-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
drl_upn_networks.py
46 lines (41 loc) · 1.54 KB
/
drl_upn_networks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from hermetic_principles import HermeticPrinciples # Assuming this is the correct import
from ailibrary.some_module import SomeClass # Example import from ailibrary
class Model:
def __init__(self, input_dim, output_dim, archetype_name=None, context=None, _api_key=None, _service_url=None):
self.input_dim = input_dim
self.output_dim = output_dim
self.archetype_name = archetype_name
self.context = context
self._api_key = _api_key
self._service_url = _service_url
self.hermetic_principles = HermeticPrinciples()
self.some_class_instance = SomeClass() # Example usage of ailibrary
# Example neural network model
self.model = nn.Sequential(
nn.Linear(input_dim, 128),
nn.ReLU(),
nn.Linear(128, output_dim)
)
self.criterion = nn.MSELoss()
self.optimizer = optim.Adam(self.model.parameters(), lr=0.001)
def train(self, data, targets):
self.model.train()
self.optimizer.zero_grad()
outputs = self.model(data)
loss = self.criterion(outputs, targets)
loss.backward()
self.optimizer.step()
return loss.item()
def predict_drl(self, data):
self.model.eval()
with torch.no_grad():
outputs = self.model(data)
return outputs
# Example usage:
# model = Model(input_dim=10, output_dim=1)
# loss = model.train(data, targets)
# predictions = model.predict_drl(data)