-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathenergy_storage_pre.m
256 lines (208 loc) · 10.1 KB
/
energy_storage_pre.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
clearvars;
%% Script Parameters
caseNumber = 1; % Select the case number from the paper
%% Grid parameters
grid.fn = 60; % Rated frequency [Hz]
grid.UB1 = 675; % Rated line voltage at converter output [Vrms]
grid.UB2 = 11e3; % Rated line voltage at PCC [Vrms]
grid.Sb = 70e6; % Base power [VA]
grid.rss = 0.02; % Maximum steady-state frequency deviation [pu]
%% Grid-Side Converter (GSC) parameters
% Base values
gsc.fbase = grid.fn; % Frequency [Hz]
gsc.Sbase = 9.65e6; % Apparent power [VA]
gsc.Vbase = grid.UB1; % Line voltage [Vrms]
gsc.Vdcbase = 1500; % dc-link voltage [Vdc]
% Design parameters in pu
gsc.fSwitch = grid.fn*90; % VSC switch frequency [Hz]
gsc.maxDeltaI = 0.25; % Max current ripple on the converter side inductance
gsc.Qlc = 0.3; % Damping factor of the LCL filter (recommended = 0.3)
gsc.kFilter = 0.5; % Factor for measurement cut-off frequency (recommended < 0.5)
gsc.mmax = 0.5; % 0.5 for sinusoidal PWM; 0.5774 for third harmonic injection
gsc.maxDeltaVdc = 150/gsc.Vdcbase; % Max voltage ripple on the dc-link [pu]
gsc.maxDeltaP = 360.5e3/gsc.Sbase; % Max power to be supplied by dc-link
gsc.maxDeltaT = 1 / (8*grid.fn); % Max time to supply DeltaP (recommended = 1/8 of a grid cycle)
[designOk, gsc.filter, gsc.filterpu, gsc.ctrl] = VSCdesignpu(gsc);
%% Energy Storage Devices
% Primary Control Storage (ES1) Parameters
switch(caseNumber)
case 1
es1.Prated = 1; % Rated power [W]
case 2
es1.Prated = 1.54e6; % Rated power [W]
case 3
es1.Prated = 1; % Rated power [W]
case 4
es1.Prated = 1.54e6; % Rated power [W]
otherwise
fprintf('Invalid case number.\n');
return
end
% Secondary Control Storage (ES2) Parameters
switch(caseNumber)
case 1
es2.Pfc = 1; % Fuel cell rated power [W]
es2.Pely = 1; % Electrolizer rated power [W]
case 2
es2.Pfc = 4e6; % Fuel cell rated power [W]
es2.Pely = 6e6; % Electrolizer rated power [W]
case 3
es2.Pfc = 1; % Fuel cell rated power [W]
es2.Pely = 1; % Electrolizer rated power [W]
case 4
es2.Pfc = 4e6; % Fuel cell rated power [W]
es2.Pely = 6e6; % Electrolizer rated power [W]
otherwise
fprintf('Invalid case number.\n');
return
end
%% Energy Storage System Controllers
% PLL
gsc.pll.Kp = 120; % Proportional gain
gsc.pll.Ki = 50; % Integral gain
gsc.pll.Kd = 3000; % Derivative gain
gsc.pll.Tr = 100; % Reset time for derivative gain
gsc.pll.wt0 = 0; % Initial rotor angle
% Primary active power control
ess.P.Kp = 1/grid.rss; % Permanent droop (proportional gain)
ess.P.Kd = 0; % Transient droop (derivative gain)
ess.P.Tr = 0.1; % Reset time for transient droop
ess.P.flp = 0.5 * gsc.ctrl.ffilt; % Low-pass frequency
ess.P.DB = 0.0025; % Deadband
