Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

filter_args argument for meta_analyse_datasets() not behaving correctly in yi pipeline #132

Open
egouldo opened this issue Aug 29, 2024 · 2 comments
Assignees
Labels
bug an unexpected problem or unintended behavior documentation

Comments

@egouldo
Copy link
Owner

egouldo commented Aug 29, 2024

Full reprex to be attached momentarily (comment too large for pasting), bug found in course of identifying problem in #130

Note for #130 will not fix, however, logging here for addressing software manuscript submission milestone.

@egouldo egouldo added bug an unexpected problem or unintended behavior documentation labels Aug 29, 2024
@egouldo egouldo added this to the Software Manuscript Submit milestone Aug 29, 2024
@egouldo
Copy link
Owner Author

egouldo commented Aug 29, 2024

gaudy-geese_reprex.md

@egouldo egouldo self-assigned this Aug 29, 2024
@egouldo
Copy link
Owner Author

egouldo commented Aug 29, 2024

Load Data

options(tidyverse.quiet = TRUE)
options(lifecycle_verbosity = "warning")
library(ManyEcoEvo)
#> Loading required package: rmarkdown
#> Loading required package: bookdown
#> Registered S3 method overwritten by 'parsnip':
#>   method          from 
#>   print.nullmodel vegan
#> Registered S3 method overwritten by 'lava':
#>   method         from    
#>   print.estimate EnvStats
library(dplyr)
#> 
#> Attaching package: 'dplyr'
#> The following objects are masked from 'package:stats':
#> 
#>     filter, lag
#> The following objects are masked from 'package:base':
#> 
#>     intersect, setdiff, setequal, union
library(purrr)

data("ManyEcoEvo_yi")

Compare Results with and without Exclusion Subsetting

with exclusion subsetting

yi_results_outlier_subsetting <-
  ManyEcoEvo_yi %>%
  prepare_response_variables(
    estimate_type = "yi",
    param_table =
      ManyEcoEvo:::analysis_data_param_tables,
    dataset_standardise = "blue tit",
    dataset_log_transform = "eucalyptus"
  ) %>%
  generate_yi_subsets() %>% # TODO: must be run after prepare_response_variables??
  apply_VZ_exclusions(
    VZ_colname = list(
      "eucalyptus" = "se_log",
      "blue tit" = "VZ"
    ),
    VZ_cutoff = 3
  ) %>%
  generate_exclusion_subsets() %>%
  generate_outlier_subsets(
    outcome_variable =
      list(
        dataset =
          list(
            "eucalyptus" = "mean_log",
            "blue tit" = "Z"
          )
      ),
    n_min = -3,
    n_max = -3,
    ignore_subsets = NULL
  ) %>%
  compute_MA_inputs()
#> 
#> ── Computing Sorensen diversity indices inputs ─────────────────────────────────
#> 
#> ── Applying exclusion rules and generating exclusion subsets ───────────────────
#> 
#> ── Generating out-of-sample prediction subsets. ────────────────────────────────
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ Standardising and/or log-transforming response variables for "yi" estimates.
#> 
#> ── Computing meta-analysis inputsfor `estimate_type` = "yi" ────────────────────
#> 
#> ── Standardising out-of-sample predictions ──
#> 
#> ── Computing meta-analysis inputs: ─────────────────────────────────────────────
#> 
#> ── Log-transforming response-variable ──
#> 
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> 
#> ── Applying VZ exclusions ──────────────────────────────────────────────────────
#> ! `VZ_cutoff` = 3 was recycled to match the number of unique datasets in `df`.
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> ! `n_min` = -3 was recycled to match the number of unique datasets in `data`.
#> ! `n_max` = -3 was recycled to match the number of unique datasets in `data`.
#> Warning: Unquoting language objects with `!!!` is deprecated as of rlang 0.4.0. Please
#> use `!!` instead.
#> 
#> # Bad: dplyr::select(data, !!!enquo(x))
#> 
#> # Good: dplyr::select(data, !!enquo(x)) # Unquote single quosure
#> dplyr::select(data, !!!enquos(x)) # Splice list of quosures

