistical Association",
volume = "101",
number = "476",
pages = "1537--1547",
issn = "0162-1459",
year = "2006",
publisher = "ASA"
}
@Article{ rasmussen2003bayesian,
title = "{B}ayesian {M}onte {C}arlo",
author = "Carl E. Rasmussen and Zoubin Ghahramani",
journal = "Advances in Neural Information Processing Systems",
pages = "505--512",
issn = "1049-5258",
year = "2003"
}
@Article{ o1991bayes,
title = "{B}ayes-hermite quadrature",
author = "A. O'Hagan",
journal = "Journal of Statistical Planning and Inference",
volume = "29",
number = "3",
pages = "245--260",
issn = "0378-3758",
year = "1991",
publisher = "Elsevier"
}
@Article{ kennedy1998bayesian,
title = "Bayesian quadrature with non-normal approximating functions",
author = "M. Kennedy",
journal = "Statistics and Computing",
volume = "8",
number = "4",
pages = "365--375",
year = "1998",
publisher = "Springer"
}
@Article{ skilling2006nested,
title = "Nested sampling for general {B}ayesian computation",
author = "J. Skilling",
journal = "Bayesian Analysis",
volume = "1",
number = "4",
pages = "833--860",
year = "2006"
}
@mastersthesis{ murray2007advances,
title = "Advances in {M}arkov chain {M}onte {C}arlo methods",
author = "Iain Murray",
journal = "University College London",
year = "2007"
}
@Article{ Qi_hessianbasedmarkov,
author = "Yuan Qi and Thomas P. Minka",
title = "{H}essian-based {M}arkov Chain {M}onte-carlo Algorithms",
year = "2002"
}
\% Additive GP References
\% ==============================================================
@article{yeh1998modeling,
title={Modeling of strength of high-performance concrete using artificial neural networks},
author={I-Cheng Yeh},
journal={Cement and Concrete research},
volume={28},
number={12},
pages={1797--1808},
year={1998},
publisher={Elsevier}
}
@Book{ macdonald1998symmetric,
title = "Symmetric functions and {H}all polynomials",
author = "Ian G. Macdonald",
isbn = "0198504500",
year = "1998",
publisher = "{O}xford {U}niversity Press, USA"
}
@Book{ stanley2001enumerative,
title = "Enumerative combinatorics",
author = "R.P. Stanley",
isbn = "0521789877",
year = "2001",
publisher = "{C}ambridge {U}niversity Press"
}
@Book{ vapnik1998statistical,
title = "Statistical learning theory",
author = "Vladimir N. Vapnik",
volume = "2",
year = "1998",
publisher = "Wiley New York"
}
@Book{ shawe2004kernel,
title = "Kernel methods for pattern analysis",
author = "J. Shawe-Taylor and N. Cristianini",
isbn = "0521813972",
year = "2004",
publisher = "{C}ambridge {U}niversity Press"
}
@Article{ craven1978smoothing,
title = "Smoothing noisy data with spline functions",
author = "P. Craven and Grace Wahba",
journal = "Numerische Mathematik",
volume = "31",
number = "4",
pages = "377--403",
issn = "0029-599X",
year = "1978",
publisher = "Springer"
}
@Article{ friedman1991multivariate,
title = "Multivariate adaptive regression splines",
author = "Jerome H. Friedman",
journal = "The annals of statistics",
volume = "19",
number = "1",
pages = "1--67",
issn = "0090-5364",
year = "1991",
publisher = "JSTOR"
}
@Article{ lin2006component,
title = "Component selection and smoothing in multivariate nonparametric regression",
author = "Y. Lin and H.H. Zhang",
journal = "The Annals of Statistics",
volume = "34",
number = "5",
pages = "2272--2297",
issn = "0090-5364",
year = "2006",
publisher = "Institute of Mathematical Statistics"
}
@InProceedings{ 5589113,
author = "J. Hartikainen and S. Särkkä",
booktitle = "2010 IEEE International Workshop on Machine Learning for Signal Processing (MLSP) ",
title = "{K}alman filtering and smoothing solutions to temporal {G}aussian process regression models",
year = "2010",
volume = "",
number = "",
pages = "379--384",
doi = "10.1109/MLSP.2010.5589113",
ISSN = "1551-2541"
}
@article{Bach_HKL,
title={High-dimensional non-linear variable selection through hierarchical kernel learning},
author={Francis R. Bach},
journal={arXiv preprint arXiv:0909.0844},
year={2009}
}
@Article{ reich2009variable,
title = "Variable selection in {B}ayesian smoothing spline {ANOVA} models: Application to deterministic computer codes",
author = "B.J. Reich and C.B. Storlie and H.D. Bondell",
journal = "Technometrics",
volume = "51",
number = "2",
pages = "110--120",
issn = "0040-1706",
year = "2009",
publisher = "ASA"
}
@InProceedings{ minka2001expectation,
