-
Notifications
You must be signed in to change notification settings - Fork 4
/
Copy pathdqn.py
380 lines (307 loc) · 15.9 KB
/
dqn.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
import numpy as np
import sys
import pickle
import os
import tensorflow as tf
from tensorflow.examples.tutorials.mnist import input_data
from collections import deque
import random
from simulate import PendulumDynamics
class KMostRecent:
def __init__(self, max_size):
self.max_size = max_size
self.buffer = deque()
def add(self, thing):
self.buffer.appendleft(thing)
if len(self.buffer) > self.max_size:
self.buffer.pop()
def random_sample(self, size):
if size < len(self.buffer):
return random.sample(self.buffer, size)
else:
return list(self.buffer)
def is_full(self):
return len(self.buffer) == self.max_size
class StatusProcessor:
def __init__(self, sim_field_length, sim_max_speed, sim_theta_max, sim_thetadot_max):
self.x_min = -sim_field_length / 2
self.x_max = sim_field_length / 2
self.xdot_min = -sim_max_speed
self.xdot_max = sim_max_speed
self.theta_min = -sim_theta_max
self.theta_max = sim_theta_max
self.thetadot_min = -sim_thetadot_max
self.thetadot_max = sim_thetadot_max
@staticmethod
def _normalize(y, ymin, ymax):
return 2 * (y - ymin) / (ymax - ymin) - 1
@staticmethod
def _denormalize(y, ymin, ymax):
return ymin + (ymax - ymin) * (y + 1) / 2
def _unpack_and_process(self, status, mapper):
x, xdot, theta, thetadot = status
return (
mapper(x, self.x_min, self.x_max),
mapper(xdot, self.xdot_min, self.xdot_max),
mapper(theta, self.theta_min, self.theta_max),
mapper(thetadot, self.thetadot_min, self.thetadot_max),
)
def normalize(self, status):
return self._unpack_and_process(status, self._normalize)
def denormalize(self, status):
return self._unpack_and_process(status, self._denormalize)
def is_valid(self, status):
x, xdot, theta, thetadot = status
return (
self.x_min < x < self.x_max
) and (
self.xdot_min < xdot < self.xdot_max
) and (
self.theta_min < theta < self.theta_max
) and (
self.thetadot_min < thetadot < self.thetadot_max
)
def is_valid_norm(self, status):
return all(-1 <= x <= 1 for x in status)
def remove_nan(x, o):
return o if np.isnan(x) else x
class QNetwork:
nnet_action_size = 3
def __init__(self, state_size, gamma, tau, regularization_coeff,
learning_rate, hidden_state_size, hidden_size):
self.state_size = state_size
self.gamma = gamma
self.tau = tau
self.regularization_coeff = regularization_coeff
self.learning_rate = learning_rate
self.hidden_state_size = hidden_state_size
self.hidden_size = hidden_size
def get_action(self, session, state):
q_vals = session.run(self.output, feed_dict={
self.nnet_input_state: np.array([state] * 3),
self.nnet_input_action: np.array([
[1, 0, 0], [0, 1, 0], [0, 0, 1]
], dtype=np.float32)
})
if q_vals[0][0] >= q_vals[1][0] and q_vals[0][0] >= q_vals[2][0]:
action = -1
q = q_vals[0][0]
elif q_vals[1][0] >= q_vals[0][0] and q_vals[1][0] >= q_vals[2][0]:
action = 0
q = q_vals[1][0]
else: # if q_vals[2][0] >= q_vals[1][0] and q_vals[2][0] >= q_vals[0][0]:
action = 1
q = q_vals[2][0]
return action, q
def learn_from_replay(self, session, batch_replay):
# get q value for each action in the batch
next_moves_q_state, next_moves_q_action = [], []
for state, action, reward, next_state, end in batch_replay:
next_moves_q_state.extend([next_state] * 3)
next_moves_q_action.extend([
[1, 0, 0], [0, 1, 0], [0, 0, 1]
])
q_vals = session.run(self.target_output, feed_dict={
self.nnet_input_state: np.array(next_moves_q_state),
self.nnet_input_action: np.array(next_moves_q_action, dtype=np.float32)
})
# compute expected reward for the states in the batch
batch_inputs_state, batch_inputs_action, batch_outputs = [], [], []
for i, (state, action, reward, next_state, end) in enumerate(batch_replay):
batch_inputs_state.append(state)
batch_inputs_action.append([(0, 1, 0), (0, 0, 1), (1, 0, 0)][action])
consider_future = 0 if end else 1
batch_outputs.append([reward + consider_future * self.gamma * max(
q_vals[3 * i][0], q_vals[3 * i + 1][0], q_vals[3 * i + 2][0]
)])
# backpropagate
_, loss_value = session.run([self.optimizer, self.loss], feed_dict={
self.nnet_input_state: batch_inputs_state,
self.nnet_input_action: batch_inputs_action,
self.nnet_label: batch_outputs,
})
session.run(self.update_target_network_op)
assert not np.isnan(loss_value)
return loss_value
def build(self):
self._build_network()
self._build_target_network()
def _build_network(self):
