forked from uoip/stereo_msckf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdataset.py
executable file
·329 lines (262 loc) · 10.1 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import numpy as np
import cv2
import os
import time
from collections import defaultdict, namedtuple
from threading import Thread
class GroundTruthReader(object):
def __init__(self, path, scaler, starttime=-float('inf')):
self.scaler = scaler # convert timestamp from ns to second
self.path = path
self.starttime = starttime
self.field = namedtuple('gt_msg', ['p', 'q', 'v', 'bw', 'ba'])
def parse(self, line):
"""
line: (timestamp, p_RS_R_x [m], p_RS_R_y [m], p_RS_R_z [m],
q_RS_w [], q_RS_x [], q_RS_y [], q_RS_z [],
v_RS_R_x [m s^-1], v_RS_R_y [m s^-1], v_RS_R_z [m s^-1],
b_w_RS_S_x [rad s^-1], b_w_RS_S_y [rad s^-1], b_w_RS_S_z [rad s^-1],
b_a_RS_S_x [m s^-2], b_a_RS_S_y [m s^-2], b_a_RS_S_z [m s^-2])
"""
line = [float(_) for _ in line.strip().split(',')]
timestamp = line[0] * self.scaler
p = np.array(line[1:4])
q = np.array(line[4:8])
v = np.array(line[8:11])
bw = np.array(line[11:14])
ba = np.array(line[14:17])
return self.field(timestamp, p, q, v, bw, ba)
def set_starttime(self, starttime):
self.starttime = starttime
def __iter__(self):
with open(self.path, 'r') as f:
next(f)
for line in f:
data = self.parse(line)
if data.timestamp < self.starttime:
continue
yield data
class IMUDataReader(object):
def __init__(self, path, scaler, starttime=-float('inf')):
self.scaler = scaler
self.path = path
self.starttime = starttime
self.field = namedtuple('imu_msg',
['timestamp', 'angular_velocity', 'linear_acceleration'])
def parse(self, line):
"""
line: (timestamp [ns],
w_RS_S_x [rad s^-1], w_RS_S_y [rad s^-1], w_RS_S_z [rad s^-1],
a_RS_S_x [m s^-2], a_RS_S_y [m s^-2], a_RS_S_z [m s^-2])
"""
line = [float(_) for _ in line.strip().split(',')]
timestamp = line[0] * self.scaler
wm = np.array(line[1:4])
am = np.array(line[4:7])
return self.field(timestamp, wm, am)
def __iter__(self):
with open(self.path, 'r') as f:
next(f)
for line in f:
data = self.parse(line)
if data.timestamp < self.starttime:
continue
yield data
def start_time(self):
# return next(self).timestamp
with open(self.path, 'r') as f:
next(f)
for line in f:
return self.parse(line).timestamp
def set_starttime(self, starttime):
self.starttime = starttime
class ImageReader(object):
def __init__(self, ids, timestamps, starttime=-float('inf')):
self.ids = ids
self.timestamps = timestamps
self.starttime = starttime
self.cache = dict()
self.idx = 0
self.field = namedtuple('img_msg', ['timestamp', 'image'])
self.ahead = 10 # 10 images ahead of current index
self.wait = 1.5 # waiting time
self.preload_thread = Thread(target=self.preload)
self.thread_started = False
def read(self, path):
return cv2.imread(path, -1)
def preload(self):
idx = self.idx
t = float('inf')
while True:
if time.time() - t > self.wait:
return
if self.idx == idx:
time.sleep(1e-2)
continue
for i in range(self.idx, self.idx + self.ahead):
if self.timestamps[i] < self.starttime:
continue
if i not in self.cache and i < len(self.ids):
self.cache[i] = self.read(self.ids[i])
if self.idx + self.ahead > len(self.ids):
return
idx = self.idx
t = time.time()
def __len__(self):
return len(self.ids)
def __getitem__(self, idx):
self.idx = idx
# if not self.thread_started:
# self.thread_started = True
# self.preload_thread.start()
if idx in self.cache:
img = self.cache[idx]
del self.cache[idx]
else:
img = self.read(self.ids[idx])
return img
def __iter__(self):
for i, timestamp in enumerate(self.timestamps):
if timestamp < self.starttime:
continue
yield self.field(timestamp, self[i])
def start_time(self):
return self.timestamps[0]
def set_starttime(self, starttime):
self.starttime = starttime
class Stereo(object):
def __init__(self, cam0, cam1):
assert len(cam0) == len(cam1)
self.cam0 = cam0
self.cam1 = cam1
self.timestamps = cam0.timestamps
self.field = namedtuple('stereo_msg',
['timestamp', 'cam0_image', 'cam1_image', 'cam0_msg', 'cam1_msg'])
