forked from uoip/stereo_msckf
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
executable file
·157 lines (130 loc) · 4.24 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
# quaternion representation: [x, y, z, w]
# JPL convention
def skew(vec):
"""
Create a skew-symmetric matrix from a 3-element vector.
"""
x, y, z = vec
return np.array([
[0, -z, y],
[z, 0, -x],
[-y, x, 0]])
def to_rotation(q):
"""
Convert a quaternion to the corresponding rotation matrix.
Pay attention to the convention used. The function follows the
conversion in "Indirect Kalman Filter for 3D Attitude Estimation:
A Tutorial for Quaternion Algebra", Equation (78).
The input quaternion should be in the form [q1, q2, q3, q4(scalar)]
"""
q = q / np.linalg.norm(q)
vec = q[:3]
w = q[3]
R = (2*w*w-1)*np.identity(3) - 2*w*skew(vec) + 2*vec[:, None]*vec
return R
def to_quaternion(R):
"""
Convert a rotation matrix to a quaternion.
Pay attention to the convention used. The function follows the
conversion in "Indirect Kalman Filter for 3D Attitude Estimation:
A Tutorial for Quaternion Algebra", Equation (78).
The input quaternion should be in the form [q1, q2, q3, q4(scalar)]
"""
if R[2, 2] < 0:
if R[0, 0] > R[1, 1]:
t = 1 + R[0,0] - R[1,1] - R[2,2]
q = [t, R[0, 1]+R[1, 0], R[2, 0]+R[0, 2], R[1, 2]-R[2, 1]]
else:
t = 1 - R[0,0] + R[1,1] - R[2,2]
q = [R[0, 1]+R[1, 0], t, R[2, 1]+R[1, 2], R[2, 0]-R[0, 2]]
else:
if R[0, 0] < -R[1, 1]:
t = 1 - R[0,0] - R[1,1] + R[2,2]
q = [R[0, 2]+R[2, 0], R[2, 1]+R[1, 2], t, R[0, 1]-R[1, 0]]
else:
t = 1 + R[0,0] + R[1,1] + R[2,2]
q = [R[1, 2]-R[2, 1], R[2, 0]-R[0, 2], R[0, 1]-R[1, 0], t]
q = np.array(q) # * 0.5 / np.sqrt(t)
return q / np.linalg.norm(q)
def quaternion_normalize(q):
"""
Normalize the given quaternion to unit quaternion.
"""
return q / np.linalg.norm(q)
def quaternion_conjugate(q):
"""
Conjugate of a quaternion.
"""
return np.array([*-q[:3], q[3]])
def quaternion_multiplication(q1, q2):
"""
Perform q1 * q2
"""
q1 = q1 / np.linalg.norm(q1)
q2 = q2 / np.linalg.norm(q2)
L = np.array([
[ q1[3], q1[2], -q1[1], q1[0]],
[-q1[2], q1[3], q1[0], q1[1]],
[ q1[1], -q1[0], q1[3], q1[2]],
[-q1[0], -q1[1], -q1[2], q1[3]]
])
q = L @ q2
return q / np.linalg.norm(q)
def small_angle_quaternion(dtheta):
"""
Convert the vector part of a quaternion to a full quaternion.
This function is useful to convert delta quaternion which is
usually a 3x1 vector to a full quaternion.
For more details, check Equation (238) and (239) in "Indirect Kalman
Filter for 3D Attitude Estimation: A Tutorial for quaternion Algebra".
"""
dq = dtheta / 2.
dq_square_norm = dq @ dq
if dq_square_norm <= 1:
q = np.array([*dq, np.sqrt(1-dq_square_norm)])
else:
q = np.array([*dq, 1.])
q /= np.sqrt(1+dq_square_norm)
return q
def from_two_vectors(v0, v1):
"""
Rotation quaternion from v0 to v1.
"""
v0 = v0 / np.linalg.norm(v0)
v1 = v1 / np.linalg.norm(v1)
d = v0 @ v1
# if dot == -1, vectors are nearly opposite
if d < -0.999999:
axis = np.cross([1,0,0], v0)
if np.linalg.norm(axis) < 0.000001:
axis = np.cross([0,1,0], v0)
q = np.array([*axis, 0.])
elif d > 0.999999:
q = np.array([0., 0., 0., 1.])
else:
s = np.sqrt((1+d)*2)
axis = np.cross(v0, v1)
vec = axis / s
w = 0.5 * s
q = np.array([*vec, w])
q = q / np.linalg.norm(q)
return quaternion_conjugate(q) # hamilton -> JPL
class Isometry3d(object):
"""
3d rigid transform.
"""
def __init__(self, R, t):
self.R = R
self.t = t
def matrix(self):
m = np.identity(4)
m[:3, :3] = self.R
m[:3, 3] = self.t
return m
def inverse(self):
return Isometry3d(self.R.T, -self.R.T @ self.t)
def __mul__(self, T1):
R = self.R @ T1.R
t = self.R @ T1.t + self.t
return Isometry3d(R, t)