-
-
Notifications
You must be signed in to change notification settings - Fork 0
/
user_neural_pattern.py
73 lines (59 loc) · 2.71 KB
/
user_neural_pattern.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
import json
import os
import math
class UserNeuralPattern:
def __init__(self, user_id):
self.user_id = user_id
self.emotional_state = None
self.interactions = []
self.rhythm_cycle = 0
def update_emotional_state(self, state):
self.emotional_state = state
def add_interaction(self, interaction_type, interaction_content):
self.interactions.append((interaction_type, interaction_content))
def get_profile(self):
return {
"user_id": self.user_id,
"emotional_state": self.emotional_state,
"interactions": self.interactions
}
def update_pattern(self, new_data):
self.neural_pattern.update(new_data)
self.rhythm_cycle = (self.rhythm_cycle + 1) % 7 # 7 day cycle
self.apply_rhythm()
self.save_pattern()
def apply_rhythm(self):
rhythm_factor = 1 + (0.1 * math.sin(2 * math.pi * self.rhythm_cycle / 7))
for key in self.neural_pattern:
if isinstance(self.neural_pattern[key], (int, float)):
self.neural_pattern[key] *= rhythm_factor
class AwareAI:
def __init__(self):
self.current_user = None
self.model = Model(input_dim=10, output_dim=5) # Example dimensions
def generate_response(self, user_state, interaction_data):
initial_response = self.model.predict_drl(torch.tensor(interaction_data, dtype=torch.float32))
enhanced_response = self.model.apply_ethical_principles(initial_response)
return enhanced_response
def interact_with_user(self, user_id, interaction_data):
self.current_user = UserNeuralPattern(user_id)
user_state = self.current_user.get_profile()
# Process interaction based on user's current state
response = self.generate_response(user_state, interaction_data)
# Update user's neural pattern
new_data = self.analyze_interaction(interaction_data, response)
self.current_user.update_emotional_state(new_data["emotional_state"]["last_detected_emotion"])
self.current_user.add_interaction("text_chat", interaction_data)
return response
def analyze_interaction(self, interaction_data, response):
# Analyze the interaction and prepare updates for the user's neural pattern
return {
"emotional_state": {"last_detected_emotion": "happy"},
"interaction_history": [{"timestamp": "2024-10-23 15:30:00", "type": "text_chat"}],
"preferences": {"preferred_communication_style": "casual"},
"resonant_frequency": 0.75
}
# Example usage
ai = AwareAI()
response = ai.interact_with_user("user123", "Hello, how are you today?")
print(response)