without exclusion subsetting

yi_results_no_exclusion_subsetting_outlier_subsetting <-
  ManyEcoEvo_yi %>%
  prepare_response_variables(
    estimate_type = "yi",
    param_table =
      ManyEcoEvo:::analysis_data_param_tables,
    dataset_standardise = "blue tit",
    dataset_log_transform = "eucalyptus"
  ) %>%
  generate_yi_subsets() %>% # TODO: must be run after prepare_response_variables??
  apply_VZ_exclusions(
    VZ_colname = list(
      "eucalyptus" = "se_log",
      "blue tit" = "VZ"
    ),
    VZ_cutoff = 3
  ) %>%
  generate_outlier_subsets(
    outcome_variable =
      list(
        dataset =
          list(
            "eucalyptus" = "mean_log",
            "blue tit" = "Z"
          )
      ),
    n_min = -3,
    n_max = -3,
    ignore_subsets = NULL
  ) %>%
  compute_MA_inputs()
#> 
#> ── Computing Sorensen diversity indices inputs ─────────────────────────────────
#> 
#> ── Generating out-of-sample prediction subsets. ────────────────────────────────
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for squared effect sizes or out-of-sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ✔ Applied back-transformation for ^100 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for cubed effect sizes
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ✔ Applied back-transformation for ^14 effect sizes or out of sample predictions.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ℹ No back-transformation required, identity link used.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for logit-transformed effect sizes or out-of-sample predictions
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for square-root transformed effect sizes or out-of-sample predictions.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ✔ Applied back-transformation for log-transformed effect sizes or out-of-sample predictions, using 10000 simulations.
#> ℹ Standardising and/or log-transforming response variables for "yi" estimates.
#> 
#> ── Computing meta-analysis inputsfor `estimate_type` = "yi" ────────────────────
#> 
#> ── Standardising out-of-sample predictions ──
#> 
#> ── Computing meta-analysis inputs: ─────────────────────────────────────────────
#> 
#> ── Log-transforming response-variable ──
#> 
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> ✔ Log-transformed out-of-sample predictions, using 10000 simulations.
#> 
#> ── Applying VZ exclusions ──────────────────────────────────────────────────────
#> ! `VZ_cutoff` = 3 was recycled to match the number of unique datasets in `df`.
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 2 extreme values of `VZ` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> 
#> ── Excluding extreme values of VZ ──
#> 
#> → 0 extreme values of `se_log` removed at threshold of 3 for `dataset` "blue tit", `estimate_type` = "y25".
#> ! `n_min` = -3 was recycled to match the number of unique datasets in `data`.
#> ! `n_max` = -3 was recycled to match the number of unique datasets in `data`.
#> Warning: Unquoting language objects with `!!!` is deprecated as of rlang 0.4.0. Please
#> use `!!` instead.
#> 
#> # Bad: dplyr::select(data, !!!enquo(x))
#> 
#> # Good: dplyr::select(data, !!enquo(x)) # Unquote single quosure
#> dplyr::select(data, !!!enquos(x)) # Splice list of quosures

Check results

list(
  yi_results_outlier_subsetting,
  yi_results_no_exclusion_subsetting_outlier_subsetting
) %>%
  purrr::map(~ dplyr::group_by(.x, dplyr::pick(dplyr::any_of(c(
    "dataset",
    "estimate_type",
    "exclusion_set"
  )))) %>%
    dplyr::count())
#> [[1]]
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     1
#> 
#> [[2]]
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     1