self.nnet_input_state = tf.placeholder(
shape=[None, self.state_size], dtype=tf.float32, name='nnet_input_state'
)
self.nnet_input_action = tf.placeholder(
shape=[None, self.nnet_action_size], dtype=tf.float32, name='nnet_input_action'
)
self.nnet_label = tf.placeholder(
shape=[None, 1], dtype=tf.float32, name='nnet_label'
)
self.weights_1, self.bias_1 = self._make_weights(self.state_size, self.hidden_state_size)
self.hidden_state_1 = self._compute_next_layer(self.nnet_input_state, self.weights_1, self.bias_1)
self.weights_2, self.bias_2 = self._make_weights(self.hidden_state_size, self.hidden_size)
self.hidden_state_2 = self._compute_next_layer(self.hidden_state_1, self.weights_2, self.bias_2)
self.weights_3, self.bias_3 = self._make_weights(self.nnet_action_size, self.hidden_size)
self.hidden_action = self._compute_next_layer(self.nnet_input_action, self.weights_3, self.bias_3)
self.bias_5 = tf.Variable(tf.constant(0.1, shape=[self.hidden_size]))
self.hidden_combined = tf.nn.relu(self.hidden_state_2 + self.hidden_action + self.bias_5)
self.weights_4, self.bias_4 = self._make_weights(self.hidden_size, 1)
self.output = self._compute_next_layer(self.hidden_combined, self.weights_4, self.bias_4, activation=None)
self.squared_error = (self.nnet_label - self.output)**2
self.loss = tf.reduce_mean(self.squared_error) + self.regularization_coeff * (
tf.reduce_sum(self.weights_1 ** 2) + tf.reduce_sum(self.bias_1 ** 2) +
tf.reduce_sum(self.weights_2 ** 2) + tf.reduce_sum(self.bias_2 ** 2) +
tf.reduce_sum(self.weights_3 ** 2) + tf.reduce_sum(self.bias_3 ** 2) +
tf.reduce_sum(self.weights_4 ** 2) + tf.reduce_sum(self.bias_4 ** 2) +
tf.reduce_sum(self.bias_5 ** 2)
)
self.network_params = [self.weights_1, self.bias_1, self.weights_2,
self.bias_2, self.weights_3, self.bias_3,
self.weights_4, self.bias_4, self.bias_5]
self.optimizer = tf.train.AdamOptimizer(self.learning_rate).minimize(self.loss)
def _build_target_network(self):
self.target_network_params = [tf.Variable(var.initialized_value())
for var in self.network_params]
self.update_target_network_op = [
target_var.assign(self.tau * var + (1 - self.tau) * target_var)
for var, target_var in zip(self.network_params, self.target_network_params)
]
(
self.target_weights_1, self.target_bias_1, self.target_weights_2,
self.target_bias_2, self.target_weights_3, self.target_bias_3,
self.target_weights_4, self.target_bias_4, self.target_bias_5
) = self.target_network_params
self.target_hidden_state_1 = self._compute_next_layer(self.nnet_input_state, self.target_weights_1, self.target_bias_1)
self.target_hidden_state_2 = self._compute_next_layer(self.target_hidden_state_1, self.target_weights_2, self.target_bias_2)
self.target_hidden_action = self._compute_next_layer(self.nnet_input_action, self.target_weights_3, self.target_bias_3)
self.target_hidden_combined = tf.nn.relu(self.target_hidden_state_2 + self.target_hidden_action + self.target_bias_5)
self.target_output = self._compute_next_layer(self.target_hidden_combined, self.target_weights_4, self.target_bias_4, activation=None)
@staticmethod
def _make_weights(rows, cols):
weights = tf.Variable(tf.truncated_normal(shape=[rows, cols], stddev=0.1))
bias = tf.Variable(tf.constant(0.1, shape=[cols]))
return weights, bias
@staticmethod
def _compute_next_layer(input_layer, weights, bias, activation=tf.nn.relu):
h = tf.matmul(input_layer, weights) + bias
return activation(h) if activation else h
class DQNPendulum:
replay_batch_size = 32 # size of the minibatch for experience replay
simulation_length = 500 # how many steps each episode is
num_episodes = 100000 # stop training after this many episodes
replay_buffer_size = 1000000 # how many experiences to keep in the replay buffer
force_factor = 75 # force intensity for bang-bang control
epsilon_decay = 0.00025 # exploration rate coefficient
min_eps = 0.1 # minimum random exploration rate
save_network_every = 25 # checkpoint interval (episodes)
save_network_path = './logs/dqn' # checkpoint location
past_states_count = 4 # input this many last states to the Q network
gamma = 0.99 # Q-learning discount factor
tau = 0.001 # soft update strength for target network
regularization_coeff = 0.001 # regularization in the loss
learning_rate = 0.001 # learning rate for the Q network
nnet_hidden_state_size = 128 # state is processed alone in this hidden layer
nnet_hidden_size = 128 # this layer combines state and action