def __iter__(self):
for l, r in zip(self.cam0, self.cam1):
assert abs(l.timestamp - r.timestamp) < 0.01, 'unsynced stereo pair'
yield self.field(l.timestamp, l.image, r.image, l, r)
def __len__(self):
return len(self.cam0)
def start_time(self):
return self.cam0.starttime
def set_starttime(self, starttime):
self.starttime = starttime
self.cam0.set_starttime(starttime)
self.cam1.set_starttime(starttime)
class EuRoCDataset(object): # Stereo + IMU
'''
path example: 'path/to/your/EuRoC Mav Dataset/MH_01_easy'
'''
def __init__(self, path):
self.groundtruth = GroundTruthReader(os.path.join(
path, 'mav0', 'state_groundtruth_estimate0', 'data.csv'), 1e-9)
self.imu = IMUDataReader(os.path.join(
path, 'mav0', 'imu0', 'data.csv'), 1e-9)
self.cam0 = ImageReader(
*self.list_imgs(os.path.join(path, 'mav0', 'cam0', 'data')))
self.cam1 = ImageReader(
*self.list_imgs(os.path.join(path, 'mav0', 'cam1', 'data')))
self.stereo = Stereo(self.cam0, self.cam1)
self.timestamps = self.cam0.timestamps
self.starttime = max(self.imu.start_time(), self.stereo.start_time())
self.set_starttime(0)
def set_starttime(self, offset):
self.groundtruth.set_starttime(self.starttime + offset)
self.imu.set_starttime(self.starttime + offset)
self.cam0.set_starttime(self.starttime + offset)
self.cam1.set_starttime(self.starttime + offset)
self.stereo.set_starttime(self.starttime + offset)
def list_imgs(self, dir):
xs = [_ for _ in os.listdir(dir) if _.endswith('.png')]
xs = sorted(xs, key=lambda x:float(x[:-4]))
timestamps = [float(_[:-4]) * 1e-9 for _ in xs]
return [os.path.join(dir, _) for _ in xs], timestamps
# simulate the online environment
class DataPublisher(object):
def __init__(self, dataset, out_queue, duration=float('inf'), ratio=1.):
self.dataset = dataset
self.dataset_starttime = dataset.starttime
self.out_queue = out_queue
self.duration = duration
self.ratio = ratio
self.starttime = None
self.started = False
self.stopped = False
self.publish_thread = Thread(target=self.publish)
def start(self, starttime):
self.started = True
self.starttime = starttime
self.publish_thread.start()
def stop(self):
self.stopped = True
if self.started:
self.publish_thread.join()
self.out_queue.put(None)
def publish(self):
dataset = iter(self.dataset)
while not self.stopped:
try:
data = next(dataset)
except StopIteration:
self.out_queue.put(None)
return
interval = data.timestamp - self.dataset_starttime
if interval < 0:
continue
while (time.time() - self.starttime) * self.ratio < interval + 1e-3:
time.sleep(1e-3) # assumption: data frequency < 1000hz
if self.stopped:
return
if interval <= self.duration + 1e-3:
self.out_queue.put(data)
else:
self.out_queue.put(None)
return
if __name__ == '__main__':
from queue import Queue
path = 'path/to/your/EuRoC Mav Dataset/MH_01_easy'
dataset = EuRoCDataset(path)
dataset.set_starttime(offset=30)
img_queue = Queue()
imu_queue = Queue()
gt_queue = Queue()
duration = 1
imu_publisher = DataPublisher(
dataset.imu, imu_queue, duration)
img_publisher = DataPublisher(
dataset.stereo, img_queue, duration)
gt_publisher = DataPublisher(
dataset.groundtruth, gt_queue, duration)
now = time.time()
imu_publisher.start(now)
img_publisher.start(now)
# gt_publisher.start(now)
def print_msg(in_queue, source):
while True:
x = in_queue.get()
if x is None:
return
print(x.timestamp, source)
t2 = Thread(target=print_msg, args=(imu_queue, 'imu'))
t3 = Thread(target=print_msg, args=(gt_queue, 'groundtruth'))
t2.start()
t3.start()
timestamps = []
while True:
x = img_queue.get()
if x is None:
break
print(x.timestamp, 'image')
cv2.imshow('left', np.hstack([x.cam0_image, x.cam1_image]))
cv2.waitKey(1)
timestamps.append(x.timestamp)
imu_publisher.stop()
img_publisher.stop()
gt_publisher.stop()
t2.join()
t3.join()
print(f'\nelapsed time: {time.time() - now}s')
print(f'dataset time interval: {timestamps[-1]} -> {timestamps[0]}'
f' ({timestamps[-1]-timestamps[0]}s)\n')
print('Please check if IMU and image are synced')