-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrainer.py
83 lines (72 loc) · 3.58 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
import torch
import torch.nn as nn
from colorist import Color
import time
import os
from tqdm import tqdm
class Trainer:
def __init__(self, model, train_loader, valid_loader, optimizer, scheduler, device):
self.model = model
self.train_loader = train_loader
self.valid_loader = valid_loader
self.optimizer = optimizer
self.scheduler = scheduler
self.device = device
self.criterion = nn.CrossEntropyLoss()
self.train_losses = []
self.train_acc_list = []
self.valid_losses = []
self.valid_acc_list = []
self.best_acc = 0.0
self.model_checkpoint_dir = './model_checkpoints/'
self.init_time = time.strftime("%Y-%m-%d_%H.%M.%S")
if os.path.exists(f"./model_checkpoints/{self.init_time}") is False:
os.makedirs(f"./model_checkpoints/{self.init_time}")
print("Created new directory for model checkpoints at", f"./model_checkpoints/{self.init_time}")
def train(self, epoch):
self.model.train()
total_loss = 0.0
correct = 0
for batch_idx, (data, target) in enumerate(tqdm(self.train_loader, desc=f"{Color.MAGENTA}Epoch {epoch}{Color.OFF}")):
data, target = data.to(self.device), target.to(self.device)
self.optimizer.zero_grad()
output = self.model(data)
loss = self.criterion(output, target)
loss.backward()
self.optimizer.step()
total_loss += loss.item()
pred = output.argmax(dim=1, keepdim=True)
correct += pred.eq(target.view_as(pred)).sum().item()
train_loss = total_loss / len(self.train_loader.dataset)
train_accuracy = 100. * correct / len(self.train_loader.dataset)
self.train_losses.append(train_loss)
self.train_acc_list.append(train_accuracy)
print(f"Train set ===> Average Loss: {Color.RED}{train_loss:.4f}{Color.OFF} | Accuracy: {correct}/{len(self.train_loader.dataset)} ({Color.CYAN}{train_accuracy:.2f}%{Color.OFF})")
def validate(self):
self.model.eval()
correct = 0
val_loss = 0
with torch.no_grad():
for data, target in self.valid_loader:
data, target = data.to(self.device), target.to(self.device)
output = self.model(data)
val_loss += self.criterion(output, target).item() # Sum up batch loss
pred = output.argmax(dim=1, keepdim=True) # Get the index of the max log-probability
correct += pred.eq(target.view_as(pred)).sum().item()
val_loss /= len(self.valid_loader.dataset)
valid_accuracy = 100. * correct / len(self.valid_loader.dataset)
self.valid_acc_list.append(valid_accuracy)
self.valid_losses.append(val_loss)
print(f"Test set ===> Average Loss: {Color.RED}{val_loss:.4f}{Color.OFF} | Accuracy: {correct}/{len(self.valid_loader.dataset)} ({Color.GREEN}{valid_accuracy:.2f}%{Color.OFF})")
if valid_accuracy > self.best_acc:
self.best_acc = valid_accuracy
self.save_model(f'./model_checkpoints/{self.init_time}/best_model.pth')
def save_model(self, path):
torch.save(self.model.state_dict(), path)
print(f"Model saved at {path}")
def __call__(self, epochs):
for epoch in range(1, epochs + 1):
self.train(epoch)
self.validate()
print(f"Best Accuracy: [\033[1;32m{round(float(self.best_acc),3)}%\033[0m]")
self.scheduler.step(epoch)