sim_field_length = 50 # episode fails if pendulum is outside [-l/2, l/2]
sim_max_speed = 100 # episode fails if the cart moves faster than this
sim_theta_max = 10 # episode fails if pendulum angle is more than this
sim_thetadot_max = 100 # episode fails if pendulum rotates faster than this
network_checkpoint = ''
def learn(self):
graph = tf.Graph()
self.qnet = QNetwork(4 * self.past_states_count, self.gamma, self.tau, self.regularization_coeff,
self.learning_rate, self.nnet_hidden_state_size, self.nnet_hidden_size)
with graph.as_default():
self.qnet.build()
with tf.Session(graph=graph) as session:
tf.global_variables_initializer().run()
writer = tf.summary.FileWriter('logs', session.graph)
saver = tf.train.Saver(self.qnet.target_network_params)
replay_buffer = KMostRecent(self.replay_buffer_size)
state_processor = StatusProcessor(self.sim_field_length, self.sim_max_speed,
self.sim_theta_max, self.sim_thetadot_max)
if self.network_checkpoint:
self.qnet.target_network_params = saver.restore(session, self.network_checkpoint)
for episode in range(self.num_episodes):
stats = self.do_episode(session, episode, replay_buffer, state_processor)
self.write_summary(session, episode, writer, saver, replay_buffer, *stats)
writer.close()
def do_episode(self, session, episode_no, replay_buffer, state_processor):
pendulum = PendulumDynamics(0, 0, np.pi, 0)
last_states = KMostRecent(self.past_states_count)
for _ in range(self.past_states_count):
last_states.add(state_processor.normalize(pendulum.state))
end_early, sim_trace, all_losses, all_rewards, all_qs = False, [], [], [], []
for step in range(self.simulation_length):
state = [x for s in last_states.buffer for x in s]
# choose next action
if self.epsilon_decay > 0 and np.random.random() < max(self.min_eps, np.exp(-episode_no * self.epsilon_decay)):
action = random.choice([-1, 0, 1])
else:
action, qval = self.qnet.get_action(session, state)
all_qs.append(qval)
# perform action
sim_trace.append((step * pendulum.dt, state_processor.denormalize(state[-4:]), action))
old_state = state
pendulum.step_simulate(self.force_factor * action)
last_states.add(state_processor.normalize(pendulum.state))
state = [x for s in last_states.buffer for x in s]
# compute reward
if state_processor.is_valid(pendulum.state):
reward = -0.05 * (abs(pendulum.theta) - 3) - 0.001 * (abs(pendulum.x) - 3)
#reward = 0.1 if abs(pendulum.theta) < 0.25 and abs(pendulum.x < 0.25) else -0.001
else:
reward = -10
end_early = True
replay_buffer.add((old_state, action, reward, state, end_early))
all_rewards.append(reward)
# learn
if not end_early:
batch_replay = replay_buffer.random_sample(self.replay_batch_size)
loss_value = self.qnet.learn_from_replay(session, batch_replay)
all_losses.append(loss_value)
return sim_trace, all_losses, all_rewards, all_qs
def write_summary(self, session, episode_no, writer, saver, replay_buffer,
sim_trace, all_losses, all_rewards, all_qs):
summary = tf.Summary()
summary.value.add(tag='avg_loss', simple_value=np.mean(all_losses))
summary.value.add(tag='avg_reward', simple_value=np.mean(all_rewards))
summary.value.add(tag='sum_reward', simple_value=sum(all_rewards))
summary.value.add(tag='avg_q', simple_value=remove_nan(np.mean(all_qs), 0))
summary.value.add(tag='sum_q', simple_value=np.sum(all_qs))
writer.add_summary(summary, global_step=episode_no)
print('Episode %d - L: %.3f\tAR: %.3f\tSR: %.3f\tAQ: %.3f\tSQ: %.3f' % (
episode_no, np.mean(all_losses), np.mean(all_rewards),
sum(all_rewards), np.mean(all_qs), np.sum(all_qs)
))
if episode_no and not episode_no % self.save_network_every:
saver.save(session, self.save_network_path, global_step=episode_no)
with open('./logs/last-episode.csv', 'w') as f:
f.write('t,force,x,xdot,theta,thetadot\n')
for time, state, action in sim_trace:
f.write('%f,%f,%f,%f,%f,%d\n' % (
(time, action * self.force_factor) + state
))
with open('./logs/last-replay-buffer.pckl', 'wb') as f:
pickle.dump(replay_buffer, f)
print('saved')
def parse_args(gp):
for arg in sys.argv[1:]:
name, val = arg.split('=', 1)
if name.startswith('_'):
continue
orig = getattr(gp, name)
if type(orig) == list: # lists must have homogenuous type
value = [type(orig[0])(e) for e in val.split(',')]
elif type(orig) == dict:
value = {}
for kvp in val.split(';'):
k, v = kvp.split(':', 1)
orig[k] = type(orig[k])(v)
value = orig
else:
value = type(orig)(val)
setattr(gp, name, value)
return gp
if __name__ == '__main__':
qp = parse_args(DQNPendulum())
qp.learn()