Check Complete Targets Pipeline

pipeline_results_comparison <-
  tidyr::expand_grid(
    data =
      list(
        yi_results_outlier_subsetting,
        yi_results_no_exclusion_subsetting_outlier_subsetting
      ),
    filter_vars =
      list(
        NULL,
        rlang::expr(exclusion_set == "complete"),
        rlang::expr(exclusion_set != "complete")
      )
  ) %>%
  purrr::pmap(~ ..1 %>%
    meta_analyse_datasets(
      outcome_variable =
        list(
          dataset =
            list("eucalyptus" = "mean_log", "blue tit" = "Z")
        ),
      outcome_SE =
        list(
          dataset =
            list("eucalyptus" = "se_log", "blue tit" = "VZ")
        ),
      filter_vars = if (!is.null(..2)) list(..2)
    )) %>%
  purrr::set_names({
    tidyr::expand_grid(
      dataset = c(
        "outlier_subsetting",
        "no_exclusion_subsetting_outlier_subsetting"
      ),
      filter_args = c(
        "NULL filter_vars",
        "exclusion_set == 'complete'",
        "exclusion_set != 'complete"
      )
    ) %>%
      tidyr::unite("run_name", dataset, filter_args, sep = " x ") %>%
      purrr::flatten_chr()
  })
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> Registered S3 method overwritten by 'quantmod':
#>   method            from
#>   as.zoo.data.frame zoo
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#>  - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#>  - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6639
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3381
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.671
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.5984
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 10.7961
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.1214
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7193
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4206
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6745
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.847
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0402
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.7949
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.34 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.14 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.22 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 3.32 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.53 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.51 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.88 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 10 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 12 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model is nearly unidentifiable: very large eigenvalue
#>  - Rescale variables?
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 11 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> boundary (singular) fit: see help('isSingular')
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete
#> boundary (singular) fit: see help('isSingular')
#> 
#> ── Meta-analysing Datasets ─────────────────────────────────────────────────────
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Fitting metaregression ──
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.6618
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.3375
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.672
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.7128
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 12.2935
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 13.2023
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = -0.7169
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.4209
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 0.6755
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 5.0849
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 4.8149
#> 
#> ── Calculating absolute deviation scores from meta-analytic mean ──
#> 
#> ℹ Using the meta-analytic mean outcome as the reference point:`meta_analytic_mean` = 9.4491
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.33 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.07 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.21 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 4.16 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 0 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.58 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.6 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "blue tit". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of blue tit dataset variables is 0.55 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 1.36 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.15 for `abs_deviation_score_estimate`.
#> 
#> ── Box-cox transforming absolute deviation scores for `dataset` = "eucalyptus". ──
#> 
#> ℹ Optimised Lambda used in Box-Cox Transformation of eucalyptus dataset variables is 5.34 for `abs_deviation_score_estimate`.
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting glm for box-cox transformed outcome with sorensen diversity index as predictor ──
#> 
#> ℹ
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with continuous ratings predictor `RateAnalysis` on Box-Cox transformed `outcome`: `box_cox_abs_deviation_score_estimate` ──
#> 
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting `lmer()` with categorical ratings predictor `PublishableAsIs` on Box-Cox transformed `outcome`:  `box_cox_abs_deviation_score_estimate` ──
#> 
#> boundary (singular) fit: see help('isSingular')
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> 
#> ── Fitting glm for box-cox transformed outcome with inclusion of random effects (binary variable) as predictor ──
#> 
#> ! Columns `mixed_model` and box_cox_abs_deviation_score_estimate missing. Returning NA.
#> Warning: There were 24 warnings in `dplyr::mutate()`.
#> The first warning was:
#> ℹ In argument: `box_cox_rating_cont = purrr::map(...)`.
#> Caused by warning in `checkConv()`:
#> ! Model failed to converge with max|grad| = 2.48904 (tol = 0.002, component 1)
#> ℹ Run `dplyr::last_dplyr_warnings()` to see the 23 remaining warnings.
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: blue tit
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')
#> ℹ Presence of random effects in analyses excluded as predictor in model for data subset:
#> • dataset: eucalyptus
#> • exclusion_set: complete-rm_outliers
#> boundary (singular) fit: see help('isSingular')


pipeline_results_comparison %>%
  purrr::map(~ dplyr::group_by(.x, dplyr::pick(dplyr::any_of(c(
    "dataset",
    "estimate_type",
    "exclusion_set"
  )))) %>%
    dplyr::count())
#> $`outlier_subsetting x NULL filter_vars`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     1
#> 
#> $`outlier_subsetting x exclusion_set == 'complete'`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 3
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 3
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 3
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 3
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 3
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 3
#> 12 eucalyptus y75           complete-rm_outliers     1
#> 
#> $`outlier_subsetting x exclusion_set != 'complete`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     3
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     3
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     3
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     3
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     3
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     3
#> 
#> $`no_exclusion_subsetting_outlier_subsetting x NULL filter_vars`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     1
#> 
#> $`no_exclusion_subsetting_outlier_subsetting x exclusion_set == 'complete'`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 3
#>  2 blue tit   y25           complete-rm_outliers     1
#>  3 blue tit   y50           complete                 3
#>  4 blue tit   y50           complete-rm_outliers     1
#>  5 blue tit   y75           complete                 3
#>  6 blue tit   y75           complete-rm_outliers     1
#>  7 eucalyptus y25           complete                 3
#>  8 eucalyptus y25           complete-rm_outliers     1
#>  9 eucalyptus y50           complete                 3
#> 10 eucalyptus y50           complete-rm_outliers     1
#> 11 eucalyptus y75           complete                 3
#> 12 eucalyptus y75           complete-rm_outliers     1
#> 
#> $`no_exclusion_subsetting_outlier_subsetting x exclusion_set != 'complete`
#> # A tibble: 12 × 4
#> # Groups:   dataset, estimate_type, exclusion_set [12]
#>    dataset    estimate_type exclusion_set            n
#>    <chr>      <chr>         <chr>                <int>
#>  1 blue tit   y25           complete                 1
#>  2 blue tit   y25           complete-rm_outliers     3
#>  3 blue tit   y50           complete                 1
#>  4 blue tit   y50           complete-rm_outliers     3
#>  5 blue tit   y75           complete                 1
#>  6 blue tit   y75           complete-rm_outliers     3
#>  7 eucalyptus y25           complete                 1
#>  8 eucalyptus y25           complete-rm_outliers     3
#>  9 eucalyptus y50           complete                 1
#> 10 eucalyptus y50           complete-rm_outliers     3
#> 11 eucalyptus y75           complete                 1
#> 12 eucalyptus y75           complete-rm_outliers     3

Created on 2024-08-29 with reprex v2.1.0

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug an unexpected problem or unintended behavior documentation
Projects
None yet
Development

No branches or pull requests

1 participant