% Reactive power control
ess.Q.Kp = 1/0.10; % Permanent droop (proportional gain)
ess.Q.Kd = 0; % Transient droop (derivative gain)
ess.Q.Tr = 100; % Reset time for transient droop
ess.Q.flp = 0.5 * gsc.ctrl.ffilt; % Low-pass frequency
ess.Q.DB = 0.005; % Deadband
% DC-link voltage control
ess.Udc.Kp = 1/gsc.maxDeltaVdc; % Permanent droop (proportional gain)
ess.Udc.Ki = 30; % Integral gain
ess.Udc.Kd = 2; % Transient droop (derivative gain)
ess.Udc.Tr = 0.1; % Reset time for transient droop
ess.Udc.flp = gsc.ctrl.ffilt; % Low-pass frequency
ess.Udc.DB = 0.005 * gsc.maxDeltaVdc; % Deadband
%% Turbo-generator Parameters
% Synchronous machines
gt1.SM.Sn = 2*44e6; % Rated power [VA]
gt1.SM.cosphi = 0.8; % Rated power factor
gt1.SM.Xd = 2.12; % d-axis steady-state impendance [pu]
gt1.SM.Xdp = 0.299; % d-axis transient impendance [pu]
gt1.SM.Xdpp = 0.188; % d-axis subtransient impendance [pu]
gt1.SM.Xq = 0.982; % q-axis steady-state impendance [pu]
gt1.SM.Xqpp = 0.24; % q-axis subtransient impendance [pu]
gt1.SM.Xl = 0.131; % Leakage impendance [pu]
gt1.SM.TdpSC = 0.92; % d-axis transient time - short-circuit [s]
gt1.SM.TdppSC = 0.022; % d-axis subtransient time - short-circuit [s]
gt1.SM.TqppSC = 0.0334; % q-axis subtransient time - short-circuit [s]
gt1.SM.Rs = 0.0242; % Stator (armature) resistance [pu]
gt1.SM.M = 5.1*88/70; % Inertia constant [s]
gt1.SM.p = 2; % Pairs of poles
% Turbine
gt1.Turb.T = 2.25; % Equivalent first-order delay [s]
%% Turbo-generator Controllers
% Excitation system
gt1.exc.Tr = 1/(2*grid.fn); % Input filter time constant [s]
gt1.exc.Ka = 100; % Proportional gain
gt1.exc.VRmax = 5; % Maximum output [pu]
gt1.exc.VRmin = gt1.exc.VRmax*cos(deg2rad(150)); % Minimum output [pu]
gt1.exc.Kf = 1e-5; % Rate feedback (derivative) gain
gt1.exc.Tf = 0.01; % Rate feedback (reset) time [s]
gt1.exc.Tb = 0.01; % 1st lag time constant [s]
gt1.exc.Tc = gt1.exc.Tb/10; % 1st lead time constant [s]
gt1.exc.Tb1 = 0; % 2nd lag time constant [s]
gt1.exc.Tc1 = 0; % 2nd lead time constant [s]
% Active power control
switch(caseNumber)
case 1
gt1.P.Kp = 3e6/(2*gt1.SM.Sn*gt1.SM.cosphi*grid.rss); % Permanent droop (proportional gain)
gt1.P.DB = 0.005; % Deadband - Without ESS case
case 2
gt1.P.Kp = 24e6/(2*gt1.SM.Sn*gt1.SM.cosphi*grid.rss); % Permanent droop (proportional gain)
gt1.P.DB = grid.rss; % Deadband - With ESS case
case 3
gt1.P.Kp = 12e6/(2*gt1.SM.Sn*gt1.SM.cosphi*grid.rss); % Permanent droop (proportional gain)
gt1.P.DB = 0.005; % Deadband - Without ESS case
case 4
gt1.P.Kp = 24e6/(2*gt1.SM.Sn*gt1.SM.cosphi*grid.rss); % Permanent droop (proportional gain)
gt1.P.DB = grid.rss; % Deadband - With ESS case
otherwise
fprintf('Invalid case number.\n');
return
end
gt1.P.Kd = 0; % Transient droop (derivative gain)
gt1.P.Ki = 0.033; % Integral gain (secondary control)
