-
Notifications
You must be signed in to change notification settings - Fork 9
/
template_tokenizer.py
127 lines (101 loc) · 4.15 KB
/
template_tokenizer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
# +
from tokenizers import Tokenizer
import re
from utils import extract_variables, clean_text
template_tokenizer = Tokenizer.from_file("blank_wordpiece.tokenizer")
with open(
"template_vocab.txt",
"r",
) as f:
template_vocab = [l.rstrip("\n") for l in f.readlines()]
template_tokenizer.add_tokens(template_vocab)
variable_tokenizer = Tokenizer.from_file("blank_wordpiece.tokenizer")
variable_vocab = ["[UNK]"]
variable_vocab.extend([str(i) for i in range(101)])
variable_vocab.extend(
["‡", "MILD", "MODERATE", "SEVERE", "MILD/MODERATE", "MODERATE/SEVERE"]
)
variable_vocab.extend(["." + str(i) for i in range(10)])
variable_vocab.extend(["0" + str(i) for i in range(10)])
variable_tokenizer.add_tokens(variable_vocab)
max_token_id = (
len(template_tokenizer.get_vocab()) + len(variable_tokenizer.get_vocab()) - 1
)
BOS_token_id = max_token_id + 1
EOS_token_id = max_token_id + 2
var_symbol = re.compile(r"<#>")
# mapping from ID to number of missing numbers
var_counts = {}
for token, token_id in template_tokenizer.get_vocab().items():
var_count = len(var_symbol.findall(token))
var_counts[token_id] = var_count
template_vocab_len = len(template_tokenizer.get_vocab())
# Some final text cleaning replacements.
replacements = [
(
"THE INFERIOR VENA CAVA IS NORMAL IN SIZE AND SHOWS A NORMAL RESPIRATORY COLLAPSE, CONSISTENT WITH NORMAL RIGHT ATRIAL PRESSURE (<#>MMHG).",
"THE INFERIOR VENA CAVA SHOWS A NORMAL RESPIRATORY COLLAPSE CONSISTENT WITH NORMAL RIGHT ATRIAL PRESSURE (<#>MMHG).",
),
(
"RESTING SEGMENTAL WALL MOTION ANALYSIS.:",
"RESTING SEGMENTAL WALL MOTION ANALYSIS.",
),
]
def simple_replacement(text):
for r in replacements:
text = text.replace(r[0], r[1])
return text
def pad_or_trunc(tokens, length):
if len(tokens) > length:
eos_token = max(tokens)
tokens = tokens[:length]
tokens[-1] = eos_token
else:
tokens = tokens + [0] * (length - len(tokens))
return tokens
def template_tokenize(report):
report = clean_text(report)
# The "variables" (numbers, severity words) are removed from the report
# and returned in a list. The report text has all variables replaced
# with a placeholder symbol: <#>
# The template tokenizer's vocabulary is made up of phrases with this
# placeholder symbol.
variables, report = extract_variables(report)
report = simple_replacement(report)
toks = template_tokenizer.encode(report)
# Now we have a list of tokenized phrases, some of which had variables
# extracted from them, and some of which didn't.
var_mask = []
unk = []
for (start, end), tok, tok_id in zip(toks.offsets, toks.tokens, toks.ids):
if not tok == "[UNK]":
var_mask.extend([True] * var_counts[tok_id])
else:
source = report[start:end]
unk.append((source, start))
var_count = len(var_symbol.findall(source))
var_mask.extend([False] * var_count)
tok_ids = [t for t in toks.ids if not t == 0]
matched_vars = [v for v, mask in zip(variables, var_mask) if mask]
new_tok_ids = []
for tok_id in tok_ids:
var_count = var_counts[tok_id]
recognized_vars = []
for _ in range(var_count):
recognized_vars.append(matched_vars.pop(0))
# variables are joined with this weird char before being
# tokenized so that the model can tell where one variable
# ends and another begins
var_string = "‡".join(recognized_vars)
var_toks = variable_tokenizer.encode(var_string).ids
var_toks = [v + template_vocab_len for v in var_toks]
new_tok_ids.extend([tok_id, *var_toks])
new_tok_ids = [BOS_token_id, *new_tok_ids, EOS_token_id]
return pad_or_trunc(new_tok_ids, 77)
template_detokenizer = {k: f"[{v}]" for v, k in template_tokenizer.get_vocab().items()}
for k, v in variable_tokenizer.get_vocab().items():
template_detokenizer[v + template_vocab_len] = f"<{k}>"
template_detokenizer[max_token_id + 1] = "[BOS]"
template_detokenizer[max_token_id + 2] = "[EOS]"
def template_detokenize(ids):
return [template_detokenizer[i] for i in ids]