title = "Expectation propagation for approximate {B}ayesian inference",
author = "Thomas P. Minka",
booktitle = "Uncertainty in Artificial Intelligence",
volume = "17",
pages = "362--369",
year = "2001"
}
@Article{ nocedal1980updating,
title = "Updating quasi-{N}ewton matrices with limited storage",
author = "Jorge Nocedal",
journal = "Mathematics of computation",
volume = "35",
number = "151",
pages = "773--782",
year = "1980"
}
@Article{ friedman1981projection,
title = "Projection pursuit regression",
author = "Jerome H. Friedman and W. Stuetzle",
journal = "Journal of the American statistical Association",
volume = "76",
number = "376",
pages = "817--823",
year = "1981"
}
@Article{ nelder1972generalized,
title = "Generalized linear models",
author = "John Ashworth Nelder and Robert W.M. Wedderburn",
journal = "Journal of the Royal Statistical Society. Series A (General)",
volume = "135",
number = "3",
pages = "370--384",
year = "1972"
}
\% Warped mixtures references
@Article{ ng2002spectral,
title = "On spectral clustering: Analysis and an algorithm",
author = "Andrew Y. Ng and Michael I. Jordan and Yair Weiss",
journal = "Advances in Neural Information Processing Systems",
volume = "2",
pages = "849--856",
year = "2002"
}
@Article{ baskerville2011spatial,
title = "Spatial guilds in the {S}erengeti food web revealed by a {B}ayesian group model",
author = "E.B. Baskerville and A.P. Dobson and T. Bedford and S. Allesina and T.M. Anderson and M. Pascual",
journal = "PLoS computational biology",
volume = "7",
number = "12",
pages = "e1002321",
year = "2011",
publisher = "Public Library of Science"
}
\% Optimization References
\% ===============================================
@Article{ lizotte2008practical,
title = "Practical {B}ayesian optimization",
author = "D.J. Lizotte",
year = "2008",
publisher = "University of Alberta"
}
@InProceedings{ osborne2009gaussian,
title = "{G}aussian processes for global optimization",
author = "Michael A. Osborne and Roman Garnett and Stephen J. Roberts",
booktitle = "3rd International Conference on Learning and Intelligent Optimization (LION3)",
year = "2009"
}
@Book{ russell1991right,
title = "Do the right thing",
author = "S. Russell and E. Wefald",
year = "1991",
publisher = "MIT Press"
}
\% Infinite BQ references
@Article{ griffiths2005infinite,
title = "Infinite latent feature models and the Indian buffet process",
author = "T. Griffiths and Zoubin Ghahramani",
year = "2005",
publisher = "Gatsby Unit"
}
@InProceedings{ doshi2009accelerated,
title = "Accelerated sampling for the Indian buffet process",
author = "F. Doshi-Velez and Zoubin Ghahramani",
booktitle = "Proceedings of the 26th International Conference on Machine Learning",
pages = "273--280",
year = "2009",
organization = "ACM"
}
@Article{ CowlesCarlin96,
author = "Mary K. Cowles and Bradley P. Carlin",
journal = "Journal of the American Statistical Association",
number = "434",
pages = "883--904",
publisher = "American Statistical Association",
title = "Markov Chain {M}onte {C}arlo Convergence Diagnostics: A Comparative Review",
volume = "91",
year = "1996"
}
@TechReport{ minka2000dqr,
title = "Deriving quadrature rules from {G}aussian processes",
author = "Thomas P. Minka",
year = "2000",
institution = "Statistics Department, Carnegie Mellon University"
}
@InProceedings{ guestrin1,
author = "A. Krause and C. Guestrin and A. Gupta and J. Kleinberg",
title = "Near-optimal sensor placements: Maximizing information while minimizing communication cost",
booktitle = "Proceedings of the Fifth International Conference on Information Processing in Sensor Networks (IPSN '06)",
year = "2006",
pages = "2--10",
address = "Nashville, Tennessee, USA"
}
@InProceedings{ guestrin2,
author = "A. Deshpande and C. Guestrin and S. Madden and J. Hellerstein and W. Hong",
title = "Model-Driven Data Acquisition in Sensor Networks",
booktitle = "Proceedings of the Thirtieth International Conference on Very Large Data Bases (VLDB 2004)",
location = "Toronto, Canada",
year = "2004",
pages = "588--599"
}
@Article{ MCUnsound,
author = "A. O'Hagan",
title = "{M}onte {C}arlo is fundamentally unsound",
journal = "The Statistician",
pages = "247--249",
volume = "36",
year = "1987"
}
@Article{ BZHermiteQuadrature,
author = "A. O'Hagan",
journal = "Journal of Statistical Planning and Inference",