gt1.P.Kip = 0.05; % Propotional gain (secondary control)
gt1.P.Tr = 0.1; % Reset time for transient droop
gt1.P.flp = 10; % Low-pass frequency
gt1.P.Ref = 0.4; % Reference
%% Loads
% Step
ld.step.P = 3e6; % Step active load [W]
ld.step.cosphi = 0.95; % Step load power factor
ld.step.st = 0; % 1 = load is disconnected; 0 = load is connected
% Fixed
ld.fix.P = 37e6 - ld.step.st*ld.step.P; % Fixed active load [W]
ld.fix.cosphi = 0.98; % Fixed load power factor
% Flexible
ld.flex.P = 7.6e6; % Flexible active load [W]
ld.flex.cosphi = 0.92; % Flexible load power factor
%% Flexible Load Converter (Flex) parameters
% Base values
flex.Sbase = 11e6; % Apparent power
flex.Vbase = grid.UB2; % Line voltage
% L filter
flex.filter.Lac = 0.06 * flex.Vbase^2 / flex.Sbase / (2*pi*grid.fn);
flex.filter.Rac = 0.004 * flex.Vbase^2 / flex.Sbase;
% Active power control
flex.P.Kp = 0.2/grid.rss; % Permanent droop (proportional gain)
flex.P.Kd = 0; % Transient droop (derivative gain)
flex.P.Tr = 0.1; % Reset time for transient droop
flex.P.flp = 30; % Low-pass frequency
flex.P.DB = grid.rss/10; % Deadband
%% Wind Farm
% Wind turbine parameters
WT.Tlp = 1.2; % Inertia constant
WT.Rdiam = 126; % Rotor diameter [m]
WT.Lmm = WT.Rdiam/5; % Lenght scale [m]
WT.Turb = 6; % Turbulence intensity [%]
WT.wspeed = 15; % Wind speed [m/s]
% Power curve - Wind speed [m/s]
WT.pcurve.wind = [0;1;2;3;4;5;6;7;8;9;10;11;12;13;14;15;16;25;26;50];
% Power curve - Power [pu]
WT.pcurve.power = [0;0;0;0;0.029;0.0725;0.1304;0.2101;0.3261;0.4638;0.6232;0.7754;0.8913;0.9565;0.9855;1;1;1;0;0];
% Rated power
WT.Prated = 12e6; % Rated active power [W]
WT.cosphi = 0.95; % Rated power factor
% Base values
WT.Sbase = WT.Prated/WT.cosphi; % Apparent power [VA]
WT.Vbase = grid.UB2; % Line voltage [V]
% L filter
WT.filter.Lac = 0.10 * WT.Vbase^2 / WT.Sbase / (2*pi*grid.fn);
WT.filter.Rac = 0.004 * WT.Vbase^2 / WT.Sbase;
% Reactive power control
WT.Q.Kp = tan(acos(WT.cosphi))/0.10; % Permanent droop (proportional gain)
WT.Q.Kd = 0; % Transient droop (derivative gain)
WT.Q.Tr = 0.1; % Reset time for transient droop
WT.Q.flp = 10; % Low-pass frequency
WT.Q.DB = 0.005; % Deadband
%% Simulation Parameters
simu.tTotal = 600; % Total simulation time
simu.tStep = 1/(4*gsc.fSwitch); % Time step (recommended = 1/4 of a switch cycle)
switch(caseNumber)
case 1
simu.tWToff = 1002; % Time to disconnect Wind Farm
simu.tLDstep = 2; % Time to apply Load Step
case 2
simu.tWToff = 1002; % Time to disconnect Wind Farm
simu.tLDstep = 2; % Time to apply Load Step
case 3
simu.tWToff = 2; % Time to disconnect Wind Farm
simu.tLDstep = 1002; % Time to apply Load Step
case 4
simu.tWToff = 2; % Time to disconnect Wind Farm
simu.tLDstep = 1002; % Time to apply Load Step
otherwise
fprintf('Invalid case number.\n');
return
end