pages = "245--260",
title = "Bayes-{H}ermite Quadrature",
volume = "29",
year = "1991"
}
@InProceedings{ BZMonteCarlo,
author = "Carl E. Rasmussen and Zoubin Ghahramani",
title = "{B}ayesian {M}onte {C}arlo",
booktitle = "Advances in Neural Information Processing Systems 15",
year = "2003"
}
@Article{ Sriperumbudur2010,
author = {Bharath K. Sriperumbudur and Arthur Gretton and Kenji Fukumizu and Bernhard Sch{\"o}lkopf and Gert R.G. Lanckriet},
title = "Hilbert Space Embeddings and Metrics on Probability Measures",
journal = "J. Mach. Learn. Res.",
volume = "99",
month = "August",
year = "2010",
pages = "1517--1561",
publisher = "MIT Press",
address = "Cambridge, MA, USA"
}
@InProceedings{ Song2008,
author = {Le Song and Xinhua Zhang and Alex Smola and Arthur Gretton and Bernhard Sch{\"o}lkopf},
title = "Tailoring density estimation via reproducing kernel moment matching",
booktitle = "Proceedings of the 25th International conference on Machine Learning",
year = "2008",
pages = "992--999"
}
@InProceedings{ chen2010super,
title = "Super-Samples from Kernel Herding",
author = "Y. Chen and M. Welling and A. Smola",
year = "2010",
organization = "Conference on Uncertainty in Artificial Intelligence"
}
@InProceedings{ welling2009herding,
title = "Herding dynamical weights to learn",
author = "Max Welling",
booktitle = "Proceedings of the 26th International Conference on Machine Learning",
pages = "1121--1128",
year = "2009"
}
@Article{ bach2012equivalence,
title = "On the Equivalence between Herding and Conditional Gradient Algorithms",
author = "Francis R. Bach and Simon Lacoste-Julien and Guillaume Obozinski",
journal = "Arxiv preprint arXiv:1203.4523",
year = "2012"
}
@InProceedings{ miller2009variational,
title = "Variational inference for the Indian buffet process",
author = "K.T. Miller and J. {Van Gael} and Y.W. Teh",
booktitle = "Proceedings of the International Conference on Artificial Intelligence and Statistics",
year = "2009"
}
@Article{ green1995reversible,
title = "Reversible jump Markov chain Monte Carlo computation and {B}ayesian model determination",
author = "P.J. Green",
journal = "Biometrika",
volume = "82",
number = "4",
pages = "711--732",
year = "1995",
publisher = "Biometrika Trust"
}
@Article{ wood2007particle,
title = "Particle filtering for nonparametric {B}ayesian matrix factorization",
author = "F. Wood and T.L. Griffiths",
journal = "Advances in Neural Information Processing Systems",
volume = "19",
pages = "1513",
year = "2007",
publisher = "MIT; 1998"
}
@Article{ o1986bayesian,
title = "Bayesian quadrature",
author = "A. O'Hagan",
journal = "Dep. of Statistik",
number = "82",
year = "1986"
}
@PhDThesis{ cook1993sequential,
title = "Sequential {B}ayesian Quadrature",
author = "T. Cook"
}
@Article{ bretthorst198931p,
title = "NMR {B}ayesian spectral analysis of rat brain in vivo",
author = "G.L. Bretthorst and J.J. Kotyk and J.J.H. Ackerman",
journal = "Magnetic Resonance in Medicine",
volume = "9",
number = "2",
pages = "282--287",
year = "1989",
publisher = "Wiley Online Library"
}
@Article{ bretthorst1990bayesian,
title = "Bayesian analysis. I. Parameter estimation using quadrature NMR models",
author = "G.L. Bretthorst",
journal = "Journal of Magnetic Resonance",
volume = "88",
number = "3",
pages = "533--551",
year = "1990",
publisher = "Elsevier"
}
@Article{ pfingsten2006bayesian,
title = "Bayesian active learning for sensitivity analysis",
author = "T. Pfingsten",
journal = "Machine Learning: ECML 2006",
pages = "353--364",
year = "2006",
publisher = "Springer"
}
@InProceedings{ engel2007bayesian,
title = "{B}ayesian policy gradient algorithms",
author = "M.G.Y. Engel",
booktitle = "Advances in Neural Information Processing Systems 19",
volume = "19",
pages = "457",
year = "2007",
organization = "The MIT Press"
}
@Article{ lodhi2002text,
title = "Text classification using string kernels",
author = "H. Lodhi and C. Saunders and J. Shawe-Taylor and N. Cristianini and C. Watkins",
journal = "Journal of Machine Learning Research",
volume = "2",
pages = "419--444",
year = "2002",
publisher = "JMLR. org"
}
@Article{ gartner2003survey,
title = "A survey of kernels for structured data",
author = {T. G{\"a}rtner},
journal = "ACM SIGKDD Explorations Newsletter",
volume = "5",
number = "1",
pages = "49--58",
year = "2003",
publisher = "